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abelian semiring. Next, we formalize the notion of interval dependency, along with discussing
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With a view to treating some problems of the present interval theories, we present an alternate
theory of intervals, namely the “theory of optimizational intervals”, and prove that it constitutes
a rich S-field algebra, which extends the ordinary field of the reals, then we construct an
optimizational complex interval algebra. Furthermore, we define an order on the set of interval
numbers, then we present the proofs that it is a total order, compatible with the interval
operations, dense, and weakly Archimedean. Finally, we prove that this order extends the usual
order on the reals, Moore’s partial order, and Kulisch’s partial order on interval numbers.
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Notation and Conventions

Most of our notation is standard, and notational conventions are characterized,
in detail, on their first occurrence. However, we have many theories of intervals
being discussed throughout the text, with each theory has naturally its own pe-
culiar notation; along with some basic logical, set-theoretic, and order-theoretic
symbols. So, for the purpose of legibility, we give here a consolidated list of
symbols for the entire text.

Logical Symbols

= Identity (equality).

¬ Logical Negation (not).

⇒ Implication (if ..., then ...).

⇔ Equivalence (if, and only if ).

∧ Conjunction (and).

∨ Inclusive disjunction (or).

∀ Universal quantifier (for all).

∃ Existential quantifier (there exists).

Q ∈ {∀,∃} A quantifier variable symbol (with or without subscripts).

Q A quantification matrix, (Q1x1) ... (Qnxn), where x1, ..., xn are vari-
able symbols and each Qi is ∀ or ∃.(

∀nk=1xk
)

The universal quantification matrix, (∀x1) ... (∀xn).(
∃nk=1xk

)
The existential quantification matrix, (∃x1) ... (∃xn).

ϕ A quantifier-free formula.

σ A prenex sentence, Qϕ, where Q is a quantification matrix and ϕ
is a quantifier-free formula.
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NOTATION AND CONVENTIONS

Set-Theoretic and Order-Theoretic Symbols

∅ The empty set.

S, T ,U Set variable symbols (with or without subscripts).

℘ (S) The powerset of a set S.

S〈n〉 The n-th Cartesian power of a set S.

∈ The set membership relation.

⊂ The set inclusion relation.

∩ The set intersection operator.

∪ The set union operator.

∩nk=1Sk The finitary set intersection S1 ∩ ... ∩ Sn.

∪nk=1Sk The finitary set union S1 ∪ ... ∪ Sn.

< A relation variable symbol (with or without subscripts).

dom (<) The domain of a relation <.

ran (<) The range of a relation <.

fld (<) The field of a relation <.

<̂ The converse of a relation <.

IdS The identity relation on a set S.

<-inf (S) The infimum of a set S relative to an ordering relation <.

<-sup (S) The supremum of a set S relative to an ordering relation <.

g The lattice binary join operator.

f The lattice binary meet operator.

Interval-Theoretic Symbols

R The set of real numbers.

x, y, z Real variable symbols (with or without subscripts, and with or with-
out lower or upper hyphens).
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NOTATION AND CONVENTIONS

a, b, c Real constant symbols (with or without subscripts, and with or with-
out lower or upper hyphens).

◦ ∈ {+,×} A binary algebraic operator.

� ∈ {−,−1 } A unary algebraic operator.

[R] The set of classical interval numbers.

[R]p The set of point (singleton) classical interval numbers [x, x].

[R]s The set of symmetric classical interval numbers [−x, x].

[R]0̃ The set of zeroless classical interval numbers.

X, Y, Z Interval variable symbols (with or without subscripts).

A,B,C Interval constant symbols (with or without subscripts).

inf (X) The infimum of an interval number X.

sup (X) The supremum of an interval number X.

w (X) The width of an interval number X.

r (X) The radius of an interval number X.

m (X) The midpoint of an interval number X.

|X| The absolute value of an interval number X.

d (X, Y ) The distance (metric) between two interval numbers X and Y .

M ⊂ R The set of machine-representable real numbers.

Mn The set of machine real numbers with n significant digits.

[M] The set of machine interval numbers.

5 Downward rounding operator.

4 Upward rounding operator.

♦ Outward rounding operator.

If (X1, ..., Xn) The image of the real closed intervals X1, ..., Xn under a real-valued
function f .

YDX The interval variable Y is dependent on the interval variable X.

Y =X The interval variable Y is independent on the interval variable X.

xv



NOTATION AND CONVENTIONS

=nk=1 (Xk) All the interval variablesX1, ..., Xn are pairwise mutually independent.

M The set of modal intervals.

M∃ The set of existential (proper) modal intervals.

M∀ The set of universal (improper) modal intervals.

mX,mY,mZ Modal interval variable symbols (with or without subscripts).

mA,mB,mC Modal interval constant symbols (with or without subscripts).

mode (mX) The mode of a modal interval mX.

set (mX) The set of a modal interval mX.

dual (mX) The dual of a modal interval mX.

proper (mX) The proper of a modal interval mX.

improper (mX) The improper of a modal interval mX.

inf (mX) The infimum of a modal interval mX.

sup (mX) The supremum of a modal interval mX.

t[R] The set of constraint intervals.

t[R]p The set of point constraint intervals.

t[R]s The set of symmetric constraint intervals.

t[R]0̃ The set of zeroless constraint intervals.

o[R] The set of optimizational interval numbers.

o[R]p The set of point optimizational interval numbers.

o[R]s The set of symmetric optimizational interval numbers.

o[R]0̃ The set of zeroless optimizational interval numbers.

C The set of ordinary complex numbers.

i =
√
−1 The ordinary imaginary unit.

x,y, z Complex variable symbols (with or without subscripts).

a, b, c Complex constant symbols (with or without subscripts).

[C] The set of classical complex intervals.

[C]p The set of point classical complex intervals.
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NOTATION AND CONVENTIONS

[C]0̃ The set of zeroless classical complex intervals.

i = [i, i] The interval imaginary unit.

X,Y ,Z Complex interval variable symbols (with or without subscripts).

A,B,C Complex interval constant symbols (with or without subscripts).

In (X) The interval part of a complex interval X.

Im (X) The imaginary part of a complex interval X.

X̃ The conjugate of a complex interval X.

o[C] The set of optimizational complex intervals.

o[C]p The set of point optimizational complex intervals.

o[C]s The set of symmetric optimizational complex intervals.

o[C]0̃ The set of zeroless optimizational complex intervals.

<M Moore’s partial ordering for interval numbers.

≤K Kulisch and Miranker’s partial ordering for interval numbers.

≤T1, ≤T2 Ishibuchi and Tanaka’s partial orderings for interval numbers.

�I A total compatible ordering for interval numbers.
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Chapter 1
Introduction and Motivation

You cannot be certain about uncertainty.

—Frank Knight (1885-1972)

Scientists are, all the time, in a struggle with error and uncertainty. Un-
certainty is the quantitative estimation of errors present in measured data; all
measurements contain some uncertainty generated through many types of error.
Error (“mistaken result”, or “mistaken outcome”) is common in all scientific
practice, and is always a serious threat to the search for a trustworthy scientific
knowledge and to certain epistemic foundations of science.

This introductory chapter is intended to provide a bit of motivation and
perspective about the field of interval arithmetic, its history, and how it is
a potential weapon against uncertainty in science and technology (For fur-
ther background, the reader may consult, e.g., [Allchin2000], [Allchin2007],
[Dawood2011], [Kline1982], and [Pedrycz2008]). After this motivation for the
subject, section 1.4 provides an outline of this work.

1.1 What Interval Arithmetic is

In real-life computations, uncertainty naturally arises because we process val-
ues which come from measurements and from expert estimations. From both
the epistemological and physical viewpoints, neither measurements nor expert
estimations can be exact for the following reasons:

• The actual value of the measured quantity is a real number; so, in general,
we need infinitely many bits to describe the exact value, while after every
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CHAPTER 1. INTRODUCTION AND MOTIVATION

measurement, we gain only a finite number of bits of information (e.g., a
finite number of binary digits in the binary expansion of the number).

• There is always some diffi cult-to-delete noise which is mixed with the mea-
surement results.

• Expert estimates cannot be absolutely exact, because an expert generates
only a finite amount of information.

• Experts are usually even less accurate than are measuring instruments.

So, there are usually three sources of error while performing numerical com-
putations with real numbers; rounding, truncation and input errors. A mistaken
outcome is always a concern in scientific research because errors inevitably ac-
cumulate during calculations. Interval arithmetic keeps track of all error types
simultaneously, because an interval arithmetic operation produces a closed in-
terval within which the true real-valued result is guaranteed to lie.

Interval arithmetic (also known as “interval mathematics”, “interval analy-
sis”, and “interval computation”) is an arithmetic defined on sets of real in-
tervals, rather than sets of real numbers. It specifies a precise method for
performing arithmetic operations on closed intervals (interval numbers). The
concept is simple: in the interval number system, each interval number rep-
resents some fixed real number between the lower and upper endpoints of the
closed interval. So, an interval arithmetic operation produces two values for
each result. The two values correspond to the lower and upper endpoints of
the resulting interval such that the true result certainly lies within this interval,
and the accuracy of the result is indicated by the width of the resulting interval.

As a result of error, we all the time have to face situations in which scientific
measurements give uncertain values. Let x be a real number whose value is
uncertain, and assume a measurement gives adequate information about an
acceptable range, x ≤ x ≤ x, in which the true value of x is estimated to lie.
The closed interval (interval number),

[x, x] = {x ∈ R|x ≤ x ≤ x},

is called the “interval of certainty”(or the “interval of confidence”) about the
value of x. That is, we are certain that the true value of x lies within the
interval [x, x].

If it is the case that −→xn = 〈x1, x2, ..., xn〉 is a multidimensional quantity (real-
valued vector) such that for each xi there is an interval of certainty Xi = [xi, xi],

2



CHAPTER 1. INTRODUCTION AND MOTIVATION

then the quantity −→xn has an “n-dimensional parallelotope of certainty”, Xn,
which is the Cartesian product of the intervals X1, X2, ..., Xn.

Figure 1.1 illustrates the case n = 2; with −→x2 = 〈x1, x2〉, x1 ∈ [x1, x1],
x2 ∈ [x2, x2], and X2 is a rectangle of certainty.

Figure 1.1: A 2-dimensional parallelotope of certainty.

To illustrate this, we give two numerical examples.

Example 1.1 The Archimedes’s constant, π, is an irrational number, which
means that its value cannot be expressed exactly as a fraction. Consequently, it
has no certain decimal representation because its decimal representation never
ends or repeats. Since 314 × 10−2 ≤ π ≤ 315 × 10−2, the number π can be
represented as the interval number

[π, π] =
[
314× 10−2, 315× 10−2

]
.

That is, we are certain that the true value of π lies within the interval [π, π]
whose width indicates the maximum possible error,

Error = width([π, π])

= π − π
= 315× 10−2 − 314× 10−2

= 10−2.

Example 1.2 Suppose two independent scientific measurements give different
uncertain results for the same quantity q. One measurement gives q = 1.4±0.2.
The other gives q = 1.5 ± 0.2. These uncertain values of q can be represented

3



CHAPTER 1. INTRODUCTION AND MOTIVATION

as the interval numbers X = [1.2, 1.6] and Y = [1.3, 1.7], respectively. Since
q lies in both, it certainly lies in their intersection X ∩ Y = [1.3, 1.6]. So, if
X ∩Y 6= ∅, we can get a better (tighter) “interval of certainty”. If not, we can
be certain that at least one of the two measurements is wrong.

In chapters 2, 3, 4, and 5, we shall present formal constructions of the mathe-
matical foundations of interval arithmetic, along with more advanced examples
being provided.

1.2 A History Against Uncertainty

The term “interval arithmetic”is reasonably recent: it dates from the 1950s,
when the works of Paul S. Dwyer, R. E. Moore, R. E. Boche, S. Shayer, and
others made the term popular (see, [Dwyer1951], [Moore1959], [Boche1963], and
[Shayer1965]). But the notion of calculating with intervals is not completely
new in mathematics: in the course of history, it has been invented and re-
invented several times, under different names, and never been abandoned or
forgotten. The concept has been known since the third century BC, when
Archimedes used guaranteed lower and upper bounds to compute his constant,
π (see [Archimedes2002]).

Early in the twentieth century, the idea seemed to be rediscovered. A form of
interval arithmetic perhaps first appeared in 1924 by J. C. Burkill in his paper
“Functions of Intervals” ([Burkill1924]), and in 1931 by R. C. Young in her
paper “The Algebra of Many-Valued Quantities”([Young1931]) that gives rules
for calculating with intervals and other sets of real numbers; then later in 1951
by Paul S. Dwyer in his book “Linear computations”([Dwyer1951]) that dis-
cusses, in a heuristic manner, certain methods for performing basic arithmetic
operations on real intervals, and in 1958 by T. Sunaga in his book “Theory of
an Interval Algebra and its Application to Numerical Analysis”([Sunaga1958]).

However, it was not until 1959 that new formulations of interval arithmetic
were presented. Modern developments of the interval theory began in 1959 with
R. E. Moore’s technical report “Automatic Error Analysis in Digital Computa-
tion”([Moore1959]) in which he developed a number system and an arithmetic
dealing with closed real intervals. He called the numbers “range numbers”
and the arithmetic “range arithmetic” to be the first synonyms of “interval
numbers”and “interval arithmetic”. Then later in 1962, Moore developed a
theory for exact or infinite precision interval arithmetic in his very influential
dissertation titled “Interval Arithmetic and Automatic Error Analysis in Dig-
ital Computing”([Moore1962]) in which he used a modified digital (rounded)
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CHAPTER 1. INTRODUCTION AND MOTIVATION

interval arithmetic as the basis for automatic analysis of total error in a digital
computation. Since then, thousands of research papers and numerous books
have appeared on the subject.

Interval arithmetic is now a broad field in which rigorous mathematics is
associated with scientific computing. The connection between computing and
mathematics provided by intervals makes it possible to solve problems that
cannot be effi ciently solved using floating-point arithmetic and traditional nu-
merical approximation methods. Today, the interval methods are becoming
rapidly popular as a prospective weapon against uncertainties in measurements
and errors of numerical computations. Nowadays, interval arithmetic is widely
used and has numerous applications in scientific and engineering disciplines
that deal intensely with uncertain data (or range data). Practical applica-
tion areas include electrical engineering, structure engineering, control theory,
remote sensing, quality control, experimental and computational physics, dy-
namical and chaotic systems, celestial mechanics, signal processing, computer
graphics, robotics, and computer-assisted proofs.

1.3 Motivation and Problem Statement

Three important aspects of interval mathematics have motivated the research
presented in this thesis. These aspects are summarized as follows.

The Interval Algebras

The algebraic systems of classical interval arithmetic and its present alter-
nates are primitive algebraic structures, if compared to the totally ordered
field of real numbers. So, it is not an easy matter to perform arithmetic
or to solve equations in such algebras.

The Interval Dependency Problem

Another main drawback of the present interval theories is that when com-
puting the image of real-valued functions using interval arithmetic, we usu-
ally get overestimations that inevitably produce meaningless results, if the
variables are functionally dependent. This persisting problem, known as the
“interval dependency problem”, is the main problem of interval computa-
tions. Despite the fact that there are many special methods and algorithms,
based on the classical interval theory, that successfully compute useful nar-
row bounds to the desirable image (see, e.g., [Moore1966], [Moore1979],
[Moore2009], and [Hansen2003]), the problem of evaluating the accurate

5



CHAPTER 1. INTRODUCTION AND MOTIVATION

image, using classical interval arithmetic, is proved to be, in general, NP-
hard (see, e.g., [Gaganov1985], [Pedrycz2008], and [Rokne1984]).

Ordering Interval Numbers

The notion of order plays an important and indispensable role, as im-
portant as that of size, not only in mathematics and its applications but
also in almost all scientific disciplines. Because of its great importance
in both fundamental research and practical applications of the interval
theory, the problem of ordering interval numbers has been attempted by
many researchers, but with the notion of size (or value) is considered as
the all-important aspect of order (which contradicts the defining properties
of the notion of order in order theory). Despite extensive research on the
subject, no total ordering for interval numbers is presented, and the im-
portant question of compatibility of an ordering with the interval algebraic
operations is not touched upon, except for the partial ordering by the in-
clusion relation, ⊆, and its well-known theorem of inclusion monotonicity
(see theorem 2.8, on page 21).

1.4 Outline of the Thesis

This thesis is structured, in seven chapters, as follows.

This introductory chapter has provided a bit of perspective on the field of
interval mathematics and its history. It has also formulated the motivations for
this research.

Chapter 2 opens with the key concepts of the classical interval theory and
then introduces the algebraic and point operations for interval numbers. In
section 2.3, we carefully construct the algebraic system of classical interval
arithmetic, deduce its fundamental properties, and finally prove that it is a
nondistributive abelian semiring. In section 2.4, we describe the key concepts
of machine real arithmetic, then we construct the algebra of machine interval
arithmetic and deduce some of its fundamental properties.

In chapter 3, we formalize the notion of interval dependency, along with
discussing the algebraic systems of two important alternate theories of interval
arithmetic: modal interval arithmetic, and constraint interval arithmetic. In
section 3.2, we introduce the basic concepts of modal interval arithmetic, deduce
its fundamental algebraic properties, and finally uncover the algebraic system of
modal intervals to be a nondistributive abelian ring. In section 3.3, we pay great
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CHAPTER 1. INTRODUCTION AND MOTIVATION

attention, in particular, to studying the foundations of the theory of constraint
intervals, and deduce some important results about its underlying algebraic
system.

Based on the idea of representing a real closed interval as a convex set, along
with our formalization of the notion of interval dependency, we attempt, in
chapter 4, to present an alternate theory of intervals, namely the “theory of
optimizational intervals”, with a mathematical construction that tries to avoid
some of the defects in the current theories of interval arithmetic, to provide
a richer interval algebra, and to better account for the notion of interval de-
pendency. In sections 4.1 and 4.2, we begin by defining the key concepts of
the optimizational interval theory, and then we formulate the basic operations
and relations for optimizational interval numbers. In section 4.3, we carefully
construct the algebraic system of optimizational interval arithmetic, deduce its
fundamental properties, and then prove that the optimizational interval theory
constitutes a rich S-field algebra, which extends the ordinary field structure
of real numbers. In the final section of this chapter, we discuss some further
consequences and future prospects concerning the obtained results.

In the first section of chapter 5, we construct the algebraic system of a classi-
cal complex interval arithmetic, defined in terms of the classical interval theory,
and deduce its fundamental properties. Sections 5.2 and 5.3 are devoted to pre-
senting a new systematic construction of complex interval arithmetic, based
on the theory of optimizational intervals. In section 5.2, we define the key
concepts of the optimizational theory of complex intervals, and then we for-
mulate the basic operations and relations for optimizational complex intervals.
In section 5.3, we carefully construct the algebraic system of optimizational
complex interval arithmetic, deduce its fundamental properties, and then prove
that optimizational complex interval arithmetic possesses a rich S-field algebra,
which extends the field structure of ordinary complex numbers and the S-field
of optimizational interval numbers.

Chapter 6 opens with some order-theoretical preliminaries concerning order-
ing relations and their properties. Section 6.2 gives a survey of the existing
set-theoretic approaches for ordering interval numbers, along with discussing
their compatibility with the interval algebraic operations. In section 6.3, we
characterize the classO(℘(R),≤R) of all possible ordering relations on the powerset
℘ (R) of the reals, in terms of a binary quantification matrix, two real variable
symbols, and the standard ordering relation ≤R on R. Then, we present the
proofs that neither the set [R] of interval numbers nor the powerset ℘ (R) of the
reals can be totally ordered by any of the relations in the class O(℘(R),≤R). In sec-
tion 6.4, we define a set-theoretic ordering relation �I on the set [R] of interval

7



CHAPTER 1. INTRODUCTION AND MOTIVATION

numbers, then we present the proofs that the relation �I is a non-strict total
ordering on [R], compatible with interval addition and multiplication, dense in
[R], and weakly Archimedean in [R]. Furthermore, we prove that the relation
�I induces a distributive lattice structure for interval numbers, and that �I is
an extension of the usual ordering ≤R on the reals, Moore’s partial ordering <M
on [R], and Kulisch’s partial ordering ≤K on [R].

Finally, the thesis closes with chapter 7, which explicitly delineates the con-
tributions of this research and outlines some directions and perspectives for
future research.
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Chapter 2
The Classical Theory of Interval Arithmetic

Algebra is the metaphysics of arithmetic.

—John Ray (1627-1705)

A very simple and natural idea is that of enclosing real numbers in real closed
intervals. Based on this idea, this chapter is devoted to rigorously defining and
constructing the number system of classical interval arithmetic and developing
the most fundamental tools for classical interval analysis (For other construc-
tions of the classical interval theory, the reader may consult, e.g., [Jaulin2001],
[Moore1962], [Moore2009], and [Shayer1965]).

The chapter opens with the key concepts of the classical interval theory
and then introduces the algebraic and point operations for interval numbers.
In section 2.3, we carefully construct the algebraic system of classical interval
arithmetic, deduce its fundamental properties, and finally prove that it is a
nondistributive abelian semiring. Finally, in section 2.4, we describe the key
concepts of machine real arithmetic, then we construct the algebra of machine
interval arithmetic and deduce some of its fundamental properties.

In chapter 6, we endow the algebraic system of classical interval arithmetic
with a total ordering, and prove that it is compatible with the algebraic opera-
tions. In chapter 3, we formalize the notion of interval dependency, along with
discussing the algebraic systems of some alternate theories of interval arith-
metic. Furthermore, with a view to treating some problems of the present
theories of interval arithmetic, chapter 4 is devoted to present an alternate
theory of intervals, namely the “theory of optimizational intervals”.

9



CHAPTER 2. THE CLASSICAL THEORY OF INTERVAL ARITHMETIC

2.1 Algebraic Operations for Classical Interval Numbers

The basic algebraic operations for real numbers can be extended to classical
interval numbers. In this section, we shall formulate the basic relations and
algebraic operations for classical interval numbers. Hereafter and throughout
this work, the machinery used, and assumed priori, is the standard (classical)
predicate calculus and axiomatic set theory. Moreover, in all the proofs, ele-
mentary facts about operations and relations on the real numbers are usually
used without explicit reference.

We first define what a classical interval number is.

Definition 2.1 Let x, x ∈ R such that x ≤ x. A classical interval number [x, x]
is a closed and bounded nonempty real interval, that is

[x, x] = {x ∈ R|x ≤ x ≤ x},

where x = min ([x, x]) and x = max ([x, x]) are called, respectively, the lower
and upper bounds (endpoints) of [x, x].

The set of classical interval numbers shall be denoted1 by [R]. It is a proper
subset of the powerset of R, that is

[R] = {X ∈ ℘ (R) | (∃x ∈ R) (∃x ∈ R) (x ≤ x ∧X = [x, x])}.

Since, corresponding to each pair of real numbers x, x (x ≤ x) there exists a
real closed interval [x, x], the set of classical interval numbers is infinite.

For simplicity of the language, throughout this chapter, we shall usually use
the expression “interval numbers”instead of the expression “classical interval
numbers” and the expression “interval arithmetic” instead of the expression
“classical interval arithmetic”. Moreover, in order to be able easily to speak of
different types of interval numbers, it is convenient to introduce some notational
conventions.

1 Although we have many theories of intervals being discussed throughout the text, we
always deal with the same set of real closed intervals. However, for legibility and brevity; we
shall employ different notations for the set of interval numbers, for example, [R], t[R], o[R],
and so forth, according to what theory of intervals is being discussed. So, we can write, for
instance, the brief expressions “addition on [R]”and “addition on t[R]”instead respectively of
the expressions “classical interval addition”and “constraint interval addition”.

10
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Notation 2.1 The set of all zeroless interval numbers (interval numbers that
do not contain the real number 0) is denoted by [R]0̃, that is

[R]0̃ = {X ∈ [R] |0 /∈ X}.

Notation 2.2 The set of all symmetric interval numbers is denoted by [R]s,
that is

[R]s = {X ∈ [R] |(∃x ∈ R)(0 ≤ x ∧X = [−x, x])}
= {X ∈ [R] |min (X) = −max (X)}.

Notation 2.3 The set of all singleton (point) interval numbers is denoted by
[R]p, that is

[R]p = {X ∈ [R] |(∃x ∈ R)(X = [x, x])}
= {X ∈ [R] |min (X) = max (X)}.

The set [R]p is an infinite proper subset of [R] and is isomorphically equivalent
to the set R of real numbers (see theorem 2.11). That is, every element [x, x] ∈
[R]p is an isomorphic copy of an element x ∈ R. By convention, and being less
pedantic, we agree to identify a point interval number [x, x] = {x} with its real
isomorphic copy x. So, if confusion is not likely to ensue; throughout the text,
we may write x for [x, x].

Hereafter, the upper-case Roman letters X, Y , and Z (with or without
subscripts), or equivalently [x, x],

[
y, y
]
, and [z, z], shall be employed as variable

symbols to denote elements of [R].

The following theorem, concerning the equality relation on [R], is an imme-
diate consequence of the axiom of extensionality2 of axiomatic set theory.

Theorem 2.1 (Equality on [R]). The equality relation for interval numbers is
formulated in terms of the intervals’endpoints as

[x, x] =
[
y, y
]
⇔ x = y ∧ x = y.

2 The axiom of extensionality asserts that two sets are equal if, and only if they have
precisely the same elements (see, e.g., [Causey1994], [Devlin1993], and [Kleene1952]), that is

(∀S) (∀T ) (S = T ⇔ (∀z) (z ∈ S ⇔ z ∈ T )) .

11
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Interval numbers are sets of real numbers. It is therefore not surprising that
the first proposed ordering relation3, for interval numbers, was the ordinary
set inclusion, ⊆, which presented by Young in [Young1931]. Another ordering
relation, <M, that extends the standard strict ordering <R on the reals, was
presented by Moore in [Moore1966]. Both the inclusion relation ⊆ and Moore’s
relation4 <M are partial orderings5 on [R]. This is made precise in the following
two easily derivable theorems.

Theorem 2.2 (The Ordering ⊆ on [R]). Let ⊆ be a binary relation on [R]
defined by

[x, x] ⊆
[
y, y
]
⇔ y ≤R x ∧ x ≤R y.

Then ⊆ is a non-strict partial ordering on [R].

Proof. The proof is easy by showing that the relation ⊆ is reflexive, antisym-
metric, and transitive in [R].

Theorem 2.3 (The Ordering <M on [R]). Let <M be a binary relation on [R]
defined by

[x, x] <M
[
y, y
]
⇔ x <R y.

Then <M is a strict partial ordering on [R].

Proof. The proof is easy by showing that the relation <M is asymmetric and
transitive in [R].

3 Because of its great importance in both fundamental research and practical applications
of the interval theory, the problem of ordering interval numbers shall be dealt with, in detail,
in chapter 6.

4 Since we have many ordering relations on [R] being discussed throughout the text, we
shall deviate from the standard notation “<[R]”and give explicitly relation subscripts peculiar
to each ordering.

5 If a relation < is a partial ordering on a set S, then S has at least one pair which is
non-comparable, in symbols

(∃x ∈ S) (∃y ∈ S) (¬ (x<y) ∧ ¬ (y<x)) .

If a relation < is a total ordering on a set S, then S has no non-comparable pairs (see, e.g,
[Causey1994], [Devlin1993], and [Gleason1992]), in symbols

(∀x ∈ S) (∀y ∈ S) (x<y ∨ y<x) .

12
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Unlike the case with <M, the partial ordering by the set inclusion is compat-
ible6 with the interval algebraic operations (see theorem 2.8, on page 21); and
this is the reason why it plays an important role in Moore’s foremost work in
interval analysis (see, e.g. [Moore1966], [Moore1979], and [Moore2009]).

Example 2.1 For four given interval numbers A = [1, 2], B = [1, 2], C = [1, 3],
and D = [4, 7], we have A = B <M D and A ⊆ B ⊆ C.

We now proceed to define the basic algebraic operations for7 interval num-
bers: two binary operations, namely addition (“+”) and multiplication (“×”),
and two unary operations, namely negation (“−”) and reciprocal (“−1”).

According to the fact that interval numbers are sets, the binary and unary
classical algebraic operations for interval numbers can be characterized, respec-
tively, in the following two set-theoretic definitions.

Definition 2.2 (Binary Operations in8 [R]). For any two interval numbers X
and Y , the binary classical algebraic operations are defined by

X ◦c Y = {z ∈ R| (∃x ∈ X) (∃y ∈ Y ) (z = x ◦R y)},

where ◦ ∈ {+,×}.

Definition 2.3 (Unary Operations in [R]). For any interval number X, the
unary classical algebraic operations are defined by

�cX = {z ∈ R| (∃x ∈ X) (z = �Rx)},

where � ∈ {−,−1 } and 0 /∈ X if � is “−1”.

Hereafter, if confusion is unlikely, the subscript “c”, which stands for “clas-
sical interval operation”9, and the subscript “R”, in the real relation and oper-
ation symbols, may be suppressed.

6 For a detailed characterization of the notion of order compatibility with the algebraic
operations and other order-theoretic notions, see section 6.1, on page 127.

7 For a set S and an algebraic operation ◦S , we write the expressions “the operation ◦S for
S”and “the operation ◦S in S”to mean that “◦S”is a partial or total operation, in the general
sense. To indicate that “◦S”is a total operation in S, we write “the operation ◦S on S”.

8 See footnotes 1 and 7 of this section.
9 Since we have many theories of intervals being discussed throughout the text, with each

theory has its own operations for the set [R] of interval numbers; we shall deviate from the
standard notation “◦[R]”and give explicitly operation subscripts peculiar to each theory.
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By means of the above set-theoretic definitions and from the fact that inter-
val numbers are ordered sets of real numbers, the following four theorems are
derivable.

Theorem 2.4 (Addition on [R]). For any two interval numbers [x, x] and[
y, y
]
, classical interval addition is a total10 operation, on [R], formulated in

terms of the intervals’endpoints as

[x, x] +
[
y, y
]

=
[
x+ y, x+ y

]
.

Proof. Since addition on R is continuous, it follows, by definition 2.2, that ad-
dition in [R] is continuous, and [x, x]+

[
y, y
]
attains its minimum and maximum

values.

Then, by definition 2.1, we have

min
(
[x, x] +

[
y, y
])

= min
x∈[x,x]
y∈[y,y]

(x+ y) = x+ y,

max
(
[x, x] +

[
y, y
])

= max
x∈[x,x]
y∈[y,y]

(x+ y) = x+ y.

We thus obtain
[x, x] +

[
y, y
]

=
[
x+ y, x+ y

]
,

and therefore classical interval addition is a total binary operation on [R].

Theorem 2.5 (Multiplication on [R]). For any two interval numbers [x, x] and[
y, y
]
, classical interval multiplication is a total operation, on [R], formulated

in terms of the intervals’endpoints as

[x, x]×
[
y, y
]

=
[
min{xy, xy, xy, xy},max{xy, xy, xy, xy}

]
.

Proof. Since multiplication on R is continuous, it follows, by definition 2.2,
that multiplication in [R] is continuous, and [x, x]×

[
y, y
]
attains its minimum

and maximum values.

10 Let S〈n〉 be the n-th Cartesian power of a set S. An n-ary (total) operation on S is a total
function tn : S〈n〉 7−→ S. An n-ary partial operation in S is a partial function pn : U 7−→ S,
where U ⊂ S〈n〉. The ordinal n is called the arity of tn or pn.
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Then, by definition 2.1, we have the following cases for min
(
[x, x]×

[
y, y
])

and max
(
[x, x]×

[
y, y
])
.

min
(
[x, x]×

[
y, y
])

=



xy if 0 < x ∧ 0 < y,
xy if 0 < x ∧ 0 > y,
xy if 0 > x ∧ 0 < y,
xy if 0 > x ∧ 0 > y,
xy if x < 0 < x ∧ 0 < y,
xy if x < 0 < x ∧ 0 > y,
xy if 0 < x ∧ y < 0 < y,
xy if 0 > x ∧ y < 0 < y,
min

(
xy, xy

)
if x < 0 < x ∧ y < 0 < y;

max
(
[x, x]×

[
y, y
])

=



xy if 0 < x ∧ 0 < y,
xy if 0 < x ∧ 0 > y,
xy if 0 > x ∧ 0 < y,
xy if 0 > x ∧ 0 > y,
xy if x < 0 < x ∧ 0 < y,
xy if x < 0 < x ∧ 0 > y,
xy if 0 < x ∧ y < 0 < y,
xy if 0 > x ∧ y < 0 < y,
max

(
xy, xy

)
if x < 0 < x ∧ y < 0 < y.

That is,

min
(
[x, x]×

[
y, y
])

= min{xy, xy, xy, xy},
max

(
[x, x]×

[
y, y
])

= max{xy, xy, xy, xy}.

We therefore obtain

[x, x]×
[
y, y
]

=
[
min{xy, xy, xy, xy},max{xy, xy, xy, xy}

]
,

and classical interval multiplication thus is a total binary operation on [R].

Theorem 2.6 (Negation on [R]). For any interval number [x, x], classical in-
terval negation is a total operation, on [R], formulated in terms of the interval
endpoints as

− [x, x] = [−x,−x] .

Proof. Since negation on R is continuous, it follows, by definition 2.3, that
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negation in [R] is continuous, and − [x, x] attains its minimum and maximum
values.

Then, by definition 2.1, we have

min (− [x, x]) = −x,
max (− [x, x]) = −x.

We thus obtain
− [x, x] = [−x,−x] ,

and therefore classical interval negation is a total unary operation on [R].

Theorem 2.7 (Reciprocal in [R]). For any interval number [x, x] ∈ [R]0̃ (that
is, 0 /∈ [x, x]), classical interval reciprocal is a partial operation, in [R], formu-
lated in terms of the interval endpoints as

[x, x]
−1

=
[
x
−1
, x
−1
]
.

Proof. Since real reciprocal is continuous for nonzero elements of R, it follows,
by definition 2.3, that interval reciprocal is continuous on the subset [R]0̃ of [R],
and [x, x]

−1
attains its minimum and maximum values.

Then, by definition 2.1, we have

min
(

[x, x]
−1
)

= x
−1
,

max
(

[x, x]
−1
)

= x
−1
.

We thus obtain
[x, x]

−1
=
[
x
−1
, x
−1
]
,

and therefore classical interval reciprocal is a partial unary operation in [R].

In accordance with the above theorems, we can now define the total oper-
ation of “subtraction”, and the partial operations of “division” and “integer
exponentiation”, for classical interval numbers.

Definition 2.4 (Subtraction on [R]). For any two interval numbers X and Y ,
classical interval subtraction is defined by

X − Y = X + (−Y ) .
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Definition 2.5 (Division in [R]). For any X ∈ [R] and any Y ∈ [R]0̃, classical
interval division is defined by

X ÷ Y = X ×
(
Y
−1
)
.

Definition 2.6 (Integer Exponentiation in [R]). For any interval number X
and any integer n, the integer exponents of X are defined, in terms of multipli-
cation and reciprocal in [R], by the following recursion scheme:

(i) X0 = [1, 1],

(ii) 0 < n⇒ Xn = Xn−1 ×X,

(iii) 0 /∈ X ∧ 0 ≤ n⇒ X−n =
(
X−1

)n
.

Since the classical interval operations are defined in terms of the correspond-
ing real algebraic operations, and as long as division by zero is disallowed; it
follows that the result of a classical interval operation is always an interval
number.

Some numerical examples are shown below.

Example 2.2 For three given interval numbers [1, 2], [3, 4], and [−2, 2], we
have

(i) [1, 2] + [3, 4] = [4, 6],

(ii) [1, 2]× [3, 4] = [3, 8],

(iii) [1, 2]
−1

= [1/2, 1],

(iv) [−2, 2]
2

= [−2, 2]× [−2, 2] = [−4, 4].

The result [−4, 4] of [−2, 2]
2

, in the above example, is not natural in the
sense that a square is always nonnegative. Generally, for any non-point interval
number [x, x], with 0 ∈ [x, x], the square of [x, x] is given by

[x, x]
2

= [x, x]× [x, x]

=
[
min{x2, xx, x2},max{x2, xx, x2}

]
=
[
xx,max{x2, x2}

]
,
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which is consistent with classical interval multiplication (theorem 2.5), but it
is not consistent with the fact that a square is always nonnegative, for the case
when xx < 0. However, if we changed it to be

[x, x]
2

= {z ∈ R| (∃x ∈ [x, x])
(
z = x

2
)
}

=
[
0,max{x2, x2}

]
,

then it would be inconsistent with classical interval multiplication. This is not a
problem if interval arithmetic is regarded as a numerical approximation method,
for real-valued problems, such that the result of an interval operation contains
all possible solutions. But if interval arithmetic is regarded as a definitional
extension11 of the theory of real numbers (this is the case in almost all interval
literature), in the logical sense; then the theory of interval arithmetic is not
consistent. In this work, we shall regard interval arithmetic as a numerical
approximation tool of guaranteed effi ciency against computation errors, in the
sense we discussed in chapter 1.

