Intersection of 5G &

Open Reference Platforms

Tom TOFIGH, PMTS, AT&T

© 2015 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property. AT&T Proprietary (Internal Use Only). Not for use or disclosure outside the AT&T companies except under written agreement.

Driving Force for 5G and Beyond:

Open & Democratized Interfaces

Disruptive Network Connectivity

Better, Faster, Flexible, Elastic Access, Edge cloud and MEC Services

Emerging cloud centric Operating Models

- Modular Capabilities / White Box
- Open Source Platforms & Blue Prints
- Economically Viable Eco Systems
- Digital Traceability / Dynamic Analytics
- AI/ ML , AR/VR, Robotics, Flying objects
- Predictive & Scenario Driven
- Micro Services & Third Party Applications

Empowered Customers

- Seamless data sharing
- Remote Diagnostics
- Increase Trust and Transparency
- Enable Human and Machine Collaboration
- Lower Operating Cost
- Predictive and Zero Touch, Automation

Rise of Open RAN -> Unified SD-RAN for 5G and Beyond

RAN Evolution & Transformation to SD-RAN an Opportunity for "In band Radio Telemetry"

<u>Need for programmable Radio pipelines + In band Network Telemetry</u>

How about Control over Sharing and Coexistence

Coexistence allows two or more systems to operate with least impact to each other.

- Often uncoordinated with focus on interference avoidance.
- Aggressive use of mostly unpaired spectrum in 5G may require some synchronization between coexisting systems.

Sharing of common spectrum resources especially if proactive and coordinated can boost system capacity and performance

- May be a combination of pre-arranged rules and opportunistic sharing
- May Involve Multi-Tier Priority Access Sharing
- Also benefits from synchronization when feasible

Does Unified Air Interface Helps with Coexistence?

Having a unified air interface and frame structure allowing concurrent operation of mixed numerologies helps with coexistence across use cases when (semi) synchronized.

Separation of Control and User plane \rightarrow SD-RAN

Radio Resource Manager -> (SD-RAN) -> Rise of ORAN

- Common Control & Configuration for Split Architecture
- Extended Control Configuration options to vendors specific features
- Unified vProbe and Analytic Registration process
- Well Known Functional Interface & APIs
- Measurement Configuration, Control and Reporting
 - RRC Measurement Config
 - RRC Measurement Report
 - L2 Measurement Config
 - L2 Measurement Report
 - Frequency Selections
 - Power Level
 - Antenna & Beam Forming Commands
 - Handoff Actions
 - Scheduling and Slicing RAN Control
 - UE Admission Control
 - Cell Configuration

What Open Reference Platforms Offer

Offers new user experiences

• AR/VR , battery life , M2M, Edge clouds,

Provides for new types of connectivity services

• Seamless, carrier aggregation, QOS, Metering, etc.

Provides for autonomous operational flexibility

Analytics, Performance, latency scale, security, Reliability, and programmability

Performs frequent "control" across the RANs

- hyper densified set of technologies and macro, small and micro cells.
- Observability and MI approach

RRC Measurement Config RRC Measurement Report L2 Measurement Config L2 Measurement Report Frequency Selections Power Level Antenna & Beam Forming Handoff Actions Scheduling , Slicing RAN Control UE Admission Control Cell Configuration

Leads to Adaptive Analytics for 5G with Open Reference Platforms "The Services of The Future"

Edge Cloud Solutions That Support Increased Data Usage & A Richer Multimedia Experience

Rise of Open Reference Platform Blue-Prints

Open Source Communities & Standards

Open Platforms & Opportunities

Adopts Micro-Services with Control as a Service

- Defines Authoritative State
- Mediates Trust
- Enforces Policy/Invariants
- Activates Data Path

Challenges: Open and Democratized Abstractions

Graph abstraction Representing Radio Networks (Multi-RATs)

Graph: G = (N, E, L, B, etc.) or (nodes, Links, Slices, Beams)

N = set of routers / Radios = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (u,w), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

 $L = set of Slices = {sub ((u,v), sub (u,x), sub(u,w), sub(v,x), sub (v,w), sub (x,w), sub(x,y), sub (w,y), sub (w,z), (y,z) }$

B = set of radio Resources at time T = Associated { u, v, w, x, y, z }

Goals:

- Understand principles behind Abstraction
- Understand principles behind service Layers & Multi Tenancy
- Understand principals behind dynamic Analytics & Trigger Functions

SD-RAN: Programmable RAN Operation Examples

Example: SD-RAN & Micro Services

Adaptive Analytics Service

Model driven Passive Monitoring

Active Test as a service

Summary Remarks

- Aggressive spectrum allocations for 5G and beyond will require unified, open and democratized Interfaces.
- Opening up the interfaces, disaggregating RAN, white box deployment models with coexistence, should be a key focus for open source community and standardization bodies.
- ORAN could provide coordination and when feasible synchronization of multi vendor and white boxed radio access.
- Open Source + ML + In-band Radio analytics will play a key role in success of emerging Mobility Solutions.

