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Part I: Intro to HBase

Welcome to a brief introduction to HBase by way of R. This tutorial aims to explain how you can use R
through the rhbase package. It will use my custom addition to rhbase which is geared toward using tidyr
principles and data.tables/data.frames. Other differences include:

1. Standardized row-key serializer (raw data type)
2. sz and usz functions only apply to the actual data instead of to row-key
3. hb.put - wrapper around hb.insert for easier inputting
4. hb.pull - wrapper around hb.scan for easier retrieval

The tutorial has three parts:

1. Installing HBase, Thrift, and rhbase, with a brief intro to HBase
2. Inserting data into HBase, and basic design/modeling
3. Retrieving data from HBase, doing calculations, and inserting calculations

What is HBase?

By no means will I attempt to explain all of HBase, but here is a brief attempt to summarize:

Wikipedia definition: HBase is an open source, non-relational, distributed database modeled after Google’s
BigTable and written in Java. It is developed as part of Apache Software Foundation’s Apache Hadoop
project and runs on top of HDFS (Hadoop Distributed File system), providing BigTable-like capabilities for
Hadoop.

From the Apache HBase website: “Use Apache HBase when you need random, realtime read/write
access to your Big Data. This project’s goal is the hosting of very large tables – billions of rows X millions
of columns – atop clusters of commodity hardware. Apache HBase is an open-source, distributed,
versioned, non-relational database modeled after Google’s BigTable. . . Just as BigTable leverages the
distributed data storage provided by the Google File System, Apache HBase provides BigTable-like capabilities
on top of Hadoop and HDFS.”

Clearly with those definitions you should know what HBase is now, right? If you’re like me, a little more
explanation is helpful. To start wrapping your head around NoSQL and HBase, here is a 5-step progression
that I have found helpful:

1. A Key-Value Store

• At its core, that’s all HBase really is. It’s a map, a dictionary (python), a hash (ruby), etc. . .

2. Distributed

• HBase sits atop a Hadoop cluster, meaning from HBase’s perspective that the data in HBase is
replicated out to, by default, 3 nodes in a Hadoop Cluster.

• Based on the assumption that servers go down and bad things happen
• A full implementation relies on HDFS, Zookeeper, and your HBase region master(s)
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3. Consistent

• HBase is an immediately consistent database. That means that HBase guarantees your data to be
exactly the same on all of the nodes that it is replicated to.

• See CAP Theorem for more information on Consistent, Available, and Partition tolerant databases
(Cassandra is a similar NoSQL Columnar Database emphasizing Availability over Consistency)

4. Sorted

• The Keys in this key-value store are stored alphabetically
• Designed for faster reads than writes
• Allows for fast “scanning” through keys

5. Multi-Dimensional Key-Value Store

• It is a key-value store, but perhaps a better way to think about HBase’s structure is a key-column-
value store, or a Map of Maps

• This is what is referred to as “columnar” or “wide rows”
• For any given key, HBase allows you to store any amount of information
• Schema-less - your key-column-value combination can be defined at any time and does not naturally

conform to any schema

HBase Frame of Mind

• First there is a HBase table, which is exactly what you would think it is: a table
• Within a table are column families, which are a subgroup of your table. Best practice is to limit the

number and size of these. So, if you are new to HBase, just specify one column family, which is all that
is necessary in many cases.

• All data is then accessed via a rowkey, which is essentially your indexing mechanism (row-key or range
of row-keys points directly to the correct data). This is also your key in “key-column-value” as depicted
earlier

• Within a given row, there can be potentially millions of columns. This is the concept of wide rows.
Although many types of data lend themselves to columnar storage, time-series data in particular is a
good use case:

– Timestamps stored as column names
– Variable value correlating to a particular timestamp in a cell
– Variable name in the row key
– This concept is often hard to grasp the first time, so I have provided some visuals to help explain

it. Many people click on this concept when they realize that values are/can be stored as columns.

• Schemaless. You do not need to add columns in advance; you can do it on the fly. However, you
should keep record or develop a scheme of how you are storing data as the actual retrieval will be very
difficult if you have no idea what is in there.