11 A theory TE is called a definitional extension of a theory T iff TE is obtained from T by
adding new relation symbols and function symbols defined in terms of symbols of T (see, e.g.,
[Kleene1952], [Rasiowa1963] and [Tarski1965]).
Defining relation symbols. Let ϕ (x1, ..., xn) be a formula of T such that x1, ..., xn occur

free in ϕ. A new theory TE can be obtained from T by adding a new n-ary relation symbol R,
the logical axioms featuring R, and the new definitional axiom of R

(∀x1) ... (∀xn) (R (x1, ..., xn)⇔ ϕ (x1, ..., xn)) .

An example of such a definition of relation symbols is the definition of a closed interval in terms
of the order relation ≤ of the theory of real numbers.
Defining function symbols. Let ϕ (y, x1, ..., xn) be a formula of T such that y, x1, ..., xn

occur free in ϕ. Assume that the sentence

(∀x1) ... (∀xn) (∃!y) (ϕ (y, x1, ..., xn)) ,

is provable in T ; that is, for all x1, ..., xn, there exists a unique y such that ϕ (y, x1, ..., xn). A
new theory TE can be obtained from T by adding a new n-ary relation symbol F , the logical
axioms featuring F , and the new definitional axiom of F

(∀x1) ... (∀xn) (ϕ (F (x1, ..., xn) , x1, ..., xn)) .

An example of such a definition of function symbols is the definition of the interval algebraic
operations in terms of the algebraic operations of the theory of real numbers.
If TE is a consistent definitional extension of T , then for any formula ψ of TE we can form

a formula ϕ of T , called a translation of ψ into T , such that ψ ⇔ ϕ is provable in TE. Such
a formula is not unique, but any two formulas ϕ1 and ϕ2 can be proved to be equivalent in
T . That is, for TE to be a consistent definitional extension of T ; if ψ1 ⇔ ϕ1, ψ2 ⇔ ϕ2, and
ϕ1 ⇔ ϕ2, then ψ1 ⇔ ψ2.
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2.2 Point Operations for Classical Interval Numbers

A point (or scalar) interval operation is an operation whose operands are in-
terval numbers, and whose result is a point interval (or, equivalently, a real
number). This is made precise in the following definition.

Definition 2.7 (Point Interval Operations). Let [R]〈n〉 be the n-th Cartesian
power of [R]. An n-ary point interval operation, ωn, is a function that maps
elements of [R]〈n〉 to the set [R]p of point interval numbers, that is

ωn : [R]〈n〉 7−→ [R]p .

Several point interval operations can be defined. Next we define some unary
and binary point interval operations.

Definition 2.8 (Interval Infimum). The infimum of an interval number [x, x]
is defined to be

inf ([x, x]) = min ([x, x]) = x.

Definition 2.9 (Interval Supremum). The supremum of an interval number
[x, x] is defined to be

sup ([x, x]) = max ([x, x]) = x.

Definition 2.10 (Interval Width). The width of an interval number [x, x] is
defined to be

w ([x, x]) = x− x.

Thus, the width of a point interval number is zero, that is

(∀x ∈ R) (w ([x, x]) = x− x = 0) .

Definition 2.11 (Interval Radius). The radius of an interval number [x, x] is
defined to be

r ([x, x]) =
w ([x, x])

2
=

(x− x)

2
.

Definition 2.12 (Interval Midpoint). The midpoint (or mean) of an interval
number [x, x] is defined to be

m ([x, x]) =
(x+ x)

2
.
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Hence, the midpoint of a point interval number is its real isomorphic copy,
that is

(∀x ∈ R)

(
m ([x, x]) =

(x+ x)

2
= x

)
.

We observe that any interval number X can be expressed, in terms of its
width and its midpoint, as the sum of its midpoint and a corresponding sym-
metric interval, that is

X = m (X) +

[
−w (X)

2
,
w (X)

2

]
,

where, by convention, m (X) = [m (X) ,m (X)].

Definition 2.13 (Interval Absolute Value). The absolute value of an interval
number [x, x] is defined, in terms of the absolute values of its real endpoints, to
be

|[x, x]| = max{|x| , |x|}.

Thus, the absolute value of a point interval number is the usual absolute
value of its real isomorphic copy, that is

(∀x ∈ R) (|[x, x]| = max{|x| , |x|} = |x|) .

All the above point interval operations are unary operations. An important
definition of a binary point interval operation is that of the interval distance
(interval metric , or Moore’s metric12).

Definition 2.14 (Interval Distance). The distance (or metric) between two
interval numbers [x, x] and

[
y, y
]
is defined to be

d
(
[x, x] ,

[
y, y
])

= max{
∣∣x− y∣∣ , |x− y|}.

The importance of this definition is that starting from the distance function
for interval numbers, we can verify that it induces a metric space13 for interval

12 Moore’s metric is named after the American mathematician Ramon Edgar Moore, who
was the first to characterize the interval metricity and proved that it induces an interval metric
space (see [Moore1959]).
13 A metric space is an ordered pair (S, d), where S is a set and d is a metric on S, that is

d : S〈2〉 7−→ R,
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numbers which is a generalization of the usual metric space of real numbers.
Thus, the notions of a sequence, convergence, continuity, and a limit can be
defined for interval numbers in the standard way. These notions give rise to
what we may call a “measure theory for interval numbers”. An interval measure
theory is beyond the scope of this work.

Example 2.3 For three given interval numbers [1, 2], [3, 4], and [−5, 3], we
have

(i) w ([1, 2]) = w ([3, 4]) = 1,

(ii) m ([1, 2]) = 3/2, m ([3, 4]) = 7/2,

(iii) |[−5, 3]| = max{|−5| , |3|} = 5,

(iv) d ([1, 2] , [3, 4]) = max{|1− 3| , |2− 4|} = 2.

2.3 Algebraic Properties of Classical Interval Arithmetic

By means of the notions prescribed in sections 2.1 and 2.2, we shall now inquire
into some fundamental theorems concerning interval arithmetic. By virtue of
our definition of an interval number, the properties of real numbers are naturally
assumed priori.

A first important theorem we shall now prove is the inclusion monotonicity
theorem for classical interval arithmetic, which asserts that the partial ordering
by the set inclusion relation is compatible14 with the algebraic operations on
the set [R] of interval numbers.

Theorem 2.8 (Inclusion Monotonicity in [R]). Let X1, X2, Y1, and Y2 be
interval numbers such that X1 ⊆ Y1 and X2 ⊆ Y2. Then for any classical
interval operation ◦ ∈ {+,×}, we have

X1 ◦X2 ⊆ Y1 ◦ Y2.

such that for any x, y, z ∈ S, the following holds (see [Bryant1985]):

• x = y ⇔ d (x, y) = 0,

• d (x, y) = d (y, x),

• d (x, z) ≤ d (x, y) + d (y, z).

14 For a precise characterization of the notion of order compatibility with the algebraic
operations, see definition 6.21, on page 133.
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Proof. By hypothesis, we have X1 ⊆ Y1 and X2 ⊆ Y2. Then, according to
definition 2.2, we have

X1 ◦X2 = {r ∈ R| (∃x1 ∈ X1) (∃x2 ∈ X2) (r = x1 ◦ x2)}
⊆ {s ∈ R| (∃y1 ∈ Y1) (∃y2 ∈ Y2) (s = y1 ◦ y2)}
= Y1 ◦ Y2,

and the theorem follows.

In consequence of this theorem, from the fact that [x, x] ⊆ X ⇔ x ∈ X, we
have the following important special case.

Corollary 2.1 Let X and Y be interval numbers with x ∈ X and y ∈ Y . Then
for any classical interval operation ◦ ∈ {+,×}, we have

x ◦ y ∈ X ◦ Y .

In contrast to the case for ⊆, Moore’s partial ordering <M is not compatible
with the algebraic operations on [R].

Theorem 2.9 The partial ordering <M is not compatible with the algebraic
operations on [R].

Proof. To prove the theorem, it suffi ces to give a counterexample.

Let X = [−1, 2], Y = [3, 4], and Z = [1, 2] be interval numbers. According
to theorem 2.3, we have X <M Y and [0, 0] <M Z. But

X × Z = [−2, 4] ≮M [3, 8] = Y × Z,

and therefore the ordering <M is not compatible with the algebraic operations
on [R].

Thus, an ordered interval algebra, relative to the ordering <M, is undefin-
able15. However, we have the following easy-derivable special case for the set
[R]p of point interval numbers.

Theorem 2.10 (Monotonicity of <M in [R]p). The partial ordering <M is com-
patible with the algebraic operations on the set [R]p of point interval numbers.

15 For a characterization of the notion of definability of an ordered algebra, see section 6.1,
on page 127.
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By virtue of the compatibility of the relation <M with the algebraic opera-
tions on [R]p, it follows that the ordered structure

〈
[R]p ; +c,×c;<M

〉
is defin-

able, and we then have the isomorphism theorem for classical interval arithmetic.

Theorem 2.11 The structure
〈

[R]p ; +c,×c;<M
〉
is isomorphically equivalent

to the ordered field 〈R; +R,×R;<R〉 of real numbers.

Proof. Let ı : R ↪→ [R]p be the mapping from R to [R]p given by

ı (x) = [x, x] .

The following conditions for ı are satisfied.

• ı is a bijection from R onto [R]p since the range of ı is [R]p, and, by theorem
2.1,

(∀x ∈ R) (∀y ∈ R) (ı (x) = ı (y)⇒ x = y) .

• ı is function-preserving for “+”since, by theorem 2.4, we have

ı (x+R y) = [x+R y, x+R y]

= [x, x] +c [y, y]

= ı (x) +c ı (y) .

• ı is function-preserving for “×”since, by theorem 2.5, we have

ı (x×R y) = [x×R y, x×R y]

= [x, x]×c [y, y]

= ı (x)×c ı (y) .

• ı is relation-preserving for “<”since, by theorem 2.3, we have

x <R y ⇔ [x, x] <M [y, y]

⇔ ı (x) <M ı (y) .

The mapping ı thus is an isomorphism from R onto [R]p and 〈R; +R,×R;<R〉
is isomorphically equivalent to

〈
[R]p ; +c,×c;<M

〉
.

That is, up to isomorphism, the sets R and [R]p are equivalent, and each
element of [R]p is an isomorphic copy of an element of R. In other words,
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everything that is true for real numbers is certainly true for point interval num-
bers.

The properties of the classical interval operations are similar to, but not the
same as, those of the real operations. The algebraic properties of the classical
interval operations are prescribed by the following theorems.

Theorem 2.12 (Absorbing Element in [R]). The interval number [0, 0] is an
absorbing element for classical interval multiplication, that is

(∀X ∈ [R]) ([0, 0]×X = X × [0, 0] = [0, 0]) .

Proof. For any interval number X, according to definition 2.2 and assuming
the properties of real multiplication, we have

[0, 0]×X = {r ∈ R| (∃x ∈ X) (∃y ∈ [0, 0]) (r = y × x)}
= {r ∈ R| (∃x ∈ X) (∃y ∈ [0, 0]) (r = x× y)}
= {r ∈ R| (∃x ∈ X) (r = x× 0)}
= X × [0, 0] = [0, 0] ,

and therefore, the point interval number [0, 0] absorbs any interval number X
by classical interval multiplication.

Theorem 2.13 (Identity for Addition in [R]). The interval number [0, 0] is
both a left and right identity for classical interval addition, that is

(∀X ∈ [R]) ([0, 0] +X = X + [0, 0] = X) .

Proof. For any interval number X, according to definition 2.2 and assuming
the properties of real addition, we have

[0, 0] +X = {r ∈ R| (∃x ∈ X) (∃y ∈ [0, 0]) (r = y + x)}
= {r ∈ R| (∃x ∈ X) (∃y ∈ [0, 0]) (r = x+ y)}
= {r ∈ R| (∃x ∈ X) (r = x+ 0)}
= X + [0, 0] = X,

and therefore, the point interval number [0, 0] is both a left and right identity
for classical interval addition.
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Theorem 2.14 (Identity for Multiplication in [R]). The interval number [1, 1]
is both a left and right identity for classical interval multiplication, that is

(∀X ∈ [R]) ([1, 1]×X = X × [1, 1] = X) .

Proof. For any interval number X, according to definition 2.2 and assuming
the properties of real multiplication, we have

[1, 1]×X = {r ∈ R| (∃x ∈ X) (∃y ∈ [1, 1]) (r = y × x)}
= {r ∈ R| (∃x ∈ X) (∃y ∈ [1, 1]) (r = x× y)}
= {r ∈ R| (∃x ∈ X) (r = x× 1)}
= X × [1, 1] = X,

and therefore, it is shown that [1, 1] is both a left and right identity for classical
interval multiplication.

Theorem 2.15 (Commutativity in [R]). Both classical interval addition and
multiplication are commutative, that is

(i) (∀X, Y ∈ [R]) (X + Y = Y +X),

(ii) (∀X, Y ∈ [R]) (X × Y = Y ×X).

Proof. (i) For any two interval numbers X and Y , according to definition 2.2
and assuming the properties of real addition, we have

X + Y = {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (r = x+ y)}
= {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (r = y + x)}
= Y +X.

(ii) In a manner analogous to (i), assuming the properties of real multipli-
cation, we have

X × Y = {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (r = x× y)}
= {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (r = y × x)}
= Y ×X.

Therefore, both addition and multiplication are commutative in [R].

Theorem 2.16 (Associativity in [R]). Both classical interval addition and mul-
tiplication are associative, that is
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(i) (∀X, Y, Z ∈ [R]) (X + (Y + Z) = (X + Y ) + Z),

(ii) (∀X, Y, Z ∈ [R]) (X × (Y × Z) = (X × Y )× Z).

Proof. (i) For any three interval numbers X, Y , and Z, according to definition
2.2 and assuming the properties of real addition, we have

X + (Y + Z) = {r ∈ R| (∃x ∈ X) (∃s ∈ (Y + Z)) (r = x+ s)}
= {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (∃z ∈ Z) (r = x+ (y + z))}
= {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (∃z ∈ Z) (r = (x+ y) + z)}
= {r ∈ R| (∃t ∈ (X + Y )) (∃z ∈ Z) (r = t+ z)}
= (X + Y ) + Z.

(ii) In a manner analogous to (i), assuming the properties of real multipli-
cation, we have

X × (Y × Z) = {r ∈ R| (∃x ∈ X) (∃s ∈ (Y × Z)) (r = x× s)}
= {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (∃z ∈ Z) (r = x× (y × z))}
= {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (∃z ∈ Z) (r = (x× y)× z)}
= {r ∈ R| (∃t ∈ (X × Y )) (∃z ∈ Z) (r = t× z)}
= (X × Y )× Z.

Therefore, both addition and multiplication are associative in [R].

Theorem 2.17 (Cancellativity of Addition in [R]). Classical interval addition
is cancellative, that is

(∀X, Y, Z ∈ [R]) (X + Z = Y + Z ⇒ X = Y ) .

Proof. Let [x, x], [y, y], and [z, z] be in [R]. Assume that

[x, x] + [z, z] = [y, y] + [z, z].

Then, by theorem 2.4, we immediately have

[x+ z, x+ z] =
[
y + z, y + z

]
,

which, according to theorem 2.1 and by the cancellation property of real ad-
dition, yields x = y ∧ x = y, that is [x, x] = [y, y], and therefore addition is
cancellative in [R].
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In contrast to the case for addition, the following theorem asserts that mul-
tiplication is not always cancellative in [R].

Theorem 2.18 (Cancellativity of Multiplication in [R]). A classical interval
number is cancellable for multiplication if, and only if, it is a zeroless interval,
that is

(∀X, Y, Z ∈ [R]) ((X × Z = Y × Z ⇒ X = Y )⇔ 0 /∈ Z) .

Proof. Let [x, x], [y, y], and [z, z] be in [R]. Assume that

[x, x]× [z, z] = [y, y]× [z, z]⇒ [x, x] = [y, y].

Then, by theorems 2.1 and 2.5, we have

min{xz, xz, xz, xz} = min{yz, yz, yz, yz} ∧
max{xz, xz, xz, xz} = max{yz, yz, yz, yz} ⇒ x = y ∧ x = y,

which yields 0 < z ≤ z or z ≤ z < 0, that is 0 /∈ [z, z].

The converse direction is easy to prove, and therefore multiplication is not
cancellative in [R] except for the case when 0 /∈ [z, z].

The following theorem concerning the additive and multiplicative properties
of point interval numbers is derivable.

Theorem 2.19 (Algebraic Operations in [R]p). Let X and Y be two classical
interval numbers. Then:

(i) The sum X + Y is a point interval number iff each of X and Y is a point
interval number, that is

(∀X, Y ∈ [R]) (X + Y ∈ [R]p ⇔ X ∈ [R]p ∧ Y ∈ [R]p).

(ii) The product X × Y is a point interval number iff each of X and Y is a
point interval number, or at least one of X and Y is [0, 0], that is

(∀X, Y ∈ [R]) (X × Y ∈ [R]p ⇔ (X ∈ [R]p ∧ Y ∈ [R]p)

∨ (X = [0, 0] ∨ Y = [0, 0])).

Proof. For (i) and (ii), let X = [x, x] and Y = [y, y] be any two interval
numbers.
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(i) According to theorem 2.4, we have

X + Y =
[
x+ y, x+ y

]
.

Assume that X + Y ∈ [R]p. Then x + y = x + y, which yields that each of X
and Y is a point interval number.

The converse direction is easy to prove.

(ii) In a manner analogous to (i), according to theorem 2.5, we have

X × Y =
[
min{xy, xy, xy, xy},max{xy, xy, xy, xy}

]
.

Assume X × Y ∈ [R]p. Then

min{xy, xy, xy, xy} = max{xy, xy, xy, xy},

which yields that each of X and Y is a point interval number, or at least one
of X and Y is [0, 0].

The converse direction is easy to prove.

An important property peculiar to the classical interval theory figures in the
following theorem.

Theorem 2.20 (Inverses in [R]). A classical interval number is invertible if,
and only if, it is a point interval, that is

(i) (∀X, Y ∈ [R])
(
X + Y = [0, 0]⇔ X ∈ [R]p ∧ Y = −X

)
,

(ii) (∀X, Y ∈ [R])
(
X × Y = [1, 1]⇔ X ∈ [R]p ∧ Y = X−1 ∧ 0 /∈ X

)
.

Proof. The proof is immediate by theorems 2.19 and 2.11.

The result formulated in the following theorem is an important property of
classical interval arithmetic.

Theorem 2.21 (Subdistributivity in [R]). The distributive law does not always
hold in classical interval arithmetic. Precisely, for any three classical interval
numbers X, Y , and Z

Z × (X + Y ) = Z ×X + Z × Y ,

if, and only if,
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(i) Z is a point interval number, or

(ii) X = Y = [0, 0], or

(iii) (∀x ∈ X) (∀y ∈ Y ) (xy ≥ 0).

In general, classical interval arithmetic has only the subdistributive law:

(∀X, Y, Z ∈ [R]) (Z × (X + Y ) ⊆ Z ×X + Z × Y ) .

Proof. Let [z, z], [x, x], and [−x,−x] be in [R]. First adding and then multi-
plying, we have

[z, z]× ([x, x] + [−x,−x]) = [z, z]× [0, 0] = [0, 0] .

But if we first multiply and then add, we get

([z, z]× [x, x]) + ([z, z]× [−x,−x])

= [min{zx, zx},max{zx, zx}] + [min{−zx,−zx},max{−zx,−zx}]
6= [0, 0] ,

unless z = z, or x = −x = 0, or both.

Thus, there are some interval numbers for which the distributive law does
not hold.

Toward proving the equivalence, let us first assume the cases (i), (ii), and
(iii), respectively.

(i) Let Z = [a, a] be a point interval number, for some real constant a.
According to definition 2.2, we have

Z × (X + Y ) = {r ∈ R| (∃z ∈ [a, a]) (∃s ∈ (X + Y )) (r = z × s)}
= {r ∈ R| (∃s ∈ (X + Y )) (r = a× s)}
= {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (r = a× (x+ y))}
= {r ∈ R| (∃x ∈ X) (∃y ∈ Y ) (r = a× x+ a× y)}
= {r ∈ R| (∃t ∈ (Z ×X)) (∃u ∈ (Z × Y )) (r = t+ u)}
= Z ×X + Z × Y .
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(ii) By theorems 2.12 and 2.13, we immediately have

Z × ([0, 0] + [0, 0]) = Z × [0, 0]

= [0, 0]

= Z × [0, 0] + Z × [0, 0] .

(iii) Let X = [x, x] and Y = [y, y]. Without loss of generality, we consider
only the case when x ≥ 0 and y ≥ 0. We have three cases for Z = [z, z].

Case 1. If z ≥ 0, then we have

Z × (X + Y ) =
[
z
(
x+ y

)
, z (x+ y)

]
= [zx, zx] +

[
zy, zy

]
= Z ×X + Z × Y .

Case 2. If z ≤ 0, we obtain the same result by considering −Z.

Case 3. If zz < 0, then we have

Z × (X + Y ) = [z (x+ y) , z (x+ y)]

= [zx, zx] + [zy, zy]

= Z ×X + Z × Y ,

and the last case is thus proved.

The converse direction is analogously derivable by assuming

Z × (X + Y ) = Z ×X + Z × Y ,

and taking some similar routine steps.

Now, to prove the subdistributivity, let r ∈ (Z × (X + Y )). From the dis-
tributive property of real numbers, we have

r = z(x+ y) = zx+ zy,

for some x ∈ X, y ∈ Y , and z ∈ Z.

Thus r ∈ (Z ×X + Z × Y ), and therefore

(∀X, Y, Z ∈ [R]) (Z × (X + Y ) ⊆ Z ×X + Z × Y ) ,

which completes the proof.

It should be borne in mind that classical interval arithmetic does not even
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have the distributive law

Z × ([x, x] + [y, y]) = Z × [x, x] + Z × [y, y] ,

for point interval numbers [x, x] and [y, y].

We shall now prove three results about, respectively, the additive structure
〈[R] ; +c; [0, 0]〉, the multiplicative structure 〈[R] ;×c; [1, 1]〉, and the ring-like16
structure 〈[R] ; +c,×c; [0, 0] , [1, 1]〉 of classical interval arithmetic.

Theorem 2.22 The additive structure 〈[R] ; +c; [0, 0]〉 is a cancellative abelian
monoid17.

Proof. For +c, the following criteria are satisfied.

• Closure. By theorem 2.4, the set [R] is closed under classical interval addi-
tion.

• Associativity. Classical interval addition is associative, by theorem 2.16.

• Commutativity. Classical interval addition is commutative, by theorem
2.15.

• Identity Element. The interval number [0, 0] is an identity element for clas-
sical interval addition, by theorem 2.13.

• Cancellativity. Classical interval addition is cancellative, by theorem 2.17.

Therefore, the set [R] of interval numbers forms a cancellative abelian monoid
under classical interval addition.

Theorem 2.23 The multiplicative structure 〈[R] ;×c; [1, 1]〉 is a noncancella-
tive abelian monoid.

16 A ring-like algebra is a set equipped with two binary operations, addition and multiplica-
tion, such that multiplication has an absorbing element by either an axiom or a theorem.
A shell is a ring-like algebra such that multiplication has an identity element and an absorbing

element, which is also the identity for addition.
A ringoid is a ring-like algebra whose multiplication distributes over addition.
A semiring is a ringoid which is also a shell, with addition and multiplication are associative,

and addition is commutative.
An abelian semiring is a semiring whose multiplication is commutative.
A nondistributive semiring is a semiring whose multiplication does not distribute over addition

(see, e.g., [Barnes1975], [Levi1961], [Menini2004], and [Steen2008]).
17 A monoid is a semigroup with an identity element (see, e.g., [Menini2004]).
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Proof. For ×c, the following criteria are satisfied.

• Closure. By theorem 2.5, the set [R] is closed under classical interval mul-
tiplication.

• Associativity. Classical interval multiplication is associative, by theorem
2.16.

• Commutativity. Classical interval multiplication is commutative, by theo-
rem 2.15.

• Identity Element. The interval number [1, 1] is an identity element for clas-
sical interval multiplication, by theorem 2.14.

• Non-cancellativity. Classical interval multiplication is not cancellative, by
theorem 2.18.

Therefore, the set [R] of interval numbers forms a noncancellative abelian
monoid under classical interval multiplication.

Theorem 2.24 The ring-like structure 〈[R] ; +c,×c; [0, 0] , [1, 1]〉 is a nondis-
tributive abelian semiring18.

Proof. By theorems 2.22 and 2.23, +c and ×c are each both commutative and
associative, and ×c has an identity element, [1, 1], and, by theorem 2.12, an
absorbing element, [0, 0], which is, according to theorem 2.13, also the identity
element for +c. By theorem 2.21, ×c does not distribute over +c.

Therefore, the structure 〈[R] ; +c,×c; [0, 0] , [1, 1]〉 is a nondistributive abelian
semiring.

If we endow the classical interval algebra with the compatible partial or-
dering ⊆, then we have the partially-ordered nondistributive abelian semiring,
〈[R] ; +c,×c; [0, 0] , [1, 1] ;⊆〉.

Finally, an important immediate result that the preceding theorem implies
is the following.

Corollary 2.2 The theory of classical intervals defines a nondistributive num-
ber system19 on the set [R].

18 We may also call it a subdistributive abelian semiring (see theorem 2.21, on page 28).
19 A number system is an algebra N = 〈N ; +N ,×N 〉 with +N and ×N are each both

commutative and associative, and ×N distributes over +N . A nondistributive number system
is a number system whose ×N is not distributive (see, e.g., [Levi1961] and [Steen2008]).
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The name “numbers”thus is verified, and therefore we can talk of “classical
interval numbers”.

Two important properties, peculiar to the classical theory of interval arith-
metic, figure in the theorems of this section: additive and multiplicative inverses
do not always exist for classical interval numbers, and there is no distributivity
between classical addition and multiplication except for certain special cases.
Then, we have to sacrifice some useful properties of ordinary arithmetic, if we
want to use the interval weapon against uncertainty.

2.4 Machine Interval Arithmetic

There are numerous software implementations for classical interval arithmetic,
which are usually provided as class libraries. Interval class libraries and lan-
guage extensions are available for many numeric and symbolic programming
languages such as C++, Java, Fortran, Mathematica, Maple, Lisp, Macsyma,
and Coq (For further details, see, e.g., [Fateman2009], [Hansen2003], [Jaulin2001],
and [Keene1988]).

However, existing software packages for interval arithmetic, in which inter-
val calculations is simulated with floating-point routines, are often too slow for
numerically intensive calculations. Therefore, interval arithmetic is about five
times slower than floating-point arithmetic, if no special hardware implemen-
tations are provided such that interval arithmetic is directly supported on the
machine level. Fortunately, computers are getting faster and most existing par-
allel processors provide a tremendous computing power. So, with little extra
hardware, it is very possible to make interval computations as fast as float-
ing point computations (For further reading about the hardware support for
interval arithmetic, see, e.g., [Kolev1993], [Muller2009], and [Neumaier1991]).

In this section, we begin with some key concepts of machine real arithmetic,
then we carefully construct the algebraic system of machine interval arithmetic
and deduce some of its fundamental properties (For other constructions of ma-
chine real arithmetic, the reader may consult, e.g., [Kulisch1981], [Moore1959],
and [Moore1962]).

The arithmetic of intervals defined in the preceding sections may be called
an exact20 interval arithmetic, in the sense that no rounding or approximation
is involved. However, when interval arithmetic is realized on a computer, we
get some loss of accuracy due to round-off errors. Therefore, due to the fact

20 See footnote 2, on page 77.
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that there is only a finite subset M ⊂ R of machine-representable numbers,
special care has to be taken to guarantee a proper hardware implementation
of interval arithmetic. Thus, we need a machine interval arithmetic in which
interval numbers have to be rounded so that the interval result computed by a
machine always contains the exact interval result.

2.4.1 Rounded-Outward Interval Arithmetic

The algebraic operations of the classical theory of interval arithmetic are defined
in such a way that they satisfy the property of inclusion monotonicity (see
theorem 2.8, on page 21). An important immediate consequence of the inclusion
monotonicity is that given two interval numbers [x, x] and

[
y, y
]
with x ∈ [x, x]

and y ∈
[
y, y
]
, then for any unary operation � ∈ {−,−1 } and any binary

operation ◦ ∈ {+,×}, the real and interval results shall satisfy

�x ∈ � [x, x] ,
x ◦ y ∈ [x, x] ◦

[
y, y
]
.

That is, guaranteed enclosures of the real-valued results can be obtained
easily by computing on interval numbers. The following membership formulas
can be deduced immediately from the property of inclusion monotonicity.

−x ∈ [−x,−x] ,

x−1 ∈
[
x
−1
, x
−1
]
, if 0 /∈ [x, x] ,

x+ y ∈
[
x+ y, x+ y

]
,

x× y ∈
[
min{xy, xy, xy, xy},max{xy, xy, xy, xy}

]
.

The preceding formulas use the arithmetic of real numbers that are not
machine-representable. However, using outward rounding for interval numbers,
we can obtain alternate formulas that use floating-point arithmetic, and still
satisfy the property of inclusion monotonicity.

Two definitions we shall need are those of the downward and upward round-
ing operators.

Definition 2.15 (Downward Rounding). Let x be any real number and let
xm denote a machine-representable real number. Then there exists a machine-
representable real number 5x such that

5x = sup{xm ∈M|xm ≤ x},
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where 5 is called the downward rounding operator.

Definition 2.16 (Upward Rounding). Let x be any real number and let xm
denote a machine-representable real number. Then there exists a machine-
representable real number 4x such that

4x = inf{xm ∈M|x ≤ xm},

where 4 is called the upward rounding operator.

On the basis of these definitions, we can obtain a finite set [M] ⊂ [R] of
machine interval numbers by rounding interval numbers outward.

Definition 2.17 (Outward Rounding). Let [x, x] be any interval number. Then
there exists a machine-representable interval number ♦ [x, x] such that

♦ [x, x] = [5x,4x] ,

where ♦ is called the outward rounding operator.

With outward rounding, a machine interval arithmetic can be defined such
that the result of a machine interval operation is a machine interval number
which is guaranteed to contain the exact result of an interval operation. In this
manner, the classical interval operations can be redefined, in the language of
machine interval arithmetic, as follows.

Definition 2.18 (Machine Interval Operations). Let [x, x] and
[
y, y
]
be inter-

val numbers. The unary and binary machine interval operations are defined
as

♦ (− [x, x]) = [5 (−x) ,4 (−x)] ,

♦
(

[x, x]−1
)

=
[
5
(
x
−1
)
,4
(
x
−1
)]
, if 0 /∈ [x, x] ,

♦
(
[x, x] +

[
y, y
])

=
[
5
(
x+ y

)
,4 (x+ y)

]
,

♦
(
[x, x]×

[
y, y
])

=
[
5
(
min{xy, xy, xy, xy}

)
,4
(
max{xy, xy, xy, xy}

)]
.

With the help of the above definitions, it is not diffi cult to prove the following
two theorems and their corollary.

Theorem 2.25 For any two real numbers x and y, we have
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(i) x ≤ y ⇒5x ≤ 5y,

(ii) x ≤ y ⇒4x ≤ 4y.

Theorem 2.26 For any two interval numbers X and Y , we have

(i) X ⊆ Y ⇒ ♦X ⊆ ♦Y ,

(ii) X ◦ Y ⊆ ♦ (X ◦ Y ),

(iii) �X ⊆ ♦ (�X).

Corollary 2.3 For any two interval numbers X and Y with x ∈ X and y ∈ Y ,
we have

(i) �x ∈ ♦ (�X),

(ii) x ◦ y ∈ ♦ (X ◦ Y ).

Thus, outward rounding provides an effi cient implementation of interval
arithmetic, with the property of inclusion monotonicity still satisfied.

To illustrate this, we give two numerical examples.

Example 2.4 Let M3 be the set of machine-representable real numbers with
three significant digits.

(i) We have

♦3 ([1, 2]÷ [2, 3]) = [53 (1/3) ,43 (1)]

= [0.333, 1] ,

and
([1, 2]÷ [2, 3]) ⊂ [0.333, 1] .

(ii) We have

♦3 ([0, 1] + [2.7182, 3.3841]) = [53 (2.7182) ,43 (4.3841)]

= [2.718, 4.385] ,

and
([0, 1] + [2.7182, 3.3841]) ⊂ [2.718, 4.385] .
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Unlike the sets R and [R], the sets M and [M], of machine real numbers and
machine interval numbers, are obviously countable21. Moreover, the setsM and
[M] are not dense22, as is proved by the following theorem and its corollary.

Theorem 2.27 Let Mn be the set of machine real numbers with n significant
digits. The set Mn is not dense with respect to the order relation <, that is

(∃xm ∈Mn) (∃ym ∈Mn) (xm < ym ∧ ¬ ((∃zm ∈Mn) (xm < zm ∧ zm < ym))) .

Proof. Let xm be an element of Mn. Then xm can be written as

xm = x0 +
x1
10

+
x2
102

+ ...+
xn
10n

=
n∑
k=0

xk
10k
,

where x0, x1, x2, ..., xn are nonnegative integers.

Accordingly, if ym is an element of Mn such that

ym = x0 +
x1
10

+
x2
102

+ ...+
xn + 1

10n
=

1

10n
+

n∑
k=0

xk
10k
,

then ym is the element of Mn exactly next to xm, and therefore, there is no
zm ∈Mn such that xm < zm ∧ zm < ym.

Corollary 2.4 Let [Mn] be the set of machine interval numbers with n signifi-
cant digits. The set [Mn] is not dense with respect to Moore’s partial ordering
<M.

Let, for instance,M1 be the set of machine real numbers with one significant
digit. Obviously, there is no zm ∈M1 such that 1.1 < zm < 1.2, and there is no
Zm ∈ [M1] such that [1.1, 1.1] <M Zm <M [1.2, 1.2].

Thus, we can easily determine the number of machine interval numbers be-
tween any two elements of M. This is made precise in the following easy-
provable theorem.

21 A set S is countable if there is an injective mapping from S to the set N = {0, 1, 2, 3, ...}
of natural numbers. Otherwise, S is uncountable.
22 For a precise characterization of the notion of density and other order-theoretic notions,

see section 6.1, on page 127.
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Theorem 2.28 Let Mn be the set of machine real numbers with n significant
digits, and let xm and ym be elements of Mn such that xm ≤ ym. Then the count
of machine interval numbers between xm and ym is given by

C[M](xm,ym) =

CM(xm,ym)∑
k=1

k =
C2M(xm,ym) + CM(xm,ym)

2
,

where
CM(xm,ym) = 10n × (ym − xm) + 1,

is the count of machine real numbers between xm and ym.

The following example makes this clear.

Example 2.5 Let M2 be the set of machine real numbers with two significant
digits. The count of machine real numbers between 1.23 and 1.32 is

CM(1.23,1.32) = 102 × (1.32− 1.23) + 1

= 10,

and the count of machine interval numbers between 1.23 and 1.32 is

C[M](1.23,1.32) =
102 + 10

2
= 55.

2.4.2 Rounded-Upward Interval Arithmetic

Outward rounding of interval numbers involves performing computations with
two rounding modes (upward and downward). This can be much costlier than
performing the computations with one single rounding direction.

If, as usual, we have

(∀xm) (xm ∈M⇒ (−xm) ∈M) ,

then the relation
(∀x ∈ R) (5 (−x) = −4 (x)) ,

which then holds, makes it possible to use upward rounding as one single round-
ing mode.

In this manner, for instance, machine interval addition can be reformulated
as

♦
(
[x, x] +

[
y, y
])

=
[
−4

(
(−x)− y

)
,4 (x+ y)

]
.
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Similar optimal roundings can be applied to other interval operations so that
we get more effi cient implementations of interval arithmetic.
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Chapter 3
Interval Dependency and Alternate Interval
Theories

Everything should be made as simple as possible, but no simpler.

