
Introducing the Java EE 6 Platform: Part 1

Skip to Content Sun Java Solaris Communities My SDN Account Join SDN 

» search tips    

●     APIs

●     Downloads

●     Products

●     Support

●     Training

●     Participate

SDN Home > Java Technology > Reference > Technical Articles and Tips > 

Article

Introducing the Java EE 6 Platform: Part 1

  Print-friendly Version
By Ed Ort, December 2009  

Articles Index

Part 1 | Part 2 | Part 3

Java Platform, Enterprise Edition (Java EE) is the industry-standard platform for 
building enterprise-class applications coded in the Java programming language. Based 
on the solid foundation of Java Platform, Standard Edition (Java SE), Java EE adds 
libraries and system services that support the scalability, accessibility, security, 
integrity, and other requirements of enterprise-class applications.

Since its initial release in 1999, Java EE has matured into a functionally rich, high 
performance platform. Recent releases of the platform have also stressed simplicity and ease of use. In fact, with the 

 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (1 of 17) [12/17/2009 4:54:29 PM]

http://java.sun.com/global/mh/suncom/index.html
http://java.sun.com/global/mh/java/
http://java.sun.com/global/mh/solaris/
http://java.sun.com/global/mh/communities/
http://developers.sun.com/global/my_profile.html
http://developers.sun.com/global/join_sdn.html
http://developers.sun.com/global/search_tips.html
http://www.sun.com/
http://java.sun.com/global/mh/api/index.html
http://java.sun.com/global/mh/downloads/index.html
http://java.sun.com/global/mh/products/index.html
http://java.sun.com/global/mh/support/index.html
http://java.sun.com/global/mh/training/index.html
http://java.sun.com/global/mh/participate/index.html
http://developers.sun.com/index.jsp
http://java.sun.com/index.jsp
http://java.sun.com/reference/index.html
http://java.sun.com/reference/techart/index.html
http://java.sun.com/jsp_utils/PrintPage.jsp
http://java.sun.com/jsp_utils/PrintPage.jsp
http://java.sun.com/developer/technicalArticles/
http://java.sun.com/javaee/
http://java.sun.com/javaee/
http://java.sun.com/javase/
http://java.sun.com/javaee/downloads/preview/


Introducing the Java EE 6 Platform: Part 1

current release of the platform, Java EE 5, development of Java enterprise applications has never been easier or faster.

 

Java EE 6 adds significant 
new technologies and 
extends the usability 
improvements made in 
previous Java EE releases.

Progress continues. The next release of the platform, Java EE 6, adds significant 
new technologies, some of which have been inspired by the vibrant Java EE 
community. It also further simplifies the platform, extending the usability 
improvements made in previous Java EE releases.

This article highlights some of the significant enhancements in Java EE 6.

Contents
 

- Java EE 6 Goals

- Powerful New Technologies

- Enhanced Web Tier Capabilities

- EJB Technology, Even Easier to Use

- A More Complete Java Persistence API

- Further Ease of Development

- Profiles and Pruning

- Summary

- For More Information

- Comments

 
Java EE 6 Goals

Here are the main goals for the Java EE 6 platform:

●      

Java EE 6 introduces the 
Web Profile, a subset of 
the Java EE platform 
designed for web 
application development.

More Flexible Technology Stack. Over time, the Java EE platform has 
gotten big, in some cases too big for certain types of applications. To remedy 
this, Java EE 6 introduces the concept of profiles, configurations of the Java 
EE platform that are designed for specific classes of applications. A profile 
may include a subset of Java EE platform technologies, additional 
technologies that have gone through the Java Community Process, but are not 
part of the Java EE platform, or both. Java EE 6 introduces the first of these profiles, the Web Profile, a subset 
of the Java EE platform designed for web application development. The Web Profile includes only those 
technologies needed by most web application developers, and does not include the enterprise technologies that 
these developers typically don't need.
 

In addition, the Java EE 6 platform has identified a number of technologies as candidates for pruning. These 

 

Get Java EE Training 
and Certification 

●     Java EE Training
Find out about 
training for 
architects and 
web component, 
business 
component, and 
integration 
developers.

●     Certification
Learn about 
various Sun 
certification 
courses for 
programmers and 
enterprise 
architects, 
preparation 
methods, and 
savings programs.

 

Ed Ort is a writer on 
the staff of the Sun 
Developer Network. 

He has written extensively 
about a wide variety of 
programming topics including 
relational database 
technology, programming 
languages, web services, and 
Ajax. Read his blog. 

 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (2 of 17) [12/17/2009 4:54:29 PM]

http://java.sun.com/javaee/downloads/index.jsp
http://jcp.org/en/home/index
http://java.sun.com/javaee/support/training/
http://java.sun.com/javaee/support/training/
http://blogs.sun.com/edo


Introducing the Java EE 6 Platform: Part 1

candidates include technologies that have been superseded by newer technologies or technologies that are not 
widely deployed. Pruning a technology means that it can become an optional component in the next release of 
the platform rather than a required component.
 

●      

More extensibility points 
and service provider 
interfaces as well as web 
tier features such as 
support for self-
registration makes the 
platform highly extensible.

Enhanced Extensibility. Over time, new technologies become available that 
are of interest to web or enterprise application developers. Rather than adding 
these technologies to the platform — and growing the platform without 
bounds — Java EE 6 includes more extensibility points and more service 
provider interfaces than ever before. This allows you to plug in technologies 
— even frameworks — in your Java EE 6 implementations in a standard 
way. Once plugged in, these technologies are just as easy to use as the 
facilities that are built into the Java EE 6 platform.
 

Particular emphasis on extensibility has been placed on the web tier. Web application developers often use 
third-party frameworks in their applications. However, registering these frameworks so that they can be used in 
Java EE web applications can be complicated, often requiring developers to add to or edit large and complex 
XML deployment descriptor files. Java EE 6 enables these frameworks to self-register, making it easy to 
incorporate and configure them in an application.
 

●      

Usability improvements in 
many areas of the platform 
makes it even easier to 
develop web and 
enterprise applications.

Further Ease of Development. Java EE 5 made it significantly easier to 
develop web and enterprise applications. For instance, Java EE 5 introduced 
a simpler enterprise application programming model based on Plain Old Java 
Objects (POJOs) and annotations, and eliminated the need for XML 
deployment descriptors. In addition, Enterprise JavaBeans (EJB) technology 
was streamlined, requiring fewer classes and interfaces and offering a 
simpler approach to object-relational mapping by taking advantage of the 
Java Persistence API (informally referred to as JPA).
 

Java EE 6 makes it even easier to develop enterprise or web applications. Usability improvements have been 
made in many areas of the platform. For example, you can use annotations to define web components such as 
servlets and servlet filters. Furthermore, a set of annotations for dependency injection has been standardized, 
making injectable classes much more portable across frameworks. In addition, Java EE application packaging 
requirements have been simplified. For example, you can add an enterprise bean directly to a web archive 
(WAR) file. You no longer need to package an enterprise bean in a Java archive (JAR) file and then put the 
JAR file in an enterprise archive (EAR) file. 

Powerful New Technologies

Java EE 6 adds significant new technologies that make the platform even more powerful. Three of these are described 
below: 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (3 of 17) [12/17/2009 4:54:29 PM]



Introducing the Java EE 6 Platform: Part 1

●     Java API for RESTful Web Services (JAX-RS)
●     Contexts and Dependency Injection for the Java EE Platform (CDI)
●     Bean Validation

Java API for RESTful Web Services (JAX-RS)

Java API for RESTful Web Services (JAX-RS), JSR 311 enables you to rapidly build lightweight web services that 
conform to the Representational State Transfer (REST) style of software architecture. An important concept in REST 
is the existence of resources, each of which can be referred to with a global identifier, that is, a URI. In particular, data 
and functionality are considered resources that can be identified and accessed through URIs. To manipulate these 
resources, components of the network, clients and servers, communicate through a standardized interface such as 
HTTP and a small, fixed set of verbs — GET, PUT, POST, and DELETE — and exchange representations of these 
resources.

RESTful web services are web services built according to the REST architectural style. Building web services with the 
RESTful approach has emerged as a popular alternative to using SOAP-based technologies thanks to REST's 
lightweight nature and the ability to transmit data directly over HTTP.

 

JAX-RS makes it simple to 
create RESTful web services 
in Java.

JAX-RS furnishes a standardized API for building RESTful web services in Java. 
The API contributes a set of annotations and associated classes and interfaces. 
Applying the annotations to POJOs enables you to expose web resources. This 
approach makes it simple to create RESTful web services in Java.

The specification for the initial release of the technology, JAX-RS 1.0, was finalized in October 2008 and a reference 
implementation named Jersey is also available. Java EE 6 includes the latest release of the technology, JAX-RS 1.1, 
which is a maintenance release that aligns JAX-RS with new features in Java EE 6.

Let's take a look at a RESTful web service that uses JAX-RS.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (4 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=311
https://jersey.dev.java.net/


Introducing the Java EE 6 Platform: Part 1

   import javax.ws.rs.Path;
   import javax.ws.rs.Produces;
   import javax.ws.rs.Get;
   import javax.ws.rs.Post;
   import javax.ws.rs.Consumes;
   import javax.ws.rs.core.Response;
   import javax.ws.rs.core.MediaType;
   import javax.ws.rs.core UriInfo;
   import javax.ws.rs.core.UriBuilder;
   import java.net.URI;

   @Path ("items")
   @Produces (MediaType.APPLICATION_XML)
   Public class ItemsResource {

       @Context UriInfo uriInfo;

       @GET
       Items listItems() {
           Return Allitems();
       }

       @POST
       @Consumes (MediaType.APPLICATION_XML)
       Public Response create(Item item) throws ItemCreationException {
           Item newItem = createItem(item);
           URI newItemURI = uriInfo.getRequestUriBuilder().path(newItem.getId()).build();
           return Response.created(newItemURI).build();
       }

       ...
   }

 
In this example, the ItemsResource class is a web service that manages a set of items. The imports in the class are 
for JAX-RS 1.1 annotations, classes, and interfaces.

 

Annotations add much of the 
information needed to 
identify resources and serve 
HTTP requests.

The @Path annotation specifies a relative path for the resource, in this case 
"items". The URI for the class resource is based on the application context. So 
if the application context for this example is http://example.com, the URI 
for the class resource is http://example.com/items. This means that if a 
client directs a request to the URI http://example.com/items, the 
ItemsResource class will serve it.

The @GET annotation specifies that the annotated method, here the listItems() method, handles HTTP GET 
requests. When a client directs an HTTP GET request to the URI for the ItemsResource resource, the JAX-RS 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (5 of 17) [12/17/2009 4:54:29 PM]



Introducing the Java EE 6 Platform: Part 1

runtime invokes the listItems() method to handle the GET request.

Notice the @Produces annotation. It specifies the MIME media types that the methods in the resource can produce 
and return to the client. In the ItemsResource example, the @Produces annotation specifies 
MediaType.APPLICATION_XML. The MediaType class is an abstraction of a MIME media type. Constants 
supplied to the class identify the particular media type to be abstracted. The MediaType.APPLICATION_XML 
specification is an abstraction of the MIME media type for XML content, "application/xml".

 

JAX-RS automatically 
translates between Java types 
and MIME media types.

Annotations such as @Produces suggest some of the content type translation 
that JAX-RS handles automatically. For example, the listItems() method 
returns a Java object of type Items. JAX-RS automatically translates that Java 
type to the "application/xml" MIME type to be used in the HTTP response to the 
client. Note that the translation is automatic only if the returned type is supported 
by default. For instance, if Items is a JAXB-annotated bean, then the translation would be automatic. However, if 
Items is a POJO, you would need to implement a MessageBodyReader to handle the serialization.

You can also specify a @Produces annotation on a method. In that case, the MIME type you specify on the method 
overrides the MIME types in any @Produces annotation that you specify on the class. For example, you could 
specify a @Produces annotation for the listItems() method as follows:

       @GET
       @Produces (MediaType.TEXT_PLAIN)
       Items listItems() {
           Return Allitems();
       }

 
JAX-RS would then translate the Items Java type to the "text/plain" MIME type, which represents plain text, and 
return content of that type in the HTTP response to the client.

The @POST annotation specifies that the annotated method, in this case, the create() method, responds to HTTP 
POST requests. In this example, the method creates a new item, perhaps in a database, and then returns a response 
indicating that it created the new item. When a client directs an HTTP POST request to the URI for the 
ItemsResource resource, the JAX-RS runtime invokes the create() method to handle the POST request.

Notice that the @Consumes annotation is specified on the create() method. The annotation specifies the MIME 
media types that the methods in the resource can accept from the client. As is the case for the @Produces annotation, 
if you specify @Consumes on a class, it applies to all the methods in the class. If you specify @Consumes on a 
method, it overrides the MIME type in any @Consumes annotation that you specify for the class. In the example, the 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (6 of 17) [12/17/2009 4:54:29 PM]



Introducing the Java EE 6 Platform: Part 1

@Consumes annotation specifies that the create() method can accept XML content, that is, the MIME type 
"application/xml". Here the type translation is from MIME type to Java type. When a client submits XML content in a 
POST request to the URI for the ItemsResource class, JAX-RS invokes the create() method and automatically 
translates the incoming XML to the Item Java type required for the method's argument.

 

Utility classes and interfaces 
further simplify actions 
related to building and using 
RESTful web services.

JAX-RS also includes a number of utility classes and interfaces that further 
simplify actions related to building and using RESTful web services in Java. 
You've already seen one of them: MediaType, a class for abstracting MIME 
media types. Some others are:

●     UriInfo, an interface for accessing URI information. In this example, the @Context annotation injects the 
UriInfo interface into the uriInfo field of the ItemsResource class.

