



## Motivation Would like to simulate real world objects of large complexity, such as grass or trees. Alternate (NPR) styles (ala Dr. Seuss). Should be fast enough for real-time animation. Would like some level of temporal coherence in animation.







### Outline

- Introduction
- Background Work
  - Particle Systems, L-Systems, and Graftals
  - Orientable textures
- Approach
- Results
- Related Work
- Conclusion

### **Background Work**

- William Reeves "A Technique for Modeling a Class of Fuzzy Objects" - 1983
  - Used particle systems used to represent explosions, fireworks, clouds, and water
  - Over time, particles can be added, removed, and moved to represent a dynamic 3D model.
  - Motion-blurred to deal with temporal coherence



Expanding Wall of Fire - Reeves

### **Background Work**

- Alvy Ray Smith "Plants, Fractals, and Formal Languages" - 1984
  - Used particle systems combined with recursively defined L-Systems that he called "graftals".
  - Flowering Plants are Graftals, Grasses are particle systems



White Sands – Alvy Ray Smith

### Background Worl

- L-Systems introduced by Lindenmayer in 1968
  - Parallel rewriting grammars.
  - Bracketed L-Systems allow for branches to be attached at points within the sequence, like branches off a trunk (or off other branches).
    - Extension: Notion of left and right
  - Similar to Fractals.

## Background Work Example: - Alphabet: { 0, 1, [, ] } note: (, ) - Productions: { 0 -> 1[0]1[0]0, 1 -> 11, ] -> ], [ -> [ } - Start: 0 Alvy Ray Smith - Plants, Fractals, and Formal Languages Figure FREETREE. (a) Production rules. (b) General Languages



### **Background Work**

- Badler and Glassner generalize idea in "3D Object Modelling":
  - Graftals create surfaces via an implicit model that produces data when requested.
- Salisbury, et al's "Orientable Textures for Image-Based Pen-and-Ink Illustration"
  - "difference image" stroke placement algorithm.



Applying strokes with a direction field and tone image Salisbury, et al.

### Background Work

- Meier's "Painterly Rendering for Animation"
  - Represented strokes as particles, sorted by depth, rendered back to front.



### Outline

- Introduction
- Background Work
- Approach
  - Procedural textures (Graftals!)
  - Reference images & Difference Image Algorithm
- Results
- Related Work
- Conclusion

### Approach

- Stroke-based textures are implemented within a general system for rendering polyhedral models using OpenGL
  - Models are divided into surface regions (patches) which are assigned procedural textures.
  - Textures can be smooth-shaded, wireframe, hatching, dithering, etc.
  - Color and ID references images maintained for use by procedures

### Approach

- Color reference image.
  - Procedural textures are asked to render into their patches in some appropriate way, depending on how the texture will use the image.
    - For example: graftals use color image in special way to decide where to place tufts of fur, grass, or leaves.

### Approach

- ID reference image.
  - Triangles (or edges) are rendered with unique color that identifies that triangle (or edge).
  - Pixels containing the ID of a triangle have their location stored in a list attached to the patch they are in.
  - Later, procedural textures have acces to these pixels in main rendering loop.
    - Example: the dithering texture just runs the Floyd-Steinberg algorithm on the patch's pixels

### **Approach**

- Graftals: specialized textures
  - Graftals must be placed with controlled screenspace density to match the required aesthetics of the texture.
  - Graftals also need to "stick" to surfaces to provide interframe coherence.
  - Difference Image Algorithm of Salisbury, et al used to place graftals.

### Approach

- Difference Image Algorithm:
  - In Salisbury, et al, DIA used to control density of hatching strokes to match gray tones of target image.
    - For each stroke, a blurred image of it is subtracted from the difference image.
    - Next stroke is placed by searching for the pixel "most in need" of darkening.
    - Density of strokes conveys gray tones of original image

### Approach

- Graftals with DIA:
  - Texture draws it's patch into the color ref. Image so darker tones correspond to areas requiring more graftals.
  - Example: reference image drawn darker at silhouettes and, optionally, explicitly darkened by user in certain regions. (feet)



Furry Creature – Kowalski, et al

### Approach

- Placing Graftals on the 3D Surfaces:
  - In first frame, use DIA to find graftal positions and convert 2D screen positions to 3D positions on model surfaces using ID reference image to find the edge / triangle the graftal belongs to.
  - In each successive frame, first try to place graftals from previous frame.
  - After previous graftals are accepted/rejected, execute DIA to place extra graftals as needed.

