
INTRODUCTION ABOUT 
ASSEMBLY 



Grade  

5 Participation  

5 Lab attendance and lab work 

5 Homework 

15 Final lab 



What is assembly language  

• Assembly language is a low-level programming 
language for a computer. 

• Each statement is [almost] exactly equivalent 
to one machine instruction. 

• Assembly language is converted into 
executable machine code by using assembler 
like NASM, MASM, etc. 



Advantages of Assembly Language 

• Studying assembly language is it possible to gain 
a feeling for the way the computer "thinks" and 
why certain things happen the way they do inside 
the computer. 

• Writing assembly language programs is efficiency 
because assembly language is so close to 
machine language so produces a faster , shorter 
machine language program. 

• It allows hardware-specific complex jobs in an 
easier way. 

• It is suitable for time-critical jobs. 
 



Difference between high level 
language and assembly level language 

Assembly language  
 

High level language  

Difficult to read and 
understand 

Easier to read and understand 

No , designed for a 
specific family of 

processors  

Yes  Portable 

Each statement is [almost] 
one machine instruction 

Each statement need many 
machine instruction 

Number of 
equivalent machine 

code  

MOV AX,6 
ADD AX,Y 
MOV A,AX 

X=6+Y Example 



Reference: 

• Assembly Language Programming and 
Organization of the IBM PC. 

• Tutorialspoint website 
“https://www.tutorialspoint.com/”. 



 

 

 

 

 

 

 

 

Requirements for coding in Assembly Language 



1 

Outline 
 

Assembly Language Statements 

Defining Types of data 

 



4 

 

 

 

 

Assembly Language Statements  

 • Programs consist of statements, one per line. 

• Statements is either instruction or assembler directive. 

• Instruction , which the assembler translate into machine code. 

• Assembler directive, which instructs the assembler to perform 

some specific task. 

• Both instructions and directives have up to four fields: 

 [identifier ] operation  [operand(s)] [comment] 

 

• At least one blank or tab character must separate the fields. 

• The fields do not have to be aligned in a particular column, but 

they must appear in the above order. 

 

  



• An example of an instruction: 

   START: MOV CX,5 ; initialize counter 

• An example of an assembler directive: 

   MAIN PROC 

Assembly Language Statements  

 



Identifier field 
 

•The identifier is used for instruction labels, procedure names 

and variable name. 

•Can be from 1 to 31 characters long (not case sensitive). 

• May consist of letters, digits, and the special characters  

   ? . @ _ $ % (Thus, embedded blanks are not allowed). 

•Names may not begin with a digit. 

•If a dot is used, it must be the first character. 

 

The assembler does not differentiate between uppercase and 

lowercase. 

 

 



8 

 

 

 

 

Identifiers 
 
•  Examples: 

• COUNTER1 

• 2abc 

• @CHARACTER 

• A45. 28 

• TWO WORDS 

• STD_NUM 

• .TEST 

Begins with a digit 

. Not first character 

Contains a blank 

• YOU&ME Contains an illegal character 



Operation field  
 
• For an instruction, the operation field contains a symbolic 

operation code (opcode). The assembler translates a 

symbolic opcode into machine language. For example: mov, 

add , sub. 

 

 

• For an assembler directive, the operation field contains a 

pseudo-operation code (pseudo-op). pseudo-op are not 

translated into machine code, they simply tell assembler to 

do something. For example: DB , DW , PROC. 

 



Operand field   
 
• For an instruction, the operand fields specifies the data that 

are to be acted on by the operation. An instruction may have 

zero, one, two operands. 

 

 

• For an assembler directive, the operand fields usually 

contains more information about the directive. 

 



13 

Comment field 
 
• The comment field of a statement is used by the programmer to 

say something about what the statement does. 

• A semicolon marks the beginning of this field, and the assembler 

   ignores anything typed after the semicolon. 

• It is almost impossible to understand an assembly language 

program without comments. 

• Good programming practice dictates a comment on almost every 

   line. 

 
• Examples: 

•MOV CX, 0 ; CX counts terms, initially 0 



 

 

 

 

 Defining Types of data 
 

expression  Dn [name] 

Name: a program that references a data item does so by 

means of name 

 

Dn (Directive): define the data item – see next slide— 

 

Expression: is an operand may specify an uninitialized value 

or constant value 

an uninitialized value defined by item ?  

   EXAMPLE : 

                              DATAX   DB   ? 

 
16 

expression  Dn [name] 



Defining Types of data  (Directive):  
 

Pseudo-op     Stands for 
 

DB      Define Byte 

DW      Define Word 

DD      Define Doubleword 

DQ      Define Quadword 

DT      Define Tenbytes 

17 



a memory byte is associated with the name ALPHA, 
and initialized to 4 

ALPHA  DB   4  

A memory byte is associated with the name BYT, and 

uninitialized. 

 

BYT DB   ? 

a memory word is associated with the name WRD, 

and initialized to -2. 

 

WRD  DW -2  

Defining Types of data  -Examples 
 



High and Low Bytes of a Word 
 
• WORD1 DW 1234H 

 
low byte 

WORD1 

high byte 

WORD1+1 

19 



Defining Types of data  
 
 The decimal range (fit a byte): 

• Unsigned representation: 0 to 255 

• Signed representation: -128 to 127 

 

The decimal range (fit a word): 

• Unsigned representation: 0 to 65535 

• Signed representation: -32768 to 32767 

 

20 



Defining Types of data – Array byte 
 
• an array is a sequence of memory bytes or words. 

 

• Example: 

   B_ARRAY DB   10H,20H,30H 

Symbol     Address     Contents 
 

B_ARRAY     200H    10H 

B_ARRAY+1     201H    20H 

B_ARRAY+2     202H    30H 

21 



Defining Types of data – Array word 
 
 

• Example: 

   W_ARRAY DW   1000,40,29887,329 

Symbol     Address     Contents 
 

W_ARRAY      0300H  1000D 

W_ARRAY+2    0302H  40D 

W_ARRAY+4    0304H          29887D 

W_ARRAY+6    0306H          329D 

22 



Defining Types of data :The DUP Operator 
 
• It is possible to define arrays whose elements share a common 

initial value by using the DUP (duplicate) operator. 

 

• Syntax: 

 

  

• Example: 

 

 

 

23 

Repeat-count(exp) Dn [name] 

creates an array of 212 uninitialized bytes. 
 

 

DELTA  DB  212 DUP (?)  

set up an array of 100 words, with each entry 
initialized to 0. 

 

GAMMA  DW 100 DUP (0)  



Character String 
 •  ASCII codes can be initialized with a string of characters using 

single quotes like ‘PC’ or double quotes like “PC”. 

 

• Example: 

   LETTERS DB 'ABC' 

   = 

   LETTERS DB 41H,42H,43H 

 

• Inside a string, the assembler differentiates between upper and 

lowercase. 

 

• It is possible to combine characters and numbers in one 

definition: 

   Example: MSG DB 'HELLO',0AH,0DH, '$' 

24 





Exercises: 
 

Q1. Which of the following names are legal ? 

a. ?1 

b. T = 

c. LET’S_GO 

 
Q2. If it is legal, give data definition pseudo-op to define each 

of the following. 

a. A word variable A initialized to 52. 

b. A byte variable C initialized to 300. 

c. A word variable WORD1,unintialized. 

d. A byte variable B initialized to -129. 

 

 
 

26 