●     UriBuilder, a class for building URIs from their components
●     Response, a class represents an HTTP response
●     Response.ResponseBuilder, a class that builds Response objects, in accordance with the well-known 

Builder Pattern

These classes and interfaces are used in the following statements in the example:

   URI newItemURI = uriInfo.getRequestUriBuilder().path(newItem.getId()).build();
   return Response.created(newItemURI).build();

 
The first statement builds a URI for the new item. The getRequestUriBuilder() method is a UriInfo 
method that creates a UriBuilder object. The path() and build() methods are UriBuilder methods that 
together construct the URI for the new item.

The second statement creates a Response object for the new item to be returned to the client. The created method 
is a Response method that creates a Response.ResponseBuilder object. The build() method is a 
Response.ResponseBuilder method that creates the Response object for the new item. This object delivers 
metadata to the JAX-RS runtime to construct the HTTP response.

 

JAX-RS eliminates a lot of 
the low-level programming 
required in HTTP-aware web 
applications.

These utility classes and interfaces hide a lot of the complexity of HTTP 
programming — another reason why using JAX-RS is a simple way to build 
RESTful web services. However, this simplicity also extends beyond web 
services. JAX-RS can simplify the development of many types of HTTP-aware 
web applications. For example, if you need to build a web application that 
examines HTTP headers, you can probably code it in a much simpler way by 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (7 of 17) [12/17/2009 4:54:29 PM]



Introducing the Java EE 6 Platform: Part 1

using JAX-RS rather than other approaches.

JAX-RS has other convenient features. For example, JAX-RS includes a number of parameter-based annotations to 
extract information from a request. One of these is @QueryParam, with which you can extract query parameters 
from the Query component of a request URL. Some other parameter-based annotations are @MatrixParam, which 
extracts information from URL path segments, @HeaderParam, which extracts information from HTTP headers, 
and @CookieParam which extracts information from the cookies declared in cookie-related HTTP headers.

For information about all the features in JAX-RS 1.1, see Java API for RESTful Web Services (JAX-RS), JSR 311.

Contexts and Dependency Injection for the Java EE Platform

 

CDI unifies and simplifies 
the EJB and JSF 
programming models. It 
allows enterprise beans to act 
as JSF managed beans in a 
JSF application, and brings 
transactional support to the 
web tier.

Contexts and Dependency Injection for the Java EE Platform (CDI), JSR 299 is a 
technology that supplies a powerful set of services to Java EE components. These 
services allow Java EE components, including EJB session beans and JavaServer 
Faces (JSF) managed beans, to be bound to lifecycle contexts, to be injected, and 
to interact in a loosely coupled way by firing and observing events. Perhaps most 
significantly, CDI unifies and simplifies the EJB and JSF programming models. It 
allows enterprise beans to replace JSF managed beans in a JSF application.

In essence, CDI helps bridge what was a major gap between the web tier of the 
Java EE platform and the enterprise tier. The enterprise tier, through technologies such as EJB and JPA, has strong 
support for transactional resources. For example, using EJB and JPA you can easily build an application that interacts 
with a database, commits or rolls back transactions on the data, and persists the data. The web tier, by comparison, is 
focused on presentation. Web tier technologies such as JSF and JavaServer Pages (JSP pages) render the user interface 
and display its content, but have no integrated facilities for handling transactional resources.

Through its services, CDI brings transactional support to the web tier. This can make it a lot easier to access 
transactional resources in web applications. For example, CDI makes it a lot easier to build a Java EE web application 
that accesses a database with persistence provided by JPA.

Let's look at some key parts of a web application that uses CDI services. The application, which processes user login 
and user logout requests, includes both JSF and EJB components. Here is the code for an input form on a JSF page 
that displays a login prompt for the web application:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (8 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=299


Introducing the Java EE 6 Platform: Part 1

   <f:view>
       <h:form>
           <h:panelGrid columns="2" rendered="#{!login.loggedIn}">
              <h:outputLabel for="username">Username:</h:outputLabel>
              <h:inputText id="username" value="#{credentials.username}"/>
              <h:outputLabel for="password">Password:</h:outputLabel>
              <h:inputText id="password" value="#{credentials.password}"/>
           </h:panelGrid>
           <h:commandButton value="Login" action="#{login.login}" rendered="#{!login.loggedIn}"/>
           <h:commandButton value="Logout" action="#{login.logout}" rendered="#{login.loggedIn}"/>
       </h:form>
   </f:view>

 
As you can see from the code, the login prompt displays fields for a user to enter a user name and password. It also 
displays a Login button and a Logout button. Notice the unified expression language (EL) expressions such as 
#{credentials.username} and #{login.login}. These expressions refer to beans, named 
credentials and login.

 

CDI builds on managed 
beans, which are designed to 
unify all of the various types 
of beans in Java EE 6.

Note that CDI builds on a new concept introduced in Java EE 6 called managed 
beans, which is designed to unify all of the various types of beans in Java EE 6. A 
managed bean is a Java class that is treated as a managed component by the Java 
EE container. Optionally, you can give it a name in the same namespace as that 
used by EJB components. A managed bean can also rely on a small number of 
container-provided services, mostly related to lifecycle management and resource 
injection. Other Java EE technologies such as JSF, EJB, and CDI build on this basic definition of a managed bean by 
adding services. So for example, a JSF managed bean adds lifecycle scopes, an EJB session bean adds services such as 
support for transactions, and CDI adds services such as dependency injection. In CDI a managed bean or simply a 
bean is a Java EE component that can be injected into other components, associated with a context, or reached through 
EL expressions.

You declare a managed bean by annotating its class with the javax.annotation.ManagedBean annotation or 
by using one of several CDI annotations such as a scope annotation or a qualifier annotation. Scope annotations and 
qualifier annotations are discussed later in this section. The annotation-based programming model makes it possible 
for a bean to begin as a POJO and later become another type of Java EE component such as an EJB component — 
perhaps to take advantage of more advanced functionality, such as transactional and security annotations or the 
instance pooling facility offered by EJB containers. For example, you can turn a POJO into a stateful session bean by 
adding a @Stateful annotation to the object. Clients that use CDI to access a bean are unaffected by the bean's 
transition from POJO to EJB.

Any bean can be bound to a lifecycle context, can be injected, and can interact with other beans in a loosely coupled 
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (9 of 17) [12/17/2009 4:54:29 PM]



Introducing the Java EE 6 Platform: Part 1

way by firing and observing events. In addition, a bean may be called directly from Java code, or as in this example, it 
may be invoked in a unified EL expression. This enables a JSF page to directly access a bean, even a bean that is 
implemented as an EJB component such as a session bean.

In this application, a bean named Credentials has a lifecycle that is bound to the JSF request. The 
Credentials bean is implemented as a JavaBean as follows:

   @Model
   public class Credentials {

      private String username;
      private String password;

      public String getUsername() { return username; }
      public void setUsername(String username) { this.username = username; }

      public String getPassword() { return password; }
      public void setPassword(String password) { this.password = password; }
   }

 
To request CDI services, you annotate a Java EE component with CDI annotations. The @Model annotation is a CDI 
annotation that identifies the Credentials bean as a model object in an Model-View-Controller (MVC) 
architecture. The annotation, which is built into CDI, is a stereotype annotation. A stereotype annotation marks a class 
as fulfilling a specific role within the application.

 

CDI services allow Java EE 
components, including EJB 
components, to be bound to 
lifecycle events.

The application also includes a Login bean whose lifecycle is bound to the 
HTTP session. The Login bean is implemented as an EJB stateful session bean, 
as follows:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (10 of 17) [12/17/2009 4:54:29 PM]



Introducing the Java EE 6 Platform: Part 1

   @Stateful
   @SessionScoped
   @Model
   public class Login {

      @Inject Credentials credentials;
      @Inject EntityManager userDatabase;

      private User user;

      @TransactionAttribute(REQUIRES_NEW)
      @RolesAllowed("guest")
      public void login() {
         ...
      }

      public void logout() {
         user = null;
      }

      public boolean isLoggedIn() {
         return user!=null;
      }

      @RolesAllowed("user")
      @Produces @LoggedIn User getCurrentUser() {
         ...
      }
   }

 
The @Stateful annotation is an EJB annotation that specifies that this bean is an EJB stateful session bean. The 
@TransactionAttribute and @RolesAllowed annotations are also EJB annotations. They declare the EJB 
transaction demarcation and security attributes of the annotated methods.

 

All beans have a scope. 
Among other things, this 
gives EJB components 
access to the request, 
session, and application 
contexts of web tier 
components.

The @SessionScoped annotation is a CDI annotation that specifies a scope for 
the bean. All beans have a scope that determines the lifecycle of its instances and 
the instances of the bean that are made visible to instances of other beans. This is 
an important feature because components such as EJB components do not have a 
well-defined scope. In particular, EJB components are not aware of the request, 
session, and application contexts of web tier components such as JSF managed 
beans, and do not have access to the state associated with those contexts. In 
addition, the lifecycle of a stateful EJB component cannot be scoped to a web-tier 
context.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (11 of 17) [12/17/2009 4:54:29 PM]



Introducing the Java EE 6 Platform: Part 1

By contrast, scoped objects in CDI exist in a well-defined lifecycle context that is managed by the Java EE container. 
Scoped objects may be automatically created when needed and then automatically destroyed when the context in 
which they were created ends. Significantly, the state of a scoped object is automatically shared by clients that execute 
in the same context. This means that clients such as other beans that execute in the same context as a scoped object see 
the same instance of the object. But clients in a different context see a different instance. The @SessionScoped 
annotation specifies that the scope type for the Login bean is session scope. Objects that are not associated with any 
of the usual scopes, but instead exist for the exclusive benefit of an object that triggered their creation, are said to be 
dependents of their owner. The lifecycle of these dependent objects is tied to that of the owner. In particular, a 
dependent object is destroyed whenever the owner is destroyed.

 

CDI services allow Java EE 
components, including EJB 
and JPA components, to be 
injected.

Beans typically acquire references to other beans through dependency injection. 
The dependency injection mechanism is completely type safe. CDI uses the 
annotations specified in JSR 330: Dependency Injection for Java for dependency 
injection. One of those annotations, @Inject, identifies a point at which a 
dependency on a Java class or interface can be injected. The container then 
provides the needed resource. In this example, the Login bean specifies two injection points. The first use of the 
@Inject annotation in the example injects a dependency on the Credentials bean. In response, the container 
will inject the Credentials bean into any instance of Login created within this context. The second @Inject 
annotation injects a dependency on the JPA EntityManager. The container will inject the EntityManager to 
manage the persistence context. Refer to Standardized Annotations for Dependency Injection to learn more about the 
@Inject annotation and other annotations in JSR 330.

The @Produces annotation identifies the getCurrentUser() method as a producer method. A producer method 
is called whenever another bean in the system needs an injected object of the specified type. In this case, the injected 
object is the currently logged-in user, which is injected by the qualifier annotation @LoggedIn. A qualifier identifies 
a specific implementation of a Java class or interface to be injected. In order to use a qualifier annotation, you first 
need to define its type as a qualifier. You use the @Qualifier annotation, another JSR 330 annotation, to do that. 
For example:

   @Target( { TYPE, METHOD, PARAMETER, FIELD })
   @Retention(RUNTIME)
   @Documented
   @Qualifier
      public @interface LoggedIn {...}

 
Let's return to the login prompt discussed earlier. When a user responds to the prompt and clicks the Submit button, 
CDI technology goes into action. The Java EE container automatically instantiates a contextual instance of the 
Credentials bean and the Login bean. An instance of a bean that is bound to a context is called a contextual 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (12 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=330


Introducing the Java EE 6 Platform: Part 1

instance. JSF assigns the user name and password the user entered to the Credentials bean contextual instance. 
Next, JSF calls the login() method in the Login bean contextual instance. This instance continues to exist for and 
is available to other requests in the same HTTP session, and provides the User object that represents the current user 
to any other bean that requires it.

This example demonstrates only some of the features in this powerful technology. Another feature enables beans to 
produce or consume events. Yet another lets you define interceptors that bind additional function across all bean types, 
or define decorators that apply the additional function to a specific bean type. To learn about these and the other 
features in CDI technology, see Contexts and Dependency Injection for the Java EE Platform, JSR 299.

Bean Validation

Validating data is a common task that occurs throughout an application. For example, in the presentation layer of an 
application, you might want to validate that the number of characters a user enters in a text field is at most 20 
characters or that the number a user enters in a numeric field is positive. If you set those constraints, you probably 
want the same data to be validated before it's used in the business logic of the application and when the data is stored 
in a database.

Developers often code the same validation logic in multiple layers of an application, something that's time consuming 
and error-prone. Or they put the validation logic in their data model, cluttering it with what is essentially metadata.

 

Bean Validation affords a 
standard framework for 
validation, in which the same 
set of validations can be 
shared by all the layers of an 
application.

Bean Validation, JSR 303 makes validation simpler and reduces the duplication, 
errors, and clutter that characterizes the way validation is often handled in 
enterprise applications. Bean Validation affords a standard framework for 
validation, in which the same set of validations can be shared by all the layers of 
an application.

Specifically, Bean Validation offers a framework for validating Java classes 
written according to JavaBeans conventions. You use annotations to specify constraints on a JavaBean — you can 
annotate a JavaBean class, field, or property. You can also extend or override these constraints through XML 
descriptors. A validator class then validates each constraint. You specify which validator class to use for a given type 
of constraint.

