AAPM 2005 - Continuing Education Course - MRI Physics and Technology - 4 Advanced MRI - An Overview of Techniques and Applications

Edward F. Jackson, PhD Department of Imaging Physics

Diffusion imaging

Image Display

There are two ways of displaying images with diffusion-based contrast:

Diffusion-weighted imaging (DWI) - areas of unrestricted diffusion appear *hypo*intense and areas of restricted diffusion appear *hypor*intense.

Advantage: Very fast, no extra post-processing steps.

Disadvantage: T_2 "shine through" can be problematic. (Due to T_2 weighting of the sequence, *i.e.*, long TE intervals, necessary in order to obtain adequate *b*-values. This problem is decreased with high performance gradient subsystems.)

------ MDACC MR Research

100 200 300 400 500 600 700 800 b-value (s/mm²)

Diffusion tensor imaging (DTI)

Using multiple diffusion encoding directions to determine the diffusion tensor terms, eigenvalue/eigenvector analysis can be used to determine the *principle diffusion direction*. This is the basis of "tractography".

1.5T, b=1576 s/mm², 6 directions 3.0T, b=1000 s/mm², 15 directions

• The Larmor relation that relates resonant frequency to magnetic field strength:

$v = \gamma B_{nucleus}$

where v is the resonant frequency (MHz), γ is the gyromagnetic ratio, and $B_{nucleus}$ is the magnetic field strength (T) *at a given nucleus*.

• However, the value of $B_{\rm nucleus}$ depends on the local electronic environment, *i.e.*, it is the value of the applied field, B_o, modified by the magnetic field due to the chemical environment.

MDACC MR Research

Introduction to spectroscopy

 Nuclei in different chemical (electronic) environments will have slightly different resonance frequencies depending on the amount of local nuclear shielding, σ:

 $v = \gamma B_{o} (1 - \sigma)$

• It is this local shielding effect that results in spectra with multiple peaks for a given nuclear species, where the peak positions depend on the local chemical environment.

------ MDACC MR Research

Introduction to spectroscopy

• The position of a given spectral peak is usually given in terms of *chemical shift* with respect to some reference,

 $\delta_x = (\nu_x - \nu_{ref}) / \nu_{ref}$

- This definition makes the separations between the peaks independent of applied field strength.
- Note, however, that the separation of the peaks (in Hz) *does* depend on field strength. Therefore, the spectral resolution improves as field strength increases. (So does the SNR of the spectral peaks.)
- For ¹H MRS applications, the reference is usually water.

------ MDACC MR Research

Water suppression (¹H MRS)

- The metabolites of interest are usually about a factor of 8,000 less in concentration than water.
- A very efficient means of suppressing the water resonance is required in order to readily detect the metabolite resonances.

----- MDACC MR Research

Water suppression (1H MRS)

1

- The most commonly utilized method for water suppression is based on the same principle as "fat sat". (For MRS sequences, the suppression pulses are commonly referred to as CHESS pulses - chemically selective saturation.)
- Typically, multiple (often 3), narrow bandwidth (~50 Hz) pulses are applied at the water resonance frequency preceding the localization sequence.
- · Multiple pulses are used to improve the degree of water suppression.

------ MDACC MR Research

- Spectroscopic imaging (SI): Uses phase-encoding for localization.

localization techniques are:

- Hybrids: Usually a combination of SVL and SI techniques.

MDACC MR Research

Single voxel localization $\Lambda \sim$

- The most common single volume localization techniques are those based on the stimulated echo acquisition mode (STEAM) and point resolved spectroscopy (PRESS) sequences.
 - 90°-90°-90°-acquire - STEAM:
 - PRESS: 90°-180°-180°-acquire
- · Advantage of STEAM: shorter minimum echo times
- Advantage of PRESS: 2x SNR increase compared to STEAM (for peaks with no *J*-coupling) √√ MDACC MR *™*∕∕

Spectroscopic imaging techniques

Instead of relying on the intersection of three planes to define a single VOI, SI techniques use phase-encoding for part or all of the localization to yield multiple VOIs.