• Data modeling: Based off query patterns and stored directly. Cross-table joins are a BAD thing
(Spark can help with this, but that does not mean you should design your data model to do any kind of
joins). Essentially you are sacrificing complex querying for huge speed gains.

Hopefully that helped, and if not, there is plenty of information out there about HBase and what it does.
Here are a few links:

• Apache HBase
• Wikipedia
• Hortonworks
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Installing HBase and rhbase

In order to use this stuff, you have to install HBase, Thrift, and the rhbase package. The basic instructions
are here, but if you are trying to get up and running as soon as possible, here are a few helpful hints(change
version numbers as needed):

1. Install Thrift following this guide
2. Update PKG_CONFIG_PATH: export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig/
3. Verify pkg-config path is correct: pkg-config –cflags Thrift , returns: -I/usr/local/include/Thrift
4. Copy Thrift library sudo cp /usr/local/lib/libThrift-0.8.0.so /usr/lib/

• Under this implementation I would advise using Thrift 0.8.0 as the latest version might
include some bugs as it relates to this build

5. Install HBase following Apache’s quick start guide

6. Start up HBase and Thrift

[hbase-root]/bin/start-hbase.sh
[hbase-root]/bin/hbase Thrift start

7. Now download and install the package with devtools (or get a tarball copy here)

install.packages("devtools")
devtools::install_github("aaronbenz/rhbase")

Test it out

Provided HBase, Thrift, and rhbase are now installed correctly and are running, the code below should run
successfully.

library(rhbase)
library(data.table)
hb.init()

## <pointer: 0x21efd20>
## attr(,"class")
## [1] "hb.client.connection"

Understanding Our Sample Data

The data that is supplied in this tutorial is simulated time-series data for airport support vehicles (such
as baggage trucks) from various airports over a small period of time. The data is stored hierarchically as:
Airport_Day_VehicleID_Variable. You can retrieve a list of all of the data simply by loading it from the
rhbase package:

data(baggage_trucks)
str(baggage_trucks[1:3])
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## List of 3
## $ JFK_20140306_1CKPH7747ZK277944_gear :Classes 'data.table' and 'data.frame': 126 obs. of 2 variables:
## ..$ date_time: num [1:126] 1.39e+09 1.39e+09 1.39e+09 1.39e+09 1.39e+09 ...
## ..$ gear : num [1:126] 1 2 3 4 3 2 1 2 3 4 ...
## ..- attr(*, ".internal.selfref")=<externalptr>
## $ JFK_20140306_1CKPH7747ZK277944_rpm :Classes 'data.table' and 'data.frame': 13770 obs. of 2 variables:
## ..$ date_time: num [1:13770] 1.39e+09 1.39e+09 1.39e+09 1.39e+09 1.39e+09 ...
## ..$ rpm : num [1:13770] 1012 1229 1460 1758 1706 ...
## ..- attr(*, ".internal.selfref")=<externalptr>
## $ JFK_20140306_1CKPH7747ZK277944_speed:Classes 'data.table' and 'data.frame': 13793 obs. of 2 variables:
## ..$ date_time: num [1:13793] 1.39e+09 1.39e+09 1.39e+09 1.39e+09 1.39e+09 ...
## ..$ speed : num [1:13793] 16.9 17.3 17.6 17.7 18.1 ...
## ..- attr(*, ".internal.selfref")=<externalptr>

The three variables are gear , speed (mph), and rpm (revolutions per minute of engine). With these variables,
the goal is to calculate the fuel rate of a vehicle. For more information about the data use ?baggage_trucks.

Note: Credit to Spencer Herath for creating the sample data set of imaginary trucks whizzing around an
invisible airport.