Here, for example, is part of a class that declares some constraints through Bean Validation annotations:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (13 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=303


Introducing the Java EE 6 Platform: Part 1

   public class Address {
       @NotNull @Size(max=30)
       private String addressline1;

       @Size(max=30)
       private String addressline2;

        ...

       public String getAddressline1() {
              return addressline1;
       }

       public void setAddressline1(String addressline1) {
              this.addressline1 = addressline1;
       }

        ...
   }

 
The @NotNull annotation specifies that the annotated element, addressline1, must not be null. The @Size 
annotation specifies that the annotated elements, addressline1 and addressline2, must not be longer than the 
specified maximum, 30 characters.

When an Address object is validated, the addressline1 value is passed to a validator class that is defined for the 
@NotNull constraint as well as to a validator class defined for the @Size constraint. The addressline2 value is 
also passed to the validator class for the @Size constraint. The pertinent validator classes perform the validations.

 

Bean Validation includes a 
number of built-in constraint 
definitions. You add your 
own constraints by declaring 
an annotation type that 
specifies a validator class.

Both the @NotNull and @Size constraints are built into the Bean Validation 
framework so you do not need to define validator classes for them. However, you 
can add your own constraints to the built-in constraints, in which case, you need to 
define validator classes. For example, you can define a constraint named 
@ZipCode as follows:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (14 of 17) [12/17/2009 4:54:29 PM]



Introducing the Java EE 6 Platform: Part 1

   @Size(min=5, max=5)
   @ConstraintValidator(ZipcodeValidator.class)
   @Documented
   @Target({ANNOTATION_TYPE, METHOD, FIELD})
   @Retention(RUNTIME)
   public @interface ZipCode {
       String message() default "Wrong zipcode";
       String[] groups() default {};
   }

 
Then you can specify the @ZipCode constraint on a class, field, or property just like any other constraint. Here is an 
example:

   public class Address {
        ...

       @ZipCode
       private String zipCode;

       public String getZipCode() {
              return zipCode;
           }

           public void setZipCode(String zipCode) {
              this.zipCode = zipCode;
           }

        ...
   }

 
When an Address object is validated, the zipCode value is passed to the ZipcodeValidator class for 
validation. Notice that the constraint definition includes another constraint: @Size(min=5, max=5). This means 
that an element annotated by the @ZipCode annotation must be exactly 5 characters in length. The element is 
validated against this constraint in addition to the primary constraint check that ZipcodeValidator performs. 
Bean Validation allows you to create a constraint that is composed of other constraints. In fact, any composing 
constraint can itself be composed of constraints. Notice too that the constraint definition specifies an error message to 
be returned if the constraint fails the validation check. Here, the error message is "Wrong zipcode".

You can also use Bean Validation to validate an entire object graph in a straightforward way. An object graph is an 
object composed of other objects. If you specify the @Valid annotation on the root object of an object graph, it 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (15 of 17) [12/17/2009 4:54:29 PM]



Introducing the Java EE 6 Platform: Part 1

 

In addition to validating 
individual objects, you can 
use Bean Validation to 
validate an entire object 
graph.

directs the pertinent validator to recursively validate the associated objects in the 
object graph. Consider the following example:

   public class Order {
       @OrderNumber private String orderNumber;
       @Valid @NotNull private Address delivery;
   }

 
When an Order object is validated, the Address object and the associated objects in its object graph are validated 
too.

 

Bean Validation is integrated 
across the Java EE 6 
platform.

To meet the objective of sharing the same set of validations across all the layers of 
an application, Bean Validation is integrated across the Java EE 6 platform. For 
example, presentation-layer technologies such as JSF and enterprise-layer 
technologies such as JPA have access to the constraint definitions and validators 
available through the Bean Validation framework. You no longer need to specify 
constraints in multiple places and in multiple ways across the layers of an application.

To learn more about Bean Validation, see Bean Validation, JSR 303.

» Continue to the next part of this article

Part 1 | Part 2 | Part 3 

Rate This Article

 

Comments

We welcome your participation in our community. Please keep your comments civil and on point. You may optionally 
provide your email address to be notified of replies - your information is not used for any other purpose. By 
submitting a comment, you agree to these Terms of Use. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (16 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=303
http://developers.sun.com/global/termsofuse.html


Introducing the Java EE 6 Platform: Part 1

About Sun  |  About This Site  |  Newsletters  |  Contact Us  |  Employment  |  How to Buy 
 |  Licensing  |  Terms of Use  |  Privacy  |  Trademarks 
 

 

Copyright Sun Microsystems, Inc. 

A Sun Developer Network 
Site

Unless otherwise licensed, 
code in all technical manuals 
herein (including articles, 
FAQs, samples) is provided 
under this License. 
 

 Sun Developer RSS Feeds 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (17 of 17) [12/17/2009 4:54:29 PM]

http://www.sun.com/
http://developers.sun.com/global/aboutsun.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/newsletters.html
http://developers.sun.com/global/contact.html
http://developers.sun.com/global/employment.html
http://developers.sun.com/global/howtobuy.html
http://developers.sun.com/global/licensing.html
http://developers.sun.com/global/termsofuse.html
http://developers.sun.com/global/privacy.html
http://developers.sun.com/global/trademarks.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/berkeley_license.html
http://developers.sun.com/global/rss_sdn.html
http://developers.sun.com/global/content_feeds.html


Introducing the Java EE 6 Platform: Part 2

Skip to Content Sun Java Solaris Communities My SDN Account Join SDN 

» search tips    

●     APIs

●     Downloads

●     Products

●     Support

●     Training

●     Participate

SDN Home > Java Technology > Reference > Technical Articles and Tips > 

Article

Introducing the Java EE 6 Platform: Part 2

  Print-friendly Version
By Ed Ort, December 2009  

Part 1 | Part 2 | Part 3

Enhanced Web Tier Capabilities

Some of the most significant enhancements made in Java EE 6 appear in the web tier. As mentioned earlier, one of 
the goals of Java EE 6 is to make the platform more extensible, and two key improvements in the area of extensibility 
are web fragments and shared framework pluggability. These two new features are provided in Java EE 6 by Servlet 
3.0 technology. Servlet 3.0, JSR 315, the latest version of Servlet technology, offers some other valuable 
enhancements such as support for asynchronous processing and support for annotations. 

Another important Java EE 6 web tier technology is JSF 2.0, the latest version of JSF technology. Among its 

 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (1 of 18) [12/17/2009 4:54:31 PM]

http://java.sun.com/global/mh/suncom/index.html
http://java.sun.com/global/mh/java/
http://java.sun.com/global/mh/solaris/
http://java.sun.com/global/mh/communities/
http://developers.sun.com/global/my_profile.html
http://developers.sun.com/global/join_sdn.html
http://developers.sun.com/global/search_tips.html
http://www.sun.com/
http://java.sun.com/global/mh/api/index.html
http://java.sun.com/global/mh/downloads/index.html
http://java.sun.com/global/mh/products/index.html
http://java.sun.com/global/mh/support/index.html
http://java.sun.com/global/mh/training/index.html
http://java.sun.com/global/mh/participate/index.html
http://developers.sun.com/index.jsp
http://java.sun.com/index.jsp
http://java.sun.com/reference/index.html
http://java.sun.com/reference/techart/index.html
http://java.sun.com/jsp_utils/PrintPage.jsp
http://java.sun.com/jsp_utils/PrintPage.jsp
http://jcp.org/en/jsr/detail?id=315
http://java.sun.com/javaee/downloads/preview/


Introducing the Java EE 6 Platform: Part 2

benefits, JSF 2.0 simplifies page and component authoring through Facelets, and adds support for asynchronous 
JavaScript and XML (commonly referred to as Ajax), and annotations. 

Support for Web Fragments in Servlet 3.0

Web application developers often use third-party frameworks such as Apache Wicket or Spring MVC in their 
applications. To use these frameworks, developers need to register the frameworks in the web application, a task that 
involves configuring framework-specific artifacts such as servlets and listener classes. It's typical for developers to 
register these frameworks by specifying deployment descriptors for the frameworks in the application's web.xml 
file — the same file that contains deployment descriptors for the web components that constitute the web 
application. Not only does this make for some very large web.xml, files but it also makes it difficult to isolate and 
maintain the descriptors for the frameworks. 

 

Web fragments enable web 
frameworks to self-register, 
eliminating the need for you 
to register them through 
deployment descriptors. 

Web fragments, a new feature of Servlet 3.0 technology, solves this problem by 
modularizing deployment descriptors. A web fragment can be considered a 
logical segment of a web.xml file. There can be multiple web fragments, each 
representing a logical segment, and the set of web fragments can be viewed as 
constituting an entire web.xml file. This logical partitioning of the web.xml 
file enables web frameworks to self-register to the web container. Each web 
framework that you use in a web application can define in a web fragment all the 
artifacts that it needs, such as servlets and listeners, without requiring you to edit or add information in the web.xml 
file. 

Here is an example of a web fragment that registers a servlet and a listener: 

   <web-fragment>
        <servlet>
            <servlet-name>myFrameworkServlet</servlet-name>
            <servlet-class>myFramework.myFrameworkServlet</servlet-class>
        </servlet>

        <listener>
            <listener-class>myFramework.myFrameworkListener</listener-class>
        </listener>
    </web-fragment>

 
The <web-fragment> element identifies a web fragment. A web fragment must be in a file named web-
fragment.xml and can be placed in any location in a web application's classpath. However, it's expected that a 
web framework will typically place its web fragments in the META-INF directory of the framework's JAR file, 

 

Get Java EE Training 
and Certification 

●     Java EE Training
Find out about 
training for 
architects and 
web component, 
business 
component, and 
integration 
developers.

●     Certification
Learn about 
various Sun 
certification 
courses for 
programmers and 
enterprise 
architects, 
preparation 
methods, and 
savings programs.

 

Ed Ort is a writer on 
the staff of the Sun 
Developer Network. 

He has written extensively 
about a wide variety of 
programming topics including 
relational database 
technology, programming 
languages, web services, and 
Ajax. Read his blog. 

 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (2 of 18) [12/17/2009 4:54:31 PM]

http://java.sun.com/javaee/support/training/
http://java.sun.com/javaee/support/training/
http://blogs.sun.com/edo


Introducing the Java EE 6 Platform: Part 2

which will typically reside in the WEB-INF/lib directory of the web application. 

You use the element <metadata-complete> in the web.xml file to instruct the web container whether to look 
for web fragments as well as annotations — see Annotations in More Types of Java EE Components for information 
about annotations provided by Servlet 3.0 technology. If you set <metadata-complete> to false, or do not 
specify the <metadata-complete> element in your web.xml file, then during deployment, the container must 
scan web fragments and annotations to build the effective metadata for the web application. In response, the web 
container searches for web fragments and annotations in framework JAR files. The web container then uses the 
configuration information in each web fragment to register the framework for use with the web application. However, 
setting <metadata-complete> to true, causes the deployment descriptors to provide all the configuration 
information for the web application. In this case, the web container does not search for web fragments and 
annotations. 

 

With its support for web 
fragments, Servlet 3.0 
technology lets you 
modularize your web.xml 
file. 

Because Servlet 3.0 technology supports web fragments, you can modularize 
your web.xml file. Your web application can still have the traditional, 
monolithic web.xml file, or it can have a logically partitioned web.xml file 
that includes one or more web fragments. 

However, because Servlet 3.0 enables you to modularize your deployment 
descriptors, the order in which these descriptors are processed can be important. 
For example, the order in which the descriptors for an application are processed affects the order in which servlets, 
listeners, and filters are invoked. With Servlet 3.0, you can specify the order in which deployment descriptors are 
processed. 

Servlet 3.0 supports absolute ordering and relative ordering of deployment descriptors. Your specify absolute 
ordering using the <absolute-ordering> element in the web.xml file. You specify relative ordering with an 
<ordering> element in the web-fragment.xml file. 

For example, suppose your application includes two web fragments — MyFragment2 and MyFragment3, and 
also includes a web.xml file. You can declare absolute ordering of the descriptors by specifying the following in the 
web.xml file for the application: 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (3 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

   <web-app>
       <name>MyApp</name>
       <absolute-ordering>
          <name>MyFragment3</name>
          <name>MyFragment2</name>
       </absolute-ordering>
       ...

   </web-app>

 
Here, the processing order would be as follows: 

●     web.xml. The web.xml descriptor is always processed first.
●     MyFragment3.
●     MyFragment2.

Shared Framework Pluggability

Web fragments and annotations are not the only way that Servlet 3.0 allows you to extend a web application. You 
can also plug in shared copies of frameworks, such as Java API for XML-Based Web Services (JAX-WS), JAX-RS 
and JSF, that are built on top of the web container. Servlet 3.0 introduces a new interface called 
ServletContainerInitializer that can be used to plug in a framework. 

For example, here's how you can plug in a framework named A: 

   @HandlesTypes(AnnotationA.class)

    AServletContainerInitializer implements ServletContainerInitializer
    {
       public void onStartup(Set<Class<A>>c, ServletContext ctx) throws ServletException {
         // Framework-specific code here to initialize the runtime
         // and setup the mapping etc.
         ServletRegistration reg = ctx.addServlet("AServlet", "com.foo.AServlet");
      reg.addServletMapping("/foo");

 
The container discovers the ServletContainerInitializer using the JAR services API. It does this when 
the container or application is started. The framework implementing the ServletContainerInitializer 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (4 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

must bundle in the META-INF/services directory of its JAR file a file called 
javax.servlet.ServletContainerInitializer that points to the implementation class of the 
ServletContainerInitializer. The @HandlesTypes annotation specifies the types that the 
ServletContainerInitializer can handle. Any classes of those types discovered in any JAR contained in 
the WEB-INF/lib directory are passed to the ServletContainerInitializer. The 
ServletContainerInitializer is then able to use the same programmatic configuration APIs as 
ServletContextListeners. 

