Intro to Algebra

Guided Notes

Unit 4

Pre-Alg 2-6, Alg 1-9, 3-1, 3-2, 3-3

NAME_____

Pre-Alg 2-6 The Coordinate System (and lesson 1-6)

The coordinate system uses 2 number lines to locate a ______.

- where 2 number lines intersect at their 0 point.

x-axis is the _____ number line.

y-axis is the _____ number line.

Ordered pair (x, y)

EX. 1 Plot and label ordered pairs on coordinate system. (2,6), (2,0), (5,3), (-1,4), (-4,3), (-5,-3), (0,-5), (4,-4) A B C D E F G H

Unit 4

Quadrants - _____

_	-	-	1	-	_	-	_	
-	- 1	-		-	-	+		
+		-		-	_	-		
	1.1							
-	-			-		+		
+				-	_	+		
	1.1			- 1	1		1.1	
1					_			•
+-		-	-	-	-	-		
				- 1				
						-		
+	-	-	-	-	-	+	-	
T								
+	-	-		-	-	-	-	
			1.1.1					

EX: Write 4 ordered pairs and graph for x + y = 4

	++	1	1.1	-	-
++	++		++	-	
			++	+	
++			++	+	
++	++		++	+	
++	++	++	++	+	-
++	++		++	+	
++	++	H	++	+	
++	++		++	+	
		+	+++	-	

Relation – a set of ______.

Domain – the set of all ______.

Range – the set of all ______.

EX: Express the relation { (5, 3), (0, 2), (1, 6), (5, 0) } as a table and graph. Then give the domain and range.

Alg Lesson 1-9 Functions and Graphs (Use book)

Function – ______ between x and y using a coordinate system

<u>Dependent and Independent Variables</u> – See Ex. 2

Identify each – the price for so many ears of corn (the price depends on how many ears so price is dependent and # of ears is independent)

You can analyze a graph with no numbers. See Ex. 3 (Pg 54) and do problem

This represents the temperature in the classroom on a winter day. Describe what is happening.

Data can be shown differently. See Ex. 4 Pg. 55.

Relation – a set of		
---------------------	--	--

Domain – the set of	

Range – the set of _____

Discrete function – graph consists of points that are not

Continuous function – graph with a _____ or smooth _____

Alg 3-1 Representing Relations

Review: A relation is a set of ______. ______ is the set of x-values.

Range is the set of ______.

A ______ can be shown as ordered pairs, a table, a graph, or a mapping.

Ex: Express the relation { (4,3), (-2,-1), (-3,2), (2,-4), (0,-4) } as a table, a graph, and a mapping. Then give the domain and the range.

Domain is the ______ if you are not sure.

Ex: Emily earns \$7 for walking 1 dog, \$28 for 4 dogs, \$42 for 6 dogs, and \$49 for 7 dogs. Give the domain and range. (\$ depends on dogs, so dogs are independent)

Inverse relation – switch the coordinates of the ordered pair.

Ex: { (3,-2), (0,-5), (-2,1) }

Inverse:

Ex: Express the relation shown in the mapping as a set of ordered pairs. Write the

inverse of the relation.

Alg 3-2 Representing Functions

Function – a relation in which each element of the domain is paired with exactly one element of the range. (_____)

Ex: Determine whether each relation is a function and explain why or why not.

The ______ can be used to see if a graph or an equation is a function. To be a function, the vertical line may cross the graph in only ______ spot at a time.

Draw some sketches:

×5

You may have to graph to see if it is a function. Then use the vertical line test.

Is this a function?

Unit 4

Alg 3-3 Linear Functions

Linear Equation – equation of a line. Has one or two variables with no variable having an exponent other than 1.

Ex: Determine whether each equation is linear.

1. 5x + 3y = z + 2

2. 2x = 4y + 9

3. $\frac{3}{4}x = y + 8$

______ is the x-coordinate of the point where the graph crosses the xaxis. _______ is the y-coordinate of the point where the graph crosses the yaxis. Zero – is the value of x when ______. The zero of a linear function is its x-intercept.

See examples 2 and 3 on Pg. 156-157

Ex: Use the table to determine the x-intercept, y-intercept and zero of the graph of the function.

Χ	-3	-2	-1	0	1
Υ	2	0	-2	-4	-6

The graph of a linear equation represents ______ of its solutions. A point ______ on the line would ______ be a solution.

It is easier to graph if the equation is solved for _____.

Ex: 1. Graph y = 2x + 2

2. Graph x = 2y + 1

3. Graph 3x + y = -1

Unit 4

4. Graph x = 4

Sometimes you are asked to graph by using the _______ If so, let x = 0 and then let y = 0. Graph these 2 points and connect.

Ex: Graph 4x - y = 4 using the x-and y-intercepts.