Part II: Getting Data Into HBase with R

HBase Table Design

It’s important that the HBase table is designed to fit your query pattern(s) exactly. A NoSQL Columnar
frame of mind is always Design Your Tables For Your Query Pattern. Unlike a relational store, each
table that is built is traditionally designed for one single type of query pattern (document stores like Solr or
Elastic Search can offer a backwards indexing solution. Overall, this can make a data modeling experience
“simpler” in concept). A good way to think about NoSQL is that in one fetch, you want to retrieve all
of the data neccessary to make a business decision. To recap slightly, this frame of mind implies that:

• Avoid joins completely if possible
• Do as few lookups as possible
• Do all data transformations on the incoming stream versus the outgoing

Remember, the goal is to get the data out and delivered as soon as possible, so take special precaution to
ensure that the data and the query patterns are designed for the end format, not the raw format.

Currently the data in its raw format is organized by variable, by vehicle, and by date. Because this is
archived data, additionally compression to a binary blob(byte array) is achievable. If properly done, it will
drastically reduce the size of the data set and immensely increase the speed at which it is retrieved (because
the dataset sits in just one blob as opposed to many cells). However, the approach should be sensitive to
any memory limitations because the size and number of blobs have to be manageable. That is, data needs
to be retrieved in manageable partitions that contain all of the necessary variables to perform a fuel usage
calculation. With those concepts in mind, the query pattern should be able to take on specific airports and
date ranges, along with whatever variables that are desired. Thus:

• row-key = airport::day::vin
• column = variable
• value = specific data.table
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Create HBase Table Now that the data model is defined, a table must be created to use it. In this case,
we create a table called Test with a column family called test:

## [1] TRUE

hostLoc = '127.0.0.1' #Give your server IP
port = 9090 #Default port for Thrift service
hb.init()

## <pointer: 0x23f6fd0>
## attr(,"class")
## [1] "hb.client.connection"

hb.list.tables()

## $Test_Text
## maxversions compression inmemory bloomfiltertype bloomfiltervecsize
## test: 3 NONE FALSE NONE 0
## bloomfilternbhashes blockcache timetolive
## test: 0 FALSE 2147483647

TABLE_NAME = "Test"
COLUMN_FAMILY = "test"
hb.new.table(TABLE_NAME, COLUMN_FAMILY)

## [1] TRUE
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Input Data into HBase

Now that the HBase table is created, just put the baggage_trucks data into HBase. This can be done with
the convenient hb.put function:

require(magrittr, quietly = T)
require(tidyr, quietly = T, warn.conflicts = F)
data(baggage_trucks)
dt_names <- names(baggage_trucks) %>%

data.frame() %>%
tidyr::separate(".",c("airport", "date", "vin", "variable"))

dt_names <- dt_names %>% unite(rowkey, airport, date, vin, sep = "::")
head(dt_names)

## rowkey variable
## 1 JFK::20140306::1CKPH7747ZK277944 gear
## 2 JFK::20140306::1CKPH7747ZK277944 rpm
## 3 JFK::20140306::1CKPH7747ZK277944 speed
## 4 JFK::20140306::1CWPJ7320VE852372 gear
## 5 JFK::20140306::1CWPJ7320VE852372 rpm
## 6 JFK::20140306::1CWPJ7320VE852372 speed

How hb.put Works The design of hb.put is meant to be simple and flexible. For a given table and
column family, hb.put allows the creation of a list of “columns” and a list of “values” for each “row-key.”
This option is designed for inputting multiple columns into the same row-key (an uncompressed time-series
use case). Additionally, hb.put allows the insertion of data using a 1-1-1 ratio like in this example:

hb.put(table_name = TABLE_NAME,
column_family = COLUMN_FAMILY,
rowkey = dt_names$rowkey,
column = dt_names$variable,
value = baggage_trucks)

## [1] TRUE

And just like that, data is in HBase. Before proceeding further, it is important to understand how data was
put into HBase, as this is actually a modification from the original rhbase package. The row-keys are turned
into byte arrays using the charToRaw method, converting the character row-key into a raw binary data type.
The data.tables are turned into byte arrays using R’s native serializer. If you would like to use your own
serializer for the actual data(because it is already serialized, e.g.), input the data as raw by specifying sz =
“raw”, “character”, or custom function in hb.put, or specify it in the original hb.init function. Note: the
row-key serializer is not editable at the moment. The change to this branch was separating the serialization
method for the row-keys from the values.