Asynchronous Processing in Servlet 3.0

Servlet 3.0 introduces support for asynchronous processing. With this support, a servlet no longer has to wait for a 
response from a resource such as a database before its thread can continue processing, that is, the thread is not 
blocked. This support enables long-lived client connections such as those in chat room applications. In these types of 
applications you don't want a server thread to be blocked for a long period of time serving a request from a single 
client. You want the servlet to process a request from the client and then free up the server thread as quickly as 
possible for other work. Among its benefits, support for asynchronous processing makes the use of servlets with Ajax 
more efficient. 

 

A servlet no longer has to 
wait for a response from a 
resource such as a database 
before its thread can 
continue processing. 

Servlets and servlet filters that support asynchronous processing must be written 
with the goal of asynchrony in mind. In particular, several long-standing 
assumptions about the order in which some methods will be called do not apply 
for asynchronous processing. To ensure that code written for synchronous 
processing won't be used in an asynchronous context, Servlet 3.0 requires you to 
use the asyncSupported=true attribute. To make a servlet asynchronous, 
you specify asyncSupported=true in a @WebServlet annotation and 
make asynchronous requests in the servlet. You can also mark a servlet filter as asynchronous by specifying 
asynchSupported=true in a @WebFilter annotation. Only after taking these steps are taken the 
corresponding classes available for asynchronous invocations. 

The support for asynchronous processing also includes new ServletRequest methods, such as 
startAsync(), to make an asynchronous request, and new classes, such as AsyncContext, which provides the 
execution context for an asynchronous operation. 

Here, for example, is a servlet that makes an asynchronous request. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (5 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

   @WebServlet(name="CalculatorServlet", asyncSupported=true, urlPatterns={"/calc", "/getVal"})
   public class CalculatorServlet extends HttpServlet{
      public void doGet(HttpServletRequest req, HttpServletResponse res) {
      ...
         AsyncContext aCtx = req.startAsync(req, res);

      }
      ...
   }

 
Notice that the startAsync() method returns an AsyncContext object. This object holds the request and 
response objects that were passed in the call to the method. At this point, the thread that served the original request is 
available for other operations. 

Servlet 3.0 also introduces a new listener class, AsyncListener, that notifies you when an asynchronous 
operation is complete or if a timeout occurs. The AsyncContext class includes a complete() method, with 
which you can commit the response after an asynchronous operation is complete. The AsyncListener class also 
has a dispatch() method that forwards the asynchronous request to the container so that other frameworks such 
as JSP can generate the response. 

Simplified Page Authoring in JSF 2.0

JavaServer Faces technology provides a server-side component framework that simplifies the development of user 
interfaces (UIs) for Java EE applications. The latest release of the technology, JSF 2.0, JSR 314, makes UI 
development for Java EE applications even easier. One area of particular improvement is page authoring. Authoring a 
JSF page is much easier in JSF 2.0 through the use of the standard JavaServer Faces View Declaration Language, 
commonly called Facelets. 

Facelets

 

Facelets is a powerful but 
lightweight declaration 
language that you can use to 
present JSF pages. 

Facelets is a powerful but lightweight declaration language that you can use to 
present JSF pages. In the Facelets approach, you use HTML-style templates to 
present a JSF page and to build component trees. Although JSF can be used with 
different display technologies, most JSF applications use JSP as the display 
technology. In other words, the UI in a JSF application is typically a JSP page 
that contains JSF components. However, Facelets offers several advantages over JSP. 

In JSP, elements in a web page are processed and rendered in a progressive order. However, JSF provides its own 
processing and rendering order. This can cause unpredictable behavior when web applications are executed. Facelets 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (6 of 18) [12/17/2009 4:54:31 PM]

http://jcp.org/en/jsr/detail?id=314


Introducing the Java EE 6 Platform: Part 2

 

Facelets is now the preferred 
presentation technology for 
building JSF-based 
applications. 

resolves this mismatch. Facelets also enables code reuse through templating and 
can significantly reduce the time to develop and deploy UIs. For these reasons, 
Facelets is now the preferred presentation technology for building JSF-based 
applications. 

Facelets are usually written with XHTML markup language. This allows Facelets pages to be portable across diverse 
development platforms. Here, for example, is a Facelets XHTML page that is part of a sample JSF application 
provided with the Java EE 6 Tutorial. 

   <xml version="1.0" encoding="UTF-8"?>
           <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
           "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
   <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
           xmlns:f="http://java.sun.com/jsf/core"
           xmlns:h="http://java.sun.com/jsf/html"
           xmlns:ui="http://java.sun.com/jsf/facelets">
   <head>
           <title>Guess Number JSF Application</title>
   </head>
   <body>
      <h:form>
       <h2>
       Hi. My name is Duke. I am thinking of a number from <b>
              <h:outputText value="#{UserNumberBean.minimum}"/> to
              &nbsp;&nbsp;<b>
       <h:outputText value="#{UserNumberBean.maximum}"/>.
       <p>
         Can you guess it ?
       </p>
       <h:graphicImage id="waveImg" url="/wave.med.gif" />
       <h:inputText id="userNo"
             value="#{UserNumberBean.userNumber}">
          converterMessage="#{ErrMsg.userNoConvert}">
       <f:validateLongRange
             minimum="#{UserNumberBean.minimum}"
             maximum="#{UserNumberBean.maximum}"/>
       </h:inputText>
       <h:commandButton id="submit"
             action="success" value="submit" />
       <h:message showSummary="true" showDetail="false"
                  style="color: red;
                   font-family: 'New Century Schoolbook', serif;
                   font-style: oblique;
                   text-decoration: overline"
                   id="errors1"
                   for="userNo"/>
       </h2>

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (7 of 18) [12/17/2009 4:54:31 PM]

http://java.sun.com/javaee/6/docs/tutorial/doc/


Introducing the Java EE 6 Platform: Part 2

      </h:form>
   </body>
   </html>

 
The page renders the UI shown in Figure 1. The UI prompts a user to guess a number that the system — in the person 
of Duke, the Java technology mascot — has selected. The UI displays the text Hi my name is Duke. I am 
thinking of a number from min to max.  , where min  and max   represent the minimum and 
maximum values allowable as a guess, respectively. The UI also displays the Duke image, a text field for the user to 
enter a number, and a button to submit the form. 

 

Figure 1. A UI Created With Facelets

 
This Facelets XHTML page is not very different from an equivalent JSP page. In particular, Facelets supports JSF 
and JSTL tag libraries. Facelets also includes a Facelets tag library that enables feature-rich page templating. The 
namespace declaration xmlns:ui="http://java.sun.com/jsf/facelets" is for the Facelets tag library 
— although no tags in that library are used in this example. Facelets also supports the unified expression language. 

It might not be evident here what additional value Facelets provides over JSP. To better understand the value of 
Facelets, lets examine two of its most powerful features: templating and composite components. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (8 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

Templating

 

Templating allows you to 
create a page that acts as a 
template for other pages in 
an application. 

With templating, you can create a page that acts as a template for other pages in 
an application. This helps you avoid creating similarly constructed pages multiple 
times. Templating also helps maintain a standard look and feel in an application 
with a large number of pages. 

The Facelets tag library contains a templating tag, <ui:insert>. To implement templating, you create a template 
page that includes the <ui:insert> tag. You then create a client page that uses the template. In the client page, 
you use a <ui:composition> tag to point to the template and <ui:define> tags to specify content to insert 
into the template. 

Here is an example of a template page. 

   <xml version="1.0" encoding="UTF-8"?>
   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

   <html xmlns="http://www.w3.org/1999/xhtml"
         xmlns:ui="http://java.sun.com/jsf/facelets"
         xmlns:h="http://java.sun.com/jsf/html"

      <head>
         <title><ui:insert name="title">Page Title</ui:insert</title><body>
      </head>
      <body>
          <div>
              <ui:insert name="Links"/>
          </div>
          <div>
              <ui:insert name="Data"/>
         </div>
      </body>
   </html>

 
Here is an example of a client page that uses the template. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (9 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

   <xml version="1.0" encoding="UTF-8"?>
      <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

      <html xmlns="http://www.w3.org/1999/xhtml"
            xmlns:ui="http://java.sun.com/jsf/facelets"
            xmlns:h="http://java.sun.com/jsf/html"
       <body>
         <ui:composition template="/template.xhtml">
             This text will not be displayed.
             <ui:define name="title">
                 Welcome page
             </ui:define>
             <ui:define name="Links">
                 ... [Links should be here]
             </ui:define>
             <ui:define name="Links">
                 ... [Data should be here]
             </ui:define>
         </ui:composition>
             This text also will not be displayed.
       </body>
      </html>

 
When the template is invoked by the client, it renders a page with the title Welcome Page. The page also displays 
two sections: one that lists the links specified in the client, and one that shows the data specified in the client. 

Composite Components

 

Composite components 
makes it easy to create 
customized JSF components. 

Composite components is a new feature in JSF that makes it easy to create 
customized JSF components. You can create composite components by using JSF 
page markup, other JSF UI components, or both. And with the help of Facelets, 
any XHTML page can become a composite component. In addition, composite 
components can have validators, converters, and listeners attached to them just like the set of UI components 
provided by JSF. 

After you create a composite component, you can store it in a library and use it as needed. 

Let's create a composite component that is rendered as a login panel. When a user logs in, the component reports a 
login event as shown in Figure 2. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (10 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

 

Figure 2. Composite Component

 
Here is the source code for the composite component. 

   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
   <html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:h="http://java.sun.com/jsf/html"
      xmlns:f="http://java.sun.com/jsf/core">
      xmlns:f="http://java.sun.com/jsf/facelets">
      xmlns:composite="http://java.sun.com/jsf/composite">

   <h:head>
   <title>This content will not be displayed in the rendered output</title>
   </h:head>

   <h:body>
    <composite:interface>
           <composite:actionSource name="loginEvent"/>
    </composite:interface>
    <composite:implementation>
     <table>
            <tr>
               <td>Username:  <h:inputText id="username" /> </td>
            </tr>
            <tr>
               <td>Password: <h:inputSecret id="password" /></td>
            </tr>

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (11 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

            <tr>
               <td><h:commandButton value="Login" id="loginEvent" /></td>
            </tr>
     </table>
    </composite:implementation>
   </h:body>
   </html>

 
The declaration xmlns:composite="http://java.sun.com/jsf/composite" declares the namespace 
for composite UI components. The <composite:interface> tag declares the usage contract for the composite 
component, in other words, what a page author needs to know to use the composite component. The 
<composite:attribute> tag in the usage contract specifies a <composite:actionSource> tag. This tag 
indicates that the component can expose an event, making it accessible by any page that uses the composite 
component. 

The <composite:implementation> tag defines the implementation for the composite component. Here the 
implementation is a simple table that contains JSF components for the username and password fields and a login 
button. 

To make the composite component available for use, you save the code in an XHTML file and then store the file in a 
subdirectory of the resources directory under the application root directory. The name of the subdirectory is taken 
to be the name of the resource library that contains the composite component. The JSF runtime finds the composite 
component by appending .xhtml to the name of the composite component's tag. For example, if you name the tag 
loginPanel, store the code for the composite component in a file named loginPanel.xhtml. 

You can then use the composite component in a web page. Here, for example, is the code for the web page shown in 
Figure 2 that uses the composite component. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (12 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

   <!DOCTYPE html
   PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
   <html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:h="http://java.sun.com/jsf/html"
      xmlns:f="http://java.sun.com/jsf/core"
      xmlns:ui="http://java.sun.com/jsf/facelets"
      xmlns:ez="http://java.sun.com/jsf/composite/ezcomp">

   <head>
   <title>Example 01>/title>
   <style type="text/css">
   .grayBox { padding: 8px; margin: 10px 0; border: 1px solid #CCC; background-color: #f9f9f9;  }
   </style>
   </h:head>

   <h:body>
     <p>Usage of Login Panel Component</p>

        <ui:debug hotkey="p" rendered="true"/>

     <h:form>
         <div id="compositeComponent" class="grayBox" style="border: 1px solid #090;">
            <ez:loginPanel>
                <f:actionListener for="loginEvent" type="example01.LoginActionListener" />

            </ez:loginPanel>
         </div>
     <p><h:commandButton value="reload" /></p>

     <p><h:outputText value="#{loginActionMessage}" /></p>
     </h:form>

   </h:body>
   </html>

 
Notice the declaration xmlns:ez="http://java.sun.com/jsf/composite/ezcomp". This specifies 
the namespace and prefix for the composite component. In this case, ezcomp is the name of the subdirectory in the 
resources directory. JSF uses the following convention: for any namespace URI starting with 
http://java.sun.com/jsf/composite/, the one and only path segment that ends the namespace URI is taken to be the 
name of the resource library in which the Facelets XHTML files for the composite components are found. 

The <f:actionListener> tag associates an action listener with the composite component. The for attribute in 
the tag indicates that this listener is for the action event named loginEvent on the composite component. You 
would also need to provide code to process the event. For example, you might provide code that looks something like 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (13 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

the following: 

   import javax.faces.component.UIComponent;
   import javax.faces.component.ValueHolder;
   import javax.faces.context.FacesContext;
   import javax.faces.event.AbortProcessingException;
   import javax.faces.event.ActionEvent;
   import javax.faces.event.ActionListener;

   public class LoginActionListener implements ActionListener {

       public void processAction(ActionEvent event) throws AbortProcessingException {
           FacesContext context = FacesContext.getCurrentInstance();
           context.getExternalContext().getRequestMap().put("loginActionMessage",
                   "Login event happened");
       }
   }

 
Support for Ajax in JSF 2.0

 

JSF 2.0 has built-in support 
for Ajax, making it easier to 
develop dynamic web 
applications that take 
advantage of both JSF 
technology and Ajax. 

