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Introduction to Rheology

D. Vader, HWyss
Weitzlab group meeting tutorial



What is rheology?

 Rheology is the study of the flow of matter: mainly
liquids but also soft solids or solids under conditions in
which they flow rather than deform elastically. It
applies to substances which have a complex structure,
including muds, sludges, suspensions, polymers, many
foods, bodily fluids, and other biological materials.
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What is rheology?

 The term rheology was coined in 1920s, and
was inspired by a Greek quotation, "panta rei",
"everything flows".

* |n practice, rheology is principally concerned
with extending the "classical" disciplines of
elasticity and (Newtonian) fluid mechanics to
materials whose mechanical behavior cannot
be described with the classical theories.



Basic concepts
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Simple mechanical elements

G % Elastic solid: force (stress) proportional to strain

!
Viscous fluid: force (stress) proportional to strain rate 1 *

Viscoelastic material: time scales are important

Fast deformation: solid-like N
Slow deformation: fluid-like G




Response to deformation
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Oscillatory rheology
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Elastic solid: |0 = Gy

Stress and strain are in phase

Viscous fluid: |c =1y

Stress and strain are out of phase

Viscoelastic material, use: y(c),t)= yosin((ot)

G(CO,t)= G'-yo-sin((ot) + G"-yo-cos((ot)
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Lissajou plots
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Strain-control vs stress-control
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Strain-control vs stress-control

e Strain-controlled state typically considered
better defined

e Stress-controlled rheometers have better
torque sensitivity

e Strain-controlled rheometers can probe higher
frequencies

 BUT... nowadays, feedback loops are fast

enough that most rheometers can operate OK
in both modes



Rheometer geometries

d Cone-plate ?
 uniform strain / strain-rate
» fixed gap height %
 Plate-plate

* non-uniform strain
 adjustable gap height
« good for testing boundary effects like slip

] Couette cell

 good sensitivity for low-viscosity fluids




Linear viscoelasticity

Acquire data at constant frequency, increasing stress/strain

linear viscoelastic regime ,
storage modulus G

loss modulus G’
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Typical protocol

e Limits of linear viscoelastic regime in desired
frequency range using amplitude sweeps

=> yield stress/strain, critical stress/strain

e Test for time stability, i.e time sweep at constain
amplitude and frequency

* Frequency sweep at various strain/stress
amplitudes within linear regime

e Study non-linear regime S ~
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Nonlinear rheology (of biopolymers)
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“Unlike simple polymer gels, many biological materials—
including blood vessels, mesentery tissue, lung parenchyma,
cornea and blood clots—stiffen as they are strained, thereby
preventing large deformations that could threaten tissue
integrity.” (Storm et al., 2005)

linear viscoelastic regime
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Oscillatory strain sweeps (collagen gels)
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Lissajou plots from the G2 Raw data tool

Lissajou plot, 1% strain
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Nonlinear Lissajou plot

stress [Pa]

strain



Nonlinear Lissajou plot
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2.4mg/mL cone-plate
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2.4mg/mL cone-plate
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MIT LAOS MATLAB package
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Creep-ringing

stress [Pa]
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Creep-ringing

* Norman & Ryan’s work here (fibrin, jamming)
e Good tutorial by Ewoldt & McKinley (MIT)
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I: bulk properties

Creep-ringing results
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More nonlinear rheology

» Stress/strain ramps with constant rate

* Pre-stress measurements, i.e. small stress
oscillations around a constant (pre-)stress

* Pre-strain measurements

* Transient responses in LAOS (talk to Stefan)
* Fourier domain analysis

e SRFS (talk to Hans) sw0-

Linear behavior
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Origin of nonlinear behavior

 Distribution of length-scales / inhomogeneities
* Rearrangement of particles / filaments
* Non-affine motion

e How do we find out?

Observation at the microscopic scale:

:>  Microrheology

* Microscopy




Microrheology basics

* General idea: look at the thermally-driven
motion of micron-sized particles embedded in a
material

* Mean-square displacement of particles as a
function of time provides microscopic

information on local elastic and viscous material
properties as a function of frequency

e Mason and Weitz, PRL, 1995



Short and long timescales

Short time scales: Long time scales:
diffusive spring-like
1 1
MSD(‘E)E <(rt+T - T, )2> ~4D1 5K-MSD(1:)~ EkBT
t
oo keT
6m-a-n

r: position vector K: effective spring-

D: diffusion constant constant, linked to

t: lag time elastic properties

KT: thermal energy
a: particle size
1. viscosity

What about intermediate times?



Generalized Stokes-Einstein

kT kT kyT-41
o6m-a-m > T 6rn-a-D 67IaMSD(’C)

n(x)~

D~

MSD(I)

Take Laplace transform of n(t) numerically, to get n(s) — with s=iw.
From earlier, we know:

G"(0)~n(®) o

We can then get the generalized complex modulus, by analytically extending:

G"(s)~ns)s

ie. [G* (ioo)~ n(ico)- 10




2-point vs 1-point microrheology

2-point microrheology calculates a
mean-square displacement from
the correlated pair-wise motion of
particles, rather than the single-
particle MSD.

1 um COO- beads, Tmg/mL F-Actin
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Other considerations

* Non-linear regime non-trivial, but more
Interesting.

* Surface effects can be important.
* |maging to figure out mechanisms.

* Richness of effects, mechanisms, time-, length-
and energy- scales present in soft matter /
complex fluids.

* More to explore on Weitzlab webpage.
* More at ComplexFluids meetings.