Examples of Retrieving Data Now that data is inserted, here are some brief examples worth reviewing
to understand how data can be retrieved from HBase with this package.

1. Retrieving only from 03/06/2014 onward for LAX and for just the “Speed” variable:
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hb.pull(TABLE_NAME,
COLUMN_FAMILY,
start = "LAX::20140306",
end = "LAXa",
columns = "speed",
batchsize = 100)

## rowkey column_family column values
## 1: LAX::20140306::1CHMP60486H283129 test speed <data.table>
## 2: LAX::20140306::1FAJL35763D392894 test speed <data.table>
## 3: LAX::20140306::1FJAL1998VS238734 test speed <data.table>
## 4: LAX::20140306::1FSMZ91563C548451 test speed <data.table>
## 5: LAX::20140307::1CHMP60486H283129 test speed <data.table>
## 6: LAX::20140307::1FAJL35763D392894 test speed <data.table>
## 7: LAX::20140307::1FJAL1998VS238734 test speed <data.table>
## 8: LAX::20140307::1FSMZ91563C548451 test speed <data.table>

2. Retrieving everything between the start of 03/07/2014 and the start of 03/08/2014:

hb.pull(TABLE_NAME,
COLUMN_FAMILY,
start = "LAX::20140307",
end = "LAX::20140308",
batchsize = 100)

## rowkey column_family column values
## 1: LAX::20140307::1CHMP60486H283129 test gear <data.table>
## 2: LAX::20140307::1CHMP60486H283129 test rpm <data.table>
## 3: LAX::20140307::1CHMP60486H283129 test speed <data.table>
## 4: LAX::20140307::1FAJL35763D392894 test gear <data.table>
## 5: LAX::20140307::1FAJL35763D392894 test rpm <data.table>
## 6: LAX::20140307::1FAJL35763D392894 test speed <data.table>
## 7: LAX::20140307::1FJAL1998VS238734 test gear <data.table>
## 8: LAX::20140307::1FJAL1998VS238734 test rpm <data.table>
## 9: LAX::20140307::1FJAL1998VS238734 test speed <data.table>
## 10: LAX::20140307::1FSMZ91563C548451 test gear <data.table>
## 11: LAX::20140307::1FSMZ91563C548451 test rpm <data.table>
## 12: LAX::20140307::1FSMZ91563C548451 test speed <data.table>

Part III: Retrieve and Store

Okay, now that data is in HBase, let’s:

1. Retrieve data with rhbase
2. Manipulate data using tidyr, data.table, and timeseriesr
3. Perform calculations with timeseriesr
4. Store results using rhbase
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Retrieving Data with rhbase

From the HBase input tutorial, we stored data.tables via byte arrays in HBase (from hbase_input document).
But what about getting it out? By using hb.pull, we will be able to pull our desired HBase data.

Going back to the use case at hand, our goal is to measure the total fuel consumption of the trucks present in
the data. To do so, we need to call gear, rpm, and speed (the three variables we put in HBase) and apply a
custom fuel calculator in R. However, as mentioned previously, we need to be careful about how we bring
data in, as too much data at one time could easily lead to memory problems.

Based on how we modeled our data, we are going to retrieve ALL variables for ALL VINs by EACH
day for EACH airport. We can do this in HBase with the scan function. Recalling the description of
HBase, all of the keys or row-keys are sorted alphabetically. This means that all of the data for one airport is
stored contiguously. Additionally, because of our row-key structure, all of the data is sorted by Airport by
Date. A scan operation will allow us to get back all of the data for one airport for one day in essentially one
internal operation process(iop). That is, with one scan we can get all of the data because it’s located in one
block of rows. So how can we do this in R?