JSF 2.0 has built-in support for Ajax. With Ajax, web applications can retrieve 
data from the server asynchronously in the background without interfering with 
the display and behavior of the existing page. 

In support of Ajax, JSF's request processing cycle has been expanded to allow 
partial page updates and partial view traversal. Partial view traversal allows one 
or more components in a view to be visited, potentially to have them pass 
through either or both the execute phase or render phase of the request processing lifecycle. This is a key feature in 
JSF and Ajax frameworks and it allows selected components in the view to be processed, rendered, or both. 

To use Ajax with JSF you need to access a JavaScript resource that has the resource identifier jsf.js. The 
resource, which exists under the javax.faces resource library, contains the JavaScript API that enables JSF to 
interact with Ajax. The JavaScript API comprises a standard set of JavaScript functions that facilitate Ajax operations 
in a JavaServer Faces framework. You rarely need to include this file directly. JSF automatically includes it 
whenever you use any Ajax-enabled tags or components in your view. 

You can then make an Ajax request in either of two ways. You can use the <f:ajax> tag or you can invoke 
functions in the JavaScript API. 

Here is an example that uses the <f:ajax> tag: 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (14 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

   <h:commandButton id="button1">
      <f:ajax execute="..." render="..."/>
   </h:commandButton>

 
Here, the <f:ajax> tag is nested inside an <h:commandButton> tag. This associates the Ajax action specified 
in the execute attribute with the command button rendered by the <h:commandButton> tag. You can also 
specify an event attribute to identify the JavaScript DOM event to which the Ajax action applies. If you do not 
specify an event attribute, JSF uses the default action for the component. In this case, the default action is 
onclick, so JSF associates the Ajax request specified in the execute attribute with the onclick event of the 
rendered button. When a user clicks the button, JSF submits the Ajax request to the server. 

One benefit of using the <f:ajax> tag is that you don't have to specifically load the jsf.js resource in your page 
— it is done automatically for you. By comparison, if you invoke the JavaScript API, you first have to make the 
jsf.js resource available to the current view, using an <h:outputScript> tag. For example: 

   <f:view contentType="text/html"/>
     <h:head>
       <meta...
       <title...
     </h:head>
     <h:body>
       ...
       <h:outputScript name="jsf.js" library="javax.faces" target="body"/>
       ...
     </h:body>
     ...

 
You then use functions in the JavaScript API to make Ajax requests. For example, you use the JavaScript function 
jsf.ajax.request to send an Ajax request to the server, as shown in the following code example. The code 
includes a <h:commandButton> tag that renders a button. When a user clicks the button, an Ajax request is 
submitted to the server. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (15 of 18) [12/17/2009 4:54:31 PM]



Introducing the Java EE 6 Platform: Part 2

   <h:commandButton id="button1" value="submit">
   onclick="jsf.ajax.request(this,event);" />

 
JSF 2.0's built-in support for Ajax makes it a lot easier to develop dynamic web applications that take advantage of 
both JSF technology and Ajax. 

More New Features in Servlet 3.0 and JSF 2.0

This section covered only some of the many new features and enhancements in Servlet 3.0 and JSF 2.0. Another new 
feature of note in Servlet 3.0 enables you to use methods in the ServletContext class to programmatically add 
servlets and servlet filters to a web application during startup. You use the addServlet() method to add a servlet 
to the web application, and the addFilter() method to add a servlet filter. The ability to programmatically add 
servlets and servlet filters at startup is particularly useful to framework writers. In conjunction with the shared 
framework pluggability feature by which extension libraries can discover classes listed in the @HandlesTypes 
annotation, with this facility web frameworks can configure themselves with no developer intervention. 

In addition, Servlet 3.0 works with a number of enhanced security features. For example, in addition to declarative 
security, Servlet 3.0 offers programmatic security through the HttpServletRequest interface. You can, for 
example, use the authenticate() method of HttpServletRequest in an application to perform username 
and password collection, or you can use the login() method to direct the container to authenticate the request 
caller from within an unconstrained request context. For more information about these and other features in Servlet 
3.0, see Servlet 3.0, JSR 315. 

Some additional enhancements in JSF 2.0 relate to how resources are packaged and handled. JSF 2.0 standardizes 
where resources are packaged. All resources now go in a resources directory or a subdirectory. Resources are any 
artifacts that a component may need in order to be rendered properly, such as CSS files or JavaScript files. Figure 3 
shows part of a NetBeans IDE project for a JSF application. Notice the resources directory in the project and the 
CSS and image resources it contains. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (16 of 18) [12/17/2009 4:54:31 PM]

http://jcp.org/en/jsr/detail?id=315
http://www.netbeans.org/


Introducing the Java EE 6 Platform: Part 2

 

Figure 3. Resources in the resources  Directory of a 
JSF Application

 
JSF 2.0 also includes new APIs for representing and handling resources. You use the 
javax.faces.application.Resource class to represent a resource. You use the 
javax.faces.application.ResourceHandler class to create instances of resources as well as to serve 
resources to the requesting user agent. For more information about these and other features in JSF 2.0, see JavaServer 
Faces 2.0: A Complete Tour. Also see the JSR 314: JavaServer Faces 2.0 specification. 

» Continue to the next part of this article

Part 1 | Part 2 | Part 3

Rate This Article

 

Comments

We welcome your participation in our community. Please keep your comments civil and on point. You may 
optionally provide your email address to be notified of replies - your information is not used for any other purpose. 
By submitting a comment, you agree to these Terms of Use. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (17 of 18) [12/17/2009 4:54:31 PM]

https://www.sun.com/offers/details/javaserver_faces.xml
https://www.sun.com/offers/details/javaserver_faces.xml
http://jcp.org/en/jsr/detail?id=314
http://developers.sun.com/global/termsofuse.html


Introducing the Java EE 6 Platform: Part 2

About Sun  |  About This Site  |  Newsletters  |  Contact Us  |  Employment  |  How to Buy 
 |  Licensing  |  Terms of Use  |  Privacy  |  Trademarks 
 

 

Copyright Sun Microsystems, Inc. 

A Sun Developer Network 
Site

Unless otherwise licensed, 
code in all technical manuals 
herein (including articles, 
FAQs, samples) is provided 
under this License. 
 

 Sun Developer RSS Feeds 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (18 of 18) [12/17/2009 4:54:31 PM]

http://www.sun.com/
http://developers.sun.com/global/aboutsun.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/newsletters.html
http://developers.sun.com/global/contact.html
http://developers.sun.com/global/employment.html
http://developers.sun.com/global/howtobuy.html
http://developers.sun.com/global/licensing.html
http://developers.sun.com/global/termsofuse.html
http://developers.sun.com/global/privacy.html
http://developers.sun.com/global/trademarks.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/berkeley_license.html
http://developers.sun.com/global/rss_sdn.html
http://developers.sun.com/global/content_feeds.html


Introducing the Java EE 6 Platform: Part 3

Skip to Content Sun Java Solaris Communities My SDN Account Join SDN 

» search tips    

●     APIs

●     Downloads

●     Products

●     Support

●     Training

●     Participate

SDN Home > Java Technology > Reference > Technical Articles and Tips > 

Article

Introducing the Java EE 6 Platform: Part 3

  Print-friendly Version
By Ed Ort, December 2009  

Part 1 | Part 2 | Part 3

EJB Technology, Even Easier to Use

Enterprise JavaBeans technology is the server-side component architecture for developing and deploying 
business applications in Java EE. Applications that you write using EJB technology are scalable, transactional, 
and secure. EJB 3.0, which is part of the Java EE 5 platform, made the technology a lot easier to use. The latest 
release of the technology, JSR 318: Enterprise JavaBeans 3.1, which is available in the Java EE 6 platform, 
further simplifies the technology and makes many improvements that reflect common usage patterns.

 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (1 of 28) [12/17/2009 4:54:33 PM]

http://java.sun.com/global/mh/suncom/index.html
http://java.sun.com/global/mh/java/
http://java.sun.com/global/mh/solaris/
http://java.sun.com/global/mh/communities/
http://developers.sun.com/global/my_profile.html
http://developers.sun.com/global/join_sdn.html
http://developers.sun.com/global/search_tips.html
http://www.sun.com/
http://java.sun.com/global/mh/api/index.html
http://java.sun.com/global/mh/downloads/index.html
http://java.sun.com/global/mh/products/index.html
http://java.sun.com/global/mh/support/index.html
http://java.sun.com/global/mh/training/index.html
http://java.sun.com/global/mh/participate/index.html
http://developers.sun.com/index.jsp
http://java.sun.com/index.jsp
http://java.sun.com/reference/index.html
http://java.sun.com/reference/techart/index.html
http://java.sun.com/jsp_utils/PrintPage.jsp
http://java.sun.com/jsp_utils/PrintPage.jsp
http://jcp.org/en/jsr/detail?id=318
http://java.sun.com/javaee/downloads/preview/


Introducing the Java EE 6 Platform: Part 3

Some improvements made in EJB 3.1 are as follows:

●     No-interface view. Allows you to specify an enterprise bean using only a bean class without having to 
write a separate business interface.

●     Singletons. Lets you easily share state between multiple instances of an enterprise bean component or 
between multiple enterprise bean components in an application.

●     Asynchronous session bean invocation. Enables you to invoke session bean methods asynchronously by 
specifying an annotation.

●     Simplified Packaging. Removes the restriction that enterprise bean classes must be packaged in an ejb-
jar file. You can now place EJB classes directly in a WAR file.

●     EJB Lite. Is a subset of EJB 3.1 for inclusion in a variety of Java EE profiles.

No-Interface View

The EJB 3.0 local client view is based on a plain old Java interface (POJI) called a local business interface. A 
local interface defines the business methods that are exposed to the client and that are implemented on the bean 
class. This separation of interface and implementation is sometimes unnecessarily cumbersome and adds little 
value — this is especially true for fine-grained components that are accessed locally from clients within the 
same module.

 

Local business interfaces 
are optional in EJB 3.1. 
Now you can get the 
same enterprise bean 
functionality without 
having to write a separate 
business interface. 

EJB 3.1 simplifies this approach by making local business interfaces optional. 
A bean that does not have a local business interface exposes a no-interface 
view. Now you can get the same enterprise bean functionality without having 
to write a separate business interface.

The no-interface view has the same behavior as the EJB 3.0 local view, for 
example, it supports features such as pass-by-reference calling semantics and 
transaction and security propagation. However, a no-interface view does not 
require a separate interface, that is, all public methods of the bean class are 
automatically exposed to the caller. By default, any session bean that has an empty implements clause and 
does not define any other local or remote client views, exposes a no-interface client view.

For example, the following session bean exposes a no-interface view:

 

Get Java EE Training 
and Certification 

●     Java EE Training
Find out about 
training for 
architects and 
web component, 
business 
component, and 
integration 
developers.

●     Certification
Learn about 
various Sun 
certification 
courses for 
programmers and 
enterprise 
architects, 
preparation 
methods, and 
savings programs.

 

Ed Ort is a writer on 
the staff of the Sun 
Developer Network. 

He has written extensively 
about a wide variety of 
programming topics including 
relational database 
technology, programming 
languages, web services, and 
Ajax. Read his blog. 

 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (2 of 28) [12/17/2009 4:54:33 PM]

http://java.sun.com/javaee/support/training/
http://java.sun.com/javaee/support/training/
http://blogs.sun.com/edo


Introducing the Java EE 6 Platform: Part 3

   @Stateless
   public class HelloBean {

       public String sayHello() {
           String message = propertiesBean.getProperty("hello.message");
           return message;
       }

   }

 
As is the case for a local view, the client of a no-interface view always acquires an EJB reference -- either 
through injection or JNDI lookup. The only difference is that the Java type of the EJB reference is the bean 
class type rather than the type of a local interface. This is shown in the following bean client:

   @EJB
   private HelloBean helloBean;

   ...

   String msg = helloBean.sayHello();

 
Note that even though there is no interface, the client cannot use the new() operator to explicitly instantiate 
the bean class. That's because all bean invocations are made through a special EJB reference, or proxy, 
provided by the container. This allows the container to provide all the additional bean services such as pooling, 
container-managed transactions, and concurrency management.

Singletons

 

Singletons help you 
easily share state between 
the EJB components in 
an application. 

A singleton bean, also known as a singleton, is a new kind of session bean that 
is guaranteed to be instantiated once for an application in a particular Java 
Virtual Machine (JVM)*. With singletons, you can easily share state between 
multiple instances of an enterprise bean component or between multiple 
enterprise bean components in the application. Consider, for example, a class 
that caches data for an application. You might define the class as a singleton and in doing so, ensure that only 
one instance of the cache and its state is shared in the application.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (3 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

You define a singleton with the @Singleton annotation, as shown in the following code example:

   @Singleton
   public class PropertiesBean {

    private Properties props;

    public String getProperty(String name) { ... }

   @PostConstruct
          public void initialize { // props = ...}

   }

 
Because it's just another kind of session bean, a singleton can define the same local and remote client views as 
can stateless and stateful beans. Clients access singletons in the same way as they access stateless and stateful 
beans, that is, through an EJB reference. For example, a client can access the PropertiesBean singleton 
shown in the previous example as follows:

   @EJB
   private PropertiesBean propsBean;

   ...

