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ntracoronary Optical Coherence Tomography:
Comprehensive Review

linical and Research Applications

iram G. Bezerra, MD, PHD,* Marco A. Costa, MD, PHD,* Giulio Guagliumi, MD,‡
ndrew M. Rollins, PHD,† Daniel I. Simon, MD*

leveland, Ohio; and Bergamo, Italy

ardiovascular optical coherence tomography (OCT) is a catheter-based invasive imaging system. Using

ight rather than ultrasound, OCT produces high-resolution in vivo images of coronary arteries and de-

loyed stents. This comprehensive review will assist practicing interventional cardiologists in under-

tanding the technical aspects of OCT based upon the physics of light and will also highlight the

merging research and clinical applications of OCT. Semi-automated imaging analyses of OCT systems

ermit accurate measurements of luminal architecture and provide insights regarding stent apposition,

verlap, neointimal thickening, and, in the case of bioabsorbable stents, information regarding the

ime course of stent dissolution. The advantages and limitations of this new imaging modality will be

iscussed with emphasis on key physical and technical aspects of intracoronary image acquisition, cur-

ent applications, definitions, pitfalls, and future directions. (J Am Coll Cardiol Intv 2009;2:1035–46)

2009 by the American College of Cardiology Foundation
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oncepts in Biophotonics

he fundamental principles of optical coherence
omography (OCT) evolved from optical 1-dimen-
ional low-coherence reflectometry, which uses a

ichelson interferometer and a broadband light
ource. In 1991, the addition of transverse scan-
ing (B-scan), enabled 2-dimensional imaging of
he retina (1). This technique was named OCT by
ames Fujimoto and rapidly expanded to numerous
iomedical and clinical applications. Intravascular
CT requires a single fiberoptic wire that both
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mits light and records the reflection while simul-
aneously rotating and being pulled back along the
rtery.

The coronary OCT light source uses a band-
idth in the near-infrared spectrum with central
avelengths ranging from 1,250 to 1,350 nm.
lthough longer wavelengths provide deeper tissue
enetration, the optimal choice of wavelength in
n arterial vessel is also defined by tissue absorption
haracteristics and the refractive index of the in-
erface between the catheter and vessel wall. Cur-
ent intravascular OCT systems use a central wave-
ength of approximately 1,300 nm. Using this
avelength the tissue penetration is limited to 1 to
mm as compared with 4 to 8 mm achieved by

ntravascular ultrasound (IVUS), with the excep-
ion of calcified lesions in which sound has a
imited penetration.

The image is formed by the backscattering of
ight from the vessel wall or the time it takes for
mitted light to travel between the target tissue and
ack to the lens, producing an “echo time delay”
ith a measurable signal intensity or “magnitude.”

ultiple axial scans (A-lines) are continuously
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cquired as the imagewire rotates and a full revolution
reates a complete cross section of the vessel.

It is important to note that the speed of light (3 � 108

/s) is much faster than that of sound (1,500 m/s), and,
herefore, interferometry techniques are necessary to mea-
ure the backscattered signal since a direct quantification
annot be achieved on such a time scale. The interferometer
ses a fiberoptic coupler similar to a beam splitter, which
irects one-half of the beam to the tissue and the other
ne-half to the reference arm. The reference arm of a
ime-domain optical coherence tomography (TD-OCT)
ystem consists of a mirror moving at calibrated distances to
roduce known echo delays. The reflected signal returning
rom the tissue and reference arms are recombined in the
ber-coupler, and their interference fringes are detected by
photodetector. The general scheme of an intravascular
CT system is shown in Figure 1.
The axial resolution, determined by the light wave-

length, ranges from 12 to 18
�m, compared with 150 to 200
�m for IVUS. The lateral res-
olution and depth of focus are
decoupled from the axial reso-
lution and defined by the spot
size focused by the lens in the
sample arm. The lateral resolu-
tion in catheter-based OCT is
typically 20 to 90 �m as com-
pared with 150 to 300 �m for
IVUS. For faster image acqui-
sition, the ideal choice is to
accelerate the acquisition time
of each A-line. This process
generates faster cross-sectional
imaging, in turn resulting in a
higher number of frames per

econd, which ultimately yields a faster pullback. How-
ver, further improvement in speed for time-domain
CT systems is physically limited by generating a fast

ptical delay in the reference arm and the tradeoff
etween the imaging speed and sensitivity. Newer-
enerations of intravascular OCT systems circumvent
his limitation by using a fixed mirror with a variable
requency light source or “swept-laser.” This method,
ermed frequency or Fourier-domain optical coherence
omography (FD-OCT), allows the simultaneous detec-
ion of reflections from all echo time delays, making the
ystem significantly faster (2). There are 2 types of
D-OCT systems that differ in their method of data
xtraction from the interferometer: optical frequency
omain imaging also known as swept-source OCT, or a
pectral domain OCT. The specific features of each
ystem of transformation are outside the scope of this

bbreviations
nd Acronyms

-line � axial line (scan)

D-OCT � frequency or
ourier-domain optical
oherence tomography

EL/EEL � internal elastic
amina/external elastic
amina

VUS � intravascular
ltrasound

IH � neointimal hyperplasia

CT � optical coherence
omography

D-OCT � time-domain
ptical coherence
omography
rticle. A diagram of the main components of the (
interventions.onlinejaDownloaded from 
D-OCT and FD-OCT systems are shown in Figure 1
nd their features contrasted in Table 1.

ommercial OCT Systems

he first commercially available OCT system was the
ightLab M2 TD-OCT Imaging System (LightLab,
estford, Massachusetts). Recently an FD-OCT system

C7 XR, LightLab) has become commercially available in
he European Union, Asia, and South America. In the