—Albert Einstein (1879-1955)

It is not easy to perform arithmetic and solve equations in an algebraic
system which is only a non-distributive semiring. The algebraic system of clas-
sical interval arithmetic, as we proved in theorem 2.24, on page 32, is only a
non-distributive abelian semiring, which is a primitive algebraic structure, if
compared to the totally ordered field of real numbers. Two useful properties
of ordinary real arithmetic fail to hold in classical interval arithmetic: additive
and multiplicative inverses do not always exist for interval numbers, and there is
no distributivity between addition and multiplication except for certain special
cases. For instance, the solutions of the algebraic interval equations

[x, x] + [a, a] =
[
b, b
]
,[

y, y
]
× [a, a] =

[
b, b
]
,

are not generally expressible in terms of the interval operations, due to the lack
of inverse elements.

Another main drawback of the classical interval theory is that when estimat-
ing the image of real functions using classical interval arithmetic, we usually
get overestimations that inevitably produces meaningless results, if the variables
are functionally dependent. This persisting problem is known as the “interval
dependency problem”.

A considerable scientific effort is put into developing special methods and
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algorithms that try to overcome the diffi culties imposed by the algebraic dis-
advantages of the classical interval arithmetic structure. Various proposals for
possible alternate theories of interval arithmetic were introduced to reduce the
dependency effect or to enrich the algebraic structure of interval numbers (For
further details, the reader may consult, e.g., [Gardenyes1985], [Hansen1975],
[Hayes2009], [Kulisch2008a], [Lodwick1999], and [Markov1995]).

In the present chapter, we formalize the notion of interval dependency, along
with discussing the algebraic systems of two important alternate theories of in-
terval arithmetic: modal interval arithmetic, and constraint interval arithmetic.
In section 3.2, we introduce the basic concepts of modal interval arithmetic,
deduce its fundamental algebraic properties, and finally uncover the algebraic
system of modal intervals to be a nondistributive abelian ring. In section 3.3,
we pay great attention, in particular, to studying the foundations of the theory
of constraint intervals, and deduce some important results about its underlying
algebraic system. With the help of these results, along with our formalization
of the notion of interval dependency, we construct, in chapter 4, our theory
of optimizational intervals. In chapter 5, after formalizing the classical theory
of complex intervals, we present an optimizational theory of complex interval
arithmetic.

3.1 A Formalization of the Notion of Interval Dependency

The notion of dependency comes from the notion of a function. There is scarcely
a mathematical theory which does not involve the notion of a function. In an-
cient mathematics the idea of functional dependence was not expressed explic-
itly and was not an independent object of research, although a wide range of
specific functional relations were known and were studied systematically. The
concept of a function appears in a rudimentary form in the works of scholars in
the Middle Ages, but only in the work of mathematicians in the 17th century,
and primarily in those of P. Fermat, R. Descartes, I. Newton, and G. Leibniz,
did it begin to take shape as an independent concept.

Later, in the 18th century, Euler had a more general approach to the concept
of a function as “dependence of one variable quantity on another”[Euler2000].
By 1834, Lobachevskii was writing: “The general concept of a function requires
that a function of x is a number which is given for each x and gradually changes
with x. The value of a function can be given either by an analytic expression
or by a condition which gives a means of testing all numbers and choosing one
of them; or finally a dependence can exist and remain unknown”[Lobach1951].

In the theory of real closed intervals, the notion of interval dependency natu-
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rally comes from the idea of functional dependence of real variables. Despite the
fact that dependency is an essential and useful notion of real variables, inter-
val dependency is the main unsolved problem of the classical theory of interval
arithmetic and its modern generalizations. Although the notion of interval de-
pendency is widely used in the interval literature, no attempt has been made to
put on a systematic basis its meaning, that is, to indicate formally the criteria
by which it is to be characterized. Our objective in this section, therefore, is to
put on a systematic basis the notion of interval dependency. This systematic
basis shall play an essential role in our discussion of the interval theory, in this
chapter and later on1.

In order to be able to formalize the notion of interval dependency, we should
deal first with some set-theoretical and logical notions of particular importance
to our purpose.

We begin with the notions of an n-ary2 relation and an n-ary function, along
with some related concepts (For further details on these notions within the set-
theoretical framework, see, e.g., [Causey1994], [Devlin1993], [Fomin1999], and
[Suppes1972]).

Definition 3.1 (n-ary Relation). Let U 〈n〉 be the n-th Cartesian power of a set
U . A set < ⊆ U 〈n〉 is an n-ary relation on U iff < is a binary relation from
U 〈n−1〉 to U . That is, for v = (x1, ..., xn−1) ∈ U 〈n−1〉 and y ∈ U , an n-ary
relation < is defined to be

< ⊆ U 〈n〉 = {(v, y) |v ∈ U 〈n−1〉 ∧ y ∈ U}.

In this sense, an n-ary relation is a binary relation3 (or simply a relation);
then its domain, range, field, and converse are defined, as usual, to be, respec-
tively

dom (<) = {v ∈ U 〈n−1〉| (∃y ∈ U) (v<y)},
ran (<) = {y ∈ U|

(
∃v ∈ U 〈n−1〉

)
(v<y)},

fld (<) = dom (<) ∪ ran (<) ,

<̂ = {(y,v) ∈ U 〈n〉|v<y}.

1 The notions, notations, and abbreviations of this section are indispensable for our mathe-
matical discussion throughout the succeeding chapters, and hereafter are assumed priori, with-
out further mention.

2 All relations and functions considered in this text are finitary, that is, n-ary relations and
functions, for some finite ordinal n (see footnote 13, on page 142).

3 Binary relations and their properties are discussed, in detail, in section 6.1, on page 127.
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It is obvious that y<̂v⇔ v<y and ̂̂< = <.

Two important notions, for the purpose at hand, are the image and preimage
of a set, with respect to an n-ary relation. These are defined as follows.

Definition 3.2 (Image and Preimage of a Relation). Let < be an n-ary relation
on a set U , and for (v, y) ∈ <, let v = (x1, ..., xn−1), with each xk is restricted
to vary on a set Xk ⊂ U , that is, v is restricted to vary on a set V ⊂ U 〈n−1〉.
Then, the image of V (or the image of the sets Xk) with respect to <, denoted
I<, is defined to be

Y = I< (V) = I< (X1, ..., Xn−1)

= {y ∈ U| (∃v ∈ V) (v<y)}
= {y ∈ U|

(
∃n−1k=1xk ∈ Xk

)
((x1, ..., xn−1)<y)},

where the set V, called the preimage of Y , is defined to be the image of Y with
respect to the converse relation <̂, that is

V = I<̂ (Y )

= {v ∈ U 〈n−1〉| (∃y ∈ Y )
(
y<̂v

)
}.

In accordance with this definition and the fact that y<̂v ⇔ v<y, we have
the following obvious result.

Theorem 3.1 Y = I< (V)⇔ V = I<̂ (Y ).

A completely general definition of the notion of an n-ary function can be
formulated, within this set-theoretical framework, as follows.

Definition 3.3 (n-ary Function). A set f is an n-ary function on a set U iff
f is an (n+ 1)-ary relation on U , and(

∀v ∈ U 〈n〉
)

(∀y, z ∈ U) (vfy ∧ vfz ⇒ y = z) .

Thus, an n-ary function is a many-one (n+ 1)-ary relation; that is, a re-
lation, with respect to which, any element in its domain is related exactly to
one element in its range. Getting down from relations to the particular case of
functions, we have at hand the standard notation: y = f (v) in place of vfy.
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From the fact that an n-ary function is a special kind of relation, then all the
preceding definitions and results, concerning the domain, range, field, converse,
image, and preimage of a relation, apply to functions as well.

With some criteria satisfied, a function is called invertible (or has an in-
verse function). The notion of invertibility of a function is made precise in the
following definition.

Definition 3.4 (Invertibility of a Function). A function f has an inverse,
denoted f−1, iff its converse relation f̂ is a function, in which case f−1 = f̂ .

In other words, f is invertible if, and only if, it is an injection from its
domain to its range, and obviously the inverse f−1 is unique, from the fact that
the converse relation is always definable and unique.

Now we turn to deal with some semantical and syntactical preliminaries
concerning the logical formulation of the notion of functional dependence and
some related notions.

When scientists observe the world to formulate the defining properties of
some physical phenomenon, these defining properties figure as attributes (vari-
ables) depending on some other attributes. Translating this dependence into
a formal mathematical language, gives rise to the notion of functional depen-
dence: “a variable y is absolutely determined by some given variables x1, ..., xn”,
or “a variable y is a function of some given variables x1, ..., xn”, symbolically
y = f (x1, ..., xn). In some cases, such a translation can deterministically result
in a certain rule for the function f , for instance y = x1+ ...+xn. In other cases,
we have an approximate rule for f , or we know that a dependence exist but the
rule cannot be determined, in which case we write the general usual notation
y = f (x1, ..., xn), without specifying explicitly a rule for the function f . So,
in mathematics, a dependence is formally a function (For further exhaustive
details about the notion of dependence, from the logical and epistemological
viewpoints, see, e.g., [Armstrong1974], [Hintikka1996], [Vaananen2001], and
[Vaananen2007]).

As is well known, the most elementary part of all mathematical sciences
is formal logic. So, getting down to the most elementary fundamentals, it
can be clarified that in all mathematical theories, any type of dependence can
be reduced to the following simple logical definition (see, e.g., [Kleene1952],
[Shoenfield1967], and [Vaananen2001]).
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Definition 3.5 (Quantification Dependence). Let Q be a quantification ma-
trix4 and let ϕ (x1, ..., xm; y1, ..., yn) be a quantifier-free formula. For any uni-
versal quantification (∀xi) and any existential quantification (∃yj) in Q, the
variable yj is dependent on the variable xi in the prenex sentence5 Qϕ iff (∃yj)
is in the scope of (∀xi) in Q. Otherwise xi and yj are independent.

That is, the order of quantifiers in a quantification matrix determines the
mutual dependence between the variables in a sentence.

Let us illustrate this by the following two examples.

Example 3.1 Consider the prenex sentence

(∃x) (∀y) (∃z) (y = x ◦ y ∧ x = z ◦ y) ,

which asserts that there exists an identity element x, for the operation ◦, with
respect to which every element possesses an inverse z.

According to the order in which quantifiers are written, the variable z depends
only on y, while there is no dependency between x and y or between x and z.

Example 3.2 In the prenex sentence

(∀x) (∃y) (∀z) (∃u)ϕ (x, y, z, u) ,

the variable y depends on x, and the variable u depends on both x and z.

By means of a Skolem equivalent form or a Skolemization6, a quantifica-
tion dependence is translated into a functional dependence. The notion of a
Skolem equivalent form is characterized in the following definition (see, e.g.,
[Feferman2006], [Hodges1997], [Vaananen2001], and [Vaananen2007]).

Definition 3.6 (Skolem Equivalent Form). Let σ be a sentence that takes the
prenex form

(∀mi=1xi)
(
∃nj=1yj

)
ϕ (x1, ..., xm; y1, ..., yn) .

4 A quantification matrix Q is a sequence (Q1x1) ... (Qnxn), where x1, ..., xn are variable
symbols and each Qi is ∀ or ∃.

5 A prenex sentence is a sentence of the form Qϕ, where Q is a quantification matrix and
ϕ is a quantifier-free formula.

6 Skolemization is named after the Norwegian logician Thoralf Skolem (1887—1963), who
first presented the notion in [Skolem1920].
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where ϕ is a quantifier-free formula.

The Skolem equivalent form of σ is defined to be(
∃nj=1fj

)
(∀mi=1xi)ϕ (x1, ..., xm; f1, ..., fn) ,

where fj (x1, ..., xm) = yj are the dependency functions of yj upon x1, ..., xm, for
i ∈ {1, ...,m} and j ∈ {1, ..., n}.

It comes therefore as no surprise that in all mathematics, any instance of a
dependence is, in fact, a functional dependence.

In order to clarify the matters, let us consider the following example.

Example 3.3 Let a sentence σ take the prenex form

(∀x) (∃y) (∀z) (∃u)ϕ (x, y, z, u) .

The Skolem equivalent form of σ is

(∃f) (∃g) (∀x) (∀z)ϕ (x, f (x) , z, g (x, z)) .

Before we proceed, it is convenient to introduce the following notational
convention.

Notation 3.1 The left-superscripted letters Rf, Rg, Rh (with or without sub-
scripts) shall be employed to denote real-valued functions, while the letters
cf, cg, ch (with or without subscripts) shall be employed to denote classical
interval-valued functions.

If the type of function is clear from its arguments, and if confusion is not
likely to ensue, we shall usually drop the left superscripts “R”and “c”7. Thus,
we may, for instance, write f (x1, ..., xn) and f (X1, ..., Xn) for, respectively, a
real-valued function and an interval-valued function, which are both defined by
the same rule.

7 The left superscript “c” stands for “classical interval function”. Since we have many
theories of intervals being discussed throughout the text, with each theory has its own inter-
val functions; we shall deviate from the standard notation “[R]f”and give explicitly function
superscripts peculiar to each theory, for example, cf , tf , of , and so forth, according to what
theory of intervals is being discussed.
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An important notion we shall need is that of the image set of real closed
intervals, under an n-ary real-valued function. This notion is a special case of
that of the corresponding (n+ 1)-ary relation on R. More precisely, we have
the following definition.

Definition 3.7 (Image of Real Closed Intervals). Let f be an n-ary function
on R, and for (v, y) ∈ f , let v = (x1, ..., xn), with each xk is restricted to
vary on a real closed interval Xk ⊂ R, that is, v is restricted to vary on a set
V ⊂ R〈n〉. Then, the image of the closed intervals Xk with respect to f , denoted
If , is defined to be

Y = If (V) = If (X1, ..., Xn)

= {y ∈ R| (∃v ∈ V) (vfy)}
= {y ∈ R| (∃nk=1xk ∈ Xk) (y = f (x1, ..., xn))} ⊆ R,

where the set V, called the preimage8 of Y , is defined to be the image of Y with
respect to the converse relation f̂ , that is

V = If̂ (Y )

= {v ∈ R〈n〉| (∃y ∈ Y )
(
yf̂v

)
}.

The fact formulated in the following theorem is well-known.

Theorem 3.2 (Extreme Value Theorem). Let Xk be real closed intervals and
let f (x1, ..., xn) be an n-ary real-valued function with xk ∈ Xk. If f is con-
tinuous in Xk, in symbols Cont (f,Xk), then f must attain its minimum and
maximum value, that is

(∀f) (Cont (f,Xk) ⇒ (∃nk=1ak ∈ Xk) (∃nk=1bk ∈ Xk) (∀nk=1xk ∈ Xk)

(f (a1, ..., an) ≤ f (x1, ..., xn) ≤ f (b1, ..., bn))),

where min
xk∈Xk

f = f (a1, ..., an) and max
xk∈Xk

f = f (b1, ..., bn) are respectively the min-

imum and maximum of f .

An immediate consequence of definition 3.7 and theorem 3.2, is the following
important property.

8 From the fact that the converse relation f̂ is always definable, the preimage of a function
f is always definable, regardless of the definability of the inverse function f−1.
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Theorem 3.3 Let an n-ary real-valued function f be continuous in the real
closed intervals Xk. The (accurate) image If (X1, ..., Xn), of Xk, is in turn a
real closed interval such that

If (X1, ..., Xn) =

[
min
xk∈Xk

f (x1, ..., xn) , max
xk∈Xk

f (x1, ..., xn)

]
.

A cornerstone result from the above theorem, that should be stressed at
once, is that the best way to evaluate the accurate image of a continuous
real-valued function is to apply minimization and maximization directly to
determine the exact lower and upper endpoints of the image. For rational9

real-valued functions, this optimization problem is, in general, computationally
solvable, by applying Tarski’s algorithm, which is also known as Tarski’s real
quantifier elimination (see, e.g., [Chen2000] and [Tarski1951]). For algebraic10

real-valued functions, the problem is computable, by applying the cylindrical
algebraic decomposition algorithm (CAD algorithm, or Collins’ algorithm)11,
which is a more effective version of Tarski’s algorithm (see, e.g., [Collins1975]
and [McCallum2001]).

Before turning to the notion of interval dependency, we first prove the fol-
lowing indispensable result.

Theorem 3.4 Let σ1 and σ2 be the two prenex sentences such that

σ1 ⇔ (∀mi=1xi ∈ Xi)
(
∃nj=1yj ∈ Yj

)
(∃z) (z = f (x1, ..., xm; y1, ..., yn)) ,

σ2 ⇔ (∀mi=1xi ∈ Xi)
(
∀nj=1yj ∈ Yj

)
(∃z) (z = f (x1, ..., xm; y1, ..., yn)) ,

where Xi and Yj are real closed intervals, and f is a continuous real-valued
function with xi ∈ Xi and yj ∈ Yj.

If Iσ1f and Iσ2f are the images of f , respectively, in σ1 and σ2, then Iσ1f ⊆ Iσ2f .

Proof. According to definition 3.5, in the sentence σ1, all yj are dependent
upon all xi, and in the sentence σ2, all xi and yj are pairwise independent.

9 A rational real-valued function is a function obtained by means of a finite number of the
basic real algebraic operations ◦R ∈ {+,×} and �R ∈ {−,−1 }.
10 An algebraic function is a function that satisfies a polynomial equation whose coeffi cients

are polynomials with rational coeffi cients.
11 The CAD algorithm is effi cient enough for being one of the most important optimization

algorithms of computational real algebraic geometry (see, e.g., [Basu2003]).
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By definition 3.6, there are some functions gj (x1, ..., xm) such that σ1 has
the Skolem equivalent form(

∃nj=1gj
)

(∀mi=1xi ∈ Xi) (∃z) (z = f (x1, ..., xm; g1, ..., gn)) .

Finally, employing theorem 3.3, we therefore have Iσ1f ⊆ Iσ2f .

The following example makes this clear.

Example 3.4 Let σ1 and σ2 be the two prenex sentences such that

σ1 ⇔ (∀x ∈ [1, 2]) (∃y ∈ [1, 2]) (∃z ∈ R) (z = f (x, y) = y − x) ,
σ2 ⇔ (∀x ∈ [1, 2]) (∀y ∈ [1, 2]) (∃z ∈ R) (z = f (x, y) = y − x) .

In the sentence σ1, the variable y depends on x, and therefore there is some
function g (x) such that σ1 has the Skolem equivalent form

(∃g) (∀x ∈ [1, 2]) (∃z ∈ R) (z = f (x, g (x)) = g (x)− x) .

Let g be the identity function. Consequently, the image of f in σ1 is Iσ1f = {0}.

Obviously, the image of f in σ2 is Iσ2f = [−1, 1], and therefore Iσ1f ⊆ Iσ2f .

Next we define the notion of an exact (or generalized) interval operation.

Definition 3.8 (Exact Interval Operation). Let ◦R ∈ {+,×} be a binary real
operation, and let If = I

σDep
f ∨ If = IσIndf , where I

σDep
f and IσIndf are the images of

a function f for two real closed intervals X and Y in, respectively, two prenex
sentences σDep and σInd such that

σDep ⇔ (∀x ∈ X) (∃y ∈ Y ) (∃z ∈ R) (z = f (x, y) = x ◦R y) ,
σInd ⇔ (∀x ∈ X) (∀y ∈ Y ) (∃z ∈ R) (z = f (x, y) = x ◦R y) .

Then, an exact interval operation ◦I ∈ {+,×} is defined by

X ◦I Y = If (X, Y ) .

We have then the following obvious result for the classical interval operations.

Theorem 3.5 The value of a classical interval operation X ◦c Y is exact only
when the real variables x ∈ X and y ∈ Y are independent, that is

X ◦c Y = IσIndf (X, Y ) .
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Proof. The theorem is immediate from definition 2.2 of the classical interval
operations.

With the help of the preceding notions and the deductions from them, we
are now ready to pass to our formal characterization of the notion of interval
dependency.

Definition 3.9 (Interval Dependency). Let S1, ..., Sm be some arbitrary real
closed intervals. For two interval variables X and Y , we say that Y is dependent
on X, in symbols YDX, iff there is some given real-valued function f such that
Y is the image of (X;S1, ..., Sm) with respect to f . That is

YDX ⇔ Y = If (X;S1, ..., Sm) ,

where f is called the dependency function of Y on X.

Otherwise Y is not dependent on X, in symbols Y =X, that is

Y =X ⇔ ¬YDX
⇔ ¬Y = If (X;S1, ..., Sm) .

From now on, and throughout the text, the following notational convention
shall be adopted.

Notation 3.2 We write YDfX (with the subscript f) to mean that Y is de-
pendent on X by some given dependency function f , and we write =(X, Y )
to mean that X and Y are mutually independent. In general, the notation
=(X1, ..., Xn) shall be employed to mean “all X1, ...,Xn are pairwise mutually
independent”. Hereafter, for simplicity of the language, we shall always make
use of the following abbreviation.

=nk=1 (Xk)⇔ =(X1, ..., Xn).

So, to say that an interval variable Y is dependent on an interval variable
X, we must be given some real-valued function f such that Y is the image of
X under f . This characterization of interval dependency is completely compat-
ible with the concept of functional dependence of real variables: for two real
variables x and y, the variable y is functionally dependent on x if there is some
given function f such that

y = f (x) ,
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and to keep the dependency information, between x and y, in an algebraic
expression x ◦R y, it suffi ces to write

x ◦R f (x) .

If x and y are mutually dependent by an idempotence y = f (x) and x = g (y),
then, to keep the dependency information, it suffi ces to write only one of

x ◦R f (x) and g (y) ◦R y.

In case there is neither such a given function f nor such a given function g, then
it is obvious that the real variables x and y are not functionally dependent.
Definition 3.9 extends this concept to the set of real closed intervals.

The preceding definition, along with two deductions that we shall presently
make (theorem 3.6 and corollary 3.1), touches the notion of interval dependency
in a way which copes with all possible cases. This shall be shown, in detail, in
section 3.3 of this chapter, and in chapter 4. For now, to illustrate, let us give
the following example.

Example 3.5 Let X and Y be two interval variables that both are assigned the
same individual constant [0, 1]. Then, we may have one of the following cases.

(i) Y is not dependent on X (there is no given dependency function).

(ii) Y is dependent on X, by the identity function y = f(x) = x.

(iii) Y is dependent on X, by the square function y = f(x) = x2.

This example shows that if two interval variables X and Y both are assigned
the same individual constant (both have the same value), it does not necessarily
follow that X and Y are identical, unless they are dependent by the identity
function. This shall be made precise in definition 4.2 of section 4.1.

As a consequence of our characterization of interval dependency, we have the
next immediate theorem that establishes that the interval dependency relation
is a quasi-ordering relation.

Theorem 3.6 The interval dependency relation is a quasi-ordering relation on
the set of real closed intervals. That is, for any three interval variables X, Y ,
and Z, the following statements are true:

(i) D is reflexive, in symbols (XDX),
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(ii) D is transitive, in symbols (XDY ∧ YDZ ⇒ XDZ).

In accordance with this theorem and definition 3.8, we also have the following
corollary.

Corollary 3.1 For any interval operation ◦I, and for any three interval vari-
ables X, Y , and Z, the following two assertions are true:

(i) (X ◦I Y )DX,

(ii) (X ◦I Y )DY .

The interval dependency problem can now be formulated in the following
theorem.

Theorem 3.7 (Dependency Problem). Let Xk be real closed intervals and let
f (x1, ..., xn) be a continuous real-valued function with xk ∈ Xk. Evaluating
the accurate image of f for the interval numbers Xk, using classical interval
arithmetic, is not always possible if there exist Xi and Xj such that XjDXi for
i 6= j. That is,

(i) (∃f) (If (X1, ..., Xn) 6= f (X1, ..., Xn)).

In general,

(ii) (∀f) (If (X1, ..., Xn) ⊆ f (X1, ..., Xn)).

Proof. For (i), it suffi ces to give a counterexample.

For two interval variables X1 and X2 that both are assigned the same indi-
vidual constant [−a, a], let f be a function defined by the rule f (x1, x2) = x1x2
with x1 ∈ X1 and x2 ∈ X2. If X2DgX1, with g is the identity function
x2 = g (x1) = x1, then f has the equivalent rule f (x) = x2, with x ∈ [−a, a].

According to theorem 3.3, the (accurate) image of [−a, a] under the real-
valued function f is

If ([−a, a]) =

[
min

x∈[−a,a]
x2, max

x∈[−a,a]
x2
]

=
[
0, a2

]
.

53



CHAPTER 3. INTERVAL DEPENDENCY AND ALTERNATE INTERVAL THEORIES

If we evaluate the image of [−a, a] using classical interval arithmetic, by
theorem 2.5, we obtain the interval-valued function,

f ([−a, a]) = [−a, a]× [−a, a]

=
[
−a2, a2

]
,

which is not the actual image of [−a, a] under f , that is, there is some function
f , for which

If (X1, ..., Xn) 6= f (X1, ..., Xn) ,

and therefore evaluating the accurate image of real-valued functions is not al-
ways possible, using classical interval arithmetic.

Toward proving (ii), let

If (X1, ..., Xn) = Iσ1f (X1, ..., Xn) ∨ If (X1, ..., Xn) = Iσ2f (X1, ..., Xn) ,

where Iσ1f and Iσ2f are the images of f , respectively, in two prenex sentences σ1
and σ2 such that in σ1, there exist Xi and Xj such that XjDXi for i 6= j, and
in σ2, all Xk are pairwise independent, that is =nk=1 (Xk). Employing theorem
3.4, We accordingly have

Iσ1f (X1, ..., Xn) ⊆ Iσ2f (X1, ..., Xn) .

According to definitions 2.2 and 2.3, of the classical interval operations, all
interval variables are assumed to be independent. We consequently have

f (X1, ..., Xn) = Iσ2f (X1, ..., Xn) .

Thus
(∀f) (If (X1, ..., Xn) ⊆ f (X1, ..., Xn)) ,

and therefore (ii) is verified.

Obviously, the result
[
−a2, a2

]
, obtained using classical interval arithmetic,

has an overestimation of∣∣w ([−a2, a2])− w ([0, a2])∣∣ = a2.

This overestimated result is due to the fact that the classical interval theory
assumes independence of all interval variables, even when dependencies exist.

A numerical example is shown below.
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Example 3.6 Consider the real-valued function

f (x) = x (x− 1) ,

with x ∈ [0, 1].

The actual image of [0, 1] under f is [−1/4, 0]. Evaluating the image using
classical interval arithmetic, we get

f ([0, 1]) = [0, 1]× ([0, 1]− 1) = [−1, 0] ,

which has an overestimation of

|w ([−1, 0])− w ([−1/4, 0])| = 3/4.

The problem of computing the image If (X1, ..., Xn), using interval arith-
metic, is the main problem of interval computations. Despite the fact that there
are many special methods and algorithms, based on the classical interval the-
ory, that successfully compute useful narrow bounds to the desirable accurate
image (see, e.g., [Moore1966], [Moore1979], [Moore2009], and [Hansen2003]),
the problem is, in general, NP-hard12 (see, e.g., [Gaganov1985], [Pedrycz2008],
and [Rokne1984]). That is, for the classical interval theory, there is no effi cient
algorithm to make the identity

(∀f) (If (X1, ..., Xn) = f (X1, ..., Xn)) ,

always hold unless NP = P, which is widely believed to be false.

3.2 Modal Interval Arithmetic

The theory of modal intervals, constructed by Ernest Gardenyes in 1985 (see
[Gardenyes1985]), is a definitional extension13 of the classical interval theory
that provides a set of interval arithmetic sentences which is semantically equiv-
alent to a larger subset of the sentences of real arithmetic. A basic problem
of the classical interval theory is that the semantic of quantification over real
variables is lost in classical interval arithmetic.

To illustrate this, let ◦ ∈ {+,×}, and let σ1 and σ2 be two sentences of real

12 In principle, this result is not necessarily applicable to other theories of interval arithmetic
(present or future) because each theory has its peculiar set of algorithms, where each algorithm
is a sequence of elementary relations and functions of the foundational level of the theory (see
footnote 2, on page 77).
13 See footnote 11, on page 18.
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arithmetic such that

σ1 ⇔ (∀x ∈ [x, x])
(
∀y ∈

[
y, y
])

(∃z ∈ R) (z = x ◦ y) ,

σ2 ⇔ (∀x ∈ [x, x])
(
∃y ∈

[
y, y
])

(∃z ∈ R) (z = x ◦ y) .

In the sentence σ1, the variables x and y are independent, and in the sentence
σ2, the variable y depends on x. However, the classical interval theory, which
assumes independence of all variables, has the following single translation for
the above two real sentences,

(∃Z ∈ [R])
(
Z = [x, x] ◦

[
y, y
])
,

which is semantically equivalent to the first real sentence. The meaning of the
second sentence, along with the dependency information of the variables x and
y, is lost in classical interval arithmetic, because the semantic of the existential
quantification over

[
y, y
]
is not kept by the set-theoretic definition of classical

interval operations (definition 2.2). Modal interval arithmetic, which is based
entirely on predicate logic and set theory, is conceived as an attempt to solve
this problem.

In the sequel, we introduce the basic concepts of modal interval arithmetic,
deduce its fundamental algebraic properties, and finally uncover what exactly
the algebraic system, of modal intervals, is.

Next we define what a modal interval is.

Definition 3.10 Let [x, x] be a classical (set-theoretic) interval number, and
let QX ∈ {∀,∃} be a logical quantifier. A modal interval mX is an ordered pair
such that

mX = ([x, x] , QX) =

{
m[x, x] iff QX is ∃,
m[x, x] iff QX is ∀,

such that

m[x, x] = {ϕ|ϕ⇔ (∃x ∈ [x, x]) (P (x))},
m[x, x] = {ϕ|ϕ⇔ (∀x ∈ [x, x]) (R (x))},

where P (x) and R (x) are some real predicates for which the existential and
universal sentences are true respectively.

That is, a modal interval (the term “modal pair”or “modal set”is better)
is not a set-theoretical interval. In a manner analogous to how a real number x
can be represented as a pair (|x| ,±) whose first element is the absolute value of
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x and whose second element is a negative or positive sign, a modal interval can
be represented as a pair of a set-theoretical interval and a logical quantifier.

Thus, a modal interval ([x, x] , QX) is the set of all true real sentences with
respect to the quantification QXx ∈ [x, x]. For example,

([2, 3] ,∃) = m[2, 3] = {ϕ|ϕ⇔ (∃x ∈ [2, 3]) (P (x))},
([2, 3] ,∀) = m[3, 2] = {ϕ|ϕ⇔ (∀x ∈ [2, 3]) (R (x))},

where the sentences

(∃x ∈ [2, 3]) (x > 2) ,
(∀x ∈ [2, 3]) (x ≥ 2) ,

are, respectively, elements of ([2, 3] ,∃) and ([2, 3] ,∀).

The setM of modal intervals is characterized as follows.

Definition 3.11 M = {(X,QX) |X ∈ [R] ∧QX ∈ {∀,∃}}.

Hereafter, the left-superscripted Roman letters mX, mY , and mZ (with or
without subscripts), or equivalently m[x, x], m

[
y, y
]
, and m[z, z], shall be em-

ployed as variable symbols to denote elements ofM. Classical interval numbers
shall be denoted as usual.

To further simplify the exposition, it is convenient to introduce the following
notational conventions.

Notation 3.3 A modal interval (X, ∀) is called a universal (or improper) modal
interval. The set of all universal modal intervals shall be denoted byM∀.

Notation 3.4 A modal interval (X, ∃) is called an existential (or proper) modal
interval. The set of all existential modal intervals shall be denoted byM∃.

Notation 3.5 A modal interval (X,Q) with X ∈ [R]p is called a point modal
interval. The set of all point modal intervals shall be denoted byMp.

Next we define the “mode”, “set”, “dual”, “proper”, “improper”, “inf”, and
“sup”operators for modal intervals.
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Definition 3.12 The mode of a modal interval m[x, x] is defined to be

mode (m[x, x]) =

{
∃ iff x ≤ x,
∀ iff x ≥ x.

Definition 3.13 The set of a modal interval m[x, x] is defined to be

set (m[x, x]) = [min{x, x},max{x, x}] .

Definition 3.14 The dual of a modal interval m[x, x] is defined to be

dual (m[x, x]) = m[x, x] .

Definition 3.15 The proper of a modal interval m[x, x] is defined to be

proper (m[x, x]) = m[min{x, x},max{x, x}] .

Definition 3.16 The improper of a modal interval m[x, x] is defined to be

improper (m[x, x]) = m[max{x, x},min{x, x}] .

Definition 3.17 The infimum of a modal interval mX is defined to be

inf (mX) =

{
min (set (mX)) iff mode (mX) = ∃,
max (set (mX)) iff mode (mX) = ∀.

Definition 3.18 The supremum of a modal interval mX is defined to be

sup (mX) =

{
max (set (mX)) iff mode (mX) = ∃,
min (set (mX)) iff mode (mX) = ∀.

It should be noted that the inf and sup operators of a modal interval mX are
canonical, that is, they are not necessarily the infimum and supremum of the
corresponding set-theoretical interval X.

Some numerical examples are shown below.

Example 3.7 For two given modal intervals m[1, 2] and m[4, 3], we have

(i) m[1, 2] = ([1, 2] ,∃), m[4, 3] = ([3, 4] ,∀);
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(ii) mode (m[1, 2]) = ∃, mode (m[4, 3]) = ∀;

(iii) set (m[1, 2]) = [1, 2], set (m[4, 3]) = [3, 4];

(iv) dual (m[1, 2]) = m[2, 1] = ([1, 2] ,∀);

(v) dual (m[4, 3]) = m[3, 4] = ([3, 4] ,∃);

(vi) proper (m[1, 2]) = m[1, 2], improper (m[1, 2]) = m[2, 1];

(vii) inf (m[1, 2]) = 1, inf (m[4, 3]) = 4;

(viii) sup (m[1, 2]) = 2, sup (m[4, 3]) = 3.

The result of a modal algebraic operation is a set of true real arithmetic
sentences. The algebraic operations for modal intervals are characterized in the
following definition.

Definition 3.19 (Modal Algebraic Operations). Let mX = (X,QX), mY =
(Y,QY ), and mZ = (Z,QZ) be modal intervals. For any algebraic operator ◦, let
P (x, y, z)⇔ z = x◦Ry be a true real predicate with respect to the quantifications

QXx ∈ X, QY y ∈ Y , and QZz ∈ Z,

where QX , QY , QZ ∈ {∀,∃}.

Then the modal algebraic operations are defined as

mZ = mX ◦M mY

= {ϕ|ϕ⇔ (QXx ∈ X) (QY y ∈ Y ) (QZz ∈ Z) (z = x ◦R y)}.

Hereafter, if confusion is not likely to ensue, the subscript “M”, in the modal
operation symbols, the left-superscript “m”, in modal variable symbols, and the
subscript “R”, in the real relation and operation symbols, may be suppressed.

The properties of the modal algebraic operations are different than those
of the classical interval operations. In the following series of theorems, we
formalize some well-known algebraic properties of modal interval arithmetic
(see, e.g., [Gardenyes1985], [Gardenyes2001], and [Hayes2009]).

Theorem 3.8 (Absorbing Element inM). The modal interval [0, 0] is an ab-
sorbing element for modal multiplication, that is

(∀X ∈M) ([0, 0]×X = X × [0, 0] = [0, 0]) .
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Theorem 3.9 (Identity for Addition inM). The modal interval [0, 0] is both
a left and right identity for modal addition, that is

(∀X ∈M) ([0, 0] +X = X + [0, 0] = X) .

Theorem 3.10 (Identity for Multiplication in M). The modal interval [1, 1]
is both a left and right identity for modal multiplication, that is

(∀X ∈M) ([1, 1]×X = X × [1, 1] = X) .

Theorem 3.11 (Commutativity inM). Both modal addition and multiplica-
tion are commutative, that is

(i) (∀X, Y ∈M) (X + Y = Y +X),

(ii) (∀X, Y ∈M) (X × Y = Y ×X).

Theorem 3.12 (Associativity inM). Both modal addition and multiplication
are associative, that is

(i) (∀X, Y, Z ∈M) (X + (Y + Z) = (X + Y ) + Z),

(ii) (∀X, Y, Z ∈M) (X × (Y × Z) = (X × Y )× Z).

Theorem 3.13 (Inverses inM). Additive and multiplicative inverses exist for
modal intervals, that is

(i) (∀X, Y ∈M) (X − Y = [0, 0]⇔ Y = dual (X)),

(ii) (∀X, Y ∈M) (X ÷ Y = [1, 1]⇔ Y = dual (X) ∧ 0 /∈ set (X)).

Theorem 3.14 (Subdistributivity inM). The distributive law does not always
hold in modal interval arithmetic, that is

(∃X, Y, Z ∈M) (Z × (X + Y ) 6= Z ×X + Z × Y ) .

