LIPIDS/FATS

Dr. Preston Mercer, FACN College of Public Health Community and Family Health pmercer@usf.edu

Learning Objectives

- Classify fats according to their chemical composition and distinguish between saturated and unsaturated, monounsaturated and polyunsaturated, cis and trans, and omega-3, -6, and -9 fatty acids
- Describe the digestion, absorption, transportation, and storage of fat
- Explain the metabolism of fat, including mobilization, transportation, uptake, activation, translocation, and oxidation as well as ketosis and the effect it may have on training

Learning Objectives

- Describe how the body uses fat to fuel exercise
- State fat recommendations for athletes and calculate the amount of fat needed daily
- Identify sources of dietary fat and assess an athlete's dietary fat intake
- Evaluate dietary supplements related to fat metabolism

Introduction

• Fat

- Dietary intake
 - There are health risks associated with too much and too little

- Member of lipids class of compounds

- Triglycerides (fats and oils)
- Phospholipids
- Sterols

Roles of Body Fat

- Lipids: provide energy
- Adipose tissue
 - Fat-storing cells; also secretes hormones
 - Fat stored in fat cells
 - Supplies 60 percent of the body's ongoing energy needs during rest
 - Fat embedded in muscle
 - Along with glycogen, provides energy to muscle

ning

TABLE 4-1The Functions of Fats in the Body

- Energy stores. Fats are the body's chief form of stored energy.
- Muscle fuel. Fats provide much of the energy to fuel muscular work.
- Padding. Fat pads inside the body cavity protect the internal organs from shock.
- *Insulation*. Fats insulate against temperature extremes by forming a fat layer under the skin.
- Cell membranes. Fats form the major material of cell membranes.
- *Raw materials*. Fats are converted to other compounds, such as hormones, bile, and vitamin D, as needed.

© Cengage Learning

TABLE 4-2The Lipid Family

Triglycerides (fats and oils)

- Glycerol (1 per triglyceride)
- Fatty acids (3 per triglyceride) Saturated Monounsaturated Polyunsaturated Omega-6

Omega-3

Phospholipids (such as the lecithins)

Sterols (such as cholesterol)

© Cengage Learning

The Chemist's View of Lipids

• Triglycerides

- Predominant form of lipids
- Three fatty acids attached to a glycerol "backbone"
- Fatty acids
 - Differ in chain length and degree of saturation
 - What is the difference between a saturated fatty acid and an unsaturated fatty acid?

*BHA is butylated hydroxyanisole; BHT is butylated hydroxytolvene.

The Chemist's View of Lipids

CAN YOU TELL BY LOOKING?

- Comparison of three fats
 - Lard (from pork): most saturated > hardest
 - Chicken fat: less saturated > somewhat soft
 - Safflower oil: most unsaturated ► liquid
- Stability
 - Why are polyunsaturated fatty acids most susceptible to becoming rancid?

• Stability

- Methods manufacturers protect fat-containing products from rancidity
 - 1. Seal products airtight and refrigerate
 - 2. Add antioxidants, e.g., BHA and BHT
 - 3. Hydrogenate products

- Hydrogenation
 - Advantages: protects against oxidation and alters texture
 - What are the disadvantages?
- Essential fatty acids
 - Linoleic acid: omega-6 fatty acid
 - Linolenic acid: omega-3 fatty acid

- Phospholipids: class of lipids
 - Food sources: eggs, soybeans, peanuts, etc.
 - Lecithin and other phospholipids
 - Constituents of cell membranes
 - Emulsifiers in the body
 - Some generate signals in cells

Sterols

- Large, complex molecules
 - Interconnected rings of carbon
 - Cholesterol, vitamin D, and sex hormones
- Cholesterol
 - Obtained in foods as well as made by the liver

- Cholesterol
 - Leaves liver by two routes:
 - 1. Incorporated into bile, stored in the gallbladder, and delivered to the intestine
 - 2. Via the bloodstream to all the body's cells

Health Effects and Recommended Intakes of Fats

- Diet high in saturated fats or trans fats
 - Increased risk of cardiovascular disease
 - Greater-than-average chances of some cancers
 - An increasing waistline often increases blood triglycerides

Health Effects and Recommended Intakes of Fats (cont'd.)

- Fats and heart health
 - High LDL: increased likelihood of fatal heart attack or stroke
 - Promotes cholesterol uptake in the blood vessel walls
 - High HDL: lower disease risk
 - Trans fats: raise LDL and lower HDL

Health Effects and Recommended Intakes of Fats (cont'd.)

- Dietary Guidelines for dietary cholesterol
 - Healthy people: less than 300/day
 - People with or at high risk of heart disease: less than 200 mg/day
- Monosaturated fat (olive oil)
 - May prevent heart disease
- Omega-6 and omega-3 fats
 - Lower total cholesterol and LDL

Fat Oxidation During Exercise

© Cengage Learning 2015

6.6 Fat Recommendations for Athletes

- Total energy (kcal) need
 - Macronutrient balance
 - Higher CHO/protein intake typically means lower fat intake
 - Severe restriction of fat intake not recommended
 - Often expressed as a % of total energy intake
 - 20 to 35% total caloric intake
 - May be expressed on g/kg body weight basis
 - ~1.0 g/kg daily
 - May need to be as high as 3.0 g/kg (ultraendurance athletes)

Fat Recommendations for Athletes

- Adjusting fat intake to achieve energy deficits
 - Reducing body fat may result in improved performance
 - Fat intake is typically reduced since reductions to CHO or protein intakes may be detrimental to performance
 - Athletes may consume a short-term, low fat diet to achieve body composition goals
 - The fat intake of a bodybuilder will vary depending on the training cycle

Inadequate Fat Intake Can Negatively Affect Training, Performance, and Health

- Effects of an inadequate fat intake on training, performance, and health
 - Inadequate replenishment of intramuscular fat stores
 - Inability to manufacture sex-related hormones
 - Decline in high-density lipoprotein cholesterol (HDL-C)
 - Inadequate fat-soluble vitamin intakes

Translating Fat Recommendations to Food Choices

- Many athletes fail to consume an appropriate amount of fat
- Certain unsaturated fatty acids may help to reduce heart disease risk
- Excess saturated fat intake should be avoided

Summary

- Fat is the most energy-dense nutrient found in food
- The predominant fat in food and in the body is the triglyceride
- Fat absorption, digestion, transportation, and metabolism are slow and complicated
- The main sites of fat storage are adipocytes, liver, and muscle cells
- Fat is the primary energy source at rest and during low-intensity activity

- Athletes find that their diets tend to be relatively lower in fat than the typical American diet
- Caution should be used when restricting fat because athletes can reduce the fat in their diets too much