2/M3 systems, images are recorded by an ImageWire
LightLab), a general purpose, single-mode, fiberoptic
ire that rotates inside a fluid-filled polymer tube. A
icro lens assembly at the distal end is �1 mm in length

nd 125 �m in diameter (similar to the fiber itself). This
ssembly focuses and reflects the light beam at �80° from
he fiber’s axis to allow circumferential imaging of the
essel. The wire is attached to an automated pullback
ngine integrated with the console. The external diame-
er of the imagewire is 0.019 inches and is fused to a short
egment of a standard 0.014-inch guidewire at the distal
nd. An over-the-wire low-pressure occlusion balloon
atheter (Helios, Goodman, Nagoya, Japan) with distal
ush ports is used to infuse saline or Ringer’s Lactate at
pproximately 0.5 ml/s to selectively displace blood
uring imaging acquisition. Blood must be completely
emoved, as any amount of residual red blood cells causes
ignificant signal attenuation. Because of safety concerns,
he occlusion time is limited by the manufacturer to 30 s.
imilar balloon occlusion techniques are used with an-
ioscopy. The new FD-OCT systems can acquire 100
rames/s, reaching pullback speeds up to 20 mm/s with
he potential to scan 4- to 6-cm length epicardial coronary
essels in �5 s (3,4). Accelerated pullback speeds permit
he use of a single, high rate (�4 cc/s) bolus injection of
ontrast to produce a blood-free environment, thereby
liminating the need for balloon occlusion (3,4) (Table 1).
he Lightlab FD-OCT system is equipped with a tunable

aser light source with sweep range of 1,250 to 1,370 nm.
he optical fiber is encapsulated within a rotating torque
ire built in a rapid exchange 2.6-F catheter compatible
ith 6-F guides. This system has been already tested in
umans in Europe and Japan, and is currently under
ood and Drug Administration evaluation. Terumo

Terumo Corporation, Tokyo, Japan) is developing an
D-OCT system, which has a 2.4-F shaft. Volcano

Volcano Corporation, Rancho Cordova, California) is
he third FD-OCT system under development with a
apid-exchange nitinol hybrid drive shaft (5).

CT Imaging Acquisition Technique

espite its guidewire-like profile, the OCT ImageWire

Lightlab TD-OCT) is not designed to be advanced into
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he coronary artery as a stand-alone device. Rather, the
magewire is inserted using an over-the-wire balloon
atheter (Helios). The Helios balloon has a maximum
xternal diameter of 1.5 mm and is compatible with large
-F guiding catheters (0.071-inch inner diameter). It is
dvanced distally to the segment of interest over a
onventional angioplasty guidewire (0.014-inch). The
uidewire is then exchanged with the OCT ImageWire,
nd the occlusion balloon is pulled back and repositioned
n a healthy proximal segment. The balloon is highly
ompliant and is inflated at minimal pressure that allows
otally clean imaging from blood, usually between 0.4 to
.7 atm with a dedicated inflator. A contrast injector
ump with a warming cuff is set at 0.5 cc/s infusion,

Figure 1. Scheme of TD-OCT and FD-OCT

A schematic representation of time-domain optical coherence tomography (TD
(FD-OCT, right panel depicts a subtype of FD-OCT called optical frequency do
ter to detect echo time delays of light. The interferometer uses a beamsplitter
The reference arm in TD-OCT is mechanically scanned (by a moving mirror) in
source is frequency swept, the interference of the 2 light beams (tissue and re
ference of the signal ultimately provides amplitude and frequency data. In the
increases in the speed of image acquisition.

Table 1. Comparison Between TD-OCT and Prototype FD-OCT*

Specifications TD-OCT FD-OCT

Axial scans/s 5,000–10,000 �100,000

Lines/frame �200 �500–1,000

Max. frame rate, fps 20 �200

Max. pullback speed, mm/s 3 20

Scan diameter (FOV), mm 6.8 �6–11

Axial resolution, �m 15 10–15

Lateral resolution, �m 90 20–40

Tissue penetration, mm 1.5–3 2–3.5

Balloon occlusion Highly recommended Optional

Catheter size, mm 0.48 0.8–1.0

*Values are approximate; TD-OCT specifications refer to the Lightlab time-domain optical coher-

ence tomography (TD-OCT) system (M2/M3).

FD-OCT � frequency or Fourier-domain optical coherence tomography; FOV � field of view;
pTD-OCT � time-domain optical coherence tomography.

interventions.onlinejaDownloaded from 
hich can be increased to up to 1.0 cc/s until blood is
ompletely cleared. The solution is injected through the
nd-hole distal port of the occlusion balloon catheter and
hould start several seconds before balloon occlusion. The
ullback speed can be adjusted from 0.5 to 3.0 mm/s, and
he entire imagewire is pulled from distal to proximal
long the coronary artery. In the next-generation FD-
CT systems, imaging can be performed without balloon

cclusion. The pullback speed can reach up to 20 to 40
m/s and is performed during contrast injection (�4

c/s) to assure complete blood clearance. Imaging of 4 to
cm of coronary artery segments can be achieved with
15 cc of contrast per pullback. For nonocclusion tech-

iques, iodinated contrast media is preferred over saline
r Ringer’s lactate because of the advantage of high
iscosity solutions in completely removing blood.

Operators should be aware of the vessel size range
uitable for OCT imaging, particularly with the first gen-
ration devices, ideally between 2.0 to 3.75 mm in diameter.
he upper limit is restricted by the scan diameter (field of

iew) and fold-over artifact (specific to FD-OCT systems),
ddressed later. In fact, “out-of-screen” loss of image rep-
esents the most common technical exclusion of frame
nalysis in the clinical trials examined in our core laboratory.
he field of view was significantly enlarged in the new
D-OCT system (Table 1). The need for a proximally
laced balloon in conventional TD-OCT imaging limits its
bility to evaluate ostial and highly proximal disease in the
oronary arteries since inflation of the Helios balloon in an
nprotected left main or diseased segment should not be