   String msg = propsBean.getProperty("hello.message");

 
Here, the container ensures that all invocations through PropertiesBean references in the same JVM are 
serviced by the same instance of the PropertiesBean. By default, the container enforces the same 
threading guarantee as for other component types. In other words, the singleton is fully thread safe. 
Specifically, no more than one invocation is allowed to access a particular bean instance at any one time. For 
singletons, that means blocking any concurrent invocations. However, this is just the default concurrency 
behavior. Additional concurrency options allow more efficient concurrent access to the singleton instance.

Asynchronous Session Bean Invocation

One of the powerful features introduced in EJB 3.1 is the ability to invoke session bean methods 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (4 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

 

With EJB 3.1, you can 
invoke session bean 
methods synchronously 
or asynchronously. 

asynchronously. For an asynchronous invocation, control returns to the client 
before the container dispatches the invocation to an instance of the bean. This 
allows the client to continue processing in parallel while the session bean 
method performs its operations.

You can make a method asynchronous by marking it with the 
@Asynchronous annotation. You apply the annotation to a business method of a bean class. You can also 
use a deployment descriptor to designate a method as asynchronous.

Asynchronous methods can return a java.util.concurrent.Future<V> object or void. A 
Future<V> object holds the result of an asynchronous operation. You can access the Future<V> object to 
retrieve a result value, check for exceptions, or cancel an in-progress invocation. The Future<V> interface 
provides a get() method to retrieve the value. You can also retrieve the value by using the convenience class, 
AsyncResult<V>, which implements the Future<V> interface.

In the following example, the performCalculation() method in made asynchronous. The method uses 
the AsyncResult<V> class to retrieve the value returned in the Future<V> object.

   @Stateless
   Public class CalculatorBean implements CalculatorService {
      ...

      @Asynchronous
      public Future<Integer> performCalculation(...) {

         // ... do calculation

         Integer result = ...;
         return new AsyncResult<Integer>(result);
      }
   }

 
Simplified Packaging

The EJB specification has always required that enterprise beans be packaged in an enterprise module called an 
ejb-jar file. Since it is common for Java EE web applications to use enterprise beans, this packaging 
requirement can be burdensome. These applications are forced to use a web application archive (.war) file for 
the web application, an ejb-jar file for the enterprise beans, and an enterprise archive (.ear file) that 
encompasses the other packages. This is illustrated in Figure 4. This packaging approach is further complicated 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (5 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

by the special handling required for any classes or resources that must be shared among the modules.

Figure 4. Traditional Enterprise Application Packaging 
 

Figure 5. Simplified Enterprise Application Packaging 
 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (6 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

 

In EJB 3.1, you can place 
enterprise bean classes in 
the .war file along with 
web tier components. 
You don't have to put 
EJB classes in the ejb-
jar file. 

EJB 3.1 addresses this packaging complexity by removing the restriction that 
enterprise bean classes must be packaged in an ejb-jar file. As Figure 5 
illustrates, you can now place EJB classes directly in the .war file, using the 
same packaging guidelines that apply to web application classes. This means 
that you can place EJB classes under the WEB-INF/classes directory or in 
a .jar file within the WEB-INF/lib directory. The EJB deployment 
descriptor is also optional. If you need it, you can package the EJB deployment 
descriptor as a WEB-INF/ejb-jar.xml file.

EJB Lite

For many applications, EJB technology offers a lot more functionality than those applications really need. The 
typical application that uses EJB only needs a subset of the features provided by the technology. EJB Lite 
meets the needs of these applications with a small subset of the features in EJB 3.1 centered around the session 
bean component model.

 

EJB Lite meets the needs 
of applications that 
require only a subset of 
the features provided by 
EJB technology. 

EJB Lite should simplify the use of EJB technology for many developers. 
Developers who use EJB Lite in their applications only need to learn to use a 
small set of features. In addition, applications developed with EJB Lite can run 
in application servers that implement either EJB Lite or the full EJB 3.1 API. 
Also, vendor implementations of EJB Lite should be simpler and more 
lightweight than full EJB implementations.

Note that EJB Lite is not a product or an implementation, but rather a small convenient subset of the EJB 3.1 
API. The objective of EJB Lite is to offer a subset of EJB 3.1 features that cover the common requirements for 
the business logic tier of most applications, one that also gives vendors the flexibility to provide EJB 
technology across a variety of Java EE profiles. To meet those objectives, EJB Lite offers the following 
features:

●     Stateless, stateful, and singleton session beans
●     Local EJB interfaces or no interfaces
●     Interceptors
●     Container-managed and bean-managed transactions
●     Declarative and programmatic security
●     Embeddable API

More New Features in EJB 3.1

EJB 3.1 delivers more features and enhancements than those covered in the previous sections. For example, it 
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (7 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

includes an embeddable API and container for use in the Java SE environment. These makes it easy to test EJB 
components outside a Java EE container, and more generally, in Java SE. For another example, the introduction 
of singletons in EJB 3.1 offers a convenient way for EJB applications to receive callbacks during application 
initialization or shutdown. By default, the container decides when to instantiate the singleton instance. 
However, you can force the container to instantiate a singleton instance during application initialization by 
using the @Startup annotation. This allows the bean to define a @PostConstruct method that is 
guaranteed to be called at startup time. In addition, any @PreDestroy method for a singleton is guaranteed to 
be called when the application is shutting down, regardless of whether the singleton was instantiated using lazy 
instantiation or eager instantiation.

To learn about all the features and enhancements in EJB 3.1, see JSR 318: Enterprise JavaBeans 3.1. 

A More Complete Java Persistence API

The Java EE 5 platform introduced the Java Persistence API, which provides a POJO-based persistence model 
for Java EE and Java SE applications. JPA handles the details of how relational data is mapped to Java objects, 
and it standardizes Object/Relational (O/R) mapping. JPA has been widely adopted and is recognized as the 
enterprise standard for O/R persistence.

Java EE 6 includes the latest release of this technology, JSR 317: Java Persistence 2.0. JPA 2.0 adds a number 
of significant new features and enhancements. These include:

●     Object/Relational mapping enhancements, such as the ability to model collections of objects
●     Additions to the Java Persistence query language
●     A new criteria-based query API
●     Support for pessimistic locking

Object/Relational Mapping Enhancements

 

In JPA 2.0, you can map 
collections of basic data 
types, such as Strings 
or Integers, as well as 
collections of 
embeddable objects. 

JPA 1.0 supported the mapping of collections. However, those collections 
could only contain entities. JPA 2.0 adds the mapping of collections of basic 
data types, such as Strings or Integers, as well as collections of 
embeddable objects. Recall that an embeddable object in JPA is an object that 
cannot exist on its own, but exists as part of a parent object — that is, its data 
does not exist in its own table, but is embedded in the parent object's table.

JPA 2.0 adds two annotations in support of the new collection mappings:@ElementCollection and 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (8 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=317


Introducing the Java EE 6 Platform: Part 3

@CollectionTable. You use the @ElementCollection annotation to specify that the basic or 
embeddable objects in the collection are stored in a separate table called a collection table. You use the 
@CollectionTable annotation to specify details about the collection table, such as its columns.

Here, for example, is an embeddable class that represents a service visit for a vehicle. The embeddable class 
stores the date of the visit, a description of the work that was done, and the cost. In addition, the vehicle can be 
equipped with one or more optional features. Each of the available features is an enumerated value of type 
FeatureType.

   public enum FeatureType { AC, CRUISE, PWR, BLUETOOTH, TV, ... }

   @Embeddable
   public class ServiceVisit {
       @Temporal(DATE)
       @Column(name="SVC_DATE")
       Date serviceDate;

       String workDesc;
       int cost;
   }

 
The enumerated values and embeddable objects can then be used in an entity that represents a vehicle's service 
history and its features.

   @Entity
   public class Vehicle {

       @Id int vin;

       @ElementCollection
       @CollectionTable(name="VEH_OPTNS")
  .    @Column(name="FEAT")
       Set<FeatureType> optionalFeatures;

       @ElementCollection
       @CollectionTable(name="VEH_SVC")
       @OrderBy("serviceDate")
       List<ServiceVisit> serviceHistory;
       ...
   }

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (9 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

 
The first pairing of @ElementCollection and @CollectionTable annotations in the Vehicle entity 
specifies that the FeatureType values are stored in the VEH_OPTNS collection table. The second pairing of 
@ElementCollection and @CollectionTable annotations in the entity specifies that the 
ServiceVisit embeddable objects are stored in the VEH_SVC collection table.

Though not shown in the example, the @ElementCollection annotation has two attributes: 
targetClass and fetch. The targetClass attribute specifies the class name of the basic or 
embeddable class, and is optional if the field or property is defined using generics, as it is in this example. The 
fetch attribute is optional and specifies whether the collection should be retrieved lazily or eagerly, using the 
javax.persistence.FetchType constants of either LAZY or EAGER, respectively. By default, the 
collection is fetched lazily, which is the case in this example.

There are many more Object/Relational mapping enhancements in JPA 2.0 than the mapping of collections 
described here. For example, JPA 2.0 supports nested embeddables, embeddables with relationships, and 
ordered lists. There are also new annotations for generalized map functionality, more flexible support for 
specific access types through an @Access annotation, more mapping options for entity relationships such as 
foreign key mapping support for unidirectional one-to-many relationships, support for derived identities 
through the @MapsId annotation, and support for orphan removal.

Additions to the Java Persistence Query Language

 

JPA 2.0 includes 
enhancements to Java 
Persistence query 
language. For example, 
you can now use case 
expressions in queries. 

JPA 1.0 defined an extensive Java Persistence query language (informally 
referred to as JPQL) with which you can query entities and their persistent 
state. JPA 2.0 makes a number of enhancements to JPQL. For example, you 
can now use case expressions in queries. In the following query, a case 
expression increases an employee's salary by a multiplier of 1.1 if the 
employee has a rating of 1, by a multiplier of 1.05 if the rating is 2, and by a 
multiplier of 1.01 for any other rating:

   UPDATE Employee e
   SET e.salary =
      CASE WHEN e.rating = 1 THEN e.salary * 1.1
           WHEN e.rating = 2 THEN e.salary * 1.05
           ELSE e.salary * 1.01
      END

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (10 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

 

 

JPA 2.0 also adds two 
new operators to Java 
Persistence query 
language: NULLIF, and 
COALESCE. 

JPA 2.0 also adds a number of new operators to JPQL. Two of these are 
NULLIF, and COALESCE. The NULLIF operator is particularly useful when a 
database uses something other than nulls to encode missing or non-applicable 
information. Using NULLIF, you can easily convert these values to nulls in 
queries. If the arguments to NULLIF are equal, NULLIF returns null, 
otherwise it returns the value of the first argument.

For example, suppose that salaries in an employee table are represented as integer values and that missing 
salaries are encoded by -99999. Here's a query that returns the average value of the salaries. To correctly ignore 
the missing salaries, the query uses NULLIF to convert the -99999 values to null.

   SELECT AVG(NULLIF(e.salary, -99999))
   FROM Employee e

 
The COALESCE operator accepts a list of parameters and then returns the first non-null value from the list. It is 
equivalent to the following case expression:

   CASE WHEN value1 IS NOT NULL THEN value1
        WHEN value2 IS NOT NULL THEN value2
        WHEN value3 IS NOT NULL THEN value3
        ...
        ELSE NULL
   END

 
For example, suppose that an employee table includes columns for a work phone number and a home phone 
number. A missing phone number is represented by a null value. The following query returns the name and 
phone number of each employee. The COALESCE operator specifies that the query return the work phone 
number, but if it's null, return the home phone number. If both are null, return a null value for the phone 
number.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (11 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

   SELECT Name, COALESCE(e.work_phone, e.home_phone) phone
   FROM Employee e

 
The other new operators that JPA 2.0 adds to JPQL are INDEX, TYPE, KEY, VALUE, and ENTRY. The INDEX 
operator queries over the ordering in an ordered list. The TYPE operator selects an entity's type and restricts a 
query to one or more entity types. The KEY, VALUE, and ENTRY operators are part of the generalized map 
functionality in JPA 2.0. You use the KEY operator to extract map keys, the VALUE operator to extract map 
values, and the ENTRY operator to select a map entry.

In addition, JPA 2.0 adds support for operators in the select list, as well as in collection-valued parameters and 
non-polymorphic queries.

Criteria API

 

You can use the new 
Criteria API to 
dynamically construct 
object-based queries. 

One of the significant new features introduced in JPA 2.0 is the Criteria API, 
an API for dynamically constructing object-based queries. In essence, the 
Criteria API is the object-oriented equivalent of JPQL. With it, you can take an 
object-based approach to creating queries, rather than using the string 
manipulation required by JPQL.

The Criteria API is based on a metamodel, an abstract model that provides schema-level metadata about the 
managed classes of the persistence unit. The metamodel enables you to build queries that are strongly typed. It 
also enables you to browse the logical structure of a persistence unit.

Typically an annotation processor is expected to use the metamodel to generate static metamodel classes. These 
classes provide the persistent state and relationships of the managed classes of a persistence unit. However, you 
can also code the static metamodel classes.

Here, for example, is an entity:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (12 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

   @Entity public class Employee {
     @Id Long Id;
     String firstName;
     String lastName;
     Department dept;
   }

 
And here is its corresponding static metamodel class:

   import javax.persistence.meta,model.SingularAttribute;
   import javax.persistence.meta,model.StaticMetamodel;

   @Generated("EclipseLink JPA 2.0 Canonical Model Generation"
   @StaticMetamodel(Employee.class)
   public class Employee_ {
     public static volatile SingularAttribute<Employee, Long> id;
     public static volatile SingularAttribute<Employee, String> firstName;
     public static volatile SingularAttribute<Employee, String> lastName;
     public static volatile SingularAttribute<Employee, Department> dept;

   }

 

 

The Criteria API is based 
on a metamodel for 
building queries that are 
strongly typed. 

