
Paper ID #26661

Introducing Programming and Problem Solving with Arduino-based Labo-
ratories

Dr. Michael Daugherity, Abilene Christian University

Dr. Michael Daugherity is an Associate Professor of Engineering and Physics at Abilene Christian Uni-
versity in Abilene, Texas. He received his PhD in Nuclear Physics from the University of Texas at Austin.
His primary research focuses on nuclear physics experiments at the Brookhaven National Lab and Fermi
National Accelerator Lab atom smashers performing data analysis and building radiation detectors. In-
cluding undergraduate students in research is a major emphasis at ACU’s Engineering and Physics de-
partment. Dr. Daugherity’s other research interests include data science and machine learning as well as
education and science outreach.

c©American Society for Engineering Education, 2019

Introducing Programming and Problem Solving

with Arduino-based Laboratories
Abstract

First year engineering and physics undergraduate students at Abilene Christian University begin

their studies with an intro course designed to teach fundamental skills, explore career options in

engineering and physics, and build community. We have developed a series of labs and

activities based on Arduino microcontrollers that helps us accomplish all three of these goals.

Through departmental self-studies, Industrial Advisory Board recommendations and internship

programs we identified programming skills as an area to strengthen in the curriculum,

particularly for physics students. We now devote roughly 1/3 of class and lab time in our intro

course to Excel and programming. Encouraging algorithmic thinking and working within the

constrained environment of a programming language helps reinforce the structured approach to

design and problem solving introduced earlier in the course. Experience has also shown that

many students have an easier time learning programming when coupled with hardware since

they can see the effect of code running in the real world. Building simple circuits with Arduino

microcontrollers also accomplishes the additional goal of exposing students to different fields of

engineering and physics. Many of our students have no prior experience in programming or

circuits, so these activities provide a fun first exposure to these fields.

Students purchase a very inexpensive kit with an Arduino Uno and all of necessary components

to build many projects. We start with a basic LED circuit and then carefully sequence class and

lab activities that gradually introduce more complex components and programming skills. The

first major project is a light meter using a photoresistor and servo to display ambient light levels

on a calibrated scale. Other projects include displaying Morse code with LEDs, a temperature

monitor, a proximity alarm, and a robotic arm. Finally, the students incorporate Arduinos into

their major design project for the semester. They are encouraged not only to apply what they

have learned but also to explore new capabilities beyond what has been required in class. In

conclusion, we have found Arduino-based labs to be a low-cost, high-impact way of introducing

programming and problem solving into the engineering physics curriculum.

Introduction

Programming skills are a crucial part of the engineering and physics curriculum. Survey data

from the American Institute shows that students who received a physics bachelor’s degree in

2013 and 2014 are extremely likely to regularly use programming skills [1]. Of these students

working in the private sector, 75% regularly used programming in engineering jobs, while 95%

used programming in CS or IT jobs. A similar survey found the vast majority of physics PhDs in

2013 and 2014 use programming regularly [2]. Aside from learning marketable job skills,

programming is useful for developing structured problem solving techniques. Programming

teaches the design cycle of breaking a problem into steps, developing a flowchart, implementing

and testing each step, documenting work, and iteratively testing the complete solution. These

skills clearly transfer to non-programming problems in engineering and physics.

However, despite the importance of programming, it is often difficult to find enough room in the

crowded undergraduate curriculum for students to adequately master these skills. Engineering

and physics programs must be deliberate and creative in finding ways to incorporate

programming throughout the curriculum. This paper describes one way of introducing

programming to first-semester freshmen in engineering and physics.

Setting

At Abilene Christian University, the engineering and physics programs both operate within the

same department. All entering engineering and physics majors are required to take an

Introduction to Engineering and Physics class with accompanying lab. The course has

undergone significant revision since its inception in 2012, and now includes a variety of topics.

The lecture portion emphasizes fundamentals such as vectors, units, estimation, design, problem

solving, Excel, programming, and careers. The lab is largely based around a semester-long

project to illustrate the entire engineering design process. Past projects include “Angry Bird

Launcher” catapults that shoot dodge balls at targets up to hundred feet away, and building

Miniature Golf holes incorporating multiple design elements and constraints. As the students

develop programming skills, they are able to include microcontrollers into their projects. This

year’s mini golf holes were full of LEDs, servos, and sensors incorporated in many creative

ways.

