Culling

Computer Graphics

CSE 167

Lecture 12

CSE 167: Computer graphics

- Culling
- Definition: selecting from a large quantity
- In computer graphics: selecting primitives (or batches of primitives) that are visible
- If culling is performed early in the graphics pipeline, then rejected invisible objects are not fetched, transformed, rasterized, or shaded

Types of culling

- View frustum culling
- Backface culling
- Contribution (or small object) culling
- Degenerate culling
- Occlusion culling

View frustum culling

- Triangles outside of view frustum are offscreen

Images: SGI OpenGL Optimizer Programmer's Guide

Bounding volumes

- How to cull objects consisting of many polygons?
- Intersect bounding volume with view frustum instead of each primitive
- Simple shape that completely encloses an object

Bounding volumes

- Commonly, a cuboid or sphere
- Easier to calculate tight fits for cuboids (boxes)
- Easier to calculate culling for spheres
- Cull bounding box
- Box is smallest box containing the entire object
- Simple approach: rectangular box, axis-aligned to object space coordinate system
- May not be tightest fit

View frustum culling

- Frustum is defined by 6 planes
- Each plane divides space into outside/inside
- Check each object against each plane
- Outside, inside, intersecting
- If outside all planes
- Outside the frustum
- If inside all planes
- Inside the frustum
- Else, partially inside frustum
- Intersecting the frustum

Frustum with oriented planes

- Normal of each plane points outside of frustum
- Outside is positive distance
- Inside is negative distance

Distance to plane

- A plane is described by a point \mathbf{p} on the plane and a unit normal \mathbf{n}
- Find the (perpendicular) distance from point \mathbf{x} to the plane
- \mathbf{x}

Distance to plane

- The distance is the length of the projection of ($\mathbf{x - p}$) onto n

$$
\text { dist }=(\mathbf{x}-\mathbf{p}) \cdot \overline{\mathbf{n}}
$$

Distance to plane

- The distance has a sign (oriented plane)
- Positive on the side of the plane the normal points to
- Negative on the opposite side
- Zero exactly on the plane
- Divides 3D space into two infinite half-spaces
- \mathbf{X}

$$
\operatorname{dist}(\mathbf{x})=(\mathbf{x}-\mathbf{p}) \cdot \mathbf{n}
$$

Distance to plane

- Simplification

$$
\begin{aligned}
\operatorname{dist}(\mathbf{x}) & =(\mathbf{x}-\mathbf{p}) \cdot \mathbf{n} \\
& =\mathbf{x} \cdot \mathbf{n}-\mathbf{p} \cdot \mathbf{n} \\
\operatorname{dist}(\mathbf{x}) & =\mathbf{x} \cdot \mathbf{n}-d, \quad d=\mathbf{p n}
\end{aligned}
$$

- Where d is distance from the origin to the plane
- d is independent of \mathbf{x}
- We can represent a plane with just d and \mathbf{n}

Sphere-plane test

- For sphere with radius r and origin x, test the distance to the origin, and see if it is beyond the radius
- Three cases:
$\operatorname{dist}(\mathbf{x})>r$
- Completely above $\operatorname{dist}(\mathbf{x})<-r$
- Completely below
$-r<\operatorname{dist}(\mathbf{x})<r$
- Intersects

View frustum culling using spheres

- Pre-compute the normal \mathbf{n} and value d for each of the six planes.
- Given a sphere with center \mathbf{x} and radius r
- For each of the six clipping planes
- If $\operatorname{dist}(\mathbf{x})>r$, then sphere is outside (terminate loop)
- Else if $\operatorname{dist}(\mathbf{x})<-r$, then add 1 to count
- (Alternatively, set a flag if $\operatorname{dist}(\mathbf{x}) \geq-r$)
- If we did not terminate the loop early, check the count
- If the count is 6 (or flag was not set), then the sphere is completely inside
- Otherwise, the sphere intersects the frustum

View frustum culling using spheres

- Math for Game Developers - Frustum Culling
- https://www.youtube.com/watch?v=4p-

E 31XOPM

View frustum culling groups of objects

- Able to cull a whole group quickly
- But, if the group is partly in and partly out, able to cull individual objects

View frustum culling using hierarchical bounding volumes

- Given hierarchy of objects
- Bounding volume of each node encloses the bounding volumes of all its children
- Start by testing the outermost bounding volume
- If it is entirely outside, do not draw the group at all
- If it is entirely inside, draw the whole group

View frustum culling using hierarchical bounding volumes

- If the bounding volume is partly inside and partly outside
- Test each child's bounding volume individually
- If the child is in, then draw it; if it is out, then cull it; if it is partly in and partly out, then recurse
- If recursion reaches a leaf node, then draw it normally

View frustum culling

- Rendering Optimizations - Frustum Culling
- https://www.youtube.com/watch?v=kvVHp9wMA O8
- View Frustum Culling Demo
- https://www.youtube.com/watch?v=bJrYTBGpwic

Backface culling

- Consider triangles as "one-sided" (oriented triangle) and only visible from the "front"
- Closed objects
- If the "back" of the triangle is facing away from the camera, it is not visible
- Gain efficiency by not drawing it (culling)
- Roughly 50% of triangles in a scene are back facing

Backfaces

No backfaces

Backface culling

- Convention: triangle is front facing if vertices are ordered counterclockwise

Backface culling

- Compute triangle normal after projection (homogeneous division)

$$
\mathbf{n}=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \times\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right)
$$

- If the third component of \mathbf{n} negative, then front-facing; otherwise, back-facing
- Remember: projection matrix is such that homogeneous division flips sign of third component

Backface culling

Backface culling

- Allow one- or two-sided triangles

Contribution (or small object) culling

- Object projects to less than a specified size
- Cull objects whose screen-space bounding box is less than a threshold number of pixels, as these objects do not contribute significantly to the final image

Degenerate culling

- Projected triangle is degenerate
- Normal $\mathbf{n}=0$
- Plane at infinity
- Not really degenerate
- All vertices in a straight line
- Colinear
- All vertices in the same place
- Coincident

Occlusion culling

- Geometry hidden behind occluder cannot be seen

Images: SGI OpenGL Optimizer Programmer's Guide

Occlusion culling

- Umbra 3 Occlusion Culling explained https://www.youtube.com/watch?v=5h4QgDBwQhc