In addition, a JPA 2.0 metamodel API enables you to dynamically access the 
metamodel. So when you use the Criteria API you can either statically access 
the metamodel classes or dynamically access the metamodel. However, the 
Criteria API gives you even more flexibility in that you can navigate the 
metamodel either in an object-based way or in a string-based way. This means 
that you have four ways to use the Criteria API:

●     Statically with metamodel classes
●     Statically with strings
●     Dynamically with the metamodel
●     Dynamically with strings

No matter which of these approaches you use, you define a Criteria API-based query by constructing a 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (13 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

CriteriaQuery object. You construct the CriteriaQuery using a factory object called 
CriteriaBuilder. You can get the CriteriaBuilder from either the EntityManager or 
EntityManagerFactory class.The following code, for example, constructs a CriteriaQuery object:

   EntityManager em = ... ;
   CriteriaBuilder cb = em.getCriteriaBuilder();
   CriteriaQuery<Customer> cq = cb.createQuery(Customer.class);

 
Notice that the CriteriaQuery object is generically typed. You use the createQuery method of 
CriteriaBuilder to create a CriteriaQuery and to specify a type for the query result. In this example, 
the Employee.class argument to the createQuery method specifies that the query result type is 
Employee. Significantly, CriteriaQuery objects and the methods that create them are strongly typed, and 
this typing continues through the execution of the query.

Next, you specify one or more query roots for the CriteriaQuery object. The query roots represent the 
entities on which the query is based. You create a query root and add it to a query with the from() method of 
the AbstractQuery interface. The AbstractQuery interface is one of a number of interfaces, such as 
CriteriaQuery, From, and Root, that are defined in the Criteria API. The CriteriaQuery interface 
inherits from the AbstractQuery interface.

The argument to the from() method is the entity class or EntityType instance for the entity. The result of 
the from() method is a Root object. The Root interface extends the From interface, which represents 
objects that may occur in the from clause of a query.

The following code adds a single query root to the CriteriaQuery object:

   CriteriaBuilder cb = em.getCriteriaBuilder();
   CriteriaQuery<Employee> cq = cb.createQuery(Employee.class);
   Root<Employee> emp = cq.from(Employee.class);

 
After you add one or more query roots to the CriteriaQuery object, you access the metamodel and then 
construct a query expression. How you do that depends on whether you issue the query statically or 
dynamically and whether you use the metamodel or strings to navigate the metamodel. Here's an example of a 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (14 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

static query that uses the metamodel classes:

   cq.select(emp);
   cq.where(cb.equal(emp.get(Employee_.lastName), "Smith"));
   TypedQuery<Employee> query = em.createQuery(cq);
   List<Employee> rows = query.getResultList();

 
The select() and where() methods of the CriteriaQuery interface specify the selection items that are 
to be returned in the query result.

Notice that you create a query using the EntityManager and you specify the CriteriaQuery object as 
input. This results in a TypedQuery, an extension introduced in JPA 2.0 to the 
javax.persistence.Query interface . The TypedQuery interface knows the type it returns so that 
strong typing continues into the query's execution.

In metamodel terminology, Employee_ is the canonical metamodel class corresponding to the Employee 
entity class. A canonical metamodel class follows certain rules described in the JPA 2.0 specification. For 
example, the name of the metamodel class is derived from the name of the managed class by appending "_" to 
the name of the managed class. A canonical metamodel is a metamodel comprising the static metamodel 
classes that correspond to the entities, mapped superclasses, and embeddable classes in the persistence unit. 
This query, in fact, uses the canonical metamodel. 

Here is the complete query:

   EntityManager em = ... ;
   CriteriaBuilder cb = em.getCriteriaBuilder();
   CriteriaQuery<Employee> cq = cb.createQuery(Employee.class);
   Root<Employee> emp = cq.from(Employee.class);
   cq.select(emp);
   cq.where(cb.equal(emp.get(Employee_.lastName), "Smith"));
   TypedQuery<Employee> query = em.createQuery(cq);
   List<Employee> rows = query.getResultList();

 
Here's a dynamic version of the query that uses the metamodel API: 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (15 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

   EntityManager em = ... ;
   CriteriaBuilder cb = em.getCriteriaBuilder();
   CriteriaQuery<Employee> cq = cb.createQuery(Employee.class);
   Root<Employee> emp = cq.from(Employee.class);
   EntityType<Employee> emp_ = emp.getModel();
   cq.select(emp);
   cq.where(cb.equal(emp.get(emp_.getSingularAttribute("lastName", String.class)),"Smith"));
   TypedQuery<Employee> query=em.createQuery(cq);
   List<Employee> rows=query.getResultList();

 
A criteria query that uses the metamodel API provides the same type safety as one that uses the canonical 
metamodel, but it can be more verbose than queries based on the canonical metamodel.

The getModel() method of Root returns the metamodel entity corresponding to the root. It also enables run 
time access to the persistent attributes declared in the Employee entity. Again, the select() and where() 
methods of the CriteriaQuery interface specify the selection items that are to be returned in the query 
result.

The getSingularAttribute() method is a metamodel API method that returns a persistent single-
valued property or field. In this example, it returns the lastName property whose value is Smith.

Here is a static version of the query that uses string navigation of the metadata: 

   EntityManager em = ... ;
   CriteriaBuilder cb = em.getCriteriaBuilder();
   CriteriaQuery<Employee> cq = cb.createQuery(Employee.class);
   Root<Employee> emp = cq.from(Employee.class);
   cq.select(emp);
   cq.where(cb.equal(emp.get("lastName"), "Smith"));
   TypedQuery query = em.createQuery(cq);
   List <Employee>rows = query.getResultList();

 
The string-based approach is relatively easy to use, but you lose the type safety that the metamodel enables.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (16 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

Support for Pessimistic Locking

Locking is a technique for handling database transaction concurrency. When two or more database transactions 
concurrently access the same data, locking is used to ensure that only one transaction at a time can change the 
data.

There are generally two locking approaches: optimistic and pessimistic. Optimistic locking assumes infrequent 
conflicts between concurrent transactions, that is, they won't often try to read and change the same data at the 
same time. In optimistic locking, the objective is to give concurrent transactions freedom to process 
simultaneously, but to detect and prevent collisions. Two transactions can access the same data simultaneously. 
However, to prevent collisions, a check is made to detect any changes made to the data since the data was last 
read. 

Pessimistic locking assumes that transactions will frequently collide. In pessimistic locking, a transaction that 
reads the data locks it. Another transaction cannot change the data until the first transaction commits. 

JPA 1.0 only supported optimistic locking. You could indicate what type of locking was in effect by specifying 
a lock mode value of READ or WRITE in the lock() method of the EntityManager class. For example: 

   EntityManager em = ... ;
   em.lock (p1, READ);

 
For the READ lock mode, the JPA entity manager locked the entity and before a transaction committed, 
checked the entity's version attribute to determine if it had been updated since the entity was last read. If the 
version attribute had been updated, the entity manager threw an OptimisticLockException and rolled 
back the transaction. 

For the WRITE lock mode, the entity manager performed the same optimistic locking operations as for the 
READ lock mode. However, it also updated the entity's version column.

JPA 2.0 adds six new lock modes. Two of these are for optimistic locking. JPA 2.0 also permits pessimistic 
locking and adds three lock modes for that. A sixth lock mode specifies no locking.

These are the two new optimistic lock modes:

●     OPTIMISTIC. This is the same as the READ lock mode. The READ lock mode is still supported in JPA 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (17 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

 

JPA 2.0 adds two new 
lock modes for optimistic 
locking. JPA 2.0 also 
permits pessimistic 
locking and adds three 
lock modes for that. 

2.0, but specifying OPTIMISTIC is recommended for new 
applications.

●     OPTIMISTIC_FORCE_INCREMENT. This is the same as the WRITE 
lock mode. The WRITE lock mode is still supported in JPA 2.0, but 
specifying OPTIMISTIC_FORCE_INCREMENT is recommended for 
new applications.

These are the three new pessimistic lock modes: 

●     PESSIMISTIC_READ. The entity manager locks the entity as soon as a transaction reads it. The lock 
is held until the transaction completes. Use this lock mode when you want to query data using repeatable-
read semantics — in other words, when you want to ensure that the data is not updated between 
successive reads. This lock mode does not block other transactions from reading the data.

●     PESSIMISTIC_WRITE. The entity manager locks the entity as soon as a transaction updates it. This 
lock mode forces serialization among transactions attempting to update the entity data. This lock mode 
is often used when there is a high likelihood of update failure among concurrent updating transactions.

●     PESSIMISTIC_FORCE_INCREMENT. The entity manager locks the entity when a transaction reads 
it. It also increments the entity's version attribute when the transaction ends, even if the entity is not 
modified.

You can also specify the new lock mode NONE, in which case, no lock is acquired.

JPA 2.0 also provides multiple ways to specify the lock mode for an entity. You can specify the lock mode in 
the lock() and find() methods of the EntityManager. In addition, the 
EntityManager.refresh() method refreshes the state of the entity instance from the database and locks 
it in accordance with the entity's lock mode.

The following code example illustrates pessimistic locking with the PESSIMISTIC_WRITE lock mode:

   // read
   Part p = em.find(Part.class, pId);

   // lock and refresh before update
   em.refresh(p, PESSIMISTIC_WRITE);
   int pAmount = p.getAmount();
   p.setAmount(pAmount - uCount);

 
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (18 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

The code in this example first reads some data. It then applies a PESSIMISTIC_WRITE lock using a call to 
the EntityManager.refresh() method before updating the data. The PESSIMISTIC_WRITE lock 
locks the entity as soon as the transaction updates it. Other transactions cannot update the same entity until the 
initial transaction commits.

More New Features in JPA 2.0

In addition to the enhancements and new features described in the previous sections, JPA 2.0 can use Bean 
Validation to automatically validate an entity when it is persisted, updated, or removed. What this means is that 
you can specify a constraint on an entity, for example, that the maximum length of a field in the entity is 15, 
and have the field automatically validated when the entity is persisted, updated, or removed. You use the 
<validation-mode> element in the persistence.xml configuration file to specify whether automatic 
lifecycle event validation is in effect.

For more information about all the features in JPA 2.0, see JSR 317: Java Persistence 2.0.

Further Ease of Development

 

Annotations can now be 
used in more types of 
Java EE components. 
And the set of 
annotations used for 
dependency injection has 
been standardized. 

You've seen how new technologies such as CDI and Bean Validation, as well 
as support for features such as web fragments, Facelets, the no-interface view, 
and the Criteria API make it even easier to develop enterprise or web 
applications. However, additional usability improvements have been made in 
many areas of the Java EE 6 platform. In particular, annotations can now be 
used in more types of Java EE components. In addition, the set of annotations 
used for dependency injection has been standardized, making injectable classes 
much more portable across frameworks.

Annotations in More Types of Java EE Components

The simpler annotation-based programming model that was introduced in Java EE 5 has been extended to other 
types of Java EE components, such as servlets and JSF components. For example, instead of using a 
deployment descriptor to define a servlet in a web application, all you need to do is mark a class with the 
@WebServlet annotation, as shown below:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (19 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=317


Introducing the Java EE 6 Platform: Part 3

   @WebServlet(name="CalculatorServlet", urlPatterns={"/calc", "/getVal"})
   public class CalculatorServlet extends HttpServlet{
      public void doGet(HttpServletRequest req, HttpServletResponse res) {
      ...
      }

      ...
   }

 

 

Instead of creating 
deployment descriptors, 
you can annotate classes 
to specify servlet-related 
deployment information. 

The @WebServlet annotation is one of the annotations provided by Servlet 
3.0 technology. Here are some other Servlet 3.0 annotations:

●     @WebFilter. Defines a servlet filter in a web application
●     @WebInitParam. Specifies any init parameters that must be 

passed to a servlet or servlet filter
●     @WebListener. Annotates a listener to get events for various operations on a particular web 

application context
●     @MultipartConfig. When specified on a servlet, indicates that the request the servlet expects is of 

the MIME type multipart/*

A good example of the annotation support in JSF 2.0 is the simplified approach to configuring managed beans. 
Instead of registering a managed bean by configuring it in the JSF configuration file, faces-config.xml, 
all you need to do is mark the bean with the @ManagedBean annotation and set its scope with the 
RequestScope annotation, as shown below: 

   import javax.faces.bean.ManagedBean;
   import javax.faces.bean.RequestScoped;

   @ManagedBean(name="userBean")
   @RequestScoped
   public class UserBean {

      private String name;

      public String getName() {
        return name;
      }
      public void setName(String name) {
        this.name = name;
      }

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (20 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

      public UserBean() {}
   }

 

 

JSF 2.0 supports various 
annotations to specify 
configuration 
information. 

Some other JSF 2.0 annotations are:

●     @ManagedProperty. Marks a bean property to be a managed 
property

●     @ResourceDependency. Declares the resources that a component 
will need

●     @ListenFor. Enables a component to subscribe to particular events with the component as the 
listener

●     @FacesConverter. Registers a class as a Converter, that is, a class that can perform Object-to-
String and String-to-Object conversions

●     @FacesValidator. Registers a class as a Validator, that is, a class that can perform validation

If you want the annotations to be processed — whether they are Servlet 3.0 annotations or JSF 2.0 annotations 
— you need to put the classes that are marked with these annotations in the WEB-INF/classes directory of 
the web application. You can also put the classes in a JAR file in the WEB-INF/lib directory of the 
application.