We begin with a list of our airports:

airports <- c("JFK","LAX")

Then we create a list of all the dates we want, which in this case is between the 6th and 8th of March, 2014.

start_dates <- paste0("2014030", 6:7)
end_dates <- paste0("2014030", 7:8)

Now let’s create a function that will allow us to pull back all of the variables for one VIN, one Day at a time,
to demonstrate responsible memory management.

library(data.table)
rk_generator <- function(start, end, ...){

function(x){
data.table(start = paste(x,start, ...), end = paste(x,end,...))

}
}

march <- rk_generator(start_dates, end_dates, sep = "::")

The functional march allows us to have all of the timestamps we want for each airport. For example:

march(airports[1])

## start end
## 1: JFK::20140306 JFK::20140307
## 2: JFK::20140307 JFK::20140308

This output will feed our function to call HBase for each day for each airport.

Pull Data, Merge, and Calculate

1. Bring in some data for one day
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2. Merge the data together to do a proper fuel calculation of gal_per_hr, average speed, and time in use
3. Visualize some of the results:

a_day <- march(airports[1])[1]

Okay, time to bring in some data:

library(rhbase)
library(magrittr)
hb.init()

## <pointer: 0x3987230>
## attr(,"class")
## [1] "hb.client.connection"

data <- hb.pull("Test",
"test",
start = a_day[[1]],
end = a_day[[2]],
columns = c("gear","rpm","speed"))

data[1:6]

## rowkey column_family column values
## 1: JFK::20140306::1CKPH7747ZK277944 test gear <data.table>
## 2: JFK::20140306::1CKPH7747ZK277944 test rpm <data.table>
## 3: JFK::20140306::1CKPH7747ZK277944 test speed <data.table>
## 4: JFK::20140306::1CWPJ7320VE852372 test gear <data.table>
## 5: JFK::20140306::1CWPJ7320VE852372 test rpm <data.table>
## 6: JFK::20140306::1CWPJ7320VE852372 test speed <data.table>

It’s that simple.

Manipulate Data with tidyr, data.table, and timeseriesr

Next let’s do something with this data. Our goal is to combine the gear, rpm, and speed data.tables
by VIN. To do this, we will: 1. Split the row key to make the values meaningful with tidyr 2. Combine
data.tables with VIN in mind 3. Clean up merged data

1. Split with tidyr:

data <- data %>%
tidyr::separate(col = "rowkey", into = c("airport","day","vin"))

data[1:5]

## airport day vin column_family column values
## 1: JFK 20140306 1CKPH7747ZK277944 test gear <data.table>
## 2: JFK 20140306 1CKPH7747ZK277944 test rpm <data.table>
## 3: JFK 20140306 1CKPH7747ZK277944 test speed <data.table>
## 4: JFK 20140306 1CWPJ7320VE852372 test gear <data.table>
## 5: JFK 20140306 1CWPJ7320VE852372 test rpm <data.table>
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2. Combine by VIN and column with rbindlist

#rbind by variable
setkeyv(data, c("vin", "column"))

merge_em <- function(values){
if(length(values)<=1) return(values)
out <- values[[1]]
for(i in 2:length(values)){

out <- merge(out, values[[i]], all=T, by = "date_time")
}
out

}
data2 <- data[,list("rbinded" = list(merge_em(values))),

by=c("vin","day","airport")] #data.table functionality
data2$rbinded[[1]] %>% setDT

3. Clean up our data with timeseriesr. Because our timestamps for each variable were not guaranteed
to match, we probably (and do) have NA values in each data set. This use of dtreplace will take any
NA values and replace them with the last observation.

data2$rbinded <- data2$rbinded %>%
lapply(timeseriesr::dtreplace) %>%
lapply(setDT) #fills in missing NAs

data2$rbinded[[1]]

## date_time gear rpm speed
## 1: 1394112055 1 1012.492 16.937217
## 2: 1394112055 1 1228.810 17.264578
## 3: 1394112055 1 1459.631 17.585472
## 4: 1394112056 1 1757.546 17.743490
## 5: 1394112056 1 1705.891 18.054664
## ---
## 14081: 1394120120 1 3762.915 19.516140
## 14082: 1394120120 1 2902.979 14.085581
## 14083: 1394120120 1 2602.196 11.170207
## 14084: 1394120121 1 1898.852 4.939276
## 14085: 1394120121 1 1150.547 4.939276