In general, for all X, Y , and Z in M, modal interval arithmetic has only the
modal subdistributive law

improper (Z)×X + Z × Y ⊆ Z × (X + Y )

⊆ proper (Z)×X + Z × Y .
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We shall now make use of the preceding known properties to prove three
results about, respectively, the additive structure 〈M; +M〉, the multiplicative
structure 〈M;×M〉, and the ring-like14 structure 〈M; +M,×M〉 of modal in-
terval arithmetic.

Theorem 3.15 The additive structure 〈M; +M〉 is an abelian group.

Proof. For +M, the following criteria are satisfied.

• Associativity. Modal addition is associative, by theorem 3.12.

• Commutativity. Modal addition is commutative, by theorem 3.11.

• Identity Element. The modal interval [0, 0] is an identity element for modal
addition, by theorem 3.9.

• Inverse Elements. Additive inverses exist for modal intervals, by theorem
3.13.

Therefore, the setM of modal intervals forms an abelian group under modal
addition.

Theorem 3.16 The multiplicative structure 〈M;×M〉 is an abelian monoid.

Proof. For ×M, the following criteria are satisfied.

• Associativity. Modal multiplication is associative, by theorem 3.12.

• Commutativity. Modal multiplication is commutative, by theorem 3.11.

• Identity Element. The modal interval [1, 1] is an identity element for modal
multiplication, by theorem 3.10.

Therefore, the set M of modal intervals forms an abelian monoid under
modal multiplication.

In consequence of this theorem and theorem 3.13, we have the following
corollary.

14 See footnote 16, on page 31.

61



CHAPTER 3. INTERVAL DEPENDENCY AND ALTERNATE INTERVAL THEORIES

Corollary 3.2 Let M0̃ be the set of all modal intervals X with 0 /∈ Set (X).
The multiplicative structure

〈
M0̃;×M

〉
is an abelian group.

We are now ready to uncover what exactly the algebraic system of modal
interval arithmetic.

Theorem 3.17 The ring-like structure 〈M; +M,×M; [0, 0] , [1, 1]〉 is a nondis-
tributive abelian ring15.

Proof. By theorem 3.15, the setM of modal intervals forms an abelian group
under modal addition, and, by theorem 3.16,M forms an abelian monoid under
modal multiplication. By theorem 3.8, [0, 0] is an absorbing element for ×M,
which is, according to theorem 3.9, also the identity element for +M. According
to theorem 3.14, ×M does not distribute over +M.

Therefore, the structure 〈M; +M,×M; [0, 0] , [1, 1]〉, of modal interval arith-
metic, is a nondistributive abelian ring.

Finally, an immediate consequence of the preceding theorem is the following.

Corollary 3.3 The theory of modal intervals defines a nondistributive number
system16 on the setM.

Thus, the name “numbers”is verified for modal intervals, and therefore we
can talk of “modal interval numbers”.

In conclusion, it should be noted that unlike classical interval arithmetic,
modal interval arithmetic has a richer algebraic system with additive and mul-
tiplicative inverses. However, distributivity, which is a very useful property of
ordinary arithmetic, is not satisfied in the modal interval theory. It should
be also mentioned that not every sentence of real arithmetic can be translated
into a semantically equivalent sentence of modal arithmetic, without loss of de-
pendency information. Furthermore, in spite of the promising applications of
modal intervals, its complicated construction is often misunderstood, which is
a drawback for it to have widespread applications.

15 A ring is an algebra 〈R; +R,×R〉 with the additive structure 〈R; +R〉 is an abelian group,
the multiplicative structure 〈R;×R〉 is a monoid, and ×R distributes over +R.
A nondistributive ring is a ring whose multiplication does not distribute over addition.
16 See footnote 19, on page 32.
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3.3 Constraint Interval Arithmetic

An important and promising theory of interval arithmetic is the theory of con-
straint intervals. Although it is scarcely mentioned in the interval literature, if
at all, constraint interval arithmetic has widespread applications in many scien-
tific fields such as artificial intelligence, fuzzy systems, and granular computing,
which require more accuracy and compatibility with the semantic (meaning)
of real arithmetic and fuzzy set theory (see, e.g., [Chen2000], [Kahraman2008],
[Pedrycz2008], [Pichler2007], and [Yu2004]).

The theory of constraint intervals was presented by Weldon Lodwick in
[Lodwick1999], but it perhaps has an earlier root in Cleary’s “logical arith-
metic” which is a logical technique, for real arithmetic in Prolog, that uses
constraints over real intervals (see [Cleary1987] and [Cleary1993]). Lodwick
presented his theory of constraint intervals as an approach to solving the long-
standing dependency problem in the classical interval theory, along with the
emphasis that constraint interval arithmetic, unlike Moore’s classical interval
arithmetic, has additive and multiplicative inverse elements, and satisfies the
distributive law.

Our main purpose here is to mathematically examine to what extent the the-
ory of constraint intervals can accomplish these very desirable algebraic prop-
erties.

With the elegant idea that a real closed interval is a convex subset17 of the
reals, and motivated by the fact that the best way to evaluate the accurate image
of a continuous real-valued function is to apply minimization and maximization
directly to determine the exact lower and upper endpoints of the image; Lodwick
constructs his constraint interval arithmetic as a simplified type of a min-max
optimization problem, with constraints varying in the unit interval.

Lodwick’s definition of a constraint interval can be formulated as follows.

Definition 3.20 Let x, x ∈ R such that x ≤ x. A constraint interval is defined
to be

[x, x] = {x ∈ R| (∃λx ∈ [0, 1]) (x = (x− x)λx + x)},
where min

λx
(x) = x and max

λx
(x) = x are, respectively, the lower and upper

17 Let V be a vector space over an ordered field 〈F; +F,×F;≤F〉. A set C in V is said to be
convex iff

(∀x, y ∈ C) (∀λ ∈ [0F, 1F]) (((1− λ)x+ λy) ∈ C) .
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bounds (endpoints) of [x, x].

Obviously, definition 3.20 is equivalent to definition 2.1, and a constraint
interval is a closed and bounded nonempty real interval. However, to simplify
the exposition, we shall denote the set of constraint intervals by t[R], and the
upper-case Roman letters X, Y , and Z (with or without subscripts), or equiv-
alently [x, x],

[
y, y
]
, and [z, z], shall be still employed as variable symbols to

denote elements of t[R]. The sets of point, zeroless, and symmetric constraint
intervals shall be denoted by the right-subscripted symbols t[R]p,

t[R]0̃, and
t[R]s, respectively.

In definition 3.20, a constraint interval is defined as the image of a continuous
real-valued function x of one variable λx ∈ [0, 1] and two constants x and x.
The endpoints, x and x, are respectively the minimum and maximum of x (see
Figure 3.1) with the constraint

0 ≤ λx ≤ 1 ⇒ 0 ≤ (x− x)λx ≤ (x− x)

⇒ x ≤ (x− x)λx + x ≤ x

⇒ x ≤ x ≤ x.

Figure 3.1: A constraint interval as the image of a continuous real function.

Since the endpoints x and x are known inputs, they are parameters whereas
λx is varying and hence a variable that is constrained between 0 and 1, hence
the name “constraint interval arithmetic”. The binary constraint interval op-
erations can be guaranteed to be continuous by introducing two constrained
variables λx, λy ∈ [0, 1]. From the fact that x ∈ [x, x] and y ∈

[
y, y
]
are contin-

uous real-valued functions of λx and λy respectively, the result of a constraint
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interval operation shall be the image of the continuous function

x ◦R y = ((x− x)λx + x) ◦R
((
y − y

)
λy + y

)
,

with λx, λy ∈ [0, 1], and ◦R ∈ {+,−,×,÷} such that y 6= 0 if ◦R is “÷”.

According to the functional dependence of real variables, Lodwick defines
two types of constraint interval operations, namely “dependent operations”and
“independent operations”. The dependent and independent constraint interval
operations are characterized in the following two definitions.

Definition 3.21 (Constraint Dependent Operations). For any constraint in-
terval [x, x], there exists a constraint interval [z, z] such that

[z, z] = [x, x] ◦dep [x, x]

= {z ∈ R| (∃x ∈ [x, x]) (z = x ◦R x)}
= {z ∈ R| (∃λx ∈ [0, 1]) (z = ((x− x)λx + x) ◦R ((x− x)λx + x))},

where

z = min
λz

(z) = min
λx

(x ◦R x) ,

z = max
λz

(z) = max
λx

(x ◦R x) ,

and ◦ ∈ {+,−,×,÷} such that 0 /∈ [x, x] if ◦ is “÷”.

Definition 3.22 (Constraint Independent Operations). For any two constraint
intervals [x, x] and

[
y, y
]
, there exists a constraint interval [z, z] such that

[z, z] = [x, x] ◦ind
[
y, y
]

= {z ∈ R| (∃x ∈ [x, x])
(
∃y ∈

[
y, y
])

(z = x ◦R y)}
= {z ∈ R| (∃λx ∈ [0, 1]) (∃λy ∈ [0, 1])(

z = ((x− x)λx + x) ◦R
((
y − y

)
λy + y

))
},

where

z = min
λz

(z) = min
λx,λy

(x ◦R y) ,

z = max
λz

(z) = max
λx,λy

(x ◦R y) ,

and ◦ ∈ {+,−,×,÷} such that 0 /∈
[
y, y
]
if ◦ is “÷”.

It is obvious, from definitions 3.21 and 3.22, that constraint interval arith-
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metic is a mathematical programming problem, and therefore constraint in-
terval operations can be easily performed by any constraint solver such as
GeCode18, HalPPC19, and MINION20. The minimization and maximization are
well-defined, attained, and the resultant [z, z] is in turn a constraint interval.

We now turn to investigate if the theory of constraint intervals accomplishes
its objectives. In the first place, we must generally ask: what exactly is the
algebraic structure of constraint interval arithmetic? Lodwick does not provide
an answer for this question. On page 1 in [Lodwick1999], he says:

“Unlike (classical) interval arithmetic, constrained interval arith-
metic has an additive inverse, a multiplicative inverse and satisfies
the distributive law. This means that the algebraic structure of con-
strained interval arithmetic is different than that of (classical) interval
arithmetic.”,

and then presents proofs for the following three statements:

(i) Additive inverse. (∀X ∈ t[R]) (X −dep X = [0, 0]).

(ii) Multiplicative inverse.
(
∀X ∈ t[R]0̃

)
(X ÷dep X = [1, 1]).

(iii) Distributive law. (∀X, Y, Z ∈ t[R]) (Z × (X + Y ) = Z ×X + Z × Y ).

The first two statements are derivable by simple substitution in definition
3.21 for constraint dependent operations, hence the subscript “dep”. For the
third statement, the matter is much more complicated, and therefore we dropped
the subscripts for the operation symbols of addition and multiplication.

Getting down to particulars with the above three statements, we must turn
to ask, then, the corresponding three questions:

(1) Is the statement “A −dep A = [0, 0]” equivalent to “(−A) is the inverse
element of A with respect to the operation + on the set t[R], according to
the dependent operation X +dep X”?

18 http://www.gecode.org/
19 http://sourceforge.net/projects/halppc
20 http://minion.sourceforge.net/
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(2) Is the statement “A ÷dep A = [1, 1]”equivalent to “
(
A−1

)
is the inverse

element of A with respect to the operation × on the set t[R], according to
the dependent operation X ×dep X”?

(3) Does the distributive law hold, according to the dependent and indepen-
dent operations?

In the sequel, we prove that the answers of the above three questions are all
negative. On the face of it, the theory of constraint intervals seems to fit squarely
into its objectives, but, however the elegance of its underlying idea, we shall
argue both that the fit is problematic, and that its mathematical formulation
constitutes a serious algebraic defect.

Before setting forth the proofs, we deal first with some algebraic preliminaries
we shall need (see, e.g., [Barnes1975], [Levi1961], and [Menini2004]).

Definition 3.23 (Partial and Total Operations). Let S〈n〉 be the n-th Cartesian
power of a set S. An n-ary (total) operation on S is a total function tn : S〈n〉 7−→
S. An n-ary partial operation in S is a partial function pn : U 7−→ S, where
U ⊂ S〈n〉. The ordinal21 n is called the arity of tn or pn.

A binary operation is an n-ary operation for n = 2. Addition and multipli-
cation on22 the set R of real numbers are best-known examples of binary total
operations, while division is a partial operation in R.

Definition 3.24 (Algebraic Structure). An algebraic structure (or an algebra)
is a system A =

〈
A;FA

〉
, where

• A is a (possibly empty)23 set called the individuals universe of A. The
elements of A are called the individual elements of A;

• FA is a set of n-ary total operations on A. The elements of FA are called
the A-operations.

21 See footnote 13, on page 142.
22 See footnote 7, on page 13.
23 An algebraic structure with an empty universe of individuals is called an empty algebraic

structure (see footnote 11, on page 141).
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Definition 3.25 (Inverse Elements). Let 〈S; •; e•〉 be an algebra with • is a
binary operation on S and e• is the identity element for •. We say that every
element of S has an inverse element with respect to the operation • iff

(∀x ∈ S) (∃y ∈ S) (x • y = e•) .

Definition 3.26 (Number System). A number system is an algebra N =
〈N ; +N ,×N 〉 with +N and ×N are each both commutative and associative, and
×N distributes over +N . A nondistributive number system is a number system
whose ×N is not distributive.

Recalling definition 3.9 of the interval dependency relation, it is also conve-
nient to have at hand the following definitions for two proper subsets of t[R]〈2〉,
according to interval dependencies.

Definition 3.27 Kdep = {(X, Y ) ∈ t[R]〈2〉| YDX}.

Definition 3.28 Kind = {(X, Y ) ∈ t[R]〈2〉| = (X, Y )}.

Now we are ready to prove our statements about the theory of constraint
intervals. We begin by investigating what type of algebraic operations the
constraint operations are.

Theorem 3.18 Constraint dependent addition and multiplication are partial
operations in the set t[R].

Proof. For ◦dep ∈ {+,×}, from definition 3.21, we have

◦dep : Idt[R] → t[R],

where
Idt[R] = {(X,X) | X ∈ t[R]}.

Obviously the set Idt[R] is the identity relation on t[R], which, by definition
3.27, is a proper subset of Kdep, and hence a proper subset of t[R]〈2〉.

Therefore, according to definition 3.23, the operations ◦dep ∈ {+,×} are
partial operations in the set t[R] of constraint intervals.

One immediate result that this theorem implies is that the constraint de-
pendent operations consider only a single special case of interval dependency,
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namely the dependency by identity, XDX. Other cases of interval dependency,
characterized in definition 3.9, are not considered by Lodwick’s dependent op-
erations.

Theorem 3.19 Constraint independent addition and multiplication are partial
operations in the set t[R].

Proof. For ◦ind ∈ {+,×}, by definitions 3.22 and 3.28, we have

◦ind : Kind → t[R].

It is clear, by 3.28, that the setKind is a proper subset of t[R]〈2〉, and therefore,
by definition 3.23, the operations ◦ind ∈ {+,×} are partial operations in the set
t[R] of constraint intervals.

In accordance with the preceding two results, we are now led to the following
three theorems, which answer our questions concerning inverse elements and
distributivity.

Theorem 3.20 Inverse elements for addition cannot be proved to exist in con-
straint interval arithmetic. In other words, the statement(

∀X ∈ t[R]
)

(X + (−X) = [0, 0]) ,

is undecidable in the constraint interval theory.

Proof. For any constraint interval X, define the negation of X, in the standard
way, to be

−X = {z ∈ R| (∃x ∈ X) (z = −x)}.

Obviously, the relation (−X)DX is true. But, by theorem 3.18, the pair
((−X) , X) /∈ Idt[R] unless X = [0, 0], and the expression X + (−X) thus is not
expressible as a constraint dependent operation. On the other hand, by theorem
3.19, ((−X) , X) /∈ Kind because the predicate = ((−X) , X) is not true, and
the expression X + (−X) thus is not expressible as a constraint independent
operation.

It follows, therefore, that the existence of additive inverses is undecidable in
the constraint interval theory.
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Theorem 3.21 Inverse elements for multiplication cannot be proved to exist
in constraint interval arithmetic. In other words, the statement(

∀X ∈ t[R]
) (

0 /∈ X ⇒ X ×
(
X−1

)
= [1, 1]

)
,

is undecidable in the constraint interval theory.

Proof. For any constraint interval X with 0 /∈ X, define the reciprocal of X,
in the standard way, to be

X−1 = {z ∈ R| (∃x ∈ X)
(
z = x−1

)
}.

Obviously, the relation
(
X−1

)
DX is true. But, by theorem 3.18, the pair((

X−1
)
, X
)
/∈ Idt[R] unless X = [1, 1], and the expression X×

(
X−1

)
thus is not

expressible as a constraint dependent operation. On the other hand, by theorem
3.19,

((
X−1

)
, X
)
/∈ Kind because the predicate =

((
X−1

)
, X
)
is not true, and

the expression X ×
(
X−1

)
thus is not expressible as a constraint independent

operation.

It follows, therefore, that the existence of multiplicative inverses is undecid-
able in the constraint interval theory.

Theorem 3.22 The distributive law does not hold in constraint interval arith-
metic. In other words, the statement(

∀X, Y, Z ∈ t[R]
)

(Z × (X + Y ) = Z ×X + Z × Y ) ,

is not provable in the constraint interval theory.

Proof. Obviously, in the left-hand side

Z × (X + Y ) ,

all the variables are mutually independent. Then, applying definition 3.22 of
the constraint independent operations, we obtain the same result as in classical
interval arithmetic, that is

Z ×ind (X +ind Y ) = Z ×c (X +c Y ) .

Let us now consider the right-hand side

(Z ×X) + (Z × Y ) .
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It is clear that the relations (Z ×X)DZ and (Z × Y )DZ are true. How-
ever, by theorem 3.18, the pair ((Z ×X) , (Z × Y )) /∈ Idt[R], and the expression
(Z ×X) + (Z × Y ) thus is not expressible as a constraint dependent opera-
tion. Then, applying definition 3.22 of the constraint independent operations,
we again have the same result as in classical interval arithmetic, that is

(Z ×ind X) +ind (Z ×ind Y ) = (Z ×c X) +c (Z ×c Y ) .

According to the subdistributivity theorem of the classical interval theory
(theorem 2.21, on page 28), we also have only the subdistributive law

Z ×ind (X +ind Y ) ⊆ (Z ×ind X) +ind (Z ×ind Y ) ,

for constraint interval arithmetic.

It follows, therefore, that distributivity is not provable in the constraint
interval theory.

Thus, the preceding three theorems prove that the answers of our questions
are all negative. The constraint dependent and independent operations do not
qualify as total operations on t[R], and in their full extent, do not suffi ce to
cope with interval dependencies except for the special case when the operands
are trivially dependent by identity, that is, XDX.

In order to make this clear, we next give an example.

Example 3.8 Let σ be the prenex sentence such that

σ ⇔ (∀x ∈ [−1, 1]) (∃y ∈ [0, 1]) (∃z ∈ R) (z = y − x) .

In the sentence σ, the variable y depends on x, and therefore there is some
function g (x) such that σ has the Skolem equivalent form

(∃g) (∀x ∈ [−1, 1]) (∃z ∈ R) (z = g (x)− x) .

The dependency function g can be, for instance, the quadratic function,
that is y = g (x) = x2. It is clear that the relation [0, 1]D [−1, 1] is true,
that is, the interval number [0, 1] is dependent on [−1, 1]. However, the pair
([0, 1] , [−1, 1]) /∈ Idt[R], and the expression [0, 1]− [−1, 1] thus is not expressible
as a constraint dependent operation.

We now pass to our general question concerning the algebraic system of
constraint interval arithmetic. The following theorem clarifies an answer.
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Theorem 3.23 The theory of constraint intervals does not define an algebra
for addition or multiplication on the set t[R].

Proof. By theorems 3.18 and 3.19, the operations ◦dep and ◦ind, in {+,×},
are partial operations in t[R], and therefore, according to definition 3.24, the
algebras 〈t[R]; ◦dep〉 and 〈t[R]; ◦ind〉 are not definable.

That is, the structures 〈t[R]; ◦dep〉 and 〈t[R]; ◦ind〉 are undefinable, for the
requirement that an algebraic operation must be total on the universe set t[R].

In consequence of the last theorem, we also have the following important
result.

Theorem 3.24 The theory of constraint intervals does not define a number
system on the set t[R].

Proof. The proof immediately follows from definition 3.26 and theorem 3.23,
by the fact that every number system is an algebra.

The name “numbers”thus is not correct for constraint intervals, and there-
fore we cannot talk of “constraint interval numbers”.

From the above discussion, we can conclude that the underlying idea of con-
straint interval arithmetic seems elegant and simple, but it is too simple to fully
account for the notion of interval dependency or to achieve a richer algebraic
structure for interval arithmetic. It is therefore imperative both to supply the
defect in Lodwick’s approach and to present an alternative theory with a math-
ematical construction that avoids the defect. The former was attempted in the
present section, and the latter is attempted in the next chapter (“a theory of
optimizational intervals”).
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Chapter 4
A Theory of Optimizational Intervals

Nothing at all takes place in the universe in which some rule of maximum or
minimum does not appear.

—Leonhard Euler (1707-1783)

In the preceding chapter, we proved that the theory of constraint intervals
cannot fully account for the notion of interval dependency, does not define an
algebra for interval addition or multiplication, and consequently does not define
a number system on the set of constraint intervals. With a view to treating
these problems, the present chapter is devoted to constructing a new arithmetic
of interval numbers.

Based on Lodwick’s idea of representing an interval number as a convex set,
along with our formalization of the notion of interval dependency (see section
3.1, on page 42), we attempt, in this chapter, to present an alternate theory of
intervals, namely the “theory of optimizational intervals”, with a mathematical
construction that tries to avoid some of the defects in the current theories of
interval arithmetic, to provide a richer interval algebra, and to better account
for the notion of interval dependency.

We begin, in sections 4.1 and 4.2, by defining the key concepts of the op-
timizational interval theory, and then we formulate the basic operations and
relations for optimizational interval numbers. In section 4.3, we carefully con-
struct the algebraic system of optimizational interval arithmetic, deduce its
fundamental properties, and then prove that the optimizational interval theory
constitutes a rich algebra, which extends the ordinary field structure of real
numbers. Finally, in Section 4.4, we discuss some further consequences and
future prospects concerning the results presented in this chapter. In chapter
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5, after formalizing the classical theory of complex intervals, we present an
“optimizational theory of complex interval arithmetic”.

4.1 Algebraic Operations for Optimizational Interval Numbers

In this section, we define the key concepts of the optimizational interval theory,
and then we formulate the basic operations and relations for optimizational
interval numbers. As usual, in all the proofs, elementary facts about opera-
tions and relations on the real numbers are usually used without explicit ref-
erence. Moreover, the notions, notations, and abbreviations of section 3.1 are
indispensable for our mathematical discussion throughout this chapter and the
succeeding chapters, and hereafter are assumed priori, without further mention.

Following Lodwick, we begin by defining an optimizational interval number
as a type of convex set.

Definition 4.1 Let x, x ∈ R such that x ≤ x. An optimizational interval
number is a closed and bounded non-empty convex subset of R, that is

[x, x] = {x ∈ R| (∃λx ∈ [0, 1]) (x = (x− x)λx + x)},

where min
λx

(x) = x and max
λx

(x) = x are, respectively, the lower and upper

bounds (endpoints) of [x, x].

We shall denote the set of optimizational interval numbers by o[R]. The
upper-case Roman letters X, Y , and Z (with or without subscripts), or equiv-
alently [x, x],

[
y, y
]
, and [z, z], shall be still employed as variable symbols to

denote elements of o[R]. The sets of point, zeroless, and symmetric optimiza-
tional interval numbers shall be denoted, as usual, by the right-subscripted
symbols o[R]p,

o[R]0̃, and
o[R]s, respectively.

By virtue of definition 3.9, we characterize the equality relation on o[R], in
terms of the dependency relation D and the identity function Id, as follows.

Definition 4.2 (Equality on o[R]). Two optimizational interval variables X
and Y are equal (identical) iff they are dependent by identity, that is

X =o Y ⇔ XDIdY .

In consequence of this definition and definition 4.1, we have the following
immediate theorem.
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Theorem 4.1 Let [x, x] and
[
y, y
]
be any two optimizational interval variables.

Then

[x, x] =o

[
y, y
]
⇔ x = y ∧ x = y ∧ (∀x ∈ [x, x])

(
∃y ∈

[
y, y
])

(y = Id (x)) .

Thus, if two optimizational interval variables X and Y both are assigned the
same individual constant (value), it does not necessarily follow that X and Y
are equal (identical), unless they are dependent by the identity function (recall
example 3.5, on page 52).

We then characterize the binary and unary algebraic operations for opti-
mizational interval numbers, respectively, in the following two set-theoretic de-
finitions.

Definition 4.3 (Binary Optimizational Operations). For any two optimiza-
tional interval numbers X and Y , the binary algebraic operations are defined
by

X ◦o Y =


{z ∈ R| (∃x ∈ X) (∃y ∈ Y ) (z = x ◦R y)} if = (X, Y ) ,

{z ∈ R| (∃x ∈ X) (∃ml=1sl ∈ Sl) (z =
x ◦R f (x; s1, ..., sm))} if YDfX,

where ◦ ∈ {+,×}.

Definition 4.4 (Unary Optimizational Operations). For any optimizational
interval number X, the unary algebraic operations are defined by

�oX = {z ∈ R| (∃x ∈ X) (z = �Rx)},

where � ∈ {−,−1 } and 0 /∈ X if � is “−1”.

Hereafter, if confusion is unlikely, the subscript “o”, which stands for “opti-
mizational interval operation”, and the subscript “R”, in the real relation and
operation symbols, may be suppressed1.

In comparing definition 4.3 with Lodwick’s two definitions of dependent and
independent interval operations (definitions 3.21 and 3.22 of section 3.3), it
might at first seem that the advantage of simplicity lies with Lodwick’s def-
initions. However, the advantage of definition 4.3 is that it characterizes, as

1 As regards notation, see footnotes 1 and 9, on pages 10 and 13, respectively.
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we shall prove presently, a (single) “total binary operation”on o[R], for each
◦ ∈ {+,×}, and exhibits a uniform approach applicable to all cases of interval
dependency (specified in definition 3.9 of section 3.1).

With a view to reaching more profound results, we supplement the two pre-
ceding definitions by the following characterization of an optimizational rational
function.

Definition 4.5 (Optimizational Rational Functions). Let Xk be optimizational
intervals and let F be a function variable symbol. An optimizational ratio-
nal function oF (X1, ..., Xi, Xj, ..., Xn) is a (multivariate) function obtained by
means of a finite number of the optimizational interval operations such that

oF =


{z ∈ R| (∃nk=1xk ∈ Xk) (z =

RF (x1, ..., xi, xj, ..., xn))} if =nk=1 (Xk) ,

{z ∈ R| (∃nk=1xk ∈ Xk) (∃ml=1sl ∈ Sl) (z =
RF
(
x1, ..., xi,

Rf (xi; s1, ..., sm) , ..., xn
)
)} if XjDfXi,

where RF (x1, ..., xi, xj, ..., xn) is the corresponding real-valued rational function
with xk ∈ Xk.

As we mentioned before, If the type of function is clear from its arguments,
and if confusion is unlikely, we shall usually drop the left superscripts “R”and
“o”and simply write F (X1, ..., Xn) and F (x1, ..., xn) for, respectively, an opti-
mizational rational function and its corresponding real-valued rational function,
which are both defined by the same rule.

By virtue of our definition of an optimizational interval number as a type
of convex set, the evaluation of an optimizational rational function is a simpli-
fied type of mathematical optimization, with the constraints are always in the
unit interval [0, 1]; and hence the name “optimizational interval arithmetic”.
If there is no dependency between interval numbers, the value of an optimiza-
tional rational function is the same as in classical interval arithmetic. When
dependencies exist, we have a different value. Thus, optimizational interval
arithmetic has an algebra different than that of the classical interval theory.

With the help of the notions characterized above, we are now ready to prove
the main theorem of this section, and of optimizational interval arithmetic.

Theorem 4.2 The value of an optimizational rational function oF(X1, ..., Xi,
Xj, ..., Xn) is the (accurate) image IF of the corresponding real-valued rational
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function F (x1, ..., xi, xj, ..., xn), with xk ∈ Xk. That is

oF =

{
IF (X1, ..., Xi, Xj, ..., Xn) if =nk=1 (Xk) ,

IF (X1, ..., Xi, If (Xi;S1, ..., Sm) , ..., Xn) if XjDfXi.

Proof. Since a real-valued rational function is continuous, it follows, by defin-
ition 4.5, that an optimizational rational function is continuous and attains its
minimum and maximum values.

Then, by definitions 4.1 and 4.5, optimizing with respect to all λ ∈ [0, 1], we
obtain

oF =



[ min
xk∈Xk

F (x1, ..., xi, xj, ..., xn) ,

max
xk∈Xk

F (x1, ..., xi, xj, ..., xn)] if =nk=1 (Xk) ,

[ min
xk∈Xk
sl∈Sl

F (x1, ..., xi, f (xi; s1, ..., sm) , ..., xn) ,

max
xk∈Xk
sl∈Sl

F (x1, ..., xi, f (xi; s1, ..., sm) , ..., xn)] if XjDfXi,

from which we conclude, by theorem 3.3, that

oF =

{
IF (X1, ..., Xi, Xj, ..., Xn) if =nk=1 (Xk) ,

IF (X1, ..., Xi, If (Xi;S1, ..., Sm) , ..., Xn) if XjDfXi,

and therefore the value of oF is the image IF of the corresponding real-valued
rational function.

Thus, optimizational interval operations are exact (or generalized) interval
operations (see definition 3.8, on page 50), and therefore we have an exact
algebra2 of optimizational intervals. That is, it follows, from this theorem,
that arithmetical expressions which are identical in real arithmetic are identical

2 It is understood that every formal theory of arithmetic is a hierarchy composed of three suc-
cessive levels. Let Ti be a theory. The three levels of Ti are as follows (For further details about
formal theories and their structures, see, e.g., [Malcev1971], [Rasiowa1963], [Shankar1997], and
[Smullyan1961]).

(i) The symbolic (algebraic, or axiomatic) foundation S (Ti). This is the set of symbolic
sentences (axioms, definitions, propositions, and so forth), with which the theory is con-
structed. In a formal sense, an arithmetical theory is identified with its algebraic foun-
dation, that is, the expression “the first order theory of real numbers” is equivalent to
the expression “the set of first order symbolic sentences that define the theory of real
numbers”.
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in optimizational interval arithmetic, since both sides of the identity relation
yield the image of the real arithmetical expression. With this result at our
disposal, many identities of optimizational interval arithmetic can be entailed by
the corresponding identities of real arithmetic3. As examples, we can mention
that, for x ∈ X, y ∈ Y , and z ∈ Z, the commutative and distributive laws
for optimizational interval arithmetic can be immediately established from the

(ii) The numeric (or arithmetical) level N (Ti). This is the set of numeric statements obtained
by endowing the symbolic sentences of the theory with an arithmetical interpretation
(model, or structure) that makes them satisfiable, in a way such that every variable symbol
is assigned an individual constant (value) from the universe set of the interpretation.

(iii) The algorithmic (or computational) level A (Ti). This is the set of algorithms for perform-
ing computations in the numeric level N (Ti), according to the rules prescribed by the
sentences of the symbolic foundation S (Ti).

Each of the three levels is completely peculiar to its theory, that is, the set A (T1) of a theory
T1 is completely different than the set A (T2) of a theory T2, because each set is based upon
different rules.
Exactness in the symbolic foundation of a theory is a prior necessary condition for the theory

to be consistent, while in the numeric and algorithmic levels, inaccuracy naturally arises, due
to finiteness of numerical representations. For instance, in the axiomatic foundation of the
theory of real numbers, we know, by a syntactic proof or by means of a model, that the axiom
of real addition

(∀x ∈ R)(∀y ∈ R)(∃z ∈ R)(z = x+ y),

is always true (that is, z is always identical to x+y), while in the numeric and algorithmic levels,
due to finite representations of real numbers, we may tend to accept some looser approximated
formulas such as

4.1 ≈ 1.333...+ 2.777... ,

and this what makes numerical real analysis different from real algebra. That is in any theory
of arithmetic, inaccuracy arises only when getting up to the the numeric level. On the contrary,
this is not the case for the present theories of intervals. For instance, the sentence of interval
addition

(∀X ∈ [R])(∀Y ∈ [R])(∃Z ∈ [R])(Z = X + Y ),

is not always true (see theorem 3.7, on page 53), for the case when the intervals X, Y , and Z
are prescribed by the prenex sentence

(∀x ∈ X)(∃y ∈ Y )(∃z ∈ R)(z = x+ y).

Theorem 4.2 asserts that the symbolic foundation of the optimizational interval theory is
exact and, like other theories of arithmetic, including the theory of real numbers, inaccuracies
can arise only when getting up to the numeric level.

3 A similar result for classical interval arithmetic was proved by Moore, for the restricted
case when every variable occurs only once on each side of the identity relation, or, in other
words, when all variables are functionally independent (see, e.g., [Moore1966], [Moore1979],
and [Moore2009]). Moore’s result is entailed by theorem 3.5, on page 50.
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corresponding laws of real arithmetic, as follows.

x+ y = y + x⇒ X + Y = Y +X,
x× y = y × x⇒ X × Y = Y ×X,

z × (x+ y) = z × x+ z × y ⇒ Z × (X + Y ) = Z ×X + Z × Y .

In view of this theorem, we have then the following corollary that gives a
new reformulation of the dependency relation.

Corollary 4.1 YDfX ⇔ Y = of (X;S1, ..., Sm).

This corollary assures an important and peculiar property of optimizational
interval arithmetic: when a real-valued function is translated into the corre-
sponding optimizational function, the semantic of functional dependence is
completely conserved, and we have the equivalence

y = f (x; s1, ..., sm)⇔ Y = of (X;S1, ..., Sm) .

Accordingly, an optimizational n-ary predicate is characterized as follows.

Definition 4.6 (Optimizational Predicate). Let Xk be optimizational intervals
and let P be an n-ary predicate variable symbol. Then

P (X1, ..., Xi, Xj, ..., Xn) ∧XjDfXi ⇔ P (X1, ..., Xi, f (Xi;S1, ..., Sm) , ..., Xn) .

For instance, let P (X,T, Y, U) be X + T = Y + U . Then

X + T = Y + U ∧ YDfX ⇔ X + T = f (X;S1, ..., Sm) + U .

Combining theorem 4.2 with theorem 3.7, we obtain the following result
that establishes the relation between an optimizational rational function and
its corresponding classical interval function.

Theorem 4.3 Let F= and FD be the values of an optimizational rational func-
tion oF(X1, ..., Xn), for, respectively, =nk=1 (Xk) and XjDfXi, and let cF(X1, ...,
Xn) be the corresponding classical rational function. Then

FD ⊆ F= = cF ,

and, in general
IF = oF ⊆ cF .
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Proof. According to theorem 3.4, we have FD ⊆ F=. By theorem 4.2, the
value of oF is the image IF of the corresponding real-valued rational function,
which is, by theorem 3.7, a subset of the classical rational function cF . The
two statements, therefore, are verified.

Thus, by virtue of our formalization of the notion of interval dependency (def-
inition 3.9 of section 3.1), optimizational interval arithmetic, unlike the classical
interval theory and its alternates, copes with all possible cases of functional de-
pendence between interval variables. This what makes our construction differ
fundamentally from the interval theories discussed in the previous chapters.

In particular, theorem 4.2, plus definitions 4.3 and 4.4, implies the following
four easily derivable results.

Theorem 4.4 (Addition on o[R]). For any two optimizational interval numbers
X = [x, x] and Y =

[
y, y
]
, optimizational interval addition is a total operation,

on o[R], formulated as

X + Y =



[ min
λx,λy

(x+ y) ,max
λx,λy

(x+ y)]

=
[
x+ y, x+ y

]
if = (X, Y ) ,

[ min
λx,λs

(x+ f (x; s1, ..., sm)) ,

max
λx,λs

(x+ f (x; s1, ..., sm))]

= X + f (X;S1, ..., Sm) if YDfX.

Theorem 4.5 (Multiplication on o[R]). For any two optimizational interval
numbers X = [x, x] and Y =

[
y, y
]
, optimizational interval multiplication is a

total operation, on o[R], formulated as

X×Y =



[ min
λx,λy

(x× y) ,max
λx,λy

(x× y)]

=
[
min{xy, xy, xy, xy},max{xy, xy, xy, xy}

]
if = (X, Y ) ,

[ min
λx,λs

(x× f (x; s1, ..., sm)) ,

max
λx,λs

(x× f (x; s1, ..., sm))]

= X × f (X;S1, ..., Sm) if YDfX.

