Intro to Algebra Guided Notes
 Unit 4
 Pre－Alg 2－6，Alg 1－9，3－1，3－2，3－3

NAME －－ヘーーーーーーー－

Pre-Alg 2-6 The Coordinate System (and lesson 1-6)

The coordinate system uses 2 number lines to locate a \qquad .
\qquad - where 2 number lines intersect at their 0 point.
\mathbf{x}-axis is the \qquad number line.
y-axis is the \qquad number line.

Ordered pair (x, y)

EX. 1 Plot and label ordered pairs on coordinate system.
$(2,6),(2,0),(5,3),(-1,4),(-4,3),(-5,-3),(0,-5),(4,-4)$
A
B
C
E
F
G
H

Quadrants -

\qquad

EX: Write 4 ordered pairs and graph for $x+y=4$

Relation - a set of \qquad .

Domain - the set of all \qquad .

Range - the set of all \qquad .

EX: Express the relation $\{(5,3),(0,2),(1,6),(5,0)\}$ as a table and graph. Then give the domain and range.

Alg Lesson 1-9 Functions and Graphs (Use book)

Function - \qquad between x and y using a coordinate system

Dependent and Independent Variables - See Ex. 2
Identify each - the price for so many ears of corn (the price depends on how many ears so price is dependent and \# of ears is independent)

You can analyze a graph with no numbers.
See Ex. 3 (Pg 54) and do problem
This represents the temperature in the classroom on a winter day. Describe what is happening.

Data can be shown differently. See Ex. 4 Pg. 55.
Relation - a set of \qquad
Domain - the set of \qquad
Range - the set of \qquad

Discrete function - graph consists of points that are not
Continuous function - graph with a \qquad or smooth \qquad

Alg 3-1 Representing Relations
Review: A relation is a set of \qquad .
\qquad .

A \qquad can be shown as ordered pairs, a table, a graph, or a mapping.

Ex: Express the relation $\{(4,3),(-2,-1),(-3,2),(2,-4),(0,-4)\}$ as a table, a graph, and a mapping. Then give the domain and the range.

Domain is the \qquad if you are not sure.

Ex: Emily earns $\$ 7$ for walking 1 dog, $\$ 28$ for 4 dogs, $\$ 42$ for 6 dogs, and $\$ 49$ for 7 dogs. Give the domain and range. (\$ depends on dogs, so dogs are independent)

Inverse relation - switch the coordinates of the ordered pair.
Ex: $\{(3,-2),(0,-5),(-2,1)\}$
Inverse: \qquad
Ex: Express the relation shown in the mapping as a set of ordered pairs. Write the
inverse of the relation.

Alg 3-2 Representing Functions

Function - a relation in which each element of the domain is paired with exactly one element of the range. (\qquad

Ex: Determine whether each relation is a function and explain why or why not.
a.

b.

\mathbf{X}	\mathbf{Y}
-7	-12
-4	-9
2	-3
2	0

The \qquad
\qquad
\qquad can be used to see if a graph or an equation is a function. To be a function, the vertical line may cross the graph in only \ldots spot at a time.

Draw some sketches:

You may have to graph to see if it is a function. Then use the vertical line test.

Is this a function?

1. $y=x+2$
2. $x=-2$

3. $y^{2}=x$

Linear Equation - equation of a line. Has one or two variables with no variable having an exponent other than 1.

Ex: Determine whether each equation is linear.

1. $5 x+3 y=z+2$
2. $2 x=4 y+9$
3. $\frac{3}{4} x=y+8$
\qquad is the x-coordinate of the point where the graph crosses the x axis.
\qquad is the y-coordinate of the point where the graph crosses the y axis.
Zero - is the value of x when \qquad . The zero of a linear function is its x-intercept.

See examples 2 and 3 on Pg. 156-157

Ex: Use the table to determine the x-intercept, y-intercept and zero of the graph of the function.

\mathbf{X}	-3	-2	-1	0	1
\mathbf{Y}	2	0	-2	-4	-6

The graph of a linear equation represents \qquad of its solutions. A point \qquad on the line would \qquad be a solution.

It is easier to graph if the equation is solved for \qquad .

Ex: 1. Graph $y=2 x+2$

2. Graph $x=2 y+1$

3. Graph $3 x+y=-1$

4. Graph $\mathrm{x}=4$

Sometimes you are asked to graph by using the If so, let $\mathrm{x}=0$ and then let $\mathrm{y}=0$. Graph these 2 points and connect.

Ex: Graph $4 x-y=4$ using the x-and y-intercepts.