left panel) and frequency or Fourier-domain optical coherence tomography
imaging [OFDI OCT]). Both systems use a reference arm and an interferome-
ing the light into a measurement arm (tissue sample) and a reference arm.
to produce a time-varying time delay. In the FD-OCT, because the light
e) oscillates according to the frequency difference. In both systems the inter-
CT system, all echo delays are acquired simultaneously enabling significant
-OCT,
main
, divid
order
ferenc
FD-O
erformed. Other potential sources of image distortion
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nclude excessive vessel tortuosity and the presence of
xuberant collateral flow. Studies comparing OCT versus
VUS suggest that TD-OCT is safe and can be performed
ith success rates at least comparable with IVUS (6–8).
ome transient events, such as chest discomfort and ST-T
hanges, were observed during imaging procedures with
CT or IVUS. Neither hemodynamic instability nor ven-

ricular tachyarrhythmia was observed (7). The feasibility
nd safety of the larger catheter-based FD-OCT systems
emains to be established in future trials.
itfalls in imaging post-processing and interpretation
-offset. Imagewires have minute differences in their optic
ath lengths. The Z-offset is a manually adjustable image
alibration, which is critical for accurate measurements. In
he current LightLabs TD-OCT system, the catheter di-
meter acts as a reference for optimal Z-offset determina-
ion within an image frame. The 4 marks or fiduciaries
hould align to fit the outer surface of the catheter. If the
atheter is not well visualized, calibration is performed in a
rame where the catheter is in contact with the vascular
urface by adjusting the fiduciaries to align the vessel wall.

Figure 2. Most Frequent Artifacts

Cross-sectional image of the human coronary artery. Most frequently observed
Eccentric image wire can distort stent reflection orientation, the struts align to
Saturation artifact, some scan lines have a streaked appearance. (D) Sew-up ar
in misalignment of the image. (E) Air bubbles, formed inside the catheter, pro
bright structures, between 5 and 9 o’clock. (F) Fold over artifact (Fourier-doma
the cross section is located at the level of a side branch (blue line).
he operator should monitor these patterns throughout the
interventions.onlinejaDownloaded from 
ntire pullback since additional adjustments may be neces-
ary. The majority of corrections are typically made in the
rst 10 mm of the pullback image. In next-generation
D-OCT catheters, a semitransparent catheter around the
ptic fiber is more suitable for direct calibration. We have
bserved that a 1% change in the magnitude of the ideal
-offset can result in a 12% to 14% error in area measure-
ents. Small changes in magnitude can also amplify con-

our distortion, which may result in misinterpretation of the
mage.
rtifacts. Some OCT artifacts are common to both OCT
nd IVUS, and others are unique to OCT imaging systems.

ost of these artifacts will not substantially compromise
linical interpretation of the image, if restricted to few
oncontinuous frames, but may render imprecise assessment
f plaque characteristics or measurements (Fig. 2).

. Residual blood attenuates the OCT light beam and may
defocus the beam if red cell density is high. This will
reduce brightness of the vessel wall, especially at large
radial distances from the ImageWire. If the lumen

cts: (A) incomplete blood displacement, resulting in light attenuation. (B)
the imaging wire “sunflower effect” and are elongated “merry-go-round.” (C)
result of rapid wire or vessel movement along 1 frame formation, resulting
n attenuated image along the corresponding arc. Detail reveals the bubbles,
tical coherence tomography system), the longitudinal view demonstrates that
artifa
ward
tifact:
duce a
in op
surface is still clearly defined, the presence of diluted
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blood does not appear to affect area measurements. Care
should be taken to avoid mistakenly labeling residual
blood artifact as thrombus or some other specific intra-
vascular finding.

. Nonuniform rotational distortion is the result of varia-
tion in the rotational speed of the spinning optical
fiber. It is usually produced by vessel tortuosity or by
an imperfection in the torque wire or sheath interfer-
ing with smooth rotation of the optical fiber, which
can result in focal image loss or shape distortion.
Fortunately, this seems to occur less frequently than in
IVUS imaging, perhaps as a result of the smaller
profile and simplified rotational mechanics of OCT
wires.

. Sew-up artifact is the result of rapid artery or imag-
ing wire movement in 1 frame’s imaging formation,
leading to single point misalignment of the lumen
border.

. Saturation artifact occurs when light reflected from a
highly specular surface (usually stent struts) produces
signals with amplitudes that exceed the dynamic range
of the data acquisition system (Fig. 2). This should be
kept in mind when defining the stent surface. We
measured the average “normal” blooming of a stainless
steel stent from 2,250 struts in 471 cross-sectional
OCT images. The mean measured thickness was 37 �

Figure 3. Malapposition Quantification

Cross-section image illustrating various levels of stent strut protrusion. Strut lo
sured distance from the surface of the blooming to the lumen contour is high
ing (the stent surface should be, theoretically, located at one-half the distance
Scientific, Natick, Massachusetts) stent, the total, estimated, strut thickness � 1
ing � 18 �m). The measured distance was 200 �m confirming a malapposed
gated on the struts distant from the wire (5 and 7 o’clock), “merry-go-round” e
8 �m (9). These values are important particularly for
interventions.onlinejaDownloaded from 
malapposition quantification since the blooming
thickness value needs to be considered in addition to
stent and polymer thickness.

. Fold-over artifact is more specific to the new generation
of FD-OCT. It is the consequence of the “phase
wrapping” or “alias” along the Fourier transformation
when structure signals are reflected from outside the
system’s field of view. Typical examples are side branch
and large vessels.

. Bubble artifact occurs when small gas bubbles are formed
in the silicon lubricant used to reduce friction between
the sheath and the revolving optic fiber in TD-OCT
systems. It can attenuate the signal along a region of the
vessel wall, and images with this artifact are not suitable
for tissue characterization.