Theorem 4.6 (Negation on o[R]). For any optimizational interval number
[x, x], optimizational interval negation is a total operation, on o[R], formulated
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as

− [x, x] =

[
min
λx

(−x) ,max
λx

(−x)

]
= [−x,−x] .

Theorem 4.7 (Reciprocal in o[R]). For any optimizational interval number
[x, x] ∈ o[R]0̃ (that is, 0 /∈ [x, x]), optimizational interval reciprocal is a partial
operation, in o[R], formulated as

[x, x]
−1

=

[
min
λx

(
x
−1
)
,max

λx

(
x
−1
)]

=
[
x
−1
, x
−1
]
.

These results, along with theorem 4.3, express an important fact of our
development: for the case when = (X, Y ), the value of an optimizational interval
operation is the same as that of the corresponding classical interval operation,
that is X ◦o Y = X ◦c Y ; and for the case when YDfX, an optimizational
interval operation gives a different value, according to the dependency function
f . This is why optimizational interval arithmetic copes with all possible cases
of interval dependency. In order to clarify the matters, Let, for example, σ be
a real sentence that takes the prenex form

(∀x) (∃y) (∃z) (∃u) (u = xy + z) .

The Skolem equivalent form of σ is

(∃f) (∃g) (∀x) (∃u) (u = x× f (x) + g (x)) .

Such a sentence, as we proved in section 3.3, is not expressible by the partial
constraint operations, and its dependency relations are not considered by the
classical interval operations. In contrast, the sentence σ can be evaluated in
optimizational interval arithmetic, with its dependency relations are completely
coped with. So, it comes as a matter of fact that the theory of optimizational
intervals is completely compatible with the semantic of real arithmetic. That is,
any sentence of real arithmetic can be translated into a semantically equivalent
sentence of optimizational interval arithmetic.

To complete our construction of optimizational interval arithmetic, we next
define the total operation of “subtraction”, and the partial operations of “divi-
sion”and “integer exponentiation”, for optimizational interval numbers.

Definition 4.7 (Subtraction on o[R]). For any two optimizational interval
numbers X and Y , optimizational interval subtraction is defined by

X − Y = X + (−Y ) .
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Definition 4.8 (Division in o[R]). For any X ∈ o[R] and any Y ∈ o[R]0̃,
optimizational interval division is defined by

X ÷ Y = X ×
(
Y
−1
)
.

Definition 4.9 (Integer Exponentiation in o[R]). For any optimizational in-
terval number X and any integer n, the integer exponents of X are defined, in
terms of multiplication and reciprocal in o[R], by the following recursion scheme:

(i) X0 = [1, 1],

(ii) 0 < n⇒ Xn = Xn−1 ×X,

(iii) 0 /∈ X ∧ 0 ≤ n⇒ X−n =
(
X−1

)n
.

In view of this definition, we have, as an immediate consequence, the follow-
ing theorem that prescribes the properties of integer exponents of optimizational
interval numbers.

Theorem 4.8 For any two optimizational interval numbers X and Y , and any
two positive integers m and n, the following identities hold:

(i) Xm ×Xn = Xm+n,

(ii) (Xm)n = Xm×n,

(iii) (X × Y )n = Xn × Y n.

Accordingly, we also have the following easy-deducible corollary.

Corollary 4.2 The identities of integer exponents (i), (ii), and (iii), in theorem
4.8, are valid for all X, Y ∈ o[R]0̃ and any two integers m and n.

To clarify how interval dependencies are fully addressed by the optimiza-
tional interval operations, in a way which is completely compatible with the
semantic of real arithmetic, consider the real-valued square function

f (x) = x
2

,
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with x ∈ [x, x], and xx < 0. The value of the corresponding classical interval
function, according to theorem 2.5 and definition 2.6, is given by

cf ([x, x]) = [x, x]
2

= [x, x]×c [x, x]

=
[
min{x2, xx, x2},max{x2, xx, x2}

]
=
[
xx,max{x2, x2}

]
,

which is not consistent with the fact that a square is always nonnegative.
Strictly speaking, the accurate image of the real-valued function f is a proper
subset of the value of the corresponding classical interval function cf , that is

If ([x, x]) ⊂ cf ([x, x]) .

Now the value of the corresponding optimizational interval function, according
to theorem 4.5 and definition 4.9, is given by

of ([x, x]) = [x, x]
2

= [x, x]×o [x, x]

=

[
min
x∈[x,x]

(
x
2
)
, max
x∈[x,x]

(
x
2
)]

=

[
min
λx∈[0,1]

(
((x− x)λx + x)

2
)
, max
λx∈[0,1]

(
((x− x)λx + x)

2
)]

=
[
0,max{x2, x2}

]
,

which is always nonnegative, and we have the identity

If ([x, x]) = of ([x, x]) .

Therefore, unlike classical interval exponentiation, optimizational exponenti-
ation is completely compatible with the semantic of the real-valued function
f (x) = x

2

, with x ∈ [x, x].

So, with this construction of the optimizational interval theory at our dis-
posal, it is not surprising that we can formulate and evaluate interval arithmetic
expressions in a way analogous to that of real arithmetic. As a further illustra-
tion, let us consider some examples.
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Example 4.1 Let σ1 and σ2 be the two prenex sentences such that

σ1 ⇔ (∀x ∈ [−2, 2]) (∀y ∈ [−2, 2]) (∃z ∈ R) (z = f (x, y) = x× y) ,
σ2 ⇔ (∀x ∈ [−2, 2]) (∃y ∈ [−2, 2]) (∃z ∈ R) (z = f (x, y) = x× y) .

It is apparent that the variables x and y are independent in the sentence σ1,
in which case the image of f is Iσ1f = [−4, 4]. The value of the correspond-
ing optimizational interval function, for X and Y both are assigned the same
individual constant [−2, 2], with = (X, Y ), is given, according to theorem 4.5,
by

of (X, Y ) = X ×o Y

=

 min
x∈[−2,2]
y∈[−2,2]

(x× y) , max
x∈[−2,2]
y∈[−2,2]

(x× y)


=

 min
λx∈[0,1]
λy∈[0,1]

((4λx − 2)× (4λy − 2)) , max
λx∈[0,1]
λy∈[0,1]

((4λx − 2)× (4λy − 2))


= [−4, 4] ,

which is the accurate image of f .

In the sentence σ2, the variable y depends on x, and therefore there is some
function g (x) such that σ2 has the Skolem equivalent form

(∃g) (∀x ∈ [−2, 2]) (∃z ∈ R) (z = f (x, g (x)) = x× g (x)) .

Let us consider the following two cases for the dependency function g.

(i) g is given to be the identity function y = g (x) = x. Then f (x) = x
2

, with
an image of Iσ2f = [0, 4]. The value of the corresponding optimizational
interval function, for X is assigned the value [−2, 2], is given, according to
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theorem 4.5 and definition 4.9, by

of (X) = X
2

= X ×o X

=

[
min

x∈[−2,2]

(
x
2
)
, max
x∈[−2,2]

(
x
2
)]

=

[
min
λx∈[0,1]

(
(4λx − 2)

2
)
, max
λx∈[0,1]

(
(4λx − 2)

2
)]

= [0, 4] ,

which is the accurate image of f .

(ii) g is given to be the negation function y = g (x) = −x. Then f (x) = −x2,
with an image of Iσ2f = [−4, 0]. The value of the corresponding optimiza-
tional interval function, for X is assigned the value [−2, 2], is given, ac-
cording to theorem 4.5 and definition 4.9, by

of (X) = −X2

= X ×o (−X)

=

[
min

x∈[−2,2]

(
−x2

)
, max
x∈[−2,2]

(
−x2

)]
=

[
min
λx∈[0,1]

(
− (4λx − 2)

2
)
, max
λx∈[0,1]

(
− (4λx − 2)

2
)]

= [−4, 0] ,

which is the accurate image of f .

Example 4.2 Let σ be the prenex sentence such that

σ ⇔ (∀x ∈ [−1, 1]) (∃y ∈ [−1, 1]) (∃z ∈ R) (z = f (x, y) = x+ y) .

It is apparent that the variable y depends on x, and therefore there is some
function g (x) such that σ has the Skolem equivalent form

(∃g) (∀x ∈ [−1, 1]) (∃z ∈ R) (z = f (x, g (x)) = x+ g (x)) .

Let us consider the following two cases for the dependency function g.

(i) g is given to be the identity function y = g (x) = x. Then f (x) = 2x, with
an image of Iσf = [−2, 2]. The value of the corresponding optimizational
interval function, for X is assigned the value [−1, 1], is given, according to
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theorem 4.4, by

of (X) = X +o X

=

[
min

x∈[−1,1]
(2x) , max

x∈[−1,1]
(2x)

]
=

[
min
λx∈[0,1]

(2 (2λx − 1)) , max
λx∈[0,1]

(2 (2λx − 1))

]
= [−2, 2] ,

which is the accurate image of f .

(ii) g is given to be the negation function y = g (x) = −x. Then f (x) = 0,
with an image of Iσf = [0, 0]. The value of the corresponding optimizational
interval function, for X is assigned the value [−1, 1], is given, according to
theorem 4.4, by

of (X) = X +o (−X)

=

[
min

x∈[−1,1]
(x− x) , max

x∈[−1,1]
(x− x)

]
= [0, 0] ,

which is the accurate image of f .

The identityX+o(−X) = [0, 0], in the above example, expresses the fact that
additive inverses exist in optimizational interval arithmetic. This fact, along
with the fundamental algebraic properties of optimizational interval arithmetic,
shall be established in section 4.3.

Aside from the important fact that optimizational interval arithmetic copes
with all possible cases of interval dependency, the cornerstone result from the
above construction is that each of the optimizational operations of addition
and multiplication, unlike the case with Lodwick’s constraint intervals, is a
(single) “total operation”on o[R], not a “partial operation”; and therefore we
can fix the structures 〈o[R]; +o〉 and 〈o[R];×o〉 and study their properties in the
standard way. In section 4.3, we shall carefully construct the algebraic system
of optimizational interval arithmetic and deduce its fundamental properties.
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4.2 Point Operations for Optimizational Interval Numbers

In a manner analogous to the classical interval theory, point optimizational
operations can be characterized as follows.

Definition 4.10 (Point Optimizational Operations). Let o[R]〈n〉 be the n-th
Cartesian power of o[R]. An n-ary point optimizational operation, ωn, is a
function that maps elements of o[R]〈n〉 to the set o[R]p of point optimizational
intervals, that is

ωn : o[R]〈n〉 7−→ o[R]p.

Point operations, for an optimizational interval number [x, x], are also opti-
mization functions with respect to the argument λx ∈ [0, 1], and have the same
results as in classical interval arithmetic. Next we define some of the point
operations for optimizational interval numbers.

Definition 4.11 (Optimizational Infimum). The infimum of an optimizational
interval number [x, x] is the minimum value of x ∈ [x, x], that is

inf ([x, x]) = min
λx

(x)

= ((x− x)λx + x)λx=0
= x.

Definition 4.12 (Optimizational Supremum). The supremum of an optimiza-
tional interval number [x, x] is the maximum value of x ∈ [x, x], that is

sup ([x, x]) = max
λx

(x)

= ((x− x)λx + x)λx=1
= x.

It is apparent that for any optimizational interval number [x, x], we have the
dual property

inf ([x, x]) = − sup (− [x, x]) .

Definition 4.13 (Optimizational Width). The width of an optimizational in-
terval number [x, x] is defined to be

w ([x, x]) = max
λx

(x)−min
λx

(x)

= x− x.
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Thus, for any optimizational interval number [x, x], we obviously have

w ([x, x]) = w (− [x, x]) .

Definition 4.14 (Optimizational Radius). The radius of an optimizational
interval number [x, x] is defined to be

r ([x, x]) =
w ([x, x])

2

=
(x− x)

2
.

Definition 4.15 (Optimizational Midpoint). The midpoint (or mean) of an
optimizational interval number [x, x] is defined to be

m ([x, x]) =
max
λx

(x) + min
λx

(x)

2
= ((x− x)λx + x)λx=1/2

=
(x+ x)

2
.

Definition 4.16 (Optimizational Absolute Value). The absolute value of an
optimizational interval number [x, x] is defined to be

|[x, x]| = max{
∣∣∣∣min
λx

(x)

∣∣∣∣ , ∣∣∣∣max
λx

(x)

∣∣∣∣}
= max{|x| , |x|}.

Definition 4.17 (Optimizational Metric). The distance (or metric) between
two optimizational interval numbers [x, x] and

[
y, y
]
is defined to be

d
(
[x, x] ,

[
y, y
])

= max{
∣∣x− y∣∣ , |x− y|}.

4.3 Algebraic Properties of Optimizational Interval Arithmetic

We shall now make use of the part of the theory developed in sections 4.1 and 4.2
to further investigate the algebraic properties of optimizational interval arith-
metic. In our definition of an optimizational interval number, the properties of
real numbers are naturally assumed in advance.

Let us first mention that as variants of the proofs presented in this section,
most of the identities of optimizational interval arithmetic can be established
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from the corresponding identities of real arithmetic. This fact is immediately
entailed by theorem 4.2, on page 76.

In addition, by virtue of theorems 4.4-4.7, along with theorem 4.3, if= (X, Y ),
then the result of an optimizational interval operation is the same as that of
the corresponding classical interval operation, that is X ◦o Y = X ◦c Y . This
implies that the algebra of optimizational interval arithmetic will differ than
that of classical interval arithmetic for only when YDfX. Accordingly, in the
proofs of this section, we shall consider only the case when YDfX. Moreover,
for brevity, and without loss of generality, we shall assume that

YDfX ⇔ If (X) = Y ⇔ of (X) = Y .

Our first results of this section, concerning the isomorphism properties, follow
immediately form this fact, plus theorem 2.11 of section 2.3.

Theorem 4.9 The structure
〈
o[R]p; +o,×o;<M

〉
is isomorphically equivalent

to the ordered field 〈R; +R,×R;<R〉 of real numbers.

That is, up to isomorphism, the algebra of point optimizational interval
numbers, endowed with Moore’s ordering <M, is equivalent to the ordered field
of real numbers.

Theorem 4.10 Let += and ×= be, respectively, the optimizational addition and
multiplication restricted to the case = (X, Y ). Then the structure 〈o[R]; +=,×=〉
is isomorphically equivalent to the nondistributive abelian semiring 〈[R] ; +c,×c〉
of classical interval numbers.

That is, optimizational interval arithmetic extends classical interval arith-
metic in the sense that if it is the case when = (X, Y ), then the algebra of
the optimizational interval theory is equivalent to that of the classical interval
theory.

Now we turn to investigate the algebra of optimizational interval arithmetic.
With the help of the results obtained in sections 4.1 and 4.2, we next deduce
the fundamental algebraic properties of the optimizational interval operations.

Theorem 4.11 (Absorbing Element in o[R]). The optimizational interval num-
ber [0, 0] is an absorbing element for optimizational multiplication, that is

(∀X ∈ o[R]) ([0, 0]×X = X × [0, 0] = [0, 0]) .
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Proof. For any optimizational interval number X, according to theorem 4.5
and assuming the properties of real multiplication, we have

[0, 0]×X =

[
min
λx

(0× x) ,max
λx

(0× x)

]
=

[
min
λx

(x× 0) ,max
λx

(x× 0)

]
= X × [0, 0] = [0, 0] ,

and therefore, the point optimizational interval [0, 0] absorbs any optimizational
interval number X by optimizational multiplication.

Theorem 4.12 (Identity for Addition in o[R]). The optimizational interval
number [0, 0] is both a left and right identity for optimizational addition, that is

(∀X ∈ o[R]) ([0, 0] +X = X + [0, 0] = X) .

Proof. For any optimizational interval number X, according to theorem 4.4
and assuming the properties of real addition, we have

[0, 0] +X =

[
min
λx

(0 + x) ,max
λx

(0 + x)

]
=

[
min
λx

(x+ 0) ,max
λx

(x+ 0)

]
= X + [0, 0] = X,

and therefore, the point optimizational interval [0, 0] is both a left and right
identity for optimizational addition.

Theorem 4.13 (Identity for Multiplication in o[R]). The optimizational inter-
val number [1, 1] is both a left and right identity for optimizational multiplica-
tion, that is

(∀X ∈ o[R]) ([1, 1]×X = X × [1, 1] = X) .

Proof. For any optimizational interval number X, according to theorem 4.5
and assuming the properties of real multiplication, we have

[1, 1]×X =

[
min
λx

(1× x) ,max
λx

(1× x)

]
=

[
min
λx

(x× 1) ,max
λx

(x× 1)

]
= X × [1, 1] = X,
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and therefore, it is shown that [1, 1] is both a left and right identity for opti-
mizational multiplication.

Theorem 4.14 (Commutativity in o[R]). Both optimizational interval addition
and multiplication are commutative, that is

(i) (∀X, Y ∈ o[R]) (X + Y = Y +X),

(ii) (∀X, Y ∈ o[R]) (X × Y = Y ×X).

Proof. For = (X, Y ), the result holds analogously to theorem 2.15 of the clas-
sical interval theory.

The proof for YDfX ⇔ f (X) = Y is constructed as follows.

(i) For any two optimizational interval numbers X and Y , according to
theorem 4.4 and assuming the properties of real addition, we have

X + Y = X + f (X)

=

[
min
λx

(x+ f (x)) ,max
λx

(x+ f (x))

]
=

[
min
λx

(f (x) + x) ,max
λx

(f (x) + x)

]
= f (X) +X = Y +X.

(ii) In a manner analogous to (i), according to theorem 4.5 and assuming
the properties of real multiplication, we have

X × Y = X × f (X)

=

[
min
λx

(x× f (x)) ,max
λx

(x× f (x))

]
=

[
min
λx

(f (x)× x) ,max
λx

(f (x)× x)

]
= f (X)×X = Y ×X.

Therefore, both addition and multiplication are commutative in o[R].

Theorem 4.15 (Associativity in o[R]). Both optimizational addition and mul-
tiplication are associative, that is
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(i) (∀X, Y, Z ∈ o[R]) (X + (Y + Z) = (X + Y ) + Z),

(ii) (∀X, Y, Z ∈ o[R]) (X × (Y × Z) = (X × Y )× Z).

Proof. For the case when all variables are pairwise independent, the result
holds analogously to theorem 2.16 of the classical interval theory.

For the case when some variables are functionally dependent, without loss
of generality, we consider the dependency instance YDfX ⇔ f (X) = Y , and
the proof is constructed as follows.

(i) For any three optimizational interval numbers X, Y , and Z, let [s, s] =
X + (Y + Z) and

[
t, t
]

= (X + Y ) +Z. According to theorems 4.2 and 4.4, we
have

[s, s] = X + (Y + Z)

= X + (f (X) + Z)

=

[
min
λx,λz

(x+ (f (x) + z)) ,max
λx,λz

(x+ (f (x) + z))

]
,

and [
t, t
]

= (X + Y ) + Z

= (X + f (X)) + Z

=

[
min
λx,λz

((x+ f (x)) + z) ,max
λx,λz

((x+ f (x)) + z)

]
.

Optimizing with respect to λx, λz ∈ [0, 1], and assuming associativity of real
addition, we thus get

s = min
λx,λz

(x+ (f (x) + z))

= min
λx,λz

((x+ f (x)) + z)

= t.

and

s = max
λx,λz

(x+ (f (x) + z))

= max
λx,λz

((x+ f (x)) + z)

= t,
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Hence, according to theorem 4.1, we have X + (Y + Z) = (X + Y ) + Z.

(ii) In a manner analogous to (i), let [s, s] = X × (Y × Z) and
[
t, t
]

=
(X × Y )× Z. According to theorems 4.2 and 4.5, we have

[s, s] = X × (Y × Z)

= X × (f (X)× Z)

=

[
min
λx,λz

(x× (f (x)× z)) ,max
λx,λz

(x× (f (x)× z))

]
,

and [
t, t
]

= (X × Y )× Z
= (X × f (X))× Z

=

[
min
λx,λz

((x× f (x))× z) ,max
λx,λz

((x× f (x))× z)

]
.

Optimizing with respect to λx, λz ∈ [0, 1], and assuming associativity of real
multiplication, we thus get

s = min
λx,λz

(x× (f (x)× z))

= min
λx,λz

((x× f (x))× z)

= t.

and

s = max
λx,λz

(x× (f (x)× z))

= max
λx,λz

((x× f (x))× z)

= t,

Hence, according to theorem 4.1, we have X × (Y × Z) = (X × Y )× Z.

Therefore, both addition and multiplication are associative in o[R].

Hereafter, in all the succeeding theorems, and if not otherwise stated; it
should be understood that any two interval variables X and Y can be depen-
dent or independent. The proofs for the case when X and Y are dependent can
be simply obtained, in a manner analogous to the preceding theorems, by em-
ploying the equivalence YDfX ⇔ f (X) = Y . The trivial case of dependence
by identity XDX is obvious.
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Theorem 4.16 (Cancellativity of Addition in o[R]). Optimizational interval
addition is cancellative, that is

(∀X, Y, Z ∈ o[R]) (X + Z = Y + Z ⇒ X = Y ) .

Proof. Let X, Y , and Z be in o[R]. Assume that

X + Z = Y + Z.

Then, by theorem 4.4, we immediately have[
min
λx,λz

(x+ z) ,max
λx,λz

(x+ z)

]
=

[
min
λy,λz

(y + z) ,max
λy,λz

(y + z)

]
,

which, according to theorem 4.1, yields

min
λx,λz

(x+ z) = min
λy,λz

(y + z) ∧ max
λx,λz

(x+ z) = max
λy,λz

(y + z) .

Optimizing with respect to λx, λy, λz ∈ [0, 1], we thus get

min
λx

(x) = min
λy

(y) ∧ max
λx

(x) = max
λy

(y) ,

that is X = Y , and therefore addition is cancellative in o[R].

In contrast to the case for addition, and analogously to the classical interval
theory, the following theorem asserts that multiplication is not always cancella-
tive in o[R].

Theorem 4.17 (Cancellativity4 of Multiplication in o[R]). An optimizational
interval number is cancellable for multiplication if, and only if, it is a zeroless
interval, that is

(∀X, Y, Z ∈ o[R]) ((X × Z = Y × Z ⇒ X = Y )⇔ 0 /∈ Z) .

Proof. Let X, Y , and Z be in o[R]. Assume that

X × Z = Y × Z ⇒ X = Y .

4 The cancellative laws for addition and multiplication are also derivable from theorems
4.18 and 4.19, by the fact that every invertible element is cancellable. The cancellative law for
multiplication is also entailed by theorem 4.21, from the fact that an element is not cancellable
for multiplication iff it is a zero divisor.
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Then, by theorems 4.1 and 4.5, we have

min
λx,λz

(x× z) = min
λy,λz

(y × z) ∧ max
λx,λz

(x× z) = max
λy,λz

(y × z)

⇒ min
λx

(x) = min
λy

(y) ∧ max
λx

(x) = max
λy

(y) ,

which yields z 6= 0, that is 0 /∈ [z, z].

The converse direction is easy to prove, and therefore multiplication is not
cancellative in o[R] except for the case when 0 /∈ [z, z].

An important property peculiar to the theory of optimizational intervals is
that unlike classical interval arithmetic, optimizational interval arithmetic has
inverse elements for addition and multiplication. This property figures in the
following two theorems.

Theorem 4.18 (Additive Inverses in o[R]). Additive inverses exist in optimiza-
tional interval arithmetic, that is

(∀X ∈ o[R]) (X + (−X) = [0, 0]) .

Proof. Let X be any optimizational interval number. According to theorem
4.4, we immediately have

X + (−X) =

[
min
λx

(x+ (−x)) ,max
λx

(x+ (−x))

]
= [0, 0] ,

and therefore for each X ∈ o[R], there is an inverse element (−X) ∈ o[R] under
optimizational addition.

Theorem 4.19 (Multiplicative Inverses in o[R]). Every zeroless optimizational
interval number is invertible for multiplication on o[R], that is(

∀X ∈ o[R]0̃
) (
X ×

(
X−1

)
= [1, 1]

)
.

Proof. Let X be any zeroless optimizational interval number, that is 0 /∈ X.
According to theorem 4.5, we immediately have

X ×
(
X−1

)
=

[
min
λx

(
x×

(
x−1
))
,max

λx

(
x×

(
x−1
))]

= [1, 1] ,

and therefore for each X ∈ o[R]0̃, there is an inverse element
(
X−1

)
∈ o[R]

under optimizational multiplication.
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The result formulated in the following theorem establishes the additive and
multiplicative properties of point optimizational intervals.

Theorem 4.20 (Algebraic Operations in o[R]p). Let X and Y be two optimiza-
tional interval numbers, and let A be any arbitrary constant in o[R]p. Then:

(i) The sum X + Y is a point optimizational interval iff each of X and Y is
a point optimizational interval, or Y = A+ (−X), that is

(∀X, Y ∈ [R]) (X + Y ∈ o[R]p ⇔ (X ∈ o[R]p ∧ Y ∈ o[R]p)

∨ (Y = A+ (−X))).

(ii) The product X × Y is a point optimizational interval iff each of X and Y
is a point optimizational interval, or at least one of X and Y is [0, 0], or
Y = A× (X

−1
) with 0 /∈ X, that is

(∀X, Y ∈ [R]) (X × Y ∈ o[R]p ⇔ (X ∈ o[R]p ∧ Y ∈ o[R]p)

∨ (X = [0, 0] ∨ Y = [0, 0]) ∨ (Y = A× (X
−1

) ∧ 0 /∈ X)).

Proof. For (i) and (ii), let X and Y be any two optimizational interval num-
bers.

(i) According to theorem 4.4, we have

X + Y =

[
min
λx,λy

(x+ y) ,max
λx,λy

(x+ y)

]
.

Assume that X + Y ∈ o[R]p. Then min
λx,λy

(x+ y) = max
λx,λy

(x+ y), which yields

that each of X and Y is a point optimizational interval, or, by theorem 4.18,
Y = A+ (−X).

The converse direction is easy to prove.

(ii) In a manner analogous to (i), according to theorem 4.5, we have

X × Y =

[
min
λx,λy

(x× y) ,max
λx,λy

(x× y)

]
.

Assume X × Y ∈ o[R]p. Then min
λx,λy

(x× y) = max
λx,λy

(x× y), which yields that

each of X and Y is a point optimizational interval, or at least one of X and Y
is [0, 0], or, by theorem 4.19, Y = A× (X

−1
) with 0 /∈ X.
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The converse direction is easy to prove.

In consequence of this theorem and theorem 4.11, the following important
property of the algebra of optimizational intervals is easily derivable.

Theorem 4.21 (Zero Divisors in o[R]). Zero divisors do not exist in optimiza-
tional interval arithmetic, that is

(∀X, Y ∈ o[R]) (X × Y = [0, 0]⇒ X = [0, 0] ∨ Y = [0, 0]) .

Thus, like the algebra of real numbers, the algebra of optimizational intervals
has no zero divisors, that is for each X 6= [0, 0], there is no Y 6= [0, 0] such that
the identity X × Y = [0, 0] holds.

Now, we turn to the very desirable algebraic property of distributivity. Dis-
tributivity of optimizational interval arithmetic is established in the next the-
orem.

Theorem 4.22 (Distributivity in o[R]). Multiplication distributes over addi-
tion in optimizational interval arithmetic, that is

(∀X, Y, Z ∈ o[R]) (Z × (X + Y ) = Z ×X + Z × Y ) .

Proof. For any three optimizational interval numbers X, Y , and Z, let [s, s] =
Z × (X + Y ) and

[
t, t
]

= Z ×X +Z × Y . According to theorems 4.2, 4.4, and
4.5, we have

[s, s] = Z × (X + Y )

=

[
min

λx,λy,λz
(z × (x+ y)) , max

λx,λy,λz
(z × (x+ y))

]
,

and [
t, t
]

= Z ×X + Z × Y

=

[
min

λx,λy,λz
(z × x+ z × y) , max

λx,λy,λz
(z × x+ z × y)

]
.

Optimizing with respect to λx, λy, λz ∈ [0, 1], we thus get

s = min
λx,λy,λz

(z × (x+ y))

= min
λx,λy,λz

(z × x+ z × y)

= t.
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and

s = max
λx,λy,λz

(z × (x+ y))

= max
λx,λy,λz

(z × x+ z × y)

= t,

Hence, according to theorem 4.1, we have

Z × (X + Y ) = Z ×X + Z × Y ,

and therefore multiplication distributes over addition in o[R].

Thus, in contrast to the classical interval theory and its present alternates,
optimizational interval arithmetic does satisfy the distributive law.

We shall now make use of the preceding results to fix the algebraic system
of optimizational intervals. First, we prove two theorems about, respectively,
the additive structure 〈o[R]; +o〉, and the multiplicative structure 〈o[R];×o〉 of
optimizational interval arithmetic.

Theorem 4.23 The additive structure 〈o[R]; +o〉 is an abelian group.

Proof. For +o, the following criteria are satisfied.

• Associativity. Optimizational addition is associative, by theorem 4.15.

• Commutativity. Optimizational addition is commutative, by theorem 4.14.

• Identity Element. The optimizational interval [0, 0] is an identity element
for optimizational addition, by theorem 4.12.

• Inverse Elements. Additive inverses exist for optimizational intervals, by
theorem 4.18.

Therefore, the set o[R] of optimizational intervals forms an abelian group
under optimizational addition.

Theorem 4.24 The multiplicative structure 〈o[R];×o〉 is an abelian monoid.

Proof. For ×o, the following criteria are satisfied.
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• Associativity. Optimizational multiplication is associative, by theorem 4.15.

• Commutativity. Optimizational multiplication is commutative, by theorem
4.14.

• Identity Element. The optimizational interval [1, 1] is an identity element
for optimizational multiplication, by theorem 4.13.

Therefore, the set o[R] of optimizational intervals forms an abelian monoid
under optimizational multiplication.

In consequence of this theorem and theorem 4.19, we have the following
corollary.

Corollary 4.3 The multiplicative structure
〈
o[R]0̃;×o

〉
of zeroless optimiza-

tional intervals is an abelian group.

With the preceding two theorems and their corollary at our disposal, we are
now ready to prove the following result about the algebraic system of optimiza-
tional interval arithmetic.

Theorem 4.25 The structure 〈o[R]; +o,×o; [0, 0] , [1, 1]〉 is an integral domain5
with every zeroless element has a multiplicative inverse.

Proof. By theorem 4.23, the set o[R] of optimizational intervals forms an
abelian group under optimizational addition. By theorem 4.24, o[R] forms
an abelian monoid under optimizational multiplication. According to theo-
rem 4.22, ×o distributes over +o. Hence, o[R] forms an abelian unital ring,
which has, by theorem 4.21, no zero divisors. By theorem 4.19, every element
of o[R]0̃ has a multiplicative inverse.

Therefore, the structure 〈o[R]; +o,×o; [0, 0] , [1, 1]〉, of optimizational interval
arithmetic, is an integral domain with every zeroless element has a multiplica-
tive inverse.

A field structure 〈F ; +F ,×F ; 0F , 1F〉 is an integral domain in which every
element α 6= 0F has a multiplicative inverse. The difference between the field
structure and the structure of optimizational intervals is that for the optimiza-
tional algebra, we have the condition 0 /∈ α instead of α 6= 0F . Such an algebraic

5 An integral domain is an abelian unital ring with no zero divisors.
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structure is not usual in mathematics, and it emerges from the fact that the
elements of the universe set of the optimizational algebra are themselves sets
(interval numbers). So, to make an explicit stipulation about this new type of
algebraic property, it is very convenient to define a new type of algebraic struc-
ture, the set field (or the S-field), that extends the ordinary field structure to
the case when elements of the universe set are themselves sets.

Definition 4.18 (S-field). A set field (or an S-field) is a field structure

〈F ; +F ,×F ;0F ,1F〉 ,

subject to the following conditions:

(i) F is a collection of nonempty sets,

(ii) 0F = {0} such that for each α ∈ F the element 0 is the zero element for
all x ∈ α,

(iii) 1F = {1} such that for each α ∈ F the element 1 is the unital element for
all x ∈ α,

(iv) the field axiom

(∀α ∈ F) (α 6= 0F ⇒ (∃β ∈ F) (α×F β = 1F)) ,

is extended to be

(∀α ∈ F) (0 /∈ α⇒ (∃β ∈ F) (α×F β = 1F)) .

In view of this definition and theorem 4.25, the following result can then be
concluded.

Theorem 4.26 The structure 〈o[R]; +o,×o; [0, 0] , [1, 1]〉 is an S-field.

Finally, an important immediate result that the preceding theorem implies
is the following.

Corollary 4.4 The theory of optimizational intervals defines a number system6

on the set o[R].

6 See footnote 19, on page 32.
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Thus, the name “numbers”is verified for optimizational intervals, and there-
fore we can talk of “optimizational interval numbers”.

In conclusion, unlike classical interval arithmetic and its present alternates,
optimizational intervals have additive inverses, multiplicative inverses and sat-
isfy the property of distributivity. By virtue of the algebraic properties proved
in this section, optimizational interval arithmetic possesses a rich S-field alge-
bra, which extends the ordinary field structure of real numbers, and therefore
we do not have to sacrifice the useful properties of ordinary arithmetic. In ad-
dition, with our formalization of the notion of interval dependency at disposal
(see section 3.1, on page 42), optimizational interval operations are defined such
that they exhibit a uniform approach applicable to all cases of interval depen-
dency. So, in comparing the optimizational interval theory with other theories
of intervals, the main advantage that lies with optimizational interval arith-
metic, over all other theories of intervals, is that: the theory of optimizational
intervals is completely compatible with the semantic of real arithmetic. That
is, any sentence of real arithmetic can be translated into a semantically equiva-
lent sentence of optimizational interval arithmetic, without loss of dependency
information.

4.4 Limitations of Optimizational Intervals and Future Prospects

To evaluate an optimizational interval expression, the minimization and maxi-
mization should usually be applied to the whole corresponding real expression,
in order not to lose the dependency information. If the problem is too large and
the optimization is computationally too costly, we may have to deviate from the
theoretical construction of the theory by dividing the optimizational problem
and hence losing some dependency information. For example, in the interval
expression

X × Y +X × Z =

[
min

λx,λy,λz
(xy + xz) , max

λx,λy,λz
(xy + xz)

]
,

we have to apply optimization to the real expression xy + xz as a whole to get
the accurate result. Optimizing each of the products xy and xz separately, and
then summing the results for the individual optimizations, we shall, with this
departure from the theoretical construction, lose the dependency information
for x.

An approach we can use for overcoming this issue is to slightly alter our
construction of the theory of optimizational intervals by representing an interval
by a 3-tuple X = [x, x;αx] called a “triple interval”, where the third “slot”αx ,
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that we may call the “dependency characterizer”, is a symbolic variable used to
keep the dependency information forX, as long as there is a live accessible value
that uses it. The idea is not to lose the dependency information, during a series
of calculations, after evaluating separately an intermediate interval expression,
such that after evaluating a function

f
(
[x, x;αx] ,

[
y, y;αy

])
= [z, z; f (αx, αy)] ,

the third slot f (αx, αy) of the resulting interval keeps the dependency infor-
mation, and a problem which is computationally too costly can be divided
into smaller problems without losing the dependency information. Now we can
rewrite the dependency and identity between two optimizational triple intervals
X and Y , respectively, as

YDfX ⇔ X = [x, x;αx] ∧ Y =
[
y, y; f (αx)

]
,

X = Y ⇔ XDIdY

⇔ x = y ∧ x = y ∧ αx = αy.

Triple interval representations are used, with the classical interval opera-
tions, to evaluate the particular interval expressions X − X and X ÷ X as,
respectively, [0, 0] and [1, 1]. Although it is limited to such a dependence by
identity, examples of this usage can be found in algorithmic algebra and artifi-
cial intelligence, and are successfully and neatly implementable in symbolic lan-
guages (computer algebra systems), automated theorem provers, and numeric
languages (see, e.g., [Fateman2009], [Keene1988], [Pichler2007], and [Yu2004]).
The implementation idea is based on constructing an “interval data structure”
with three slots, rather than the usual representation of an interval as a “pair”.
In symbolic languages, the “dependency slots”are added to a sequence or a list
type. In numerical languages, a variable name is constructed for each newly
added dependency slot and a counter incremented (there is a convenient mech-
anism that is built-in to “Lisp” for this purpose, a “weak hash table”). The
dependency information can be also inherited in any object-oriented language.
Since we (humans) ordinarily do not need to see the extra slot, programs ordi-
narily will not display it in the computer output (see [Fateman2009]).