- <u>2DSI</u>: Uses one slice selection gradient/RF pair to define a slice, and then phase-encodes the remaining two dimensions. (Most commonly used SI method.)
- <u>3DSI</u>: Uses three phase-encoding gradients to define a 3D volume of voxels.

------ MDACC MR Research

Spectroscopic imaging techniques

While SVL techniques are faster for obtaining a single localized spectrum, SI techniques have the following advantages:

- Spectra from multiple VOIs can be obtained for comparison. Useful for comparing suspected pathological tissue with normal-appearing contralateral region, or for better assessment of lesion heterogeneity.
- Spectra from smaller VOIs can be obtained as compared to SVL techniques.
 - Less partial volume averaging, better assessment of heterogeneity.
- "Metabolite maps", in which pixel intensity is proportional to chemical concentration, can be generated.

Spectroscopic imaging techniques

-\///////

Disadvantages of SI techniques include:

- rather long acquisition times:
 - 2DSI: $T_{\text{scan}} = N_{x_\text{phase}} \ge N_{y_\text{phase}} \ge N_{\text{averages}}$

- spatially-dependent water suppression efficiency & spectral quality

- Larger volume over which field homogeneity must be optimized -- more difficult to accomplish than with SV localization.
- "spectral-bleed" from one voxel to another is possible due to phase-encoding point spread function. (Can be minimized by increasing N_{phases} , but this costs time.)

------ MDACC MR Research

Choice of echo time

- As you increase TE, the signal intensity from each metabolite decreases due to spin dephasing.
- <u>Short TE</u>: more spectral peaks means improved chances for lesion characterization or assessment of therapy. However, the examinations are more difficult to obtain reproducibly, mainly due to decreased water suppression efficiency.
- When comparing MRS data, the TE and TR values must be taken into account.
- Each metabolite has its own T₁ and T₂ relaxation times. Therefore, as you change TE and/or TR, the relative areas and amplitudes change for each peak. Peak or area ratios are also TE-dependent.

Assessing microvascular changes -/////////

Non-invasive assessment of the effects of antiangiogenic / antivascular therapy.

1,~~~~

ionic

Assessing microvascular changes ΛM

- The most common MR techniques for assessing microvascular changes:
 - Dynamic contrast agent enhanced MRI (DCE-MRI)
 - Dynamic susceptibility change MRI (DSC-MRI)
- · Both require rapid temporal sampling, with preferred sampling rates on the order of
 - 5 10 sec per image set for DCE-MRI
 - 1 2 sec per image set for DSC-MRI
- · Both require the infusion of exogenous contrast agents. ∕ MDACC M

Common MRI contrast agents

Paramagnetic Contrast Agents

- Gadolinium is the most common paramagnetic atom used in MR agents
- Gd is toxic must be tightly chelated
- Three common Gd agents:
- Magnevist (gadopentetate dimeglumine)
- Omniscan (gadodiamide) non-ionic non-ionic
- Prohance (gadoteridol)
- Osmotic loads of all three are significantly less than iodinated agents
- Affect both T_1 and T_2 relaxation times, with the dominant effect being shortening of the T_1 relaxation time (at routine clinical doses).

MDACC MR Research

Effects of increa increasing Gd-DTPA concentration on T_1 (left) and T_2 (right) relaxation times in gray matter $(T_{1,0} = 1055 \text{ ms}, T_{2,0} = 68 \text{ ms})$. Note the dominant effect on T_1 relaxation times.