. Artifacts related to eccentric wire position. Eccentricity of
the imagewire in the vessel lumen can influence many
aspects of the image interpretation. This phenomenon
is likely secondary to imaging sweep speed, and is
more pronounced with an eccentric imagewire posi-
tion, leading to longer distance between each A-line
and consequently decreasing the lateral resolution, and
has been dubbed the “merry-go-round” effect (Fig. 3).
A byproduct of rotational scanning, the reflection
from metallic stent struts align toward the imaging
wire, akin to sunflowers aligning to the sun or a

at 7 o’clock is malapposed (detail). Malapposition is defined when the mea-
n the total thickness of the stent strut � polymer � one-half of the bloom-
blooming thickness). In this particular case of a Taxus Express (Boston
(strut thickness � 132 �m � polymer � 16 �m � one-half of the bloom-

Because of the eccentric wire position, the blooming component is elon-
cated
er tha
of the
64 �m
strut.
“sunflower” effect. This effect is pronounced with
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eccentric wire position, as it can display strut reflec-
tions almost perpendicular to the lumen surface in
oblique regions from the wire. This may have impor-
tant future implications in the serial assessment of
strut length, particularly when evaluating the degra-
dation of bioabsorbable stents.

linical Applications

iagnostic assessment of coronary atherosclerosis. Ac-
nowledging the lack of prospective studies and appropriate
nimal models to define vulnerable plaque (i.e., rupture-
rone), our current understanding of plaque biology sug-
ests that �80% of clinically evident plaque rupture origi-
ates within an inflamed thin-capped fibroatheroma (10).
laques containing calcium nodules are associated with
10% of clinical events, and plaque that does not fall into

ither category is associated with �20% of clinical athero-
hrombosis. Superficial plaque erosion may comprise a
ortion of these events, especially in women and diabetic
atients. Because plaque erosion does not have a typical

Figure 4. Fibrotic Cap Measurement

Representative cross section containing atherosclerotic plaque with different fi

Thick fibrotic cap, measuring 250 �m.

interventions.onlinejaDownloaded from 
ellular or anatomical signature, it is currently difficult to
rospectively identify those plaques at risk by existing
maging methods. Clinical plaque erosion has been reported
y OCT in a similar frequency to pathologic studies (11,12).
Thin-capped fibroatheromas are characterized by 3 es-

ential components: a lipid core, inflammatory cell cap
nfiltration, and a thin fibrous cap. While OCT does not
urrently have the depth to quantify large lipid cores, its
igh resolution allows precise visualization and quantifica-
ion of the thin fibrous cap (11,13).
IBROUS CAP. While seminal post-mortem investigations
ave suggested that a cap thickness �65 �m (14) is
ssociated with plaque rupture, OCT has demonstrated that
atterns of plaque rupture and fibrous cap thickness vary
idely. Illustrating this heterogeneity, OCT showed 93% of

he culprit plaques in patients presenting with acute myo-
ardial infarction triggered by exertion had rupture at the
houlder, where the average cap thickness was 90 �m. In
ontrast, 57% of acute myocardial infarction patients who
xperienced symptoms at rest had plaque rupture in the
houlder with an average cap thickness of 50 �m (15). OCT

cap thicknesses. (A and B) Thin fibrotic cap, measuring 40 �m. (C and D)
brotic
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rovides the potential for fibrous cap plaque measurement
Fig. 4) and was recently used to demonstrate a significant
ncrease in cap thickness in patients taking a statin versus a
ontrol group (16).
NFLAMMATION. The large size of macrophages and their
igh lipid content yield strong optical signals (17–19).
lusters of macrophages can appear as bright spots along

he fibrous cap. However, data supporting OCT’s capability
o quantify macrophages used raw (linear) OCT data from
arly generation systems (18). The accuracy and validation
f current clinical OCT systems for the evaluation of
acrophages remains to be demonstrated.

IPID NECROTIC CORE. The lipid/fibrous tissue interface
auses a surrounding border of high superficial backscatter-
ng. However, light does not penetrate deeply into the
ecrotic core, and is further absorbed by the lipid tissue
roviding a subsequent region of low or no signal casting the
ascular wall beyond in shadow. This makes the extent of
he lipid pool or vascular remodeling difficult to quantify.
ALCIUM NODULES. In contrast to ultrasound, light pene-
rates calcium and OCT depicts calcium with well-defined
oundaries (Fig. 5). One OCT study has reported a sensi-
ivity of 96% and specificity of 97% to detect calcified
odules (13).
HROMBUS. Previous studies have suggested that it is
ossible to identify thrombus by OCT and even discrim-
nate between red and white thrombus, as confirmed by
istopathologic correlation (20) (Table 2). The sensitivity
f OCT to detect thrombus appears to possibly be higher
han that of ultrasound (11,21), but these studies were
onducted in a selected population with a high pre-test
robability of thrombus. In our experience of �500
etailed OCT coronary stent analyses, the discrimination
f thrombus from other potentially abnormal intralumi-
al images can be ambiguous, particularly when these
nalyses are blinded. Overall, OCT may possess diagnos-
ic advantages compared with both IVUS and angioscopy
n the assessment of culprit lesions. Plaque rupture was
dentifiable in 73% of OCT images compared with 40%
nd 47%, respectively, for IVUS and angioscopy; more-
ver, plaque erosion was almost exclusively identified by
CT (23%) in a cohort of patients with acute myocardial

nfarction (11). The same study reported thrombus iden-
ification in all cases by OCT and angioscopy, but only in
3% of IVUS images.
CT-guided coronary intervention. Assessment of lumen
eometry remains the cornerstone of intravascular imaging
riteria to evaluate disease severity and guide interventional
rocedures. Minimal lumen area, percentage lumen ob-
truction, percent neointimal hyperplasia (NIH), stent ap-
osition, stent expansion, minimal stent cross section area,

umen gain, late lumen loss, and restenosis are all based on
he evaluation of the lumen-vessel/stent interface (22–30).

CT images provide a clear depiction of the boundaries r

interventions.onlinejaDownloaded from 
etween lumen and vessel. OCT’s ability to penetrate and
elineate calcium in the vessel wall makes it well suited to
uide complex interventional strategies in vessels with
uperficial calcification (Fig. 6D). It is important to note
hat IVUS-guided vessel dimensions and criteria for
ercutaneous coronary intervention may vary between
ifferent imaging modalities or even different quantifica-
ion software (31).