The following code fragment shows how to perform the operations

[−1, 1;αx]− [−1, 1;αx] = [0, 0;αx − αx] ,
[−1, 1;αx]− [−1, 1;αy] = [−2, 2;αx − αy] ,
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in the computer algebra system “Macsyma”7 (or “Maxima”8) (see, e.g., [Chu2010]
and [Fateman2009]).

block([x:interval(-1,1)], x-x)
block([x:interval(-1,1),y:interval(-1,1)], x-y)

The idea can be implemented similarly in other symbolic languages such as
“SymbolicC++”9 and “Maple”10 (see, e.g., [Robert1996] and [Tan2008]).

In automated theorem provers, the 3-tuple representation of an interval is
usually called a “block interval” and the dependency slot is called a “pend-
ing identifier”(see, e.g., [Pichler2007]). in the ATP “Coq”11, a triple interval
constructor and a list (sequence) for the dependency slots are coded by

inductive interval: Set:= tuple: nat->nat->nat->interval
inductive seq: Set:= empty: seq | make: interval->seq->seq

and in the ATP “Pvs”12 by

interval: TYPE = [nat,nat,nat]
seq: TYPE = list[interval]

Using the triple interval representation with classical interval arithmetic pro-
vides some nice results, such as X−X = [0, 0], but the outcome is very limited
due to the fact that the classical interval operations are not dependence-aware,
and interval dependencies cannot therefore be fully addressed via the classical
interval theory (and in fact, cannot be fully addressed via the present alternate
interval theories as well, and this is why the dependency problem is still persist-
ing). In contrast, using the triple interval representation with optimizational
interval arithmetic shall yield more profound results, namely:

(1) Interval dependencies are fully addressed by the optimizational interval
operations, and the accurate result can be computationally obtained, if
the problem under concern is not computationally too costly.

7 http://www.symbolics-dks.com/Macsyma-1.htm
8 http://maxima.sourceforge.net/
9 http://issc.uj.ac.za/symbolic/symbolic.html
10 http://www.maplesoft.com/
11 http://coq.inria.fr/
12 http://pvs.csl.sri.com/
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(2) If the problem under concern is computationally too costly (such as an
engineering problem with a large number of constrained variables); the
computational cost can be reduced to a minimum by using the triple inter-
val representation to keep the dependency information, and dividing the
problem into smaller ones.

(3) From (1) and (2), the accurate result can be obtained, along with the
computational cost reduced to a minimum, by using the triple interval
representation with optimizational interval arithmetic.

(4) Optimizational interval arithmetic has a nice S-field algebra, which ex-
tends the ordinary field structure of real numbers.

As a future prospect, we shall attempt to axiomatically formalize the theory
of optimizational intervals with the triple interval representation (“an axiomatic
theory of optimizational triple intervals”).
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Chapter 5
An Optimizational Complex Interval
Arithmetic

The shortest route between two truths in the real domain passes through the
complex domain.

—Jacques Hadamard (1865-1963)

A great extension of number systems is that to the complex numbers. The
need for complex numbers in mathematics far transcends the existence of imag-
inary roots of polynomial equations: there is scarcely a scientific theory which
does not involve the notion of a complex number.

As it is the case with computing with real numbers, computing with complex
numbers involves uncertain data. So, given the fact that an interval number is
a real closed interval and a complex number is an ordered pair of real numbers,
there is no reason to limit the application of interval arithmetic to the mea-
sure of uncertainties in computations with real numbers, and therefore interval
arithmetic can be extended, via complex interval numbers, to determine regions
of uncertainty in computing with ordinary complex numbers.

In the first section of this chapter, we construct the algebraic system of a
classical complex interval arithmetic, defined in terms of the classical inter-
val theory, and deduce its fundamental properties. Sections 5.2 and 5.3 are
devoted to presenting a new systematic construction of complex interval arith-
metic, based on the theory of optimizational intervals developed in the preceding
chapter. In section 5.2, we define the key concepts of the optimizational theory
of complex intervals, and then we formulate the basic operations and relations
for optimizational complex intervals. In section 5.3, we carefully construct
the algebraic system of optimizational complex interval arithmetic, deduce its
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fundamental properties, and then prove that optimizational complex interval
arithmetic possesses a rich S-field1 algebra, which extends the field structure of
ordinary complex numbers and the S-field of optimizational interval numbers.

5.1 Complex Interval Arithmetic: A Classical Construction

In this section, we shall construct the algebraic system of a classical complex
interval arithmetic, defined in terms of the classical interval theory, and deduce
its fundamental properties (For other classical constructions of complex inter-
val arithmetic, the reader may consult, e.g., [Alefeld1983], [Boche1966], and
[Petkovic1998]).

Hereafter, the boldface small letters x, y, and z (with or without subscripts)
shall be employed as variable symbols to denote elements of the set C of ordi-
nary complex numbers, and the boldface capital letters X, Y , and Z (with or
without subscripts) shall be employed as variable symbols to denote elements
of the set of classical complex intervals.

We first define what a classical complex interval is.

Definition 5.1 Let Xα and Xβ be classical interval numbers. A classical com-
plex interval X is the set of all ordinary complex numbers xα + ixβ for all
xα ∈ Xα and xβ ∈ Xβ, that is

X = {x ∈ C| (∃xα ∈ Xα) (∃xβ ∈ Xβ) (x = xα + ixβ)}
= Xα + iXβ,

where the classical intervals Xα and Xβ are called, respectively, the interval and
imaginary parts of X, and i = [i, i] is the interval imaginary unit.

The set of classical complex intervals shall be denoted by [C]. The set of
all X ∈ [C] with 0 /∈ X2

α + X2
β is called the set of zeroless classical complex

intervals, and shall be denoted by [C]0̃. The set of all X ∈ [C] with Xα and Xβ

are classical point intervals is called the set of point classical complex intervals,
and shall be denoted by [C]p.

Geometrically, a complex interval may be conceived as a rectangle in the
complex plane with sides parallel to the coordinate axes, that is, a complex
interval is a rectangle of certainty (see Figure 5.1). If it is the case of a point
complex interval, the geometric representation shall be a point in the complex
plane, which is the same as that of the corresponding ordinary complex number.

1 See definition 4.18, on page 100.
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Figure 5.1: Geometric representation of a complex interval.

As it is the case with ordinary complex numbers, classical complex intervals
cannot be ordered in a way compatible2 with the algebraic operations. The
following theorem, concerning the equality relation on [C], is an immediate
consequence of definition 5.1 and the axiom of extensionality of axiomatic set
theory.

Theorem 5.1 (Equality on [C]). The equality relation for classical complex
intervals is formulated in terms of the interval and imaginary parts as

(Xα + iXβ) = (Yα + iYβ)⇔ Xα = Yα ∧Xβ = Yβ.

In a way similar to how ordinary complex arithmetic is defined in terms
of real arithmetic, classical complex interval arithmetic is defined in terms of
classical interval arithmetic. The binary and unary algebraic operations for
classical complex intervals can be characterized, respectively, in the following
two set-theoretic definitions.

Definition 5.2 (Binary Operations in [C]). For any two classical complex in-
tervals X and Y , the binary algebraic operations are defined by

X ◦cc Y = {z ∈ C| (∃x ∈X) (∃y ∈ Y ) (z = x ◦ y)},

where ◦ ∈ {+,×}.

2 For a precise characterization of the notion of order compatibility with the algebraic
operations, see definition 6.21, on page 133.
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Definition 5.3 (Unary Operations in [C]). For any classical complex interval
X, the unary algebraic operations are defined by

�ccX = {z ∈ C| (∃x ∈X) (z = �x)},

where � ∈ {−,−1 , ˜ } and X /∈ [C]0̃ if � is “−1”.

The symbol “˜”denotes the conjugate operation. Throughout this section,
if confusion is unlikely, the subscript “cc”, which stands for “classical complex
interval operation”, shall be suppressed, and it shall be assumed, without fur-
ther mention, that all interval operations are classical operations3. For brevity,
we shall write 1/X, XY and X/Y in place of, respectively, X−1, X × Y and
X ÷ Y , by analogy with the ordinary language of arithmetic.

By means of the above set-theoretic definitions and from definitions 2.2 and
2.3 for the classical interval operations, the following five theorems are imme-
diate.

Theorem 5.2 (Addition on4 [C]). For any two classical complex intervalsX =
Xα + iXβ and Y = Yα + iYβ, classical complex addition is a total operation, on
[C], formulated as

X + Y = (Xα + Yα) + i (Xβ + Yβ) .

Theorem 5.3 (Multiplication on [C]). For any two classical complex intervals
X = Xα + iXβ and Y = Yα + iYβ, classical complex multiplication is a total
operation, on [C], formulated as

X × Y = (XαYα −XβYβ) + i (XαYβ +XβYα) .

Theorem 5.4 (Negation on [C]). For any classical complex intervalX = Xα+
iXβ, classical complex negation is a total operation, on [C], formulated as

−X = (−Xα) + i (−Xβ) = −Xα − iXβ.

Geometrically, the negation of a complex interval,X, is that complex interval
which determines a region symmetric to the region determined by X with
respect to the origin (0, 0) of the complex plane (see Figure 5.2).

3 As regards notation, see footnotes 1 and 9, on pages 10 and 13, respectively.
4 See footnote 7, on page 13.
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Figure 5.2: Geometric representation of complex interval negation.

An important unary operation peculiar to complex arithmetic is the conju-
gate operation. This operation is prescribed in the following theorem.

Theorem 5.5 (Conjugate on [C]). For any classical complex interval X =
Xα + iXβ, classical complex conjugate is a total operation, on [C], formulated
as

X̃ = Xα + i (−Xβ) = Xα − iXβ.

Geometrically, the conjugate of a complex interval,X, is that complex inter-
val which determines a region symmetric to the region determined by X with
respect to the axis of the reals (see Figure 5.3).

Theorem 5.6 (Reciprocal in [C]). For any zeroless classical complex interval
X = Xα + iXβ (that is, 0 /∈ X2

α +X2
β), classical complex reciprocal is a partial

operation, in [C], formulated as

1

X
=
Xα − iXβ

X2
α +X2

β

=
X̃

X2
α +X2

β

.

In accordance with the above theorems, we can now define subtraction and
division for classical complex intervals, as usual.
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Figure 5.3: Geometric representation of complex interval conjugate.

Definition 5.4 (Subtraction on [C]). For any two classical complex intervals
X and Y , classical complex subtraction is defined by

X − Y = X + (−Y ) .

Definition 5.5 (Division in [C]). For any classical complex interval X and
any zeroless classical complex interval Y , classical complex division is defined
by

X

Y
= X×

(
1

Y

)
.

By means of the above notions, plus the results of section 2.3, it can be
shown that there is no distributivity between addition and multiplication of
classical complex intervals except for certain special cases, classical complex
multiplication is not always associative, and inverse elements do not always
exist for classical complex intervals.

Two other useful properties of ordinary complex arithmetic fail to hold in
classical complex interval arithmetic. The following two theorems show that
the additive and multiplicative properties, of ordinary complex conjugates, do
not hold for classical interval conjugates.
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Theorem 5.7 The additive property of complex conjugates does not always hold
for classical complex intervals, that is, for some classical complex interval X =
Xα + iXβ

(Xα + iXβ) + (Xα − iXβ) 6= 2Xα.

Proof. By theorem 5.2, we have

(Xα + iXβ) + (Xα − iXβ) = 2Xα + i (Xβ −Xβ) ,

which, due to lack of additive inverse elements (by theorem 2.20), is not equal
to 2Xα unless Xβ is a classical point interval.

Theorem 5.8 The multiplicative property of complex conjugates does not al-
ways hold for classical complex intervals, that is, for some classical complex
interval X = Xα + iXβ

(Xα + iXβ)× (Xα − iXβ) 6=
(
X2
α −X2

β

)
.

Proof. By theorem 5.3, we have

(Xα + iXβ)× (Xα − iXβ) =
(
X2
α −X2

β

)
+ i (XαXβ −XαXβ) ,

which, by theorem 2.20, is not equal to
(
X2
α −X2

β

)
unless XαXβ is a classical

point interval.

With classical complex multiplication is not associative, the multiplicative
structure 〈[C] ;×cc〉 does not qualify to be a monoid, and therefore the algebraic
system of classical complex interval arithmetic is more primitive than that of
classical interval arithmetic. This accordingly entails the following obvious the-
orem.

Theorem 5.9 The theory of classical complex intervals does not define a num-
ber system5 on the set [C].

The name “numbers”thus is not correct for classical complex intervals, and
therefore we cannot talk of “classical complex interval numbers”.

Moreover, as an immediate consequence of theorem 3.7 and the fact that
classical complex operations are defined in terms of classical interval operations,
we have the following theorem that asserts that the dependency problem is
inherited to classical complex interval arithmetic.

5 See definition 3.26, on page 68.
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Theorem 5.10 (Dependency Problem in [C]). Let Xk be classical complex
intervals and let f (x1, ...,xn) be an analytic complex-valued function with xk ∈
Xk. Evaluating the accurate image of f for the classical complex intervals Xk,
using classical complex interval arithmetic, is not always possible. That is,

(∃f) (If (X1, ...,Xn) 6= f (X1, ...,Xn)) .

In general,
(∀f) (If (X1, ...,Xn) ⊆ f (X1, ...,Xn)) .

Finally, we can conclude that constructing complex interval arithmetic as
based on the classical interval theory, we have to sacrifice many useful proper-
ties of the field of ordinary complex numbers, and moreover we lose the nondis-
tributive abelian semiring of the classical interval theory. All of these, and the
fact that the dependency problem is inherited from the classical interval theory,
have as a consequence that it is not an easy matter to perform arithmetic, solve
equations, or evaluate functions in the algebraic system of classical complex
intervals.

5.2 Complex Interval Arithmetic: An Optimizational Construction

The basic algebraic operations for optimizational interval numbers (described
in section 4.1) can be extended to complex numbers. In this section and its suc-
cessor, we set out to present a new systematic construction of complex interval
arithmetic, based on the theory of optimizational intervals. In this section, we
shall formulate the basic relations and algebraic operations for optimizational
complex intervals. In section 5.3, we shall carefully construct the algebraic sys-
tem of optimizational complex interval arithmetic and deduce its fundamental
properties.

With notation mostly as in the preceding section, hereafter, the boldface
small letters x, y, and z (with or without subscripts) shall be employed as
variable symbols to denote elements of the set C of ordinary complex numbers,
and the boldface capital letters X, Y , and Z (with or without subscripts)
shall be still employed as variable symbols to denote elements of the set of
optimizational complex intervals.

We first define what an optimizational complex interval is.

Definition 5.6 Let Xα and Xβ be optimizational interval numbers. An opti-
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mizational complex interval X is defined as

X = Xα +o iXβ,

where In (X) = Xα and Im (X) = Xβ are called, respectively, the interval and
imaginary parts of X, and i = [i, i] is the interval imaginary unit.

The set of optimizational complex intervals shall be denoted by o[C]. For
the sake of brevity in formulating the statements about optimizational com-
plex interval arithmetic, we shall employ the following abbreviations for some
distinguished elements of C and o[C].

0C = 0 + i 0,
1C = 1 + i 0,
0[C] = [0, 0] + i [0, 0] ,
1[C] = [1, 1] + i [0, 0] .

Moreover, in order to be able easily to speak of different types of optimiza-
tional complex intervals, it is also convenient to introduce some notational
conventions.

Notation 5.1 An optimizational complex interval X with Im (X) = [0, 0] is
called a pure interval. The set of all pure intervals shall be denoted by o[C]In.

Notation 5.2 An optimizational complex interval X with In (X) = [0, 0] is
called a pure imaginary. The set of all pure imaginaries shall be denoted by
o[C]Im.

Notation 5.3 An optimizational complex interval X with 0C /∈X (or, equiva-
lently with 0 /∈ In (X)∧ 0 /∈ Im (X)) is called a zeroless optimizational complex
interval. The set of all zeroless optimizational complex intervals shall be denoted
by o[C]0̃.

Notation 5.4 An optimizational complex interval X with In (X) and Im (X)
are point optimizational intervals is called a point optimizational complex in-
terval. The set of all point optimizational complex intervals shall be denoted by
o[C]p.

The set o[C]p is isomorphically equivalent to the set C of ordinary complex
numbers (see theorem 5.19). That is, every element ([xα, xα] + i [xβ, xβ]) ∈ o[C]p
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is an isomorphic copy of an element (xα + ixβ) ∈ C. By convention, and being
again less pedantic, we agree to identify a point optimizational complex interval
[xα, xα] + i [xβ, xβ] with its isomorphic copy xα + ixβ. So, if confusion is not
likely to ensue; henceforth, we may write xα + ixβ for [xα, xα] + i [xβ, xβ].

Next we characterize the equality relation on o[C], in terms of the equality
relation on o[R] (definition 4.2, on page 74).

Definition 5.7 (Equality on o[C]). Two optimizational complex interval vari-
ables X and Y are equal (identical) iff they have identical interval and imagi-
nary parts, respectively. That is

X =oc Y ⇔ In (X)DIdIn (Y ) ∧ Im (X)DIdIm (Y )

⇔ In (X) =o In (Y ) ∧ Im (X) =o Im (Y ) .

Analogously, in terms of the algebraic operations in o[R], we then characterize
the binary and unary algebraic operations for optimizational complex intervals,
respectively, in the following two definitions.

Definition 5.8 (Binary Operations in o[C]). For any two optimizational com-
plex intervalsX = Xα+oiXβ and Y = Yα+oiYβ, the binary algebraic operations
are defined by

X ◦oc Y = (Xα +o iXβ) ◦o (Yα +o iYβ) ,

where ◦ ∈ {+,×}.

Definition 5.9 (Unary Operations in o[C]). For any optimizational complex
interval X = Xα +o iXβ, the unary algebraic operations are defined by

�ocX = �o (Xα +o iXβ) ,

where � ∈ {−,−1 , ˜ } and X /∈ o[C]0̃ if � is “−1”.

Hereafter, if confusion is unlikely, the subscript “oc”, which stands for “opti-
mizational complex interval operation”, and the subscript “o”, in the optimiza-
tional interval relation and operation symbols, shall be suppressed; and it shall
be assumed, without further mention, that all interval operations and relations
are optimizational operations and relations6. As in the preceding section, for
brevity, we shall write 1/X, XY and X/Y in place of, respectively, X−1, X×Y
and X ÷ Y , by analogy with the ordinary language of arithmetic.

6 As regards notation, see footnotes 1 and 9, on pages 10 and 13, respectively.
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In a manner completely analogous to how the ordinary complex operations
are deduced from the real operations, the following five results are easily deriv-
able, by means of the above two definitions, plus definitions 4.3 and 4.4 for the
optimizational interval operations.

Theorem 5.11 (Addition on o[C]). For any two optimizational complex inter-
vals X = Xα + iXβ and Y = Yα + iYβ, optimizational complex addition is a
total operation, on o[C], formulated as

X + Y = (Xα + Yα) + i (Xβ + Yβ) .

Theorem 5.12 (Multiplication on o[C]). For any two optimizational complex
intervals X = Xα + iXβ and Y = Yα + iYβ, optimizational complex multiplica-
tion is a total operation, on o[C], formulated as

X × Y = (XαYα −XβYβ) + i (XαYβ +XβYα) .

Theorem 5.13 (Negation on o[C]). For any classical optimizational interval
X = Xα + iXβ, optimizational complex negation is a total operation, on o[C],
formulated as

−X = (−Xα) + i (−Xβ) = −Xα − iXβ.

Theorem 5.14 (Conjugate on o[C]). For any optimizational complex interval
X = Xα + iXβ, optimizational complex conjugate is a total operation, on o[C],
formulated as

X̃ = Xα + i (−Xβ) = Xα − iXβ.

Since the conjugate of an optimizational complex interval is the negation of

its imaginary part, it is apparent that we have the dual property
˜̃
X = X.

Theorem 5.15 (Reciprocal in o[C]). For any zeroless optimizational complex
interval X = Xα + iXβ (that is, 0C /∈X), optimizational complex reciprocal is
a partial operation, in o[C], formulated as

1

X
=
Xα − iXβ

X2
α +X2

β

=
X̃

X2
α +X2

β

.

To complete our construction of optimizational complex interval arithmetic,
we next define the total operation of “subtraction”, and the partial operations of
“division”and “integer exponentiation”, for optimizational complex intervals.
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Definition 5.10 (Subtraction on o[C]). For any two optimizational complex
intervals X and Y , optimizational complex subtraction is defined by

X − Y = X + (−Y ) .

Definition 5.11 (Division in o[C]). For any optimizational complex interval
X and any zeroless optimizational complex interval Y , optimizational complex
division is defined by

X

Y
= X×

(
1

Y

)
.

Definition 5.12 (Integer Exponentiation in o[C]). For any optimizational com-
plex interval X and any integer n, the integer exponents of X are defined, in
terms of multiplication and reciprocal in o[C], by the following recursion scheme:

(i) X0 = [1, 1],

(ii) 0 < n⇒Xn = Xn−1 ×X,

(iii) 0 /∈X ∧ 0 ≤ n⇒X−n =
(
X−1

)n
.

In view of this definition, we have, as an immediate consequence, the follow-
ing theorem that prescribes the properties of integer exponents of optimizational
complex intervals.

Theorem 5.16 For any two optimizational complex intervals X and Y , and
any two positive integers m and n, the following identities hold:

(i) Xm ×Xn = Xm+n,

(ii) (Xm)n = Xm×n,

(iii) (X × Y )n = Xn × Y n.

Accordingly, we also have the following easy-deducible corollary.

Corollary 5.1 The identities of integer exponents (i), (ii), and (iii), in theorem
5.16, are valid for all X,Y ∈ o[C]0̃ and any two integers m and n.

Moreover, as an immediate consequence of theorem 4.2 and the fact that op-
timizational complex operations are defined in terms of optimizational interval
operations, we have the following important theorem.
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Theorem 5.17 LetXk be optimizational complex intervals and let f (x1, ...,xn)
be a rational complex-valued function with xk ∈Xk. Then

(∀f) (If (X1, ...,Xn) = f (X1, ...,Xn)) .

That is, as it is the case with optimizational interval operations, optimiza-
tional complex operations copes with all possible cases of functional dependence.

By analogy with point operations for optimizational interval numbers, a
point operation for optimizational complex intervals is an operation whose
operands are optimizational complex intervals, and whose result is a point op-
timizational complex interval (or, equivalently, an ordinary complex number).
This is made precise in the following definition.

Definition 5.13 (Point Optimizational Complex Operations). Let o[C]〈n〉 be
the n-th Cartesian power of o[C]. An n-ary point optimizational complex oper-
ation, ωn, is a function that maps elements of o[C]〈n〉 to the set o[C]p of point
optimizational complex intervals, that is

ωn : o[C]〈n〉 7−→ o[C]p.

Next we define some point operations for optimizational complex intervals.

Definition 5.14 (Optimizational Complex Infimum). The infimum of an op-
timizational complex interval [xα, xα] + i

[
xβ, xβ

]
is defined to be

inf
(
[xα, xα] + i

[
xβ, xβ

])
= inf ([xα, xα]) + i inf

([
xβ, xβ

])
= xα + ixβ.

Definition 5.15 (Optimizational Complex Supremum). The supremum of an
optimizational complex interval [xα, xα] + i

[
xβ, xβ

]
is defined to be

sup
(
[xα, xα] + i

[
xβ, xβ

])
= sup ([xα, xα]) + i sup

([
xβ, xβ

])
= xα + ixβ.

Definition 5.16 (Optimizational Complex Width). The width of an optimiza-
tional complex interval [xα, xα] + i

[
xβ, xβ

]
is defined to be

w
(
[xα, xα] + i

[
xβ, xβ

])
= w ([xα, xα]) + iw

([
xβ, xβ

])
= (xα − xα) + i

(
xβ − xβ

)
.
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Thus, the width of a point optimizational complex interval is the ordinary
complex number 0C, that is

(∀xα, xβ ∈ R) (w ([xα, xα] + i [xβ, xβ]) = 0 + i 0 = 0C) .

Definition 5.17 (Optimizational Complex Radius). The radius of an opti-
mizational complex interval [xα, xα] + i

[
xβ, xβ

]
is defined to be

r
(
[xα, xα] + i

[
xβ, xβ

])
=

w
(
[xα, xα] + i

[
xβ, xβ

])
2

=
(xα − xα)

2
+ i

(
xβ − xβ

)
2

.

Definition 5.18 (Optimizational ComplexMidpoint). The midpoint (or mean)
of an optimizational complex interval [xα, xα] + i

[
xβ, xβ

]
is defined to be

m
(
[xα, xα] + i

[
xβ, xβ

])
= m ([xα, xα]) + im

([
xβ, xβ

])
=

(
xα + xα

2

)
+ i

(
xβ + xβ

2

)
.

Hence, the midpoint of a point optimizational complex interval is its ordinary
complex isomorphic copy, that is

(∀xα, xβ ∈ R) (m ([xα, xα] + i [xβ, xβ]) = xα + ixβ) .

We can also extend the optimizational interval metric to optimizational com-
plex intervals. This is done in the following definition.

Definition 5.19 (Optimizational Complex Metric). The distance (or metric)
between two optimizational complex intervals X = [xα, xα]+i

[
xβ, xβ

]
and Y =[

y
α
, yα

]
+ i
[
y
β
, yβ

]
is defined to be

d (X,Y ) = max{
∣∣∣y
α
− xα

∣∣∣ , |yα − xα|}+ max{
∣∣∣y
β
− xβ

∣∣∣ , ∣∣yβ − xβ∣∣}.
We observe that for an optimizational complex interval X with Im (X) =

[0, 0], the point operations for optimizational complex intervals are reduced to
the corresponding point operations for optimizational interval numbers.
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5.3 Algebraic Properties of Optimizational Complex Intervals

We shall now make use of the part of the theory of optimizational complex in-
tervals developed in section 5.2 to further inquire into the algebraic properties
of optimizational complex interval arithmetic. In our definition of an optimiza-
tional complex interval, the properties of optimizational interval numbers are
naturally assumed in advance.

In a manner analogous to the proof of theorem 2.11, the following two the-
orems and their corollary are derivable.

Theorem 5.18 The structure 〈o[C]In; +oc,×oc〉 is isomorphically equivalent to
the S-field7 〈o[R]; +o,×o〉 of optimizational interval numbers.

Theorem 5.19 The structure
〈
o[C]p; +oc,×oc

〉
is isomorphically equivalent to

the field 〈C; +C,×C〉 of ordinary complex numbers.

Corollary 5.2 Let o[C]Re = o[C]In ∩ o[C]p. The structure 〈o[C]Re; +oc,×oc〉 is
isomorphically equivalent to the field 〈R; +R,×R〉 of real numbers.

That is, up to isomorphism, the algebra of optimizational complex intervals
extends the field of real numbers, the field of ordinary complex numbers, and
the S-field of optimizational interval numbers.

Now we turn to investigate the algebra of optimizational complex interval
arithmetic. The algebraic properties of optimizational complex intervals are
directly established on the properties of optimizational interval numbers, in a
manner completely analogous to how the properties of ordinary complex num-
bers are derived from the properties of real numbers. So, in proving the the-
orems of this section, many redundant details are omitted, and only the main
aspects of the proofs are briefly, but satisfactorily, outlined.

Unlike the case for classical complex conjugates, the following two theorems
show that the additive and multiplicative properties, of ordinary complex con-
jugates, are valid for optimizational complex conjugates.

Theorem 5.20 The additive property of complex conjugates holds for optimiza-
tional complex intervals, that is

(∀X ∈ o[C])
(
X + X̃ = 2× In (X)

)
.

7 See definition 4.18, on page 100.
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Proof. The proof is immediate by theorem 5.11, and the fact that optimiza-
tional interval arithmetic has additive inverse elements (by theorem 4.18).

Theorem 5.21 The multiplicative property of complex conjugates holds for op-
timizational complex intervals, that is

(∀X ∈ o[C])
(
X × X̃ = In (X)2 − Im (X)2

)
.

Proof. The proof is immediate by theorem 5.12, and the fact that optimiza-
tional interval arithmetic has additive inverse elements (by theorem 4.18).

We also have the following theorem concerning quadratic equations in o[C].

Theorem 5.22 The optimizational complex intervals +i and −i are solutions
of the equation X2 = −1[C].

Proof. We have, by definitions 5.12 and 4.9,

(±i)2 = i2 = [i, i]2 = [−1,−1] + i [0, 0] = −1[C],

and the theorem follows.

With the help of the results obtained in the preceding section and section
4.3, the following theorems are derivable.

Theorem 5.23 (Absorbing Element in o[C]). The optimizational complex in-
terval 0[C] is an absorbing element for optimizational complex multiplication,
that is

(∀X ∈ o[C])
(
0[C] ×X = X × 0[C] = 0[C]

)
.

Proof. The theorem follows from theorems 5.12 and 4.11.

Theorem 5.24 (Identity for Addition in o[C]). The optimizational complex
interval 0[C] is both a left and right identity for optimizational complex addition,
that is

(∀X ∈ o[C])
(
0[C] +X = X + 0[C] = X

)
.

Proof. The theorem follows from theorems 5.11 and 4.12.
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Theorem 5.25 (Identity for Multiplication in o[C]). The optimizational com-
plex interval 1[C] is both a left and right identity for optimizational complex
multiplication, that is

(∀X ∈ o[C])
(
1[C] ×X = X × 1[C] = X

)
.

Proof. The theorem follows from theorems 5.12 and 4.13.

Theorem 5.26 (Commutativity in o[C]). Both optimizational complex addi-
tion and multiplication are commutative, that is

(i) (∀X,Y ∈ o[C]) (X + Y = Y +X),

(ii) (∀X,Y ∈ o[C]) (X × Y = Y ×X).

Proof. The theorem is entailed by theorems 5.11 and 5.12, plus commutativity
of the optimizational interval operations (by theorem 4.14).

Theorem 5.27 (Associativity in o[C]). Both optimizational complex addition
and multiplication are associative, that is

(i) (∀X,Y ,Z ∈ o[C]) (X + (Y +Z) = (X + Y ) +Z),

(ii) (∀X,Y ,Z ∈ o[C]) (X × (Y ×Z) = (X × Y )×Z).

Proof. The theorem is established from theorems 5.11 and 5.12, plus asso-
ciativity and distributivity of the optimizational interval operations (theorems
4.15 and 4.22, respectively).

An important property peculiar to the theory of optimizational complex in-
tervals is that unlike classical complex interval arithmetic, optimizational com-
plex interval arithmetic has inverse elements for addition and multiplication.
This property figures in the following two theorems.

Theorem 5.28 (Additive Inverses in o[C]). Additive inverses exist in optimiza-
tional complex interval arithmetic, that is

(∀X ∈ o[C])
(
X + (−X) = 0[C]

)
.

Proof. The theorem is immediate from the fact that additive inverses exist in
optimizational interval arithmetic, by theorem 4.18.
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Theorem 5.29 (Multiplicative Inverses in o[C]). Every zeroless optimizational
complex interval is invertible for multiplication on o[C], that is(

∀X ∈ o[C]0̃
) (
X ×

(
X−1

)
= 1[C]

)
.

Proof. The theorem is immediate from the fact that multiplicative inverses
exist for zeroless optimizational interval numbers, by theorem 4.19.

From the fact that every invertible element is cancellable, the preceding
two theorems immediately entail the following two theorems concerning the
cancellative laws for addition and multiplication in o[C].

Theorem 5.30 (Cancellativity of Addition in o[C]). Optimizational complex
addition is cancellative, that is

(∀X,Y ,Z ∈ o[C]) (X +Z = Y +Z ⇒X = Y ) .

Theorem 5.31 (Cancellativity of Multiplication in o[C]). An optimizational
complex interval is cancellable for multiplication if, and only if, it is a zeroless
optimizational complex interval, that is

(∀X,Y ,Z ∈ o[C]) ((X ×Z = Y ×Z ⇒X = Y )⇔ 0C /∈ Z) .

Moreover, the following important property of the algebra of optimizational
complex intervals is derivable.

Theorem 5.32 (Zero Divisors in o[C]). Zero divisors do not exist in optimiza-
tional complex interval arithmetic, that is

(∀X,Y ∈ o[C])
(
X × Y = 0[C] ⇒X = 0[C] ∨ Y = 0[C]

)
.

Proof. Assume thatX 6= 0[C]∧Y 6= 0[C] andX×Y = 0[C]. Then, by theorem
5.29, we have

0[C] = X × Y = X × Y ×
(
Y −1

)
= X,

which contradicts the assumption that both X and Y are nonzero.

Thus, like the algebra of ordinary complex numbers, the algebra of optimiza-
tional complex intervals has no zero divisors, that is for each X 6= 0[C], there
is no Y 6= 0[C] such that the identity X × Y = 0[C] holds.

Distributivity of optimizational complex interval arithmetic is established in
the next theorem.
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Theorem 5.33 (Distributivity in o[C]). Multiplication distributes over addi-
tion in optimizational complex interval arithmetic, that is

(∀X,Y ,Z ∈ o[C]) (Z × (X + Y ) = Z ×X +Z × Y ) .

Proof. The theorem is established from theorems 5.11 and 5.12, plus asso-
ciativity and distributivity of the optimizational interval operations (theorems
4.15 and 4.22, respectively).

Thus, in contrast to classical complex interval arithmetic, optimizational
complex interval arithmetic does satisfy the distributive law.

We shall now make use of the preceding results to fix the algebraic system
of optimizational complex intervals. In a manner analogous to the proof of
theorems 4.23 and 4.24, the following two theorems are derivable.

Theorem 5.34 The additive structure 〈o[C]; +oc〉 is an abelian group.

Theorem 5.35 The multiplicative structure 〈o[C];×oc〉 is an abelian monoid.

In consequence of this theorem and theorem 5.29, we have the following
corollary.

Corollary 5.3 The multiplicative structure
〈
o[C]0̃;×oc

〉
of zeroless optimiza-

tional complex intervals is an abelian group.

With the preceding two theorems and their corollary at our disposal, we can
conclude the following result, which proof is analogous to that of theorem 4.26.

Theorem 5.36 The structure
〈
o[C]; +oc,×oc;0[C],1[C]

〉
is an S-field8.

Finally, an important immediate result that the preceding theorem implies
is the following.

Corollary 5.4 The theory of optimizational complex intervals defines a number
system9 on the set o[C].

8 See definition 4.18, on page 100.
9 See footnote 19, on page 32.
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Thus, the name “numbers”is verified for optimizational complex intervals,
and therefore we can talk of “optimizational complex interval numbers”.

From the above development, we conclude that unlike classical complex in-
terval arithmetic, optimizational complex intervals have additive inverses, mul-
tiplicative inverses and satisfy the distributive law. By virtue of the algebraic
properties proved in this section, optimizational complex interval arithmetic
possesses a rich S-field algebra, which extends the field structure of ordinary
complex numbers, and therefore we do not have to sacrifice the useful proper-
ties of ordinary complex arithmetic. Aside from this, an important difference
between the classical approach and the optimizational approach of constructing
complex interval arithmetic is that since the optimizational complex operations
are defined in terms of the optimizational interval operations, the theory of op-
timizational complex intervals inherits the capability of coping with all cases of
interval dependency. All of these have as a consequence that the main advantage
that lies with optimizational complex interval arithmetic, over classical complex
interval arithmetic, is that: the theory of optimizational complex intervals is
completely compatible with the semantic of ordinary complex arithmetic.

Finally, let us remark that optimizational interval arithmetic can be extended
analogously to other multidimensional algebras beyond the ordinary complex
algebra, in a manner that conserves their algebraic properties. In this way, one
can construct, for example, the algebras of optimizational interval quaternions
and optimizational interval octonions, without having to sacrifice the useful
algebraic properties of ordinary quaternions and octonions.
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Chapter 6
Ordering Interval Numbers and Other Subsets
of the Reals

The chief forms of beauty are order and symmetry and definiteness, which the
mathematical sciences demonstrate in a special degree.

—Aristotle (384 BC—322 BC)

The notion of order plays an important and indispensable role, as important
as that of size, not only in mathematics and its applications but also in almost all
scientific disciplines. Order and size are usually confused in general knowledge,
but the two notions are fundamentally different. In other words, as Huntington
says in [Huntington1905a]: “the notion of size (or quantity) is not involved in
the notion of order”1. In mathematics and its philosophy, the notion of order
emerges as an abstraction of the notion of ascendance (precedence, or predomi-
nance) as formulated in such expressions as “x comes before y”, “the point a is
closer than the point b”, “S ⊂ T”, and “2 > 1”(For more detailed and exhaus-
tive discussions of the defining properties of the concept of order and related
concepts, the interested reader may consult, e.g., [Blyth1994], [Dixon1902],
[Huntington1905a], [Huntington1905b], [Russell1901], and [Russell1910]).