 $T_{1,0}$

Two Compartment Pharmacokinetic Model Plasma Flow Endothelium Plasma EES $C_{\rm P}, v_{\rm P}$ Įļ $C_{EES}(t) = \overline{K^{trans}} \int_{0}^{t} C_{P}(t') e^{-k_{ep}(t-t')} dt'$ $C_{\rm L}(t) = v_{\rm P} C_{\rm P}(t) + C_{\rm EES}(t)$ $C_{\rm p} = [{\rm Gd}]$ in plasma (mM) = $C_{\rm b} / (1-{\rm Hct})$ $C_{\text{EES}} = [\text{Gd}]$ in extravascular, extracellular space (mM) $K^{\text{trans}} = \text{end}$ othelial transfer coefficient (min⁻¹) $k_{\rm ep} = \text{reflux rate (min^{-1})}$ $v_{\rm P}$ = fractional plasma volume, $v_{\rm e}$ = fractional EES volume hardized parameters as proposed by Tofts et al., J Magn Reson Imaging, 10:223-232, 1999.

MDACC MR Research

By Bru

AG-013736 DCE-MRI Study

AG-013736 Trial (DCE-MRI and DCE-CT)

- Potent and selective inhibitor of VEGFR/PDGFR tyrosine kinases
- Preclinical activity in xenograft models (melanoma, colon, breast, and lung)
- Multicenter Phase I study in solid tumors (MDACC, University of Wisconsin, UCSF)
- Heterogeneous lesions (liver, lung, head & neck, ...)
- Data analyses performed at VirtualScopics, LLC (Rochester, NY) and independently at MDACC

------ MDACC MR Research

DSC-MRI techniques

- Dynamic susceptibility change (DSC) MRI techniques have also been used to assess changes in regional blood flow.
- DSC-MRI uses *T*₂- or *T*₂*-weighted, high speed imaging techniques, *e.g.*, echo-planar imaging.

MDACC MR Research

BOLD functional MRI - Principles

Blood oxygen level dependent (BOLD) contrast

- <u>Principle</u>: Uses the difference in the magnetic state of oxyhemoglobin (diamagnetic) *vs* deoxyhemoglobin (paramagnetic) to provide image contrast.
- <u>Advantage</u>: Totally noninvasive. Requires no infusion.
- <u>Disadvantage</u>: Much smaller change in signal intensity compared to bolus injection technique (~1-5% changes at 1.5T).

References: Ogawa et al., Magn Reson Med 14:68, 1990; Kwong et al., Proc Natl Acad Sci USA 89:5675, 1992.

Functional MRI - BOLD Principles $\Lambda \Lambda \Lambda \Lambda$

Blood oxygen level dependent (BOLD) contrast

Normal State

- ~ 60% oxyHb
 Normal oxygen extraction rate
 Relatively large susceptibility effect
 Baseline MR signal intensity
- Neuronal Activation State ~ 75% oxyHb (↑ Flow & volume)
 ~ 5% ↑ in oxygen extraction rate
 Decreased susceptibility effect
- · Increased MR signal intensity

√√ MDACC MR R 1n \//

fMRI applications in oncology

Initial Clinical Application

Neurosurgical planning

- · Goal: Maximize resection volume (for best prognosis) while preserving "eloquent centers" (for quality of life).
- Benefits:
 - Pre-surgical planning
 - Decreased OR time
 - Replace evoked potential mapping (sensorimotor)
 - · Minimize need for awake craniotomy / direct cortical stimulation (speech / memory)
 - Replace pre-surgical Wada procedure (speech / memory) ------ MDACC MR Research

Acknowledgments

- Srikanth Mahankali, M.D.
- Krista McAlee, R.T., Michelle Garcia, R.T., Tim Evans, R.T.
- MDACC U54 Project & Developmental Project Collaborators
- Christina A. Meyers, Ph.D., Jeffrey Wefel, Ph.D., and Anne Kayl, Ph.D. Neuropsychology
- MDACC Neurosurgery Faculty and Brian K. Law
- Qing Yuan, Ph.D.
- Theodore R. Steger, III, Ph.D.
- Chaan Ng, M.D.
- X. Joe Zhou, Ph.D., and Rebecca Milman-Marsh, M.S.