We and others have demonstrated the higher sensitivity
f OCT compared with IVUS for malapposed strut assess-
ent (32,33). Plaque protrusion and stent-edge dissection

re other common intervention-related parameters readily
isible on OCT images, although their clinical impact

Figure 5. Optical Coherence Tomography: Histology Correlation

(A) Fibrotic plaque: characterized by high signal (high backscattering) and
low attenuation (deep penetration). (B) Predominantly calcified plaque: cal-
cified regions have a sharp border, low signal, and low attenuation permit-
ting deeper penetration. (C) Lipid-rich plaque: the lipid core has a diffuse
border. High light attenuation results in poor tissue penetration (in contrast
to calcified regions). The overlying fibrotic cap can be readily measured; in
this case a thick cap (�200 �m) is present. ‡Calcified region; *lipid core.
Courtesy of LightLab Imaging (C. Y. Xu and J. M. Schmitt).
emains to be assessed.
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esearch Applications of Intravascular OCT

nd point for clinical trials. Stent-strut coverage and appo-
ition have been linked to the risk of stent thrombosis
34,35), and recent DES clinical trials, such as the
DESSA (OCT for DES SAfety) study, have selected

hese variables as their primary end point (36). Histologic
tudies have revealed that IVUS does not have adequate
esolution to detect the thinnest layers of tissue coverage
37), and the perception that lack of NIH by IVUS is
ynonymous to an uncovered strut needs to be reconsidered.
n a sub-analysis of the ODESSA trial, we identified 20 of

Figure 6. Coronary Imaging Acquired With an FD-OCT System

A longitudinal reconstruction (lower panel) and cross-sectional images (uppe
phy (FD-OCT) system (Lightlab) at 20 mm/s immediately after stent implantatio
(A) Distal edge dissection, with corresponding longitudinal view (arrows). (B)
view. (C) Malapposed struts between 11 and 1 o’clock, with corresponding lon

Table 2. General Characteristics of the Different Tissues by OCT

Tissue Backscattering Attenuatio

Calcium � �

Lipid �� ���

Fibrotic �� �

Red thrombus ��� ���

White thrombus ��� �

Media layer � �

IEL/EEL ��� �

IEL/EEL � internal elastic lamina/external elastic lamina; OCT � optical coherence tomography; � �
age, with corresponding longitudinal view (arrows).

interventions.onlinejaDownloaded from 
50 stented segments with no detectable NIH by IVUS, but
ad neointimal coverage ranging from 67% to 100% by
CT (38). In contrast to the relatively homogenous lack of
IH detected by IVUS, OCT revealed a highly heteroge-

eous response to DES, which varied even within the same
ross-sectional image.
trut-level analysis. Our current method of strut-level
nalysis stratifies struts into 4 main categories: covered-
mbedded, covered-protruding (into the lumen but cov-
red), uncovered-apposed, and malapposed. A semi-
utomated stent contour algorithm applies 360 radial
hords for detailed quantification of NIH thickness at

ls) acquired with a frequency or Fourier-domain optical coherence tomogra-
te that a 5-cm coronary segment was imaged with a 3-s contrast injection.
xpanded and well-apposed stent struts, with corresponding longitudinal
nal view (arrows). (D) Proximal calcified plaque with minimal fibrous cover-

General Aspects

Sharp borders, low signal with heterogeneous regions

Irregular borders, superficial high signal followed by very low signal

Homogeneous bright tissue

Superficial signal rich, low penetration, signal-free shadowing

Signal rich, more penetration than for red thrombus

Low signal region, limited by 2 signal-rich band (IEL/EEL)

High signal band (�20 �m)

� � moderate; ��� � high
r pane
n. No
Well-e
gitudi
n
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very degree of the cross section (Fig. 7). The continuous
ampling obtained by OCT also represents an advantage
ver standard histopathology, which evaluates cross sec-
ions in intervals of 2 to 3 mm (39). Taking advantage of
uch OCT features, one may be able to gather enough
nformation from a relatively small patient cohort to
uide drug and device industry before embarking on large
opulation trials.
Our understanding of DES healing in patients with

T-segment elevation myocardial infarction was restricted
o post-mortem data (39). A high-rate (49%) of uncovered
truts was observed in previous pathology studies, but the
imited number of specimens (n � 25) and inherent
election bias of such studies precluded any definitive
onclusions. The OCT substudy of the HORIZONS (Har-
onizing Outcomes with Revascularization and Stents in

Figure 7. Quantitative Stent Analysis

(A) Representative frame depicting a Core-Lab area measurement and strut lev
age and quantitative measurement from the surface of the blooming artifact t
frame (C to N refer to labeled struts): covered struts (E to G), uncovered appos
the automatic 360° chord system, applied between the stent and lumen conto
and stent detection: stent struts (green dots) and lumen contour (red line). (
crimination of the struts from the surrounding tissue. (C and D) LightLab’s aut
LightLab Imaging (C. Y. Xu and J. M. Schmitt), images obtained at Wakayama U
MI) trial (40) evaluated 117 patients (199 stents) in a v
interventions.onlinejaDownloaded from 
rospective, randomized and blinded manner. Stent struts
ere analyzed at every 0.3 mm at 13-month post-stenting

nd revealed a higher percentage of strut coverage in both
are-metal stents and drug-eluting stents (98.9% vs. 94.3%,
� 0.001) compared with autopsy studies (9).
An important limitation of OCT is the limited precision

n discriminating the different kinds of tissue coverage of
tents (i.e., endothelium, smooth muscle cells, extracellular
atrix). Future studies using histopathologic correlations

re needed to define “normal” and “abnormal” stent healing
nd vessel wall passivation. Importantly, the spatial resolu-
ion of current OCT systems is insufficient to detect cell
ayer thickness �20 �m on the stent surface, thereby
recluding a precise distinction between “true lack of cellu-