In addition to technical skills, another objective of the intro course is to improve retention by

developing a sense of community and working on fun projects. Daily group work and project

teams encourage students to connect with each other. Finding fun projects for them to work on

can be challenging. Previous iterations of the intro course did “pure” programming in MATLAB

with no additional hardware beyond a standard computer. Many students struggled to engage

with this component of the course. Over time we introduced some robotics components that

were very successful in sparking interest. As we added more hardware elements, we noticed an

additional benefit of students having an easier time learning programming by seeing the effect of

code running in the real world. The hardware elements also served as a first introduction to

electrical engineering for many students, which helps satisfy the careers objective of the course.

Another objective of the intro course is to develop problem solving skills. A natural approach to

structured problem solving is to have students develop an algorithm, or flowchart, to carefully

break a problem into steps. Programming provides excellent ways to practice these skills

because the algorithm then becomes a blueprint for the program. Requiring the students to

produce documentation helps them think through their solutions while practicing technical

communication.

Therefore, we have included a significant unit on programming with microcontrollers to the first-

year Introduction to Engineering and Physics course to teach a crucial job skill, improve

retention, and develop problem solving skills.

Software

The IEEE Spectrum releases annual reports on the top programming languages [3]. While the

current top language is Python, C++ maintains a very close second. In fact, 4 of the top 5

languages in 2018 are in the “C++ family” sharing similar syntax. We also considered input

from our department’s Industrial Advisory Board, recent graduates, and current faculty and

students in selecting a programming language. Two large factors were the prevalence of using

C/C++ in our senior capstone projects, and that our computer science department teaches

introductory programming in C++. The Arduino IDE is freely available on Windows, Mac OS

X, and Linux (https://www.arduino.cc/). Even though we have chosen to use C++ for these

programming labs, they could easily be adapted to other languages that support the Arduino

platform such as Python or MATLAB.

Hardware

As discussed above, we find that students are more interested and have an easier time learning

programming when we include electronic components. Instead of changing a variable in

memory, students get to see LEDs light up and servos move. An additional objective of the

freshman intro course is to give students some exposure to different disciplines in engineering

and physics, so by using microcontrollers we introduce students to both programming and basic

electronics.

We use an Arduino Uno (or compatible) microcontroller for our hardware platform. Arduinos

are ideal solutions for being inexpensive, compatible with a huge range of sensors and other

components, and has a large community providing support.

In earlier iterations of the course the department provided the Arduinos and other components.

However it was difficult to make these available outside of class or lab hours for students, so

assigning homework was challenging. We solved the problem this year by having students

purchase their own Arduino kit. Not only did this simplify the logistics of the department

keeping up with supplies and giving students hardware to use outside of class, the students had a

new sense of ownership and investment in the projects. This year they got to keep what they

made! There are many manufacturers that supply Arduino kits. We contacted several to find

one that would give a bulk educational discount on kits that had enough, but not too many,

components.

Figure 1: The hardware including the kit components (left) and AL5D robot arm (right)

https://www.arduino.cc/

We did a final “capstone” lab using Lynxmotion AL5D robot arms provided by the department

using custom Arduino software developed for the lab. The goal of this lab is to end this unit with

an exciting project that showcases the Arduino in more advanced applications.

Arduino Labs

Students are divided into groups of 2 or 3 people. Each group needs access to one Arduino kit

and one laptop computer for programming. While students are highly encouraged to use their

own laptops, we made departmental laptops available. We use the 50 minute class times to

introduce new programming topics, new electronic components, and practice skills. Class meets

only twice per week. Students have a 3 hour lab each week to do more complex projects. The

Arduino activities are carefully staged to slowly introduce new programming and electronics

concepts one at a time. We invested a total of 3 weeks of the 15-week semester to these labs.

We staged them early in the semester so students would be able to incorporate Arduinos into the

designs of their major lab projects, as well as to help generate excitement for the new class. The

first week of class begins with introducing the syllabus and welcoming new students to the

department. Then we discuss professional problem solving skills emphasizing the necessity of

breaking a problem down into steps, developing an algorithm, and practicing good

communication. The Arduino labs begin the second week of the semester.

Table 1 below gives a short description of each class and lab period with new programming and

electronics concepts introduced and used in projects.