In contrast to many texts that deal with the question of ordering interval
numbers, this characterization of the notion of order, which is most fundamental
in order theory, lies a priori in our discussion in this chapter, and it is therefore
assumed, in advance, that the concepts of size, quantity, value, magnitude,
width, and so forth, are not involved in what we mean by “order”.

1 In contrary to intuition one may have, every ordering relation in mathematics, including
the usual ordering on real numbers, obeys this rule.
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Because of its great importance in both fundamental research and practical
applications of the interval theory, the problem of ordering interval numbers has
been attempted by many researchers, but with the notion of size (or value) is
considered as the all-important aspect of order (which contradicts the defining
properties of the notion of order in order theory). Despite extensive research
on the subject, no standard2 (set-theoretic or order-theoretic) total ordering
for interval numbers is presented, and it seems that the important question
of compatibility of an ordering with the interval algebraic operations is not
touched upon, except for the partial ordering by the inclusion relation, ⊆, and
its well-known theorem of inclusion monotonicity (see theorem 2.8, on page
21).

This chapter opens with some order-theoretical preliminaries concerning or-
dering relations and their properties, which are important for our purpose.
Section 6.2 gives a survey of the existing set-theoretic approaches for ordering
interval numbers, along with discussing their compatibility with the interval
algebraic operations. In section 6.3, we characterize the class O(℘(R),≤R) of all
possible ordering relations on the powerset ℘ (R) of the reals, in terms of a
binary quantification matrix, two real variable symbols, and the standard or-
dering relation ≤R on R. Then, we present the proofs that neither the set
[R] of interval numbers nor the powerset ℘ (R) of the reals can be totally or-
dered by any of the relations in the class O(℘(R),≤R). In section 6.4, we define
a set-theoretic ordering relation �I on the set [R] of interval numbers, then we
present the proofs that the relation �I is a non-strict total ordering on [R],
compatible with interval addition and multiplication, dense in [R], and weakly
Archimedean in [R]. Furthermore, we prove that the relation �I induces a dis-
tributive lattice structure for interval numbers, and that �I is an extension of
the usual ordering ≤R on the reals, Moore’s partial ordering <M on [R], and
Kulisch’s partial ordering ≤K on [R].

Let us mention that all the results of this chapter, except the compatibility
theorem (theorem 6.18), apply to any set of nonempty closed intervals on a
partially ordered set3, in the general sense, and hence to real closed intervals,

2 We adopt the term “standard ordering”(or “set-theoretic ordering”) to mean an ordering
relation whose defining properties can be formulated in the language of classical predicate logic
and can be studied order-theoretically in the standard way. This is to distinguish it from the
non-standard relations defined using the probabilistic or fuzzy approaches.

3 Let S be a set equipped with a partial ordering ≤S and let x, x ∈ S. A closed interval
between x and x is denoted and defined as

[x, x]S =

{
{x ∈ S|x ≤S x ∧ x ≤S x} if x ≤S x,
∅ if x <S x.
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regardless of what theory of intervals is considered. The compatibility theo-
rem applies to the classical interval theory and its standard extensions (such
as Hansen’s generalized intervals, Kulisch intervals, constraint intervals, and
optimizational intervals), in which the standard notion of a set-theoretic closed
interval ([x, x] with x ≤ x) is adopted. For other theories of intervals (such
as Kaucher intervals, modal intervals, and directed intervals), which allow the
existence of inverted intervals ([x, x] with x > x), the compatibility theorem is
not valid in general.

6.1 Some Order-Theoretical Preliminaries

Before discussing the question of ordering interval numbers in the succeeding
sections of this chapter, we deal here with some order-theoretical preliminar-
ies concerning comparison (ordering) relations and their properties, which are
important for our purpose (For further details, the reader may consult, e.g.,
[Blyth2010], [Carnap1958], [Devlin1993], [Kleene1952], and [Suppes1972]).

We first define what a binary relation is.

Definition 6.1 (Binary Relation). Let S〈2〉 be the binary Cartesian power of a
set S. A binary relation on S is a subset of S〈2〉. That is, a set < is a binary
relation on a set S iff

(∀r ∈ <) ((∃x, y ∈ S) (r = (x, y))) .

Hereafter, the notations (x, y) ∈ <, < (x, y), and x<y shall be equivalently
employed to mean “x is <-related to y in the set S”. The order of the elements
in (x, y) is extremely important: if x 6= y, then (x, y) ∈ < and (y, x) ∈ < can
be, independently of each other, true or false. We shall also adopt the notation
IdS to denote the identity relation {(x, x) |x ∈ S} on a set S.

The domain, range, and field of a binary relation are defined as follows.

Definition 6.2 (Domain, Range, and Field of a Relation). The domain, range,
and field of a binary relation < are, respectively, defined by

dom (<) = {x| (∃y) (x<y)},
ran (<) = {y| (∃x) (x<y)},
fld (<) = dom (<) ∪ ran (<) .

In this general sense, a closed interval can be empty.
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The notion of the converse of a binary relation is characterized in the fol-
lowing definition.

Definition 6.3 (Converse of a Relation). The converse of a binary relation <,
in symbols <̂, is the relation such that for all x and y, y<̂x⇔ x<y. That is

<̂ = {(y, x) |x<y}.

The eight basic properties, a binary relation can have, are prescribed by the
following definition.

Definition 6.4 (Properties of a Binary Relation). Let < be a binary relation
on a set S.

(i) < is reflexive in S ⇔ (∀x ∈ S) (x<x).

(ii) < is irreflexive in S ⇔ (∀x ∈ S) (¬ (x<x)).

(iii) < is symmetric in S ⇔ (∀x, y ∈ S) (x<y ⇒ y<x).

(iv) < is asymmetric in S ⇔ (∀x, y ∈ S) (x<y ⇒ ¬ (y<x)).

(v) < is antisymmetric in S ⇔ (∀x, y ∈ S) (x<y ∧ y<x⇒ x = y).

(vi) < is transitive in S ⇔ (∀x, y, z ∈ S) (x<y ∧ y<z ⇒ x<z).

(vii) < is connected4 (total) in S ⇔ (∀x, y ∈ S) (x 6= y ⇒ x<y ∨ y<x).

(viii) < is strongly connected in S ⇔ (∀x, y ∈ S) (x<y ∨ y<x).

Various comparison relations occur in almost all branches of mathematics
and its applications. By virtue of the above definitions, we can next consider
some of the more useful ones.

Definition 6.5 (Preordering). A relation < is a preordering (quasi-ordering)
on a set S iff < is reflexive and transitive in S.

4 The connectedness property is a logical variant of the well-known principle of trichotomy,
which asserts that

(∀x, y ∈ S) (x = y ∨ x<y ∨ y<x) .
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An example of a preordering relation is the logical implication “⇒”on the
set of sentences.

Definition 6.6 (Weak Ordering). A relation < is a weak ordering (total pre-
ordering) on a set S iff < is reflexive, transitive, and connected in S. That is
a weak ordering is a preordering which is connected.

Definition 6.7 (Equivalence). A relation < is an equivalence on a set S iff
< is reflexive, transitive, and symmetric in S. That is an equivalence is a
preordering which is symmetric.

An example of an equivalence relation is the logical equivalence “⇔”on the
set of sentences.

Definition 6.8 (Non-Strict Partial Ordering). A relation < is a non-strict
partial ordering (often referred to as an order or ordering) on a set S iff < is
reflexive, antisymmetric, and transitive in S.

Definition 6.9 (Strict Partial Ordering). A relation < is a strict partial or-
dering on a set S iff < is asymmetric and transitive in S.

A set endowed with a partial ordering is called a partially ordered set (or a
poset).

Why a comparison relation <, on a set S, is called a partial ordering is that
there are some pairs (x, y) ∈ S〈2〉 such that we have none of x = y, x<y, or y<x.
As familiar examples of partial orders we mention the following: the inclusion
relation on the powerset ℘ (S), of a set S; and the relation of divisibility on the
set of natural numbers.

Definition 6.10 (Non-Strict Total Ordering). A relation < is a non-strict total
(simple, or linear) ordering on a set S iff < is antisymmetric, transitive, and
strongly connected in S.

Definition 6.11 (Strict Total Ordering). A relation < is a strict total (simple)
ordering on a set S iff < is asymmetric, transitive, and connected in S.
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A set endowed with a total ordering is called a totally ordered set, a simply
ordered set, a linearly ordered set, or a chain.

Why a comparison relation <, on a set S, is called a total ordering is that
for all pairs (x, y) ∈ S〈2〉, we have x = y, x<y, or y<x (or both x<y and y<x,
in the non-strict case). A familiar example of a total order is the relation ≤,
defined in the standard way, on the set of real numbers.

For a comparison relation < on a set S; the ensuing structure, denoted by
the pair 〈S;<〉, is a relational structure called an ordered relational structure
with respect to the relation <.

Henceforth, we shall use the term “comparison relation”to refer to any of the
binary relations characterized in definitions 6.5-6.11 (including the preordering
relation), and we shall use the term “ordering relation”(“order”, or “ordering”)
to mean a relation which is at least a “partial ordering”.

The results formulated in the following two theorems are derivable and well-
known (see, e.g., [Blyth2010], [Dunn2001], [Suppes1972], and [Tarski1941]).

Theorem 6.1 Let <, <1, and <2 be binary relations. The following statements
are true.

(i) ̂̂< = <.

(ii) <̂1 ∩ <2 = <̂1 ∩ <̂2.

(iii) <̂1 ∪ <2 = <̂1 ∪ <̂2.

(iv) < is symmetric ⇔ <̂ = <.

(v) < is asymmetric ⇔ <∩ <̂ = ∅.

(vi) < is antisymmetric ⇔ <∩ <̂ ⊆ Iddom(<).

Theorem 6.2 Let < be a binary relation on a set S. The following statements
are true.

(i) < is a preordering on S ⇔ <̂ is a preordering on S.

(ii) < is a partial ordering on S ⇔ <̂ is a partial ordering on S.

(iii) < is a total ordering on S ⇔ <̂ is a total ordering on S.
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A well-known example of converse orderings is the usual ordering relation
≤R on real numbers and its converse ≥R.

Before characterizing some properties of particular importance for our pur-
pose, let us introduce some definitions we shall need.

Definition 6.12 (Minimal). Let < be an ordering on a set S. x is an <-
minimal element of S iff

x ∈ S ∧ (∀y ∈ S) (¬ (y<x)) .

Definition 6.13 (Lower Bound). Let < be an ordering on a set S. x is an
<-lower bound of S iff

(∀y ∈ S) (x<y) .

Definition 6.14 (Infimum). Let < be an ordering on a set S. x is an <-
infimum of S, in symbols <-inf, iff x is an <-lower bound of S and for all y, if
y is an <-lower bound of S then y<x.

Definition 6.15 (Upper Bound). Let < be an ordering on a set S. x is an
<-upper bound of S iff

(∀y ∈ S) (y<x) .

Definition 6.16 (Supremum). Let < be an ordering on a set S. x is an <-
supremum of S, in symbols <-sup, iff x is an <-upper bound of S and for all
y, if y is an <-upper bound of S then x<y.

A notion of a rather special character is that of a well-ordering relation. This
notion is introduced by the following definition.

Definition 6.17 (Well-Ordering). A binary relation < is a well-ordering on a
set S iff < is a strict total ordering on S and every nonempty subset of S has
an <-minimal.

Unlike other ordering relations, If a relation < is a well-ordering, it does not
follow that <̂ is a well-ordering. An example is the set Z+ of positive integers
which is well-ordered by the usual less-than relation <Z. On the other hand,
Z+ is not well-ordered by the converse greater-than relation >Z. A familiar
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example of a set which cannot be well-ordered is the set R of real numbers5
relative to the ordering relations <R and >R, since many subsets of R do not
have minimal elements with respect to the relations <R and >R.

A notion of particular importance in both order theory and universal algebra
is that of a lattice. The notions of a lattice, a distributive lattice, and a modular
lattice (or Dedekind lattice6) relative to a relation <, are characterized in the
following three definitions.

Definition 6.18 (Lattice). A set S is a lattice with respect to a binary relation
< (or an <-lattice) iff < is a partial ordering on S and for all x and y in S,
the set {x, y} has an <-supremum and an <-infimum in S.

Definition 6.19 (Distributive Lattice). A set S is a distributive lattice with
respect to a binary relation < (or a distributive <-lattice) iff S is an <-lattice
and for all x , y, and z in S,

<-inf(x,<-sup (y, z)) = <-sup(<-inf (x, y) ,<-inf (x, z)).

Definition 6.20 (Modular Lattice). A set S is a modular lattice with respect
to a binary relation < (or a modular <-lattice) iff S is an <-lattice and for all
x , y, and z in S,

x<y ⇒ <-sup(x,<-inf (z, y)) = <-inf(<-sup (x, z) , y).

Three well-known properties of distributive and modular lattices follow (see,
e.g., [Birkhoff1948], [Blyth2010], [Dunn2001], and [Suppes1972]).

Theorem 6.3 If a set S is a distributive <-lattice, then for all x , y, and z in
S, the following two identities are equivalent:

5 We know that every countable set can be well-ordered, by the fact that it can be put into
one-to-one correspondence with the set of natural numbers. The set Q of rational numbers
can therefore be well-ordered, but not with the standard ordering relations <Q and >Q. This
means that there exist well-ordering relations on a countable set, but none of them may be
compatible with the algebraic operations on the set. The question whether uncountable sets
can be well-ordered depends on the open question whether the axiom of choice holds, which
implies that every set can be well-ordered by some relation. So, the question whether the set R
of real numbers can be well-ordered by some relation is an open question (For further details,
see, e.g., [Carnap1958], [Devlin1993], [Kleene1952], and [Suppes1972]).

6 Amodular lattice is also called a “Dedekind lattice”, in honor of the German mathematician
Richard Dedekind (1831—1916), who was the first to characterize modularity and derived some
of its properties (see [Dedekind1900]).
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(i) <-inf(x,<-sup (y, z)) = <-sup(<-inf (x, y) ,<-inf (x, z)),

(ii) <-sup(x,<-inf (y, z)) = <-inf(<-sup (x, y) ,<-sup (x, z)).

Theorem 6.4 If a set S is totally ordered with respect to a relation <, then S
is a distributive <-lattice.

Theorem 6.5 If a set S is a distributive <-lattice, then S is a modular <-
lattice.

Nowwe turn to the important notion of compatibility of a comparison relation
with the algebraic operations. This notion, which plays an essential role in our
discussion, is characterized in the following definition.

Definition 6.21 (Order Compatibility). Let S = 〈S; +S ,×S ; 0S〉 be a ring-
like7 algebra with +S and ×S are respectively the addition and multiplication
operations on the universe set S, and 0S is the absorbing element for ×S. We
say that a comparison relation < on S is compatible with the addition operation
of S (or +S-compatible) iff

(∀x, y, z ∈ S) (x<y ⇒ (x+S z)< (y +S z)) ,

and we say that < is compatible with the multiplication operation of S (or
×S-compatible) iff

(∀x, y, z ∈ S) ((x<y ∧ 0<z ⇒ (x×S z)< (y ×S z))

∨(x<y ∧ z<0 ⇒ (x×S z)< (y ×S z))).

If the two criteria are satisfied, then S is orderable with respect to the relation
<, and the ensuing structure 〈S; +S ,×S ; 0S ;<〉 is called an <-ordered algebra.

The indispensability of the above definition for studying ordered algebraic
structures is that a compatible comparison relation is preserved, in all contexts,
by the structure operations. In other words, an ordered algebraic structure is
not definable (or an algebraic structure is not orderable), unless we have an
ordering < on the universe set of the structure such that < is compatible with
the structure operations. A well-known example of an algebra that cannot be

7 A ring-like algebra is a set equipped with two binary operations, addition and multiplica-
tion, such that multiplication has an absorbing element by either an axiom or a theorem.
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ordered in a way compatible with the algebraic operations is the field of complex
numbers (the set of complex numbers can be ordered, in many plausible ways,
and we can talk of an ordered set of complex numbers 〈C;≺C〉, but we cannot
talk of an ordered field of complex numbers 〈C; +C,×C;≺C〉).

The following theorem is well-known and easily derivable by using the equiv-
alence y<̂x⇔ x<y in definition 6.21.

Theorem 6.6 Let ◦ ∈ {+,×} be an algebraic operation of a ring-like structure.
Then, an ordering relation < is compatible with ◦ iff <̂ is compatible with ◦.

Finally, the following three definitions characterize the notions of density,
Archimedeanity8, and Dedekind completeness with respect to an ordering rela-
tion <.

Definition 6.22 (Density). A set S is dense with respect to a strict ordering
relation < (or an <-dense) iff

(∀x, y ∈ S) (x<y ⇒ (∃z ∈ S)(x<z ∧ z<y)).

Definition 6.23 (Archimedeanity). Let S be a set equipped with an addition
operation +S and an identity element 0S such that the structure 〈S; +S ; 0S〉
is an additive monoid. The set S is Archimedean with respect to an ordering
relation < (or an <-Archimedean) iff

(i) < is compatible with +S,

(ii) (∀x, y ∈ S) (0<x ∧ 0 6= x⇒ (∃n ∈ Z+) (y<nx)),

where nx is defined by the additive recursion

nx =

{
x iff n = 1,
x+S (n− 1)x iff n > 1.

If the two criteria are satisfied, then the structure 〈S; +S ; 0S ;<〉 is called an
<-Archimedean monoid.

8 The Archimedean property is named after the ancient Greek mathematician Archimedes
of Syracuse because it appears as the fifth axiom in his “On the Sphere and Cylinder”. Since
Archimedes credited it to Eudoxus of Cnidus, Archimedeanity is also called the “Eudoxus
axiom”(see [Archimedes2002]).
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Definition 6.24 (Dedekind Completeness)9. A set S is Dedekind complete
with respect to a strict ordering relation < (or a Dedekind <-complete) iff every
nonempty subset of S which has an <-upper bound in S has an <-supremum in
S, or equivalently, iff every nonempty subset of S which has an <-lower bound
in S has an <-infimum in S.

6.2 On Existing Orderings for Interval Numbers

Of all the existing ordering relations for interval numbers, none is a total order-
ing. This section is devoted to providing a quick survey of such partial order-
ing relations, along with discussing their compatibility with the interval alge-
braic operations (For other surveys, the reader may consult, e.g., [Alolyan2011],
[Sengupta2000], and [Sengupta2009]).

Interval numbers are sets of real numbers. It is therefore not surprising that
the first proposed ordering relation, for interval numbers, was the ordinary set
inclusion, ⊆, which presented by Young in [Young1931]. The partial ordering
by the inclusion relation, which was later advocated by Sunaga in [Sunaga1958]
and then by Moore in [Moore1959], is characterized as follows.

Definition 6.25 For any two interval numbers [x, x] and
[
y, y
]
, a non-strict

partial ordering on [R], with respect to the relation ⊆, is defined by

[x, x] ⊆
[
y, y
]
⇔ y ≤R x ∧ x ≤R y.

The partial ordering by the set inclusion is proved, by Young in [Young1931],
to be compatible with the interval algebraic operations (see theorem 2.8, on page
21); and this is the reason why it plays an important and indispensable role in
Moore’s foremost work in interval analysis (see, e.g. [Moore1966], [Moore1979],
and [Moore2009]). However, the inclusion ordering does not extend the usual
ordering ≤R on the reals, that is, for some x and y in R, it is not the case that

x ≤R y ⇒ [x, x] ⊆ [y, y] .

A partial ordering relation, <M, that extends the standard strict ordering
<R on the reals, was presented by Moore in [Moore1966].

9 Dedekind Completeness is named after the German mathematician Richard Dedekind (see
[Dedekind1963]). It is also known as Dedekind continuity, conditional completeness, or relative
completeness.
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Definition 6.26 For any two interval numbers [x, x] and
[
y, y
]
, a strict partial

ordering on [R], with respect to the relation <M, is defined by

[x, x] <M
[
y, y
]
⇔ x <R y.

In contrast to the case for ⊆, Moore’s partial ordering <M is not compatible
with the interval algebraic operations (see theorem 2.9, on page 22).

Another partial ordering relation, ≤K, that extends the usual non-strict or-
dering≤R on the reals, was presented by Kulisch and Miranker in [Kulisch1981].

Definition 6.27 For any two interval numbers [x, x] and
[
y, y
]
, a non-strict

partial ordering on [R], with respect to the relation ≤K, is defined by

[x, x] ≤K
[
y, y
]
⇔ x ≤R y ∧ x ≤R y.

Kulisch’s partial ordering ≤K, which is a special case of the product ordering
≤nprod, for n = 2 (see definition 6.33 of section 6.4 below), can be shown to
be compatible with the interval algebraic operations. The following theorem
establishes the compatibility of ≤K.

Theorem 6.7 The partial ordering ≤K is compatible with the algebraic opera-
tions on [R].

Proof. We need to prove that the relation ≤K satisfies the two criteria for
a compatible ordering. Below, we suppress the subscripts for the operation
symbols for brevity.

Let X = [x, x], Y =
[
y, y
]
, and Z = [z, z] be any three elements in [R].

• Compatibility with addition in [R]. Let the formula

X ≤K Y ,

be true. According to definition 6.27, we have

X ≤K Y ⇔ x ≤R y ∧ x ≤R y.

Then, by compatibility of ≤R with real addition, we get x + z ≤R y + z
and x + z ≤R y + z. Hence, X + Z ≤K Y + Z. By definition 6.21, the
relation ≤K thus is compatible with addition in [R].
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• Compatibility with multiplication in [R]. Let the formula

X ≤K Y ∧ [0, 0] ≤K Z,

be true. According to definition 6.27, we have

X ≤K Y ⇔ x ≤R y ∧ x ≤R y,
[0, 0] ≤K Z ⇔ 0 ≤R z ∧ 0 ≤R z.

Since 0 ≤R z and 0 ≤R z, we obtain

X × Z = [min{xz, xz},max{xz, xz}] ,
Y × Z =

[
min{yz, yz},max{yz, yz}

]
.

We have three possible cases for X.

Case 1. 0 ≤R x ≤R x. Then, with x ≤R y and x ≤R y, we should have
0 ≤R y ≤R y. So we get

X × Z = [xz, xz] ,
Y × Z =

[
yz, yz

]
.

Hence, by compatibility of ≤R with real multiplication, it is an immediate
consequence that X × Z ≤K Y × Z.

Case 2. x ≤R x <R 0. We then have three subcases for Y .

Subcase 2.1. 0 ≤R y ≤R y. We get

X × Z = [xz, xz] ,
Y × Z =

[
yz, yz

]
.

Then xz ≤R yz and xz ≤R yz, and hence X × Z ≤K Y × Z.

Subcase 2.2. y ≤R y <R 0. We get

X × Z = [xz, xz] ,
Y × Z =

[
yz, yz

]
.

Hence, by compatibility of ≤R with real multiplication, we get X×Z ≤K Y ×Z.

Subcase 2.3. y <R 0 <R y. We obtain

X × Z = [xz, xz] ,
Y × Z =

[
yz, yz

]
.
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Then xz ≤R yz and xz ≤R yz, and hence X × Z ≤K Y × Z.

Case 3. x <R 0 <R x. We then have two subcases for Y .

Subcase 3.1. 0 ≤R y ≤R y. We get

X × Z = [xz, xz] ,
Y × Z =

[
yz, yz

]
.

Then xz ≤R yz and xz ≤R yz, and so X × Z ≤K Y × Z.

Subcase 3.2. y <R 0 <R y. We obtain

X × Z = [xz, xz] ,
Y × Z =

[
yz, yz

]
.

Hence, by compatibility of ≤R with real multiplication, it is immediate that
X × Z ≤K Y × Z.

According to definition 6.21, the compatibility of the relation ≤K, with mul-
tiplication in [R], is then proved.

Thus, it is shown that the two criteria are met for the relation ≤K, and
therefore ≤K is compatible with the algebraic operations on [R].

In [Ishibuchi1990], Ishibuchi and Tanaka presented two more non-strict par-
tial orderings; ≤T1 and ≤T2. These orderings are characterized in the following
two definitions.

Definition 6.28 For any two interval numbers [x, x] and
[
y, y
]
, a non-strict

partial ordering on [R], with respect to the relation ≤T1, is defined by

[x, x] ≤T1
[
y, y
]
⇔ m ([x, x]) ≤R m

([
y, y
])
∧ r ([x, x]) ≤R r

([
y, y
])
,

where m and r are, respectively, the midpoint and radius of an interval number.

Definition 6.29 For any two interval numbers [x, x] and
[
y, y
]
, a non-strict

partial ordering on [R], with respect to the relation ≤T2, is defined by

[x, x] ≤T2
[
y, y
]
⇔ x ≤R y ∧m ([x, x]) ≤R m

([
y, y
])
,

where m is the midpoint of an interval number.

We shall now prove two theorems concerning the compatibility of the partial
orderings ≤T1 and ≤T2.
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Theorem 6.8 The partial ordering ≤T1 is not compatible with the algebraic
operations on [R].

Proof. To prove the theorem, it suffi ces to give a counterexample.

Let X = [−8,−5], Y = [−1, 2], and Z = [1, 2] be interval numbers. Accord-
ing to definition 6.28, we have X ≤T1 Y and [0, 0] ≤T1 Z. But

X × Z = [−16,−5] �T1 [−2, 4] = Y × Z,

and therefore the ordering ≤T1 is not compatible with the algebraic operations
on [R].

Theorem 6.9 The partial ordering ≤T2 is not compatible with the algebraic
operations on [R].

Proof. In a manner analogous to the proof of the preceding theorem, the
proof can be easily obtained by taking the interval numbers X = [−2,−1],
Y = [−1, 0], and Z = [−1, 2].

Because none of the existing ordering relations for interval numbers is a total
ordering, Alolyan, on page 2 in [Alolyan2011], goes to claim, without a proof,
that:

“Theoretically, intervals can only be partially ordered and hence
cannot be compared”.

In section 6.4, we shall attempt to disprove this claim, by presenting a total
compatible order for interval numbers.

6.3 Ordering Relations on the Powerset of R

In this section, we characterize the class O(℘(R),≤R) of all possible ordering re-
lations on the powerset ℘ (R) of the reals, in terms of a binary quantification
matrix10, two real variable symbols, and the standard ordering relation ≤R on
R. Then, we present the proofs that neither the set [R] of interval numbers nor

10 A quantification matrix Q is a sequence (Q1x1) ... (Qnxn), where x1, ..., xn are variable
symbols and each Qi is ∀ or ∃. A binary quantification matrix is a quantification matrix, for
n = 2.
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the powerset ℘ (R) of the reals can be totally ordered by any of the relations in
the class O(℘(R),≤R).

The standard ordering relations on the set R of real numbers can be charac-
terized, in terms of the real operations (see, e.g., [Montague1974], [Montague1980],
and [Tarski1994]), in the following two definitions.

Definition 6.30 (∀x ∈ R) (∀y ∈ R)
(
x ≤R y ⇔ (∃r ∈ R)

(
r2 = y − x

))
.

Definition 6.31 (∀x ∈ R) (∀y ∈ R) (x <R y ⇔ x ≤R y ∧ x 6= y).

On the basis of these definitions, the class of all possible ordering relations on
the powerset ℘ (R) of R, in terms of ≤R, can be characterized in the following
definition.

Definition 6.32 Let QS , QT ∈ {∀,∃}. For any two subsets S and T of the re-
als, the class of all possible ordering relations on ℘ (R), in terms of the ordering
≤R on R, can be characterized by

O(℘(R),≤R) = {�(QS ,QT ) | QS , QT ∈ {∀,∃} ∧ �(QS ,QT ) ⊆ ℘〈2〉 (R)},

where
S �(QS ,QT ) T ⇔ (QS s ∈ S) (QT t ∈ T ) (s ≤R t) .

By means of definitions 6.4 and 6.10, we can derive the following result for
the set [R] of interval numbers.

Theorem 6.10 Let QS , QT ∈ {∀,∃}. None of the relations �(QS ,QT ) in the
class O(℘(R),≤R) is a non-strict total ordering on the set [R] of interval numbers.

Proof. We demonstrate the proof that none of the relations �(QS ,QT ) is a total
ordering on [R] by giving a counterexample for each relation.

We have four cases.

• The relation �(∀,∀). Let S = [1, 2]. We have 2 ∈ S and 1 ∈ S, but 2 �R 1.
We thus obtain S �(∀,∀) S, and therefore the relation �(∀,∀) is not reflexive.

• The relation �(∀,∃). Let S = [1, 2] and T = [2, 2]. We have S �(∀,∃) T and
T �(∀,∃) S, but S 6= T . The relation�(∀,∃), therefore, is not antisymmetric.
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• The relation �(∃,∃). Let S = [1, 2] and T = [2, 2]. We have S �(∃,∃) T and
T �(∃,∃) S, but S 6= T . The relation�(∃,∃), therefore, is not antisymmetric.

• The relation �(∃,∀). Let S = [1, 1] and T = [1, 2]. We have S �(∃,∀) T and
T �(∃,∀) S, but S 6= T . The relation�(∃,∀), therefore, is not antisymmetric.

From the above cases, it follows that none of the relations �(QS ,QT ) satisfies
the criteria for a non-strict total ordering on the set [R] of interval numbers.

Thus, the set [R] of interval numbers cannot be totally ordered with respect
to any of the relations �(QS ,QT ), for QS , QT ∈ {∀,∃}.

Further, an immediate consequence, of theorem 6.10, is the following impor-
tant result for the powerset ℘ (R) of R.

Theorem 6.11 Let QS , QT ∈ {∀,∃}. None of the relations �(QS ,QT ) in the
class O(℘(R),≤R) is a non-strict total ordering on ℘ (R).

Proof. The proof is immediate from theorem 6.10, by the fact that [R] is a
proper subset of ℘ (R).

An alternate proof can be directly obtained, from the properties of the quan-
tification over the empty set11, as follows.

• The relation �(∀,∀). Let A be any nonempty subset of R. By the fact
that all universal quantifications over the empty set ∅ are true, we have
A �(∀,∀) ∅ and ∅ �(∀,∀) A, but A 6= ∅. The relation �(∀,∀), therefore, is
not antisymmetric.

• The relations �(QS ,QT ) with QS or QT is ∃. By the fact that all existential
quantifications over the empty set ∅ are false, we have ∅ �(QS ,QT ) ∅, and
therefore the relations �(QS ,QT ) are not reflexive.

Therefore, none of the relations �(QS ,QT ) satisfies the criteria for a non-strict
total ordering on the powerset ℘ (R) of R.

11 Any existential quantification (∃x ∈ ∅) (ϕ (x)) over the empty set is trivially false, re-
gardless of the formula ϕ (x), because it implies the existence of some object in the empty
universe of individuals. Any universal quantification over the empty set is vacuously true, be-
cause ¬ (∃x ∈ ∅) (ϕ (x)) ⇔ (∀x ∈ ∅) (¬ϕ (x)). First-order logics with empty structures were
first considered by Mostowski in [Mostowski1951], and then studied by many logicians (see, e.g.,
[Quine1954], [Hintikka1959], and [Amer1989]). Such logics are now referred to as free logics
(see, e.g. [Lambert2003]).
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That is, the powerset ℘ (R) of R cannot be totally ordered with respect to
any of the relations in the class O(℘(R),≤R).

6.4 A Total Compatible Order for Interval Numbers

In the preceding section, we presented the proofs that neither the set [R] of
interval numbers nor the powerset ℘ (R) of the reals can be totally ordered with
respect to any of the relations in the class O(℘(R),≤R) of all possible ordering
relations on ℘ (R). By virtue of the fact that the set [R] of interval numbers
can be represented12 by the subset {(x, x) ∈ R〈2〉|x ≤ x} of R〈2〉, one can
attempt to define an ordering relation on interval numbers, in terms of the
possible ordering relations on the n-th Cartesian power of R.

With this fact in mind, in the sequel, we define an ordering relation �I on
the set [R] of interval numbers, then we present the proofs that the relation
�I is a non-strict total ordering on [R], compatible with interval addition and
multiplication, dense in [R], and weakly Archimedean in [R]. Furthermore, we
prove that the relation �I induces a distributive lattice structure for interval
numbers, and that �I is an extension of the standard ordering ≤R on the reals,
Moore’s partial ordering <M on [R], and Kulisch’s partial ordering ≤K on [R].

Before we proceed, let us investigate the properties of the possible ordering
relations on the n-th Cartesian power of a set S.

For a set S and an ordinal13 n, two possible ordering relations on the n-th

12 It must be noted that a representation does not mean a definition. For example, a pair
representation, (a, b), can mean a 2-dimensional vector, a real interval, a complex number, and
so forth.
13 For each ordinal n, there exists an ordinal S (n) called the successor of n such that

(∀n) (∀k) (k = S (n)⇔ (∀m) (m ∈ k ⇔ m ∈ n ∨m = n)) ,

that is,
S (n) = n ∪ {n}.

Setting 0 = ∅, each ordinal is then equal to the set of all ordinals preceding it, so that

0 = ∅; 1 = S (0) = {∅}; 2 = S (1) = {∅, {∅}}; etc.

If we keep applying the successor operator infinitely, we reach the first infinite (transfinite)
ordinal

ω = {0, 1, 2, ...}.
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Cartesian power14 of S are the product ordering (or the componentwise order-
ing) and the lexicographical ordering15 (the ordinal power, or ordering by first
difference). The two types of ordering can be characterized in the following two
definitions.

Definition 6.33 (Product Ordering). Let S be a set equipped with an ordering
relation ≤S and let S〈n〉 be the n-th Cartesian power of S, for an ordinal n ≥ 1.
For any two elements (x1, ..., xn) and (y1, ..., yn) in S〈n〉, the product ordering is
defined by

(x1, ..., xn) ≤nprod (y1, ..., yn)⇔ (∀i ∈ {1, ..., n}) (xi ≤S yi)

Definition 6.34 (Lexicographical Ordering). Let S be a set equipped with an
ordering relation ≤S and let S〈n〉 be the n-th Cartesian power of S, for an
ordinal n ≥ 1. For any two elements (x1, ..., xn) and (y1, ..., yn) in S〈n〉, the

The next two ordinals beyond ω are

S (ω) = {0, 1, 2, ..., ω},
S (S (ω)) = {0, 1, 2, ..., ω, S (ω)}.

All ordinals preceding ω (all elements of ω) are finite ordinals. The idea of transfinite counting
(counting beyond the finite) is due to Cantor (See [Cantor1955]).
For an ordinal n = S(k), an n-tuple is any mapping τ whose domain is n. A finite n-tuple is

an n-tuple for some finite ordinal n. That is

τS(k) = 〈τ (0) , τ (1) , ..., τ (k)〉
= 〈(0, τ (0)) , (1, τ (1)) , ..., (k, τ (k))〉 .

If n = 0 = ∅, then, for any set A, there is exactly one mapping (the empty mapping) τ∅ = ∅
from ∅ into A. So, A〈0〉 = {∅}.
14 Let ∅ denote the empty set. For a set S and an ordinal n, the n-th Cartesian power of S

is the set S〈n〉 of all mappings from n into S, that is

S〈n〉 =

{
{∅} n = 0,

the set of all n-tuples of elements of S n = 1 ∨ 1 ∈ n.

If S is the empty set ∅, then

∅〈n〉 =

{
{∅} n = 0,
∅ n = 1 ∨ 1 ∈ n; and ∅〈∅〈n〉〉 =

{
∅ n = 0,
{∅} n = 1 ∨ 1 ∈ n.

Amer in [Amer1989] used the n-th Cartesian power of ∅ to define empty structures, and
axiomatized their first-order theory.
15 The lexicographical ordering was first considered by Cantor (see [Cantor1955]), and later

by Hausdorff, who presented the definitions for the lexicographical ordering and its converse
(see [Hausdorff1978]).
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lexicographical ordering (or the ordinal power) is defined by

(x1, ..., xn) ≤nlex (y1, ..., yn)⇔ x1 <S y1

∨ (∃k ∈ {2, ..., n}) (∀i < k) (xi = yi ∧ xk ≤S yk) .

The results formulated in the following two theorems are well-known prop-
erties of the product and lexicographical orderings (see, e.g., [Hausdorff1978]
and [Kuratowski1976]).

Theorem 6.12 Let S be a totally ordered set. Then the product ordering on
S〈n〉 is a partial ordering.