### Approach

- Why would the previous frame's graftals be rejected?
  - It may not be visible (occluded, or off screen)
  - Insignificant desire
    - Scene has been zoomed out so too many graftals making for too dense a patch
    - Scene has been rotated/transformed such that graftal is no longer near the silhouette

### Approach

- How to blur difference image?
  - Represent graftals as dots centered at it's pixel
  - Dots are gaussian-blurred
  - Dot size is proportional to graftal's "volume" the amount of screen-space area it takes up
  - Dots represent "lack of desire" that is, the greater the number of graftals you have, the less desire there is for more
  - What happens when the scene is zoomed in/out?

### Approach

- Scaling
  - Convert object length L to screen space measurement
  - Choose scale factor r to multiply L by.
  - Desired screen space is d with volume vo.
  - Kowalski chose weighted r = w ( d / s ) + ( 1 w ) where w = 0.25 to moderate degree of scaling.
  - So volume in each frame is  $v = v_0(r s / d)^2$

## Approacl

- Gaussian Blur
  - The value in the desire image at the graftals (visible) screen position  $x_0$  is  $d_0$  and let v>0 be the volume.
  - Find a 2D Gaussian function g such that:
  - This is



$$g(\mathbf{x}) = d_0 e^{-\pi d_0 |\mathbf{x}|^2 / v}$$

### Approach

- Gaussian Blur
- $g(\mathbf{x}) = d_0 e^{-\pi d_0 |\mathbf{x}|^2 / \nu}$
- This blur drops off to a very small amount outside a certain radius so take m to be the smallest value representable in the 8 bits used to store desire and find a maximum radius to subtract desire from:

 $(v \log(2d_0/m)/(\pi d_0))^{1/2}$ 

### Approacl

- Graftal Detail
  - A graftal can only subtract as much desire as is available at a pixel.
    - If all goes well, it subtracts v desire and the graftal is drawn.
    - If the less than v is subtracted, graftal may draw with less detail.
    - If less than some threshold (0.5 in paper), graftal is drawn at all.
  - To reduce "popping" graftals may initially be drawn with low detail, and quickly ramp up to full detail over a few frames and vice-versa when being removed.

## Approach

- Drawing Graftals
  - Example of Fur graftals:



Figure 5 A fur graftal is based on a planar polyline and table of widths, used to construct a GL triangle strip (a). The graftal can render itself in three ways: It can draw a set of filled polygons with strokes along both borders (b) or just one (c); or it can draw just the spine (d). Fur graftal geometry – Kowalski et al.

## Approach

- Drawing Graftals
  - Graftals are drawn dependant on the eye vector and surface normal where graftal is attached.



Finding Graftal detail from surface normal and view direction – Kowalski, et al.









# Related & Future Work Improve "popping" DIA has no interframe consistency. Could use alpha blending and fading but it's limited in it's usefulness. Maintain graftals for back-facing surfaces so silhouette graftals do not pop in and out. Maintain static graftals with level-hierarchy. Explore new styles Example: bi-layered fur, one dark one light to suggest complex lighting effects.







- Good and interesting results for single-frame.
- Still some issues with animations, even in newer
- Average computers today can handle large FPS without much problems.
- Limited to programmer-artists due to need for writing code to produce procedural textures.
- Lots of work to "describe" a scene with all it's different patches.
- Very similar to Stipple paper I presented before!



"Art Based Rendering of Fur, Grass, and Trees" SIGGRAPH 99

Brown University: Michael A. Kowalski, Lee Markosian, J.D. Northrup, Loring S. Holden,

John F. Hughes

Lubomir Bourdev Adobe Systems:

Pixar: Ronen Barzel