
  

Introduction to JavaFX



  

JavaFX is a graphics framework for creating 
desktop and mobile apps.

JavaFX interfaces can be defined declaratively 
(in XML) instead of Java code.  (In Swing, the 
UI is defined entirely in code.)

Example of both ways shown later.



  

Some Concepts

A JavaFX application contains a Window

   that contains a Stage

   that contains a graph (tree) of Components

                                           and  Layouts

appearance is controlled by properties you can set:

size, color, background, spacing (social distancing), ...



  

U.I. is Presented on a Stage



  

The Stage Contains a Scene

stage.setScene( scene );



  

Scene has Components & Layouts

scene.setLayout( livingRoomLayout );
scene.getChildren().add( Sofa );



  

What You Need to Know

1. How do I get a Stage?

2. What are the Layouts and Containers?

3. How do I use Components?

4. What Properties can I set? (appearance)

5. How to respond to Events?



  

Create this UI in Code



  

Structure of JavaFX App (main)

public class HelloFX extends Application {
    public static void main(String[] args) {
        launch(args);
    }

@Override
public void start(Stage primaryStage) {
    // Create a container as root node in the Scene
    FlowPane root = new FlowPane();
    // Set appearance of container (spacing, alignment)

    // Add components to the container)

    // Show the scene graph on the Stage
    primaryStage.setScene(new Scene(root));
    primaryStage.show();
}



  

Define Container & Components

Label (read-only) TextField (input) Button

FlowPane - components "flow" left-to-right



  

Add Components

  public void start(Stage primaryStage) {
  FlowPane root = new FlowPane();
  // Set appearance of container

  // Add components to the container)
  Label prompt = new Label("Who are you?");

    TextField nameField = new TextField();

    Button button = new Button("Greet Me");

    root.getChildren().add(prompt);

    root.getChildren().add(nameField);

    root.getChildren().add(button);



  

View It

Looks ugly.



  

Run-time Annoyance

When you run a JavaFX application with Java 11 you 
may get this message:

Error: JavaFX runtime components are 
missing, and are required to run this...

This relates to modules in Java 9+.  Here's a fix:

Cmd line:
java --module-path /path/to/javafx/lib

     --add-modules javafx.base,javafx.controls

IDE: Add --module-path and --add-modules to VM args.



  

Java 8 - Retrograde Solution

Java 8 includes JavaFX in the JDK (no external Jars)

and does not use modules.

You can add JDK 8 to your system and configure it in 
Eclipse or IntelliJ, and maybe in VS Code.

You choose which IDE (JDK8, JDK11, etc.) for each 
project.

You must be careful to run from command line using Java 
8 "java" command, too.  

Otherwise JavaFX classes will not be found.



  

Improve Appearance using Properties

Every control has properties you can set that effect its 
appearance.  Modify the FlowPane:

   FlowPane root = new FlowPane();
 // Set appearance of container

   root.setAlignment(Pos.CENTER);

   root.setHgap(10.0);

   root.setPadding(new Insets(10.0));



  

Where to learn properties?

The Oracle JavaFX Tutorial gives many examples of 
setting properties of components.

Oracle has downloadable PDF and ePub for...

Getting Started with JavaFX

JavaFX Layouts

JavaFX UI Controls

Use SceneBuilder (visual layout) -- it's even easier.



  

Modularize

start() method is getting long.

Separate component creation to its own method.

public void start(Stage primaryStage) {
  FlowPane root = initComponents();

    // Show the scene graph on the Stage

    primaryStage.setScene(new Scene(root));

    primaryStage.show();



  

Add Behavior

UI should respond to click on "Greet Me" button.



  

Events

 Graphics applications use events.
 Event is caused by user actions.
 An event dispatcher notifies interested objects.

Event

EventQueue
1. ActionEvent 
2. MouseEvent
3. KeyEvent
4. WindowEvent
...

void handle( Event event )  {

}

Event Handler

notify



  

Events

1. User clicks mouse on a button -- that's an Event.

2. JavaFX creates a MouseEvent object.
– the MouseEvent describes what happened: 

which component? which mouse button?

3. JavaFX looks for a registered "Event Handler", and 
calls it using the ActionEvent as parameter.

MouseEventClick! void handle( Event event )  {

}

Event Handler

notify
MyButton

JavaFX user interface



  

Adding Event Handlers

You tell JavaFX what events you want to handle, and 
which code to invoke:

button.setOnAction( EventHandler<ActionEvent> )

== or ==

button.addEventHandler( eventType, eventHandler )



  

Write an EventHandler
This example uses an inner class.

Many examples use anonymous class or lambda.

class ClickHandler 

         implements EventHandler<ActionEvent> {

     public void handle(ActionEvent event) {

         String name = nameField.getText().trim();

         if (name.isEmpty()) {

            nameField.setPromptText(

                   "Please enter a name");

        }

        else showDialog("Hello, "+name);

    }

}



  

Access the TextField

EventHandler needs access to the nameField.

Define it as an attribute instead of a local variable.

public class HelloFX extends Application {

  private TextField nameField;
  public static void main(String[] args) {
        launch(args);

  }

  class ClickHandler implements ... {

    // inner class can access outer class

  }



  

Attach Event Handler

private void initComponents() {

  Button button = new Button("Greet me");

  button.setOnAction(new ClickHandler());



  

showDialog

Instead of printing on boring System.out, 

pop-up an Alert box to greet user.

public void showDialog(String message) {

    Alert alert = new

          Alert(Alert.AlertType.INFORMATION);

    alert.setTitle("Greetings");

    alert.setHeaderText( message );

    // wait for user to dismiss dialog

    alert.showAndWait();

}



  

Run it



  

Exercise - Improve the UI

TODO 1:

After greeting the 
person, clear the text 
from nameField.

TODO 2:

If user presses ENTER in 
nameField, also invoke 
ClickHandler, by adding an event 
handler to nameField. 

You can reuse the same 
ClickHandler object, don't create 
another one.



  

SceneBuilder

Visual tool for creating graphical UI.   But first...



  

Writing a UI in Code is Good

Good to learn the concepts and components 
first.

For a dynamic UI, it may be necessary to add 
components using code.



  

Good Tutorials

Oracle's JavaFX Tutorial - lots of info about components.

https://docs.oracle.com/javase/8/javase-
clienttechnologies.htm

code.makery - SceneBuilder tutorial, 7 parts.

https://code.makery.ch/library/javafx-tutorial/part1/

Vojtech Ruzicka JavaFX & SceneBuilder tutorial

https://www.vojtechruzicka.com/javafx-getting-started/

also 7 parts.  Instructions for IntelliJ.



  

Suggest a Good Tutorial?

If you find a good tutorial site or video(s), post the links 
on Google classroom.  

Or send to me.  Posting for everyone is better.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