As is the case for web fragments, you use the <metadata-complete> element in the web.xml file to 
instruct the web container whether to look for annotations. If you set <metadata-complete> to false or do 
not specify the <metadata-complete> element in your file, then during deployment, the container must 
scan annotations as well as web fragments to build the effective metadata for the web application. However, if 
you set <metadata-complete> to true, the deployment descriptors provide all the configuration 
information for the web application. In this case, the web container does not search for annotations and web 
fragments.

With its support for annotations as well as its new ServletContext methods, Servlet 3.0 makes the 
web.xml file optional. In other words, you no longer need to include a web.xml file in a WAR file for a web 
application.

Standardized Annotations for Dependency Injection

Dependency injection is a popular technique in developing enterprise Java applications. In dependency 
injection, also called inversion of control, a component specifies the resources that it depends on. An injector, 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (21 of 28) [12/17/2009 4:54:33 PM]



Introducing the Java EE 6 Platform: Part 3

typically a container, provides the resources to the component. Although dependency injection can be 
implemented in various ways, many developers implement it with annotations. Dependency injection is used 
heavily in Java development frameworks such as Spring and Guice. Unfortunately, there is no standard 
approach for annotation-based dependency-injection. In particular, a framework such as Spring takes a different 
approach to annotation-based dependency injection than that of a framework such as Guice.

 

SR 330, Dependency 
Injection for Java, 
provides a standardized 
and extensible API for 
dependency injection. 
You no longer have to 
work with vendor-
specific annotations. 

However, JSR 330: Dependency Injection for Java, which is part of Java EE 6, 
changes that. The objective of this specification is to provide a standardized 
and extensible API for dependency injection.

The API comprises a set of annotations for use on injectable classes. The 
annotations are as follows:

●     @Inject. Identifies injectable constructors, methods, and fields.
●     @Qualifier. Identifies qualifier annotations. Qualifiers are strongly-

typed keys that help distinguish different uses of objects of the same type. For example, a @Red Car 
and a @Blue Car are understood to be different instances of the same type. In this example, @Red and 
@Blue are qualifiers.

●     @Scope. Identifies scope annotations.
●     @Singleton. Identifies a type that the injector only instantiates once
●     @Named. A String-based qualifier.

For example, the following class named Stopwatch uses the @Inject annotation to inject a dependency on 
a class named TimeSource:

   class Stopwatch {
      final TimeSource timeSource;
      @Inject Stopwatch(TimeSource TimeSource) {
        this.TimeSource = TimeSource;
      }
      void start() { ... }
      long stop() { ... }
   }

 
The dependency injection can be extended to other dependencies. For example, suppose, you want to create a 
StopwatchWidget class that has a dependency on the Stopwatch class. You could define the class as 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (22 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=330


Introducing the Java EE 6 Platform: Part 3

follows:

   class StopwatchWidget {
      @Inject StopwatchWidget(Stopwatch sw) { ... }
      ...
   }

 
In response, the injector finds a TimeSource object, uses the TimeSource object to construct a 
Stopwatch object, and then constructs a StopwatchWidget object with the Stopwatch object. .

The standardized set of annotations specified by JSR 330 should make injectable classes portable across 
frameworks. You no longer have to work with vendor-specific annotations.

Note that CDI builds on JSR-330 and adds much functionality to dependency injection. This functionality 
includes automatic discovery and configuration of injectable classes, and an API to define new injectable 
classes at runtime — for example, to help integrate with third-party frameworks.

Profiles and Pruning

 

Profiles are Java EE 
platform configurations 
that are designed for 
specific classes of 
applications. 

Java EE 6 introduces the concept of profiles as a way to reduce the size of the 
Java EE platform and better target it for specific audiences. Profiles are 
configurations of the Java EE platform that are designed for specific classes of 
applications. A profile may include a subset of Java EE platform technologies, 
additional technologies that have gone through the Java Community Process, 
but that are not part of the Java EE platform, or both. For example, consider a 
hypothetical profile for telephony applications. Such a profile might include Java EE web tier technologies, 
such as JSP and Servlet, EJB for the enterprise component model, and JPA for persistence. It would likely also 
include telephony-oriented technologies such as JSR 289: SIP Servlet v1.1, that have gone through the JCP 
process, but that are not part of the Java EE platform.

A profile is defined by following the JCP Community Process. In addition, the Java EE 6 Specification defines 
the rules for referencing Java EE platform technologies in Java EE Profiles. However, the Java EE 6 
specification also underscores the principle that a new profile should be created only when there is a good 
reason for doing so. The specification states "The decision to create a profile should take into account its 
potential drawbacks, especially in terms of fragmentation and developer confusion. In general, a profile should 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (23 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/home/index
http://jcp.org/en/jsr/detail?id=289
http://jcp.org/en/jsr/detail?id=316


Introducing the Java EE 6 Platform: Part 3

be created only when there is a natural developer constituency and a well-understood class of applications that 
can benefit from it."

Profiles are intended to evolve independently of each other and independently of the Java EE 6 platform. In 
particular, profiles are initiated by submitting a Java Specification Request and are released on their own 
schedule, independently of any concurrent revision of the Java EE platform or of other profiles. This means that 
a profile such as the hypothetical telephony profile can evolve at a pace that is natural for its targeted industry, 
without being tied to the evolution of the Java EE platform or any other profile. Note however that it is highly 
recommended that profiles periodically synchronize with the platform, in particular when a major new platform 
is released. The objective is to preserve a common programming model and simplify the transfer of developer 
skills across the entire Java EE 6 family of products.

Web Profile

 

Java EE 6 defines the 
first profile, called the 
Web Profile. This initial 
profile is a Java EE 
platform subset for web 
application development. 

Java EE 6 defines the first profile, called the Web Profile. This initial profile 
provides a subset of the Java EE platform and is designed for web application 
development. The Web Profile includes only those technologies needed by 
most web application developers, and does not include the enterprise 
technologies that these developers typically don't need.

Table 1 lists the technologies in the full Java EE 6 platform and indicates by 

checkmark (✓) which of those are in the Web Profile.

Table 1: Comparing the Technologies in the Java EE Platform and the Web Profile

Java EE Platform Technology Web Profile

Web Application Technologies

JSR 315: Java Servlet 3.0 ✓

JSR 314: JavaServer Faces (JSF) 2.0 ✓

JSR 245: JavaServer Pages 2.2 and Expression Language (EL) 1.2 ✓

JSR 52: A Standard Tag Library for JavaServer Pages 1.2 ✓

JSR-45: Debugging Support for Other Languages 1.0 ✓

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (24 of 28) [12/17/2009 4:54:33 PM]

http://www.jcp.org/en/jsr/detail?id=315
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=245
http://www.jcp.org/en/jsr/detail?id=52
http://www.jcp.org/en/jsr/detail?id=45


Introducing the Java EE 6 Platform: Part 3

Enterprise Application Technologies

JSR 299: Contexts and Dependency Injection for the Java EE Platform 1.0 ✓

JSR 330: Dependency Injection for Java ✓

JSR 318: Enterprise JavaBeans 3.1 ✓(EJB Lite)

JSR 317: Java Persistence API 2.0 ✓

JSR 250: Common Annotations for the Java Platform 1.1 ✓

JSR 907: Java Transaction API (JTA) 1.1 ✓

JSR 303: Bean Validation 1.0 ✓

JSR 322: Java EE Connector Architecture 1.6  

JSR 914: Java Message Service (JMS) API 1.1  

JSR 919: JavaMail 1.4  

Web Services Technologies

JSR 311: JAX-RS: The Java API for RESTful Web Services 1.1  

JSR 109: Implementing Enterprise Web Services 1.3  

JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.2  

JSR 222: Java Architecture for XML Binding (JAXB) 2.2  

JSR 181: Web Services Metadata for the Java Platform  

JSR 101: Java APIs for XML based RPC 1.1  

JSR 67: Java APIs for XML Messaging 1.3  

JSR 93: Java API for XML Registries 1.0 (JAXR) 1.0  

Management and Security Technologies

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (25 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=330
http://jcp.org/en/jsr/detail?id=318
http://www.jcp.org/en/jsr/detail?id=317
http://www.jcp.org/en/jsr/detail?id=250
http://www.jcp.org/en/jsr/detail?id=907
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=322
http://www.jcp.org/en/jsr/detail?id=914
http://jcp.org/en/jsr/detail?id=919
http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=101
http://jcp.org/en/jsr/detail?id=67
http://jcp.org/en/jsr/detail?id=93


Introducing the Java EE 6 Platform: Part 3

JSR 196: Java Authentication Service Provider Interface for Containers 1.0  

JSR 115: Java Authorization Contract for Containers 1.3  

JSR 88: Java EE Application Deployment 1.2  

JSR 77: J2EE Management 1.1  

 

Notice that the Web Profile includes a servlet container and all the traditional presentation technologies such as 
JSP, JSF, and the Standard Tag Library for JavaServer Pages (informally referred to as JSTL). EJB 3.1 Lite is 
available as a component model. There is also JPA for persistence and JTA for transaction management. And 
with the enhanced extensibility enabled by features such as web fragments, you can easily extend the Web 
Profile with additional frameworks or libraries such as JAX-RS.

Pruning

 

Another technique 
introduced in Java EE 6 for 
reducing the size of the 
platform is pruning.

Another technique introduced in Java EE 6 for reducing the size of the 
platform is pruning. Pruning a technology means that the technology can 
become an optional component in the next release of the platform rather than 
a required component. Community reaction ultimately decides whether the 
candidate actually becomes an optional component. Pruning can reduce the 
size of Java EE platform products because implementors such as Java EE application server vendors may 
include or exclude a pruned technology in their implementation. However, if Java EE application server 
vendors do include a pruned technology, they must do so in a compatible way, such that existing applications 
will keep running.

These are candidates for pruning:

●     JSR 101: Java APIs for XML-Based RPC
●     JSR 93: Java API for XML Registries 1.0 (JAXR)
●     EJB Entity Beans (defined as part of JSR 153: Enterprise JavaBeans 2.0, and earlier)
●     JSR 88: Java EE Application Deployment

Summary

With its support for profiles, significant new technologies such as JAX-RS, enhanced extensibility features 
such as web fragments, and ease of development improvements such as Facelets and platform-wide adoption of 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (26 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=115
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=77
http://www.jcp.org/en/jsr/detail?id=101
http://www.jcp.org/en/jsr/detail?id=93
http://jcp.org/aboutJava/communityprocess/final/jsr153/
http://www.jcp.org/en/jsr/detail?id=88


Introducing the Java EE 6 Platform: Part 3

annotations, Java EE 6 delivers a Java EE platform that is more flexible, more powerful, and more developer 
friendly than ever before. You can try out an implementation of the Java EE 6 platform by downloading the 
Java EE 6 SDK. For a more in-depth understanding of the Java EE 6 platform, see the Java EE 6 Tutorial.

Part 1 | Part 2 | Part 3

For More Information

●     JSR 316: Java Platform, Enterprise Edition 6 (Java EE 6) Specification
●     Java EE 6 Technologies
●     Java EE 6 SDK
●     Java EE 6 Tutorial

* As used on this web site, the terms "Java Virtual Machine" and "JVM" mean a virtual machine for the Java 
platform.

Rate This Article

 

Comments

We welcome your participation in our community. Please keep your comments civil and on point. You may 
optionally provide your email address to be notified of replies - your information is not used for any other 
purpose. By submitting a comment, you agree to these Terms of Use. 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (27 of 28) [12/17/2009 4:54:33 PM]

http://java.sun.com/javaee/downloads/index.jsp
http://java.sun.com/javaee/6/docs/tutorial/doc/
http://jcp.org/en/jsr/detail?id=316
http://java.sun.com/javaee/technologies/javaee6.jsp
http://java.sun.com/javaee/downloads/index.jsp
http://java.sun.com/javaee/6/docs/tutorial/doc/
http://developers.sun.com/global/termsofuse.html


Introducing the Java EE 6 Platform: Part 3

About Sun  |  About This Site  |  Newsletters  |  Contact Us  |  Employment  |  How 
to Buy  |  Licensing  |  Terms of Use  |  Privacy  |  Trademarks 
 

 

Copyright Sun Microsystems, Inc. 

A Sun Developer Network 
Site

Unless otherwise licensed, 
code in all technical manuals 
herein (including articles, 
FAQs, samples) is provided 
under this License. 
 

 Sun Developer RSS Feeds 

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (28 of 28) [12/17/2009 4:54:33 PM]

http://www.sun.com/
http://developers.sun.com/global/aboutsun.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/newsletters.html
http://developers.sun.com/global/contact.html
http://developers.sun.com/global/employment.html
http://developers.sun.com/global/howtobuy.html
http://developers.sun.com/global/howtobuy.html
http://developers.sun.com/global/licensing.html
http://developers.sun.com/global/termsofuse.html
http://developers.sun.com/global/privacy.html
http://developers.sun.com/global/trademarks.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/berkeley_license.html
http://developers.sun.com/global/rss_sdn.html
http://developers.sun.com/global/content_feeds.html

	sun.com
	Introducing the Java EE 6 Platform: Part 1
	Introducing the Java EE 6 Platform: Part 2
	Introducing the Java EE 6 Platform: Part 3


	FMDAEGOEOOKAFPJCEKELEAPGKAIFGNJCDM: 
	form1: 
	x: 
	f1: utf-8
	f2: main-developer-all
	f3: Search

	f4: 


	ANAHOMPCGHJKGPAONMFCFAKILADFGHNM: 
	form1: 
	x: 
	f1: utf-8
	f2: main-developer-all
	f3: Search

	f4: 


	NCKGKBCBIOPOMCPIKGHLLKPALHLBHOBI: 
	form1: 
	x: 
	f1: utf-8
	f2: main-developer-all
	f3: Search

	f4: 