Class/Lab Programming Electronics Project

Class 1-1 introduction, Arduino IDE,

C++ basics

LED, digital output SOS Morse Code

Class 1-2 expressions, variables, serial

output with print and println

serial communications Number classifier

Lab 1 simple loop, serial output voltage, resistors, simple

LED circuits

3 Blinking LEDs

Class 2-1 logic, if statements serial input Number Constrainer

Class 2-2 if statements RBG LEDs Keyboard Controlled

RGB LED

Lab 2 reading inputs servos, photocells Light Meter

Class 3-1 review analog input, thermistor Battery Tester,

Temperature Monitor

Class 3-2 complex conditional

statements, logical operators

ultrasonic rangefinder Proximity Alarm

Lab 3 algorithms, loops robot arms, servos Robot Arm

Discussion

As an example of how programming and electronics concepts are gradually staged, consider the

first week of Arduino activities. In Class 1-1, after a brief introduction to Arduinos, we use the

Blink example that comes with the Arduino IDE to demonstrate turning the built-in LED on and

off. The students then modify that example to make the LED blink SOS in Morse code. In Class

1-2 we focus on programming basics to calculate simple expressions and display output in the

serial communication monitor. Then in Lab 1 students get to build their first circuit using LEDs

and resistors from their kits and modifying the Blink example to control it. The lab carefully

guides students with step-by-step instructions for making a one LED circuit. Then they are told

to construct a 3 LED circuit on their own and make the lights blink in a specified pattern. By the

end of the first week students have achieved a basic working knowledge of how to use an

Arduino.

Figure 2: The 3 LED circuit diagram (left) and implementation (right)

The second week’s classes introduce logic with the if statement. Then they learn how to read

numbers from serial input (typed with the computer keyboard into the serial monitor) and do a

simple Number Constrainer project where they read a number and ensure it is within a specified

range. Class 2-2 continues with RBG LEDs and a project to control the controls individually

with keyboard input. Some students require a significant amount of time and practice before

they feel comfortable with programming and electronics, but we find that by this project students

have pushed through their initial barrier and have begun to enjoy programming.

Lab 2 introduces the concept of reading input voltages as demonstrated through experiments

with a photocell. Then we introduce a simple servo that is easily controlled with an included

library. Finally, the students must work on their own to combine these two elements into a

prototype light meter (see Appendix).

Figure 3: The light meter project

The final week of class is devoted to two short projects. Class 3-1 practices analog input. First

we build a battery tester by reading the voltage of a AA battery, then we introduce a thermistor

and build a temperature monitor where a red LED lights up if the temperature exceeds a certain

value. Class 3-2 introduces the ultrasonic rangefinder and how to use logical operators to make

more complex conditional statements. The rest of class is spent working on a proximity alarm

project. Finally, Lab 3 concludes the Arduino unit by letting students control 5-servo AL5D

robot arms with a custom-made program. This lab returns the emphasis to problem solving skills

and algorithmic thinking by making students program the arm to perform a series of actions.

Conclusion

Programming is an important component of the engineering and physics curriculum. By

studying programming students are learning important job skills, developing problem solving

abilities, and equipping themselves to build interesting projects. We advocate for introducing

programming early and using it throughout the entire engineering and physics curriculum. This

paper demonstrates a 3 week series of activities using free software and very inexpensive

hardware to introduce students to programming and electronics with an emphasis on problem

solving skills. Further work will attempt to measure the impact of this programming

introduction on student’s development within the engineering and physics curriculum,

particularly with learning outcomes and student feedback.

Acknowledgments

The author wishes to thank his colleagues Dr. Darby Hewitt, Dr. Lori Houghtalen, and Dr. Tim

Kennedy for their work in developing the Introduction to Engineering and Physics course and

implementing the Arduino activities discussed here.

References

[1] P. Mulvey and J. Pold, “Physics Bachelors: Initial Employment,” American Institute of

Physics Statistical Research Center, April 2017. [Online]. Available:

https://www.aip.org/sites/default/files/statistics/employment/bachinitemp-p-14.1.pdf

[2] J. Pold and P. Mulvey, “Physics Doctorates: Skills Used & Satisfaction with Employment,”

American Institute of Physics Statistical Research Center, August 2016. [Online]. Available:

https://www.aip.org/sites/default/files/statistics/employment/phds-skillsused-p13v2.pdf

[3] S. Cass, “The 2018 Top Programming Languages”, IEEE Spectrum, July 31, 2018. [Online]/

Available: https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

Appendix

To provide a complete example, the Light Meter Lab is included in the following pages

https://www.aip.org/sites/default/files/statistics/employment/bachinitemp-p-14.1.pdf
https://www.aip.org/sites/default/files/statistics/employment/phds-skillsused-p13v2.pdf
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

Appendix

Intro Programming Lab #2
The Light Meter

This week you will be building a meter that measures light levels. This is our first lab project that reads
input from a sensor, so let’s talk about analog inputs.