4. Now let’s see what this looks like:
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Perform our calculations with timeseriesr 3.Now that we have our data in memory, let’s do our
calculation! Below is a function to calculate gal_per_hr using our three variables (rpm, gear, and speed)

# I estimated this by looking at some relations between acceleration,
# vehicle weight, torque, and all of the other things you see below on the magical world wide web

#calculates Fuel Usage by row, returns array of fuel usage
#engine power = torque * rpm / 5252
# The constant 5252 is the rounded value of (33,000 ft?lbf/min)/(2?? rad/rev).
# fuel usage: if Power < 0, alpha
# : alpha + min(Pmax, engine power)
# alpha = constant idle fuel consumption rate
# (estimate of fuel sued to maintain engine operation)
# Pt = power = min(Pmax, torque + inertia(mass * radius^2))
gal_per_hr = function(engine_gear,

engine_rpm,
time,
speed,
alpha = .7,
mass = 10000,
gear_ratio = 1.2,
Pmax = 200,
efficiency_parameter = .02,
acceleration_parameter = .01,
wheel_radius){

torque <- c(diff(engine_rpm),0)
torque[torque<0] <- 0
torque <- torque * engine_gear * gear_ratio
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Pt <- torque * engine_rpm / (33000/2/pi)
Pt[Pt>200] <- 200
engine_power <- t
acceleration <- c(-diff(speed),0) / c(-diff(time),1)
#Pi = Mv(kg) * acceleration * velocity /1000
fuel <- alpha +

efficiency_parameter * Pt +
acceleration_parameter * acceleration * mass*.45359/1000 * speed

fuel[fuel < alpha] <- alpha
fuel[is.nan(fuel)] <- alpha

return(fuel)
}

Actually perform that operation

data2$rbinded <- lapply(data2$rbinded,
function(i){

i$gal_per_sec <- gal_per_hr(engine_gear = i$gear,
engine_rpm = i$rpm,
speed = i$speed,
time = i$date_time)/60/60
# currently in hours, but
# want it to be in seconds
# like the time column

i %>% setDT
})

data2$rbinded[[1]]

## date_time gear rpm speed gal_per_sec
## 1: 1394112055 1 1012.492 16.937217 0.0008217549
## 2: 1394112055 1 1228.810 17.264578 0.0009034893
## 3: 1394112055 1 1459.631 17.585472 0.0010965335
## 4: 1394112056 1 1757.546 17.743490 0.0005422796
## 5: 1394112056 1 1705.891 18.054664 0.0014310010
## ---
## 14081: 1394120120 1 3762.915 19.516140 0.0001944444
## 14082: 1394120120 1 2902.979 14.085581 0.0001944444
## 14083: 1394120120 1 2602.196 11.170207 0.0001944444
## 14084: 1394120121 1 1898.852 4.939276 0.0001944444
## 14085: 1394120121 1 1150.547 4.939276 0.0001944444

Now we have done our main calculation. But we want to know the total amount of gallons each truck burned
per day. We are going to use calc_area, which is a timeseriesr function that calculates the area under the
curve. It uses a Riemann left sum approach, but other methods may be added in the future.

#calculates area under the curve as a total
data2$gallons <- data2$rbinded %>%

sapply(function(x)
timeseriesr::calc_area(time_date = x$date_time,

value = x$gal_per_sec))
#calculates the total time range in hours (data is recorded in seconds)
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data2$hours <- data2$rbinded %>%
sapply(function(x)

(max(x$date_time) - min(x$date_time))/60/60)
#calculates the average speed
data2$mph <- data2$rbinded %>%

sapply(function(x) mean(x$speed))
data2[,gal_per_hr := gallons/hours]