ar coverage” versus 3 to 5 cell layer coverage of stent struts.
n a research basis, OCT is well suited for studying

lysis. Strut level analysis consists of a qualitative assessment for strut cover-
lumen contour. A heterogeneity of strut coverage is observed within a single
uts (H to J), and malapposed struts (K to N, C and D). (B) Magnification of
llowing a detailed measurement of the stent coverage. (C) Automatic lumen
face 3-dimensional view: the highly reflective stent surface allows easy dis-
d stent strut analysis software (R&D program, not released) courtesy of
sity (Prof. Akasaka). NIH � neointimal hyperplasia.
el ana
o the
ed str
urs, a
D) En
omate
ascular healing over time. In the ongoing OCTAXUS
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OCT Taxus) study, OCT imaging is being performed at 3-
nd 9-month intervals after stent deployment. Serial studies
r observational studies at defined time points may also be
elpful in clarifying the role of adjunctive pharmacology in
he context of vascular healing (e.g., the intensity and
uration of antiplatelet therapy).

he Future Outlook

he future of OCT will include advancements in anatom-
cal and functional assessment of lesions for the interven-
ional cardiologist.
natomical assessment. An advanced edge detection algo-
ithm that enables automated stent strut identification is
lready available in the research laboratory and is likely to
ppear in the cathlab in the near future. A similar concept is
lso being applied to help facilitate tissue characterization
e.g., sharp edges of calcium can be differentiated from
iffuse lipid appearance) (Table 2) (Fig. 5). Texture analysis
f OCT images may also help facilitate tissue characteriza-
ion, (e.g., “fractal analysis” uses a computational method of
alculating the extent of entropy or randomness found in the
issue image). Polarization takes advantage of the random
cattering found in some tissues and reproducible birefrin-

Figure 8. Comparison Between OCT Capabilities and Others’ Imaging Meth

Graphic representation of tissue penetration versus spatial resolution of optica
boxes represent the maximal resolution and depth achieved with current tech
etration for each of the technologies. The dashed box illustrates the hypothet
detect neointimal hyperplasia observed after drug-eluting stent (NIH) usually e
thickness can only be assessed in vivo by OCT. However, current OCT systems
single cell endothelial layers can only be assessed in vitro by microscopy or ad
the process; Endothelium � single intimal cell layer; Fibrous Cap � thickness
ence found in other highly organized tissues (a property of u
interventions.onlinejaDownloaded from 
ollagen-rich tissue). Perhaps this may serve as a future
ndex of plaque stability since this organized fibrous tissue
eems to be protective. Ultra-high resolution OCT, as the
ame suggests, aims to resolve images to �10 m�. Strate-
ies to accomplish this include ultra-broadband light
ources, lower central wavelengths (41), femtosecond lasers
42–45), and multiple superluminescent diodes.
unctional assessment. Contrast enhanced and molecular
CT is an evolving field based on the development and use
f nanoparticles, microspheres, and absorbing dyes to in-
rease the local properties of scattering and absorption of
ight in targeted tissues. Detection of Doppler-like signals
sing a TD-OCT ImageWire may permit a biophotonic
ersion of the flow wire, thereby allowing integration of
hysiology and anatomical assessment using a single device.

onclusions

CT enhances imaging resolution (Fig. 8) that may permit
he evaluation of clinical (e.g., luminal measurements during
CI) and research (e.g., fibrous cap thickness and strut level
nalysis) parameters for the interventional cardiologist. The
ersatility of the physical properties of light position OCT
s an imaging modality could be useful for improving our

rence tomography (OCT) compared with other imaging methods. The solid
ies. The larger open boxes represent the range of resolution and tissue pen-
pabilities of future OCT systems. Resolution requirements to accurately
s the capabilities of intravascular ultrasound (IVUS). Similarly, fibrous cap
t suitable to assess tissue at depths beyond 2 mm. Currently, evaluation of
bench-top OCT systems. Atherosclerosis � early and advanced stages of
related to thin cap fibroatheroma.
ods

l cohe
nolog
ical ca
xceed
are no
vance
nderstanding of the vascular biology of atherothrombosis
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nd assisting in our performance of PCI procedures. How-
ver, routine clinical use of OCT will require further clinical
rials to validate the technology, establish standard defini-
ions/measurements, and to test its safety and utility in
mproving clinical outcomes.

eprint requests and correspondence: Dr. Marco A. Costa,
ivision of Cardiology, Heart & Vascular Institute, University
ospitals, Case Western Reserve University, 11100 Euclid Ave-

ue, Lakeside 3001, Cleveland, Ohio 44106-5038. E-mail:
arco.costa@uhhospitals.org.

EFERENCES

1. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography.
Science 1991;254:1178–81.

2. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography
using a frequency-tunable optical source. Opt Lett 1997;22:340–2.

3. Tearney GJ, Waxman S, Shishkov M, et al. Three-dimensional
coronary artery microscopy by intracoronary optical frequency domain
imaging. J Am Coll Cardiol Img 2008;1:752–61.

4. Barlis P, Schmitt JM. Current and future developments in intracoro-
nary optical coherence tomography imaging. EuroIntervention 2009;4:
529–33.

5. Guagliumi G, Sirbu V. Optical coherence tomography: high resolution
intravascular imaging to evaluate vascular healing after coronary stent-
ing. Catheter Cardiovasc Interv 2008;72:237–47.

6. Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable
everolimus-eluting coronary stent system (ABSORB): 2-year outcomes
and results from multiple imaging methods. Lancet 2009;373:897–910.

7. Yamaguchi T, Terashima M, Akasaka T, et al. Safety and feasibility of
an intravascular optical coherence tomography image wire system in the
clinical setting. Am J Cardiol 2008;101:562–7.

8. Kubo T, Imanishi T, Kitabata H, et al. Comparison of vascular
response after sirolimus-eluting stent implantation between patients
with unstable and stable angina pectoris: a serial optical coherence
tomography study. J Am Coll Cardiol Img 2008;1:475–84.