Theorem 6.13 Let S be a totally ordered set. Then the lexicographical ordering
on S〈n〉 is a total ordering.

A further well-known property of the lexicographical ordering is the following
(see, e.g., [Knuth1997] and [Kuratowski1976]).

Theorem 6.14 Let S be a set equipped with an ordering relation ≤S and let
S〈n〉 be the n-th Cartesian power of S, for an ordinal n ≥ 1. Then we have the
following:

(i) The lexicographical ordering on the set S〈n〉 of all n-tuples from S is a
well-ordering iff ≤S is a well-ordering.

(ii) The lexicographical ordering on the set ∪ni=1S〈n〉 of all ordered tuples from
S is not a well-ordering.

Now we proceed to define an ordering relation on the set [R] of interval num-
bers and investigate its properties. Obviously, every set is the unary Cartesian
power of itself. Thus, for n = 1, it can be seen at once that the usual ordering
≤R on the reals is equivalent to the unary lexicographical ordering ≤1lex on R〈1〉.
By virtue of the fact that interval numbers can be represented by ordered pairs
of the reals, it is therefore natural to extend the unary lexicographical order-
ing ≤R on R, to the set [R] of interval numbers. This is made precise in the
following definition.

Definition 6.35 Let �I be a binary relation on [R] such that

�I = {
(
[x, x] ,

[
y, y
])
∈ [R]〈2〉| x <R y ∨

(
x = y ∧ x ≤R y

)
}.
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That is, for all [x, x] and
[
y, y
]
in [R],

[x, x] �I
[
y, y
]
⇔ x <R y ∨

(
x = y ∧ x ≤R y

)
.

The strict relation ≺I and the converse relation �I , of �I , are characterized
as follows.

Definition 6.36 For all X and Y in [R], the strict relation ≺I of �I is defined
by

X ≺I Y ⇔ (X �I Y ) ∧ (X 6= Y ) .

Definition 6.37 For all X and Y in [R], the converse relation �I of �I is
defined to be

�I = �̂I = {(X, Y ) ∈ [R]〈2〉| (Y,X) ∈ �I}.

By means of the above definitions, and according to definition 6.3, the fol-
lowing two theorems are immediate.

Theorem 6.15 For all [x, x] and
[
y, y
]
in [R], the strict relation ≺I of �I is

formulated in terms of the intervals’endpoints as

[x, x] ≺I
[
y, y
]
⇔ x <R y ∨

(
x = y ∧ x <R y

)
.

Theorem 6.16 For all [x, x] and
[
y, y
]
in [R], the converse relation �I of �I

is formulated in terms of the intervals’endpoints as

[x, x] �I
[
y, y
]
⇔ y <R x ∨

(
y = x ∧ y ≤R x

)
⇔ x >R y ∨

(
x = y ∧ x ≥R y

)
.

Hereafter, if confusion is unlikely, the subscript “R”, in the real relation and
operation symbols, may be suppressed.

Our characterization of the relation �I on the set [R] of interval numbers im-
plies a number of results. The first important result of this section is formulated
in the following theorem.

Theorem 6.17 (Total Orderness of �I). The relation �I is a non-strict total
ordering on the set [R] of interval numbers.

145



CHAPTER 6. ORDERING INTERVAL NUMBERS AND OTHER SUBSETS OF THE
REALS

Proof. The theorem immediately follows from theorem 6.13, by the fact that
the set R is totally ordered by the relation ≤R.

An alternate proof, based on the properties of interval numbers, can be
constructed as follows.

According to definition 6.10, we are required to prove that �I is antisymmet-
ric, transitive, and strongly connected in [R]. In what follows Let X = [x, x],
Y =

[
y, y
]
, and Z = [z, z] be any three elements in [R].

• �I is antisymmetric in [R]. Let the formula

X �I Y ∧ Y �I X,

be true. By definition 6.35, we have

X �I Y ⇔ x < y ∨
(
x = y ∧ x ≤ y

)
,

Y �I X ⇔ y < x ∨
(
y = x ∧ y ≤ x

)
.

Since these cannot hold together unless x = y and x = y, it follows,
according to definition 6.4, that �I is antisymmetric in [R].

• �I is transitive in [R]. Let the formula

X �I Y ∧ Y �I Z,

be true. By definition 6.35, we have

X �I Y ⇔ x < y ∨
(
x = y ∧ x ≤ y

)
,

Y �I Z ⇔ y < z ∨
(
y = z ∧ y ≤ z

)
.

We then have four possible cases.

Case 1. x < y and y < z. This implies, by transitivity of <, that x < z, and
hence X �I Z.

Case 2. x < y and
(
y = z ∧ y ≤ z

)
. This implies that x < z and y ≤ z,

which yields X �I Z.

Case 3.
(
x = y ∧ x ≤ y

)
and y < z. This implies x < z and x ≤ y, which

yields X �I Z.

Case 4.
(
x = y ∧ x ≤ y

)
and

(
y = z ∧ y ≤ z

)
. This implies, by transitivity

of ≤, that x = z and x ≤ z, which yields X �I Z.
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Since, in all the preceding four cases, we have X �I Z, it follows, according
to definition 6.4, that �I is transitive in [R].

• �I is strongly connected in [R]. According to definition 6.4, we want to
prove that

X �I Y ∨ Y �I X,
or, equivalently, we want to prove the following

¬ (X �I Y )⇒ Y �I X.

So let ¬ (X �I Y ) be true, and we shall prove that Y �I X. By definition
6.35, we have

¬ (X �I Y ) ⇔ ¬
(
x < y ∨

(
x = y ∧ x ≤ y

))
⇒

(
¬
(
x < y

))
∧
(
¬
(
x = y ∧ x ≤ y

))
⇒

(
x ≥ y

)
∧
(
x 6= y ∨ x > y

)
⇒

(
x ≥ y ∧ x 6= y

)
∨
(
x ≥ y ∧ x > y

)
⇒

(
x > y

)
∨
(
x ≥ y ∧ x > y

)
⇒

(
x > y

)
∨
((
x > y ∨ x = y

)
∧ x > y

)
⇒

(
x > y

)
∨
((
x > y ∧ x > y

)
∨
(
x = y ∧ x > y

))
⇒

(
y < x

)
∨
((
y < x ∧ y < x

)
∨
(
y = x ∧ y < x

))
⇒ Y �I X.

Hence, �I is strongly connected in [R].

Thus all the three criteria are met for the relation �I , and therefore �I is a
non-strict total ordering on the set [R] of interval numbers.

To illustrate, we next give some examples.

Example 6.1 The following instances show the total orderness of the relation
�I.

(i) [2, 3] �I [3, 4].

(ii) [3, 5] �I [3, 6].

(iii) The subset {[3, 5] , [2, 4] , [−2, 1] , [8, 9] , [−4,−2] , [−1, 0]} of [R] can be or-
dered by �I as follows:

[−4,−2] �I [−2, 1] �I [−1, 0] �I [2, 4] �I [3, 5] �I [8, 9] .
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The �I-minimum in the set is [−4,−2] and the �I-maximum is [8, 9].

Each interval number can be represented as a point on, or above, the line
x = x in the 2-dimensional Cartesian space (see Figure 6.1). The ordering �I
on [R] can therefore be geometrically conceived as follows: if Xi = [xi, xi] then
X1 �I X2 if X1 is on the left of X2, or X1 and X2 are on the same vertical line
such that X1 is below X2, or X1 and X2 coincide. Interval numbers which are
on the line x = x are point intervals (or real numbers) which can be compared
by �I according to their position on the line; lower points are �I upper points
of the line. In Figure 6.1, an arrow form X1 to X2 indicates that X1 �I X2.

Figure 6.1: X1 �I X3 �I X2 �I X4 �I X5.

In consequence of the preceding theorem and by means of theorem 6.2, the
following result for the converse relation �I is provable.

Corollary 6.1 The converse relation �I is a non-strict total ordering on the
set [R] of interval numbers.

A necessary criterion for an ordered interval algebra to be definable is that
an ordering relation on the set [R] of interval numbers must be proved to be
compatible with the interval algebraic operations. The following theorem says
that the criteria for a compatible ordering are met by the relation �I .
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Theorem 6.18 (Order Compatibility of �I). The ordering �I is compatible
with the nondistributive abelian semiring16, 〈[R] ; +c,×c; [0, 0] , [1, 1]〉, of classi-
cal interval arithmetic. That is

(i) (∀X, Y, Z ∈ [R]) (X �I Y ⇒ (X +c Z) �I (Y +c Z)),

(ii) (∀X, Y, Z ∈ [R]) (X �I Y ∧ [0, 0] �I Z ⇒ (X ×c Z) �I (Y ×c Z)).

Proof. We need to prove that the relation �I satisfies the two criteria for
a compatible ordering. Below, we suppress the subscripts for the operation
symbols for brevity.

Let X = [x, x], Y =
[
y, y
]
, and Z = [z, z] be any three elements in [R].

(i) Compatibility with addition in [R]. Let the formula

X �I Y ,

be true. According to definition 6.35, we have

X �I Y ⇔ x < y ∨
(
x = y ∧ x ≤ y

)
.

We then have two cases.

Case 1. x < y. Then, by compatibility of < with real addition, we have
x+ z < y + z, and therefore X + Z �I Y + Z.

Case 2.
(
x = y ∧ x ≤ y

)
. Then, by compatibility of ≤ with real addition, it

follows x+ z ≤ y+ z and also x+ z = y+ z. Hence, X +Z �I Y +Z, and, by
definition 6.21, �I thus is compatible with addition in [R].

(ii) Compatibility with multiplication in [R]. Let the formula

X �I Y ∧ [0, 0] �I Z,

be true. According to definition 6.35, we have

X �I Y ⇔ x < y ∨
(
x = y ∧ x ≤ y

)
,

[0, 0] �I Z ⇔ 0 < z ∨ (0 = z ∧ 0 ≤ z) .

We have four possible cases.

16 We proved in theorem 2.24, on page 32, that the algebraic system of classical interval
arithmetic is a nondistributive abelian semiring.
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Case 1. x < y and 0 < z. Then

X × Z = [min{xz, xz, xz, xz},max{xz, xz, xz, xz}]
= [min{xz, xz},max{xz, xz}] ,

since 0 < z ≤ z. Similarly

Y × Z =
[
min{yz, yz, yz, yz},max{yz, yz, yz, yz}

]
=
[
min{yz, yz},max{yz, yz}

]
.

With the condition that x < y, we have five subcases for the signs of x and y.

Subcase 1.1. Both x and y are positive. Hence, we get

X × Z = [xz, xz] ,
Y × Z =

[
yz, yz

]
.

Since x < y and 0 < z, it follows, by compatibility of < with real multiplication,
that xz < yz. Therefore, X × Z �I Y × Z.

Subcase 1.2. Both x and y are negative. We get

X × Z = [xz,max{xz, xz}] ,
Y × Z =

[
yz,max{yz, yz}

]
.

Since x < y and 0 < z ≤ z, it follows, by compatibility of < with real multipli-
cation, that xz < yz, and hence X × Z �I Y × Z.

Subcase 1.3. x is negative and y is positive. Hence, we get

X × Z = [xz,max{xz, xz}] ,
Y × Z =

[
yz, yz

]
.

Since 0 < z ≤ z, it follows that xz is negative and yz is positive. So xz < yz,
and therefore X × Z �I Y × Z.

Subcase 1.4. x = 0 and y is positive. We get

X × Z = [0,max{xz, xz}] ,
Y × Z =

[
yz, yz

]
.

Since 0 < z, we have 0 < yz, and hence X × Z �I Y × Z.
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Subcase 1.5. x is negative and y = 0. Hence, we get

X × Z = [xz,max{xz, xz}] ,
Y × Z = [0,max{yz, yz}] .

Since 0 < z ≤ z, it follows that xz < 0, and therefore X × Z �I Y × Z.

Case 2.
(
x = y ∧ x ≤ y

)
and 0 < z. Then

X × Z =
[
min{yz, yz},max{xz, xz}

]
,

Y × Z =
[
min{yz, yz},max{yz, yz}

]
,

since 0 < z ≤ z and x = y. The lower bounds of X × Z and Y × Z are the
same so we turn to check their upper bounds.

With the condition that x ≤ y, we have either x = y, which yields directly
that X × Z = Y × Z, or x < y. We then have five subcases for the signs of x
and y.

Subcase 2.1. Both x and y are positive. Hence, we get

max (X × Z) = xz,
max (Y × Z) = yz.

Since x ≤ y and 0 < z ≤ z, it follows, by compatibility of ≤ with real multipli-
cation, that xz ≤ yz, and hence X × Z �I Y × Z.

Subcase 2.2. Both x and y are negative. We get

max (X × Z) = xz,
max (Y × Z) = yz.

Since x ≤ y and 0 < z, it follows, by compatibility of ≤ with real multiplication,
that xz ≤ yz, and hence X × Z �I Y × Z.

Subcase 2.3. x is negative and y is positive. We get

max (X × Z) = xz,
max (Y × Z) = yz.

Since 0 < z ≤ z, it follows that xz is negative and yz is positive. So xz < yz,
and therefore X × Z �I Y × Z.
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Subcase 2.4. x = 0 and y is positive. We get

max (X × Z) = 0,
max (Y × Z) = yz.

Since 0 < z ≤ z, we have 0 < yz, and hence X × Z �I Y × Z.

Subcase 2.5. x is negative and y = 0. Hence, we get

max (X × Z) = xz,
max (Y × Z) = 0.

Since 0 < z, it follows that xz < 0. Therefore X × Z �I Y × Z.

Case 3. x < y and (0 = z ∧ 0 ≤ z). Then

X × Z = [min{xz, xz, xz, xz},max{xz, xz, xz, xz}]
= [min{xz, xz},max{xz, xz}]
= [xz, xz] ,

since 0 ≤ z. Similarly
Y × Z =

[
yz, yz

]
.

Since x < y and 0 ≤ z, we have xz ≤ yz. We notice that xz = yz only when
z = 0, which yields X × Z = Y × Z = [0, 0]. Hence, X × Z �I Y × Z.

Case 4.
(
x = y ∧ x ≤ y

)
and (0 = z ∧ 0 ≤ z). Then

X × Z = [min{xz, xz, xz, xz},max{xz, xz, xz, xz}]
= [min{xz, xz},max{xz, xz}]
= [xz, xz] ,

since 0 ≤ z. Similarly
Y × Z =

[
yz, yz

]
.

Since x = y, it follows that xz = yz. Also, since x ≤ y and 0 ≤ z, we
get xz ≤ yz. Hence, X × Z �I Y × Z, and, by definition 6.21, �I thus is
compatible with multiplication in [R].

It is therefore shown that �I is compatible with the algebraic system of
classical interval arithmetic.

Thus, if we endow the classical interval algebra with the compatible total
ordering �I , then we have the totally-ordered nondistributive abelian semiring,
〈[R] ; +c,×c; [0, 0] , [1, 1] ;�I〉.
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The following examples make this clear.

Example 6.2 For three given interval numbers [−1, 2], [2, 3], and [1, 2], we
have

(i) [−1, 2] �I [2, 3],

(ii) [0, 4] = [−1, 2] + [1, 2] �I [2, 3] + [1, 2] = [3, 5],

(iii) [−2, 4] = [−1, 2]× [1, 2] �I [2, 3]× [1, 2] = [2, 6].

Geometrically, the compatibility of the ordering �I with classical interval
addition and multiplication can be conceived as shown in Figures 6.2 and 6.3
respectively.

Figure 6.2: Compatibility of �I with interval addition.

By means of theorem 6.6, the preceding theorem yields the following result
for the converse relation �I .

Corollary 6.2 The converse ordering �I is compatible with both classical in-
terval addition and multiplication.
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Figure 6.3: Compatibility of �I with interval multiplication.

As it is the case with the strict ordering <R on the set of real numbers,
the following theorem asserts that the set of interval numbers cannot be well-
ordered by the strict relation ≺I .

Theorem 6.19 (Well-Orderness of ≺I). The strict relation ≺I is not a well-
ordering on the set [R] of interval numbers.

Proof. The proof is immediate from theorem 6.14, by the fact that the set R
is not well-ordered by the relation <R.

The next theorem asserts that the density property holds for the set [R] of
interval numbers relative to the strict ordering ≺I .

Theorem 6.20 (Density of ≺I). The set [R] of interval numbers is dense with
respect to the strict ordering ≺I. That is

(∀X, Y ∈ [R]) (X ≺I Y ⇒ (∃Z ∈ [R])(X ≺I Z ∧ Z ≺I Y )).

Proof. Let X = [x, x] and Y =
[
y, y
]
be any two elements of [R] such that

X ≺I Y . By theorem 6.15, we have

X ≺I Y ⇔ x < y ∨
(
x = y ∧ x < y

)
.
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We then have two possible cases.

Case 1. x < y. Then, by density of R with respect to its usual strict ordering,
<, there exists some real number, say z, such that x < z and z < y. Now, let z
be any chosen element of R with z ≤ z. Hence, the interval number Z = [z, z]
is an element of [R] which satisfies

X ≺I Z ∧ Z ≺I Y .

Case 2. x = y ∧ x < y. Again, by <-density of R, there exists some real
number, say z, such that x < z and z < y. Let z be an element of R with
z = x = y. Hence, the interval number Z = [z, z] is an element of [R] which
satisfies

X ≺I Z ∧ Z ≺I Y .
Therefore, the set [R] of interval numbers is ≺I-dense.

Some examples follow.

Example 6.3 The following instances show the density of [R] with respect to
the relation ≺I.

(i) Let X = [1, 2] and Y = [2, 3]. Then X ≺I Y . Take Z = [1.5, 4]. Then
X ≺I Z ∧ Z ≺I Y .

(ii) Let X = [1, 3] and Y = [1, 5]. Then X ≺I Y . Take Z = [1, 4]. Then
X ≺I Z ∧ Z ≺I Y .

Next we prove that the set [R] of interval numbers has a weak form of the
Archimedean property with respect to the ordering �I .

Theorem 6.21 (Weak Archimedeanity of �I). The set [R] of interval numbers
is weakly Archimedean with respect to the ordering �I. That is, the relation �I
does not satisfy the condition

(i) (∀X, Y ∈ [R]) ([0, 0] �I X ∧ [0, 0] 6= X ⇒ (∃n ∈ Z+) (Y �I nX)),

but satisfies the condition

(ii) (∀X, Y ∈ [R]) ([0, 0] �I X ∧ 0 /∈ X ⇒ (∃n ∈ Z+) (Y �I nX)).
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Proof. For (i), it suffi ces to give a counterexample. Let X = [0, 1] and Y =
[1, 2]. Then

[0, 0] �I X ∧ [0, 0] 6= X,

while, for all n ∈ Z+, the following does hold

n× [0, 1] = [0, n] �I [1, 2] .

That is nX �I Y . Hence, (i) does not hold for �I in [R].

For (ii), let X = [x, x] and Y =
[
y, y
]
be any two elements of [R]. Let the

formula
[0, 0] �I X ∧ 0 /∈ X,

be true. By means of definition 6.35, we get

[0, 0] �I X ∧ 0 /∈ X ⇔ 0 < x.

Now, we need to find some n ∈ Z+ such that[
y, y
]
�I n× [x, x] = [nx, nx] .

From definition 6.35, this is equivalent to

y < nx ∨
(
y = nx ∧ y ≤ nx

)
.

By ≤-Archimedeanity of R, with x > 0, we could always find such number
n ∈ Z+ such that y < nx. Hence, we could find n ∈ Z+ such that Y �I nX,
and therefore the set [R] of interval numbers is weakly �I-Archimedean.

In the proof of the preceding theorem, we proved the Archimedean statement
with 0 /∈ X instead of 0 6= X, hence the name “weak Archimedeanity”. However,
in this sense, the weakly Archimedean property for interval numbers relative
to the ordering �I implies, as a special case, the Archimedean property for
real numbers relative to the ordering ≤R, for the case when X and Y are point
intervals.

Examples are shown below.

Example 6.4 The following instances show the weak Archimedeanity of [R]
with respect to the relation �I.

(i) Let X = [2, 4] and Y = [−1, 3]. Then we could find some n ∈ Z+ such that
Y �I nX by solving

−1 < 2n,

156



CHAPTER 6. ORDERING INTERVAL NUMBERS AND OTHER SUBSETS OF THE
REALS

which yields n = 1 or n > 1.

(ii) Let X = [2, 4] and Y = [2, 5]. Then we could find some n ∈ Z+ such that
Y �I nX by solving

2 < 2n,

which yields n = 2 or n > 2.

In contrast to the case with the ordering <R on the set of real numbers, the
following theorem proves that the set of interval numbers does not satisfy the
Dedekind completeness property with respect to the strict relation ≺I .

Theorem 6.22 (Dedekind Completeness of ≺I). The set [R] of interval num-
bers is not Dedekind complete with respect to the strict ordering ≺I. That is,
there is some nonempty subset of [R] which has a ≺I-upper bound in [R] and
does not have a ≺I-supremum in [R].

Proof. To prove the theorem, it suffi ces to give a counterexample.

Consider a subset K of [R] defined by

K = {
[
k, k
]
∈ [R]|k = l ∧ n ≤ k},

with l < 0 < n. Clearly, the set K has ≺I-upper bounds in [R].

An interval number [z, z] is a ≺I-supremum of K in [R] iff for all
[
k, k
]
in

K, z = l and z > k, which cannot hold.

Thus K does not have a ≺I-supremum in [R], and therefore the set [R] of
interval numbers is not Dedekind ≺I-complete.

The graphical representation of the set K, defined in the proof of the pre-
ceding theorem, is shown in Figure 6.4.

However, it can be easily shown that the ordering ≺I is Dedekind complete
in the set

[R∗] = {X ∈ ℘ (R∗) | (∃x ∈ R∗) (∃x ∈ R∗) (x ≤ x ∧X = [x, x])},

of extended intervals17, where R∗ = R ∪ {−∞,∞} is the set of extended real
numbers. This result follows from the fact that the set R∗, unlike the set R of

17 For further details on extended intervals (complete intervals, or Kulisch intervals), the
reader may consult, e.g., [Kulisch2008a] and [Kulisch2008b].
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Figure 6.4: A subset K of interval numbers with ≺I-upper bounds, but with no ≺I-supremum.

ordinary real numbers, is an order-complete set (or a complete lattice)18.

An important result with profound consequences is that the ordering rela-
tion �I induces a distributive, and hence modular, lattice structure for interval
numbers. These are proved in the next theorem and its corollary.

Theorem 6.23 (Latticity of �I). The set [R] of interval numbers is a distrib-
utive lattice with respect to the ordering �I.

Proof. According to theorem 6.4, if a relation < is a total ordering on a set
S, then S is a distributive <-lattice. By theorem 6.17, the relation �I is a
non-strict total ordering on [R], and therefore the set [R] of interval numbers is
a distributive �I-lattice.

By theorem 6.5, the modularity of the �I-lattice is immediate.

18 Order completeness is a generalization of the notion of Dedekind completeness. A set S
is order-complete (or a complete lattice) with respect to an ordering relation < iff every subset
of S has an <-infimum and an <-supremum in S. If S is an order-complete set, then the
Cartesian power S〈n〉 of S is order-complete, and hence Dedekind complete, with respect to the
lexicographical ordering (see, e.g., [Blyth2010] and [Pouzet1981]).
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Corollary 6.3 The set [R] of interval numbers is a modular lattice with respect
to the ordering �I.

Finally, we are led to the following three theorems, which assert that the
total ordering �I is an extension of the ordering ≤R on the reals, Moore’s
partial ordering <M on [R], and Kulisch’s partial ordering ≤K on [R].

Theorem 6.24 The ordering �I extends the ordering ≤R on the set R of real
numbers. That is

(∀ [x, x] , [y, y] ∈ [R]) ([x, x] �I [y, y]⇔ x ≤R y) .

Proof. By means of definition 6.35, for any two point intervals [x, x] and [y, y],
we have

[x, x] �I [y, y]⇔ x <R y ∨ (x = y ∧ x ≤R y)⇔ x ≤R y,

and therefore the ordering �I extends the usual ordering ≤R on the set R of
real numbers.

Theorem 6.25 The ordering �I is a superset of Moore’s partial ordering <M
on the set [R] of interval numbers. That is(

∀ [x, x] ,
[
y, y
]
∈ [R]

) (
[x, x] <M

[
y, y
]
⇒ [x, x] �I

[
y, y
])
,

or, equivalently(
∀ [x, x] ,

[
y, y
]
∈ [R]

) (
[x, x] 6�I

[
y, y
]
⇒ [x, x] 6<M

[
y, y
])
.

Proof. By means of definition 6.26, for any two interval numbers [x, x] and[
y, y
]
, we have

[x, x] <M
[
y, y
]
⇔ x <R y.

But, x <R y, in conjunction with the fact that x ≤R x and y ≤R y, obviously
implies

(
x <R y

)
∧ (x <R y), which, in turn, by definition 6.35, yields [x, x] �I[

y, y
]
. Therefore, the ordering �I is a superset of Moore’s ordering <M on the

set [R] of interval numbers.

Theorem 6.26 The ordering �I is a superset of Kulisch’s partial ordering ≤K
on the set [R] of interval numbers. That is(

∀ [x, x] ,
[
y, y
]
∈ [R]

) (
[x, x] ≤K

[
y, y
]
⇒ [x, x] �I

[
y, y
])
,
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or, equivalently(
∀ [x, x] ,

[
y, y
]
∈ [R]

) (
[x, x] 6�I

[
y, y
]
⇒ [x, x] �K

[
y, y
])
.

Proof. According to definitions 6.27 and 6.35, for any two interval numbers
[x, x] and

[
y, y
]
, we have

[x, x] ≤K
[
y, y
]
⇔

(
x ≤R y

)
∧ (x ≤R y)

⇒
(
x <R y ∨ x = y

)
∧ (x ≤R y)

⇒
(
x <R y ∧ x ≤R y

)
∨
(
x = y ∧ x ≤R y

)
⇒

(
[x, x] �I

[
y, y
])
∨
(
[x, x] �I

[
y, y
])

⇒
(
[x, x] �I

[
y, y
])
,

and thus the ordering �I is a superset of Kulisch’s partial ordering ≤K on the
set [R] of interval numbers.

The two important results established in the preceding two theorems can be
combined in the single statement (<M ∪ ≤K) ⊂ �I , that is

(∀X, Y ∈ [R]) (X <M Y ∨X <K Y ⇒ X �I Y ) ,

or, equivalently

(∀X, Y ∈ [R]) (X 6�I Y ⇒ X 6<M Y ∧X 6<K Y ) .

In other words, for two interval numbers X and Y , if the relation X �I Y is
not true, then none of the relations X <M Y and X <K Y can be true.

Finally, let us remark that the results obtained in this chapter give an insight
into some further consequences. As examples of these consequences we mention
the following:

• By means of the results that the ordering �I is total and compatible with
the interval algebraic operations, intervals of intervals (higher-order inter-
vals) are definable as[

X,X
]

= {X ∈ [R]|X �I X �I X},

and their algebra can be constructed in the standard way.

• By virtue of the totality of the ordering �I , an interval distributive �I-
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lattice algebra 〈[R] ; +,×;g,f〉 is definable such that

(∀X, Y ∈ [R]) (X g Y = Y ⇔ �I -sup (X, Y ) = Y ) ,
(∀X, Y ∈ [R]) (X f Y = X ⇔ �I -inf (X, Y ) = X) ,

and its fundamental properties are derivable.

• By virtue of the totality of the ordering �I , we can define the open higher-
order intervals ]

X,X
[

= {X ∈ [R]|X ≺I X ≺I X},]
−∞, X

[
= {X ∈ [R]|X ≺I X},

]X,∞[ = {X ∈ [R]|X ≺I X},
]−∞,∞[ = [R],

and consequently an order topology for interval numbers is definable and
its properties can be investigated in the standard way.
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Chapter 7
Concluding Remarks

It is not once nor twice but times without number that the same ideas make
their appearance in the world.

—Aristotle (384 BC—322 BC)

This final chapter offers a concluding view to the future of interval compu-
tations, brief selections of some application areas of interval arithmetic, and
an overview of the current research topics in the interval theory. After this
concluding look ahead, section 7.4 provides a summary of contributions of this
thesis and outlines several directions and perspectives for future research.

7.1 A View to the Future of Interval Computations

What is the future of interval computations? Fortunately, computers are getting
faster and most existing parallel processors provide a tremendous computing
power. So, with little extra hardware, it is very possible to make interval
computations as fast as floating-point computations. The interval theory is
likely to have more widespread applications in the future, for many reasons:

• Interval algorithms are naturally parallel, because they progress by deleting
regions where solutions are proved not to exist. Intervals provide the only
known general algorithms that achieve linear speedup, as the number of
processors increases in parallel computing systems.

• Interval arithmetic is, arguably, the best and most effi cient way to safely
translate ever-increasing computer speed into mission-critical problem so-
lutions that are otherwise impractical or impossible to obtain.
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• By using interval algorithms to solve nonlinear problems, more accurate
mathematical models of physical phenomena become practical.

• With interval arithmetic, it is possible to automatically perform rigorous
error analysis, and solve nonlinear problems that were previously thought
to be impossible to solve.

• Speed is not all-important anymore. We can get worthwhile accurate re-
sults by sacrificing some speed.

7.2 More Scientific Applications of Interval Arithmetic

Despite the persisting interval dependency problem and other implementation
drawbacks, interval methods are becoming a mainstream. Interval arithmetic
is still more accurate and reliable than floating-point arithmetic and traditional
numerical approximation methods. Today, the interval theory has numerous
applications in scientific and engineering disciplines that deal intensely with
uncertain data.

Brief selections of some application areas of interval arithmetic are listed be-
low (For further details, see, e.g., [Hansen2003], [Jaulin2001], and [Moore2009]).

• Electrical Engineering. Interval computations, besides providing validated
results, are hundreds of times faster than a Monte Carlo method for solving
AC network equations. Moreover, interval computations are applied in
quality control in the manufacture of radioelectric devices.

• Control Theory. Interval computations are used to analyze Hurwitz stability
in control theory applications.

• Remote Sensing and GISs. Interval computations are used to bound errors
in decisions based on remote sensing. Furthermore, interval methods are
used in sensitivity analysis in geographic information systems (GISs).

• Quality Control. Interval computations are used for quality control in man-
ufacturing processes in which the factors fluctuate within bounds.

• Economics: Linear interval methods are used in modeling economic systems
to determine the effects of uncertainties in input parameters, and to include
the effects of forecast uncertainties.

• Experimental Physics. Interval computations are used to handle the gath-
ered uncertain data about observed physical phenomena.
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• Computational Physics. Interval algorithms are used to solve physical prob-
lems that arise from experimental and theoretical physics.

• Dynamical and Chaotic Systems: Interval computations are used to verify
that computed numerical solutions to chaotic dynamical systems are close
to the actual solutions. Furthermore, cell-mapping methods based on in-
terval arithmetic are used to robustly visualize strange attractors (SAs) in
discrete chaotic systems.

• Computer Graphics and Computational Geometry: Interval computations are
used to handle many problems in computer graphics and computational
geometry. Operations on geometric objects such as rendering, surface in-
tersection, and hidden line removal require robustness in nonlinear equa-
tion solvers that can be provided by interval computations. A set of tools
and techniques, based on interval arithmetic and affi ne geometry, has been
developed to improve robustness in such operations.

7.3 Current Research Trends in Interval Arithmetic

In the early stages, classical interval arithmetic was preoccupied with the effect
of rounding errors on the accuracy of expression evaluation. Later, it was
realized that the interval theory has the potential of going beyond expression
evaluation and on to solving problems that are inaccessible to conventional
approaches. For example, interval analysis has been used, by Thomas Hales
of the university of Michigan, in computational parts of a proof of Kepler’s
conjecture on the densest packing of spheres. Making use of classical interval
mathematics, Hales introduced a definitive proof of a conjecture that perplexed
mathematicians for nearly 400 years (see, e.g., [Hales2005] and [Moore2009]).

Current and future research efforts in interval mathematics can be classified
mainly into three categories; interval standardizations, interval implementa-
tions, and generalizations of the mathematical theory of intervals. A consid-
erable scientific effort is put into developing special methods and algorithms
that try to overcome the diffi culties imposed by the algebraic disadvantages
of the classical interval arithmetic structure. Various proposals for possible
alternate theories of interval arithmetic were introduced to reduce the depen-
dency effect or to enrich the algebraic structure of interval numbers (For further
details, see, e.g., [Gardenyes1985], [Hansen1975], [Hayes2009], [Kulisch2008a],
[Lodwick1999], and [Markov1995]).

Now, the subject of interval mathematics concerns numerous scientific jour-
nals and publishers. The journal “Interval Computations” started as a joint
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Soviet-Western enterprise in 1991, and continues as the journal “Reliable Com-
puting”. Besides that, “Computing”commonly publishes material related to
interval computations, as well as the journal “Global Optimization”. Traditional
numerical analysis journals such as “BIT”, the “SIAM Journal on Numerical
Analysis”, the “SIAM Journal on Scientific and Statistical Computing”, and
the “ACM Transactions on Mathematical Software”contain articles on inter-
val computations (For further resources, see, e.g., [Hansen2003], [Jaulin2001],
[Kearfott1996], and [Moore2009]).

7.4 Summary of Contributions and Future Work

This research makes the following contributions.

• We formally construct the algebraic system of classical interval arithmetic,
deduce its fundamental properties, and finally prove that it is a nondis-
tributive abelian semiring.

• Although the notion of interval dependency is widely used in the inter-
val literature, no attempt has been made to put on a systematic basis
its meaning, that is, to indicate formally the criteria by which it is to
be characterized. We formalize the notion of interval dependency, along
with discussing the algebraic systems of two important alternate theories
of interval arithmetic: modal interval arithmetic, and constraint interval
arithmetic. The algebra of modal intervals is studied and then uncovered
to be a nondistributive abelian ring. We pay great attention, in particu-
lar, to studying the foundations of the theory of constraint intervals, and
deduce some important results about its underlying algebraic system.

• Based on the idea of representing a real closed interval as a convex set,
along with our formalization of the notion of interval dependency, we
present an alternate theory of intervals, namely the “theory of optimiza-
tional intervals”, with a mathematical construction that tries to avoid some
of the defects in the current theories of interval arithmetic, to provide a
richer interval algebra, and to better account for the notion of interval de-
pendency. We carefully construct the algebraic system of optimizational
interval arithmetic, deduce its fundamental properties, and then prove that
the optimizational interval theory constitutes a rich S-field algebra, which
extends the ordinary field structure of real numbers.

• After formalizing the classical theory of complex intervals, we present a
new systematic construction of complex interval arithmetic, based on the
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theory of optimizational intervals. We carefully construct the algebraic sys-
tem of optimizational complex interval arithmetic, deduce its fundamental
properties, and then prove that optimizational complex interval arithmetic
possesses a rich S-field algebra, which extends the field structure of ordi-
nary complex numbers and the S-field of optimizational interval numbers.

• Of all the existing ordering relations for interval numbers, none is a total
ordering. After providing a quick survey of such partial ordering relations,
along with discussing their compatibility with the interval algebraic opera-
tions, we define an ordering relation �I on the set [R] of interval numbers,
then we present the proofs that the relation �I is a non-strict total or-
dering on [R], compatible with interval addition and multiplication, dense
in [R], and weakly Archimedean in [R]. Furthermore, we prove that the
relation �I induces a distributive lattice structure for interval numbers,
and that �I is an extension of the usual ordering ≤R on the reals, Moore’s
partial ordering <M on [R], and Kulisch’s partial ordering ≤K on [R].

The results obtained in this thesis give an insight into some further conse-
quences and propose some directions for future research. As future prospects,
we shall attempt to work on some of the following.

• Constructing axiomatizations for the theory of optimizational intervals
with the triple interval representation (“an axiomatic theory of optimiza-
tional triple intervals”), in the language of standard predicate logic, and in
the language of dependence logic.

• Developing proper machine arithmetics for optimizational intervals and
optimizational complex intervals.

• By means of the results that the ordering �I is total and compatible with
the interval algebraic operations, intervals of intervals (higher-order inter-
vals) are definable, and their algebra can be constructed in the standard
way. We aim to develop a “higher-order interval algebra”and investigate
its applications in automated reasoning.

• By virtue of the totality of the ordering �I , an interval distributive �I-
lattice algebra 〈[R] ; +,×;g,f〉 is definable. We aim to study this lattice
structure and derive its fundamental properties.

• By virtue of the totality of the ordering �I , an order topology for interval
numbers is definable. We aim to investigate the fundamental properties of
this topology.
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