Part 1) Reading Voltages

We will use the analogRead command to measure analog input. It compares the analog pin to the
Arduino’s reference voltage (presumably 5.0 V from the USB) and returns an integer from 0-1023 where
0 is zero volts and 1023 is the max voltage. The integer comes from an analog-digital convertor (ADC)
built into the processor, so ADC value / 1023 is the fraction of the max voltage we just read:

𝑉𝐼𝑁 = 𝑉𝑀𝐴𝑋 ∗
ADC

1023

One problem is that if we need precise measurements then we have to know 𝑉𝑀𝐴𝑋. A USB cable gives
us about 5.0 volts, but not exactly. We use a calibrated power supply, measure the input voltage
directly, or get it with a sneaky trick…

Exercise 1
Every time you write code you need to test it with a case where you know the right answer. Always
start with a reality check. Start with this simple sketch to read ADC values
int readPin = 0; // Analog input pin (use 0 for A0, 1 for A1, etc)

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly

 int adc = analogRead(readPin);

 Serial.println(adc);

 delay(1000);

}

1) Connect a wire from A0 to GND and verify that you read exactly 0.
2) Move the wire so it connects A0 to 5V and verify that you read exactly 1023.
3) Move the wire again so it connects A0 to 3.3V. Record your ADC value.
4) Because of the internal circuitry we know that the 3.3V pin is actually very close to 3.3 volts. So use
your ADC value with 𝑉𝐼𝑁 = 3.3 𝑉 in the voltage equation above to calculate 𝑉𝑀𝐴𝑋. Record your 𝑉𝑀𝐴𝑋
value and use it in all future voltage measurements.

To measure voltages, just modify this sketch to calculate VIN using this new VMAX value.

Now we can work on your light meter circuit:

Setup

 Connect +5V and GND to your breadboard

 Plug in one leg of the photocell in +5V, other leg connects to 10k resistor

 connect second leg of 10k resistor to GND

 Attach wire from ANALOG IN to place where photocell and resistor are connected

Exercise 2
The photocell is light sensitive. Play around covering it with your hand or using your phone’s flashlight.
Record the resulting voltages in your worksheet.

Part2 – Servos
Servos are like motors that can move to a given angle. Most servos like ours can only rotate 180
degrees. The plastic attachment that turns is called the servo horn.

Setup

 Attach servo to breadboard. This is easiest using a block of 3 header pins. Make sure:
o orange = signal to PWM pin (marked by ~)
o red = +5V
o brown = ground

Code

Servos require a few lines of code to set up, and then we will use the write command to set the
position from 0 to 180 degrees. Increasing the angle rotates the servo counter-clockwise.

// Servo Example

#include <Servo.h>

int servoPin = 3; // PWM pin for servo

Servo s; // declare servo

void setup() {

 s.attach(servoPin);

}

void loop() {

 s.write(90); // set servo position

 delay(1000);

}

Exercise 3
Write a program that sweeps the servo from 0 to 180 in steps of 15 with a delay in between. Do not just
copy and paste s.write a bunch of times. Instead, declare a variable for your servo position and add
10 to it in the loop. Use an if statement to reset the position to 0 if it gets bigger than 180. Write your
loop function on your worksheet.

Exercise 4
Get the light meter paper and set your servo position to 90. Then tape an arrow to the horn and stick it
on the servo pointing at 90 degrees on the paper. Now use your program in exercise 3 to take some
calibration data. It will be going backwards since servos move counter-clockwise and protractors go
clockwise, and it may go off scale. Regardless, these numbers will help you understand how to control
the servo.

Part 3 – Light Meter
Your job now is to combine these two elements into a working light meter. Remember that once your
code is running on the Arduino, we only use the USB computer connection for power. If we used a
battery pack you could walk around with your light meter.

Exercise 5
Organize your data to help with the next step. For both extremes of light and dark copy the voltages
from exercise 2, decide which angle on the paper the servo should be pointing to, then use your data
from exercise 4 to estimate what position to set the servo at.

Exercise 6
Now finish the project! Use your data and figure out how to calculate the servo position from the input
voltage. There are many ways to solve this problem! Write down your solution for exercise 6.

Extensions
How can we make this even better?
1) Calibrate it so that ambient room lighting points at exactly 90 degrees
2) Make it portable by getting a battery pack
3) Make it self-calibrating by remembering the max and min voltages seen