9. Guagliumi G, Sirbu V, Costa M, et al. Long-term Strut Coverage of
Paclitaxel Eluting Stents Compared to Bare-Metal Stents Implanted
During Primary PCI in Acute Myocardial Infarction. A Prospective,
Randomized, Controlled Study Performed with Optical Coherence
Tomography. HORIZONS-OCT. Paper presented at: Late Breaking
Trials, American Heart Association Annual Meeting; November 15,
2008; New Orleans, LA.

0. Schaar JA, Muller JE, Falk E, et al. Terminology for high-risk and
vulnerable coronary artery plaques. Report of a meeting on the
vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur
Heart J 2004;25:1077–82.

1. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion
morphology in acute myocardial infarction: ability of optical coherence
tomography compared with intravascular ultrasound and coronary
angioscopy. J Am Coll Cardiol 2007;50:933–9.

2. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without
rupture into a lipid core. A frequent cause of coronary thrombosis in
sudden coronary death. Circulation 1996;93:1354–63.

3. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human
atherosclerosis by optical coherence tomography. Circulation 2002;106:
1640–5.

4. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R.
Coronary risk factors and plaque morphology in men with coronary
disease who died suddenly. N Engl J Med 1997;336:1276–82.

5. Tanaka A, Imanishi T, Kitabata H, et al. Distribution and frequency of
thin-capped fibroatheromas and ruptured plaques in the entire culprit
coronary artery in patients with acute coronary syndrome as determined
by optical coherence tomography. Am J Cardiol 2008;102:975–9.
6. Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on
coronary fibrous-cap thickness in patients with acute coronary syn-

interventions.onlinejaDownloaded from 
drome: assessment by optical coherence tomography study. Atheroscle-
rosis 2009;202:491–7.

7. MacNeill BD, Jang IK, Bouma BE, et al. Focal and multi-focal plaque
macrophage distributions in patients with acute and stable presenta-
tions of coronary artery disease. J Am Coll Cardiol 2004;44:972–9.

8. Tearney GJ, Jang IK, Bouma BE. Optical coherence tomography for
imaging the vulnerable plaque. J Biomed Opt 2006;11:021002.

9. Raffel OC, Tearney GJ, Gauthier DD, Halpern EF, Bouma BE, Jang
IK. Relationship between a systemic inflammatory marker, plaque
inflammation, and plaque characteristics determined by intravascular
optical coherence tomography. Arterioscler Thromb Vasc Biol 2007;
27:1820–7.

0. Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary
arterial thrombus by optical coherence tomography. Am J Cardiol
2006;97:1713–7.

1. Tanimoto T, Imanishi T, Tanaka A, et al. Various types of plaque
disruption in culprit coronary artery visualized by optical coherence
tomography in a patient with unstable angina. Circ J 2009;73:187–9.

2. Schiele F, Meneveau N, Vuillemenot A, et al. Impact of intravascular
ultrasound guidance in stent deployment on 6-month restenosis rate: a
multicenter, randomized study comparing two strategies—with and
without intravascular ultrasound guidance. RESIST Study Group.
REStenosis after Ivus guided STenting. J Am Coll Cardiol 1998;32:
320–8.

3. Mudra H, di Mario C, de Jaegere P, et al. Randomized comparison of
coronary stent implantation under ultrasound or angiographic guidance
to reduce stent restenosis (OPTICUS study). Circulation 2001;104:
1343–9.

4. Oemrawsingh PV, Mintz GS, Schalij MJ, Zwinderman AH, Jukema
JW, van der Wall EE. Intravascular ultrasound guidance improves
angiographic and clinical outcome of stent implantation for long
coronary artery stenoses: final results of a randomized comparison with
angiographic guidance (TULIP study). Circulation 2003;107:62–7.

5. Serruys PW, Degertekin M, Tanabe K, et al. Intravascular ultrasound
findings in the multicenter, randomized, double-blind RAVEL (RAn-
domized study with the sirolimus-eluting VElocity balloon-expandable
stent in the treatment of patients with de novo native coronary artery
Lesions) trial. Circulation 2002;106:798–803.

6. Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition
and very late stent thrombosis after drug-eluting stent implantation.
Circulation 2007;115:2426–34.

7. Windecker S, Meier B. Late coronary stent thrombosis. Circulation
2007;116:1952–65.

8. Kotani J, Awata M, Nanto S, et al. Incomplete neointimal coverage of
sirolimus-eluting stents: angioscopic findings. J Am Coll Cardiol
2006;47:2108–11.

9. Hong MK, Mintz GS, Lee CW, et al. Late stent malapposition after
drug-eluting stent implantation: an intravascular ultrasound analysis
with long-term follow-up. Circulation 2006;113:414–9.

0. Okabe T, Mintz GS, Buch AN, et al. Intravascular ultrasound
parameters associated with stent thrombosis after drug-eluting stent
deployment. Am J Cardiol 2007;100:615–20.

1. Hoffmann R, Mintz GS, Popma JJ, et al. Overestimation of acute
lumen gain and late lumen loss by quantitative coronary angiography
(compared with intravascular ultrasound) in stented lesions. Am J
Cardiol 1997;80:1277–81.

2. Bouma BE, Tearney GJ, Yabushita H, et al. Evaluation of intracoro-
nary stenting by intravascular optical coherence tomography. Heart
2003;89:317–20.

3. Rosenthal N, Guagliumi G, Sirbu V, et al. Comparison of intravascular
ultrasound and optical coherence tomography for the evaluation of
stent segment malapposition (abstr). J Am Coll Cardiol 2009;53 Suppl
A:A22.

4. Finn AV, Kolodgie FD, Harnek J, et al. Differential response of
delayed healing and persistent inflammation at sites of overlapping
sirolimus- or paclitaxel-eluting stents. Circulation 2005;112:270–8.