## vin day airport rbinded gallons hours
## 1: 1CKPH7747ZK277944 20140306 JFK <data.table> 3.1177370 2.240531
## 2: 1CWPJ7320VE852372 20140306 JFK <data.table> 0.9673207 1.033856
## 3: 1FEMY6958XU502984 20140306 JFK <data.table> 1.5951636 1.757431
## 4: 1FVTK43691G456340 20140306 JFK <data.table> 3.6247181 3.852247
## 5: 1TULD4346YD544661 20140306 JFK <data.table> 1.6412674 1.803878
## mph gal_per_hr
## 1: 9.026001 1.3915173
## 2: 10.746364 0.9356439
## 3: 14.793853 0.9076681
## 4: 13.923766 0.9409360
## 5: 9.326923 0.9098551

We have now calculated the total number of gallons each truck burned, the total hours it ran,
miles per hour, and its average gallons per hour. Now, let’s put all of this back into HBase to move
on to the day/airport.

Store Our Results Using rhbase

We are going to store all of the information that we collected back into the same HBase table for later use.
That includes: 1. rbinded data.table (because we might want to reuse it later) 2. gallons 3. total hours in
operation 4. gal_per_hr 5. average mph

To do this we need to slightly reorganize our table to fit the hb.put standards. Nonetheless, the tidyr
package allows us to do this with ease.

#First, create rowkey with unite
data3 <- tidyr::unite(data2, "rowkey",airport:vin,sep = "::")

#Second, reoganize data with gather
data3 <- tidyr::gather(data3, column, value, -rowkey,convert = T)

## Warning in melt.data.table(data, measure.vars = gather_cols, variable.name
## = key_col, : All 'measure.vars are NOT of the SAME type. By order of
## hierarchy, the molten data value column will be of type 'list'. Therefore
## all measure variables that are not of type 'list' will be coerced to.
## Check the DETAILS section of ?melt.data.table for more on coercion.

data3[c(1,6,11,16,21)]

## rowkey column value
## 1: JFK::20140306::1CKPH7747ZK277944 rbinded <data.table>
## 2: JFK::20140306::1CKPH7747ZK277944 gallons 3.117737
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## 3: JFK::20140306::1CKPH7747ZK277944 hours 2.240531
## 4: JFK::20140306::1CKPH7747ZK277944 mph 9.026001
## 5: JFK::20140306::1CKPH7747ZK277944 gal_per_hr 1.391517

Great! Now that we have it in the format we want, let’s put it back in HBase:

#Assuming the hb.init connection is still valid
hb.put("Test",

"test",
rowkey = data3$rowkey,
column = data3$column,
value = data3$value)

## [1] TRUE

And just to test it out, let’s see what happens when we pull back one of the new columns we added:

hb.pull("Test","test",c("gal_per_hr","rbinded"))

## rowkey column_family column values
## 1: JFK::20140306::1CKPH7747ZK277944 test gal_per_hr 1.391517
## 2: JFK::20140306::1CKPH7747ZK277944 test rbinded <data.table>
## 3: JFK::20140306::1CWPJ7320VE852372 test gal_per_hr 0.9356439
## 4: JFK::20140306::1CWPJ7320VE852372 test rbinded <data.table>
## 5: JFK::20140306::1FEMY6958XU502984 test gal_per_hr 0.9076681
## 6: JFK::20140306::1FEMY6958XU502984 test rbinded <data.table>
## 7: JFK::20140306::1FVTK43691G456340 test gal_per_hr 0.940936
## 8: JFK::20140306::1FVTK43691G456340 test rbinded <data.table>
## 9: JFK::20140306::1TULD4346YD544661 test gal_per_hr 0.9098551
## 10: JFK::20140306::1TULD4346YD544661 test rbinded <data.table>

Pretty cool!

What is great about this is that you can easily parallelize this operation across multiple cores/nodes/clusters
because we broke it down into intervals (airport and date). That is, our data model and query pattern
were designed for easily doing a fork and join operation. Check out the parallel package or even the rmr2
package for more details of how to do that.

If you have any suggestions, comments, or questions please feel free to contact me. Also if you would like to
further contribute to the rhbase fork or timeseriesr package, all contributions are welcome.
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