5. Hassan AK, Bergheanu SC, Stijnen T, et al. Late stent malapposition
risk is higher after drug-eluting stent compared with bare-metal stent
implantation and associates with late stent thrombosis. Eur Heart J

2009 Jan 21 [E-pub ahead of print].

 by guest on August 9, 2010 cc.org

mailto:marco.costa@uhhospitals.org
http://interventions.onlinejacc.org


3

3

3

3

4

4

4

4

4

4

K

J A C C : C A R D I O V A S C U L A R I N T E R V E N T I O N S , V O L . 2 , N O . 1 1 , 2 0 0 9

N O V E M B E R 2 0 0 9 : 1 0 3 5 – 4 6

Bezerra et al.

Intracoronary OCT

1046
6. Guagliumi G, Musumeci G, Sirbu V, et al. A Prospective, Random-
ized, Controlled Study Using Optical Coherence Tomography to
Evaluate Strut Coverage of Sirolimus-, Paclitaxel-, and Zotarolimus-
Eluting Coronary Stents in Long Lesions Requiring Overlapping.
Paper presented at: Late Breaking Trials, Transcatheter Cardiovascular
Therapeutics Annual Meeting; October 14, 2008; Washington, DC.

7. Sousa JE, Costa MA, Sousa AG, et al. Two-year angiographic and
intravascular ultrasound follow-up after implantation of sirolimus-
eluting stents in human coronary arteries. Circulation 2003;107:
381–3.

8. Bezerra H, Guagliumi G, Valescchi O, et al. Unraveling the lack
of neointimal hyperplasia detected by intravascular ultrasound
using optical coherence tomography: lack of spatial resolution or a
true biological effect? (abstr). J Am Coll Cardiol 2009;53 Suppl
A:90A.

9. Nakazawa G, Finn AV, Joner M, et al. Delayed arterial healing and
increased late stent thrombosis at culprit sites after drug-eluting stent
placement for acute myocardial infarction patients: an autopsy study.
Circulation 2008;118:1138–45.

0. Guagliumi G, Sirbu V, Costa M, da Costa CA. Long-term strut
coverage of paclitaxel eluting stents compared with bare-metal stents

implanted during primary PCI in acute myocardial infarction: a s

interventions.onlinejaDownloaded from 
prospective, randomized, controlled study performed with optical
coherence tomography. HORIZONS-OCT (abstr). Circulation 2008;
118:2315.

1. Wang H, Fleming CP, Rollins AM. Ultrahigh-resolution optical
coherence tomography at 1.15 um using photonic crystal fiber with no
zero-dispersion wavelengths. Opt Express 2007;15:3085–92.

2. Hartl I, Li XD, Chudoba C, et al. Ultrahigh-resolution optical
coherence tomography using continuum generation in an air silica
microstructure optical fiber. Opt Lett 2001;26:608–10.

3. Herz P, Chen Y, Aguirre A, et al. Ultrahigh resolution optical biopsy
with endoscopic optical coherence tomography. Opt Express 2004;12:
3532–42.

4. Drexler W. Ultrahigh-resolution optical coherence tomography.
J Biomed Opt 2004;9:47.

5. Wang H, Jenkins MW, Rollins AM. A combined multiple-SLED
broadband light source at 1300 nm for high resolution optical coher-
ence tomography. Opt Commun 2008;281:1896–900.

ey Words: optical coherence tomography � coronary �

tent � atherosclerosis.

 by guest on August 9, 2010 cc.org

http://interventions.onlinejacc.org


doi:10.1016/j.jcin.2009.06.019 
 2009;2;1035-1046 J. Am. Coll. Cardiol. Intv.

Daniel I. Simon 
Hiram G. Bezerra, Marco A. Costa, Giulio Guagliumi, Andrew M. Rollins, and

 Clinical and Research Applications
Intracoronary Optical Coherence Tomography: A Comprehensive Review:

This information is current as of August 9, 2010 

 & Services
Updated Information

 http://interventions.onlinejacc.org/cgi/content/full/2/11/1035
including high-resolution figures, can be found at: 

 Supplementary Material

 DC1
http://interventions.onlinejacc.org/cgi/content/full/2/11/1035/
Supplementary material can be found at: 

 References

 BIBL
http://interventions.onlinejacc.org/cgi/content/full/2/11/1035#
free at: 
This article cites 42 articles, 23 of which you can access for

 Citations

 otherarticles
http://interventions.onlinejacc.org/cgi/content/full/2/11/1035#
This article has been cited by 1 HighWire-hosted articles: 

 Rights & Permissions

 http://interventions.onlinejacc.org/misc/permissions.dtl
tables) or in its entirety can be found online at: 
Information about reproducing this article in parts (figures,

 Reprints
 http://interventions.onlinejacc.org/misc/reprints.dtl

Information about ordering reprints can be found online: 

 by guest on August 9, 2010 interventions.onlinejacc.orgDownloaded from 

http://interventions.onlinejacc.org/cgi/content/full/2/11/1035
http://interventions.onlinejacc.org/cgi/content/full/2/11/1035/DC1
http://interventions.onlinejacc.org/cgi/content/full/2/11/1035#BIBL
http://interventions.onlinejacc.org/cgi/content/full/2/11/1035#otherarticles
http://interventions.onlinejacc.org/misc/permissions.dtl
http://interventions.onlinejacc.org/misc/reprints.dtl
http://interventions.onlinejacc.org

	Intracoronary Optical Coherence Tomography: A Comprehensive Review
	Concepts in Biophotonics
	Commercial OCT Systems
	OCT Imaging Acquisition Technique
	Pitfalls in imaging post-processing and interpretation Z-offset
	Artifacts

	Clinical Applications
	Diagnostic assessment of coronary atherosclerosis
	FIBROUS CAP
	INFLAMMATION
	LIPID NECROTIC CORE
	CALCIUM NODULES
	THROMBUS

	OCT-guided coronary intervention

	Research Applications of Intravascular OCT
	End point for clinical trials
	Strut-level analysis

	The Future Outlook
	Anatomical assessment
	Functional assessment

	Conclusions
	REFERENCES




