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1. Introduction

In general, Ramsey theory deals with the guaranteed occurrence of specific structures
in some part of a large arbitrary structure which has been partitioned into finitely many
parts [1]. The field is named for Frank P. Ramsey who proved its first result, but many
of its most significant contributions have come from Paul Erdős. Since then, the field has
exploded. It now boasts many variations on classical Ramsey theory, and its effects are
felt in widespread branches of mathematics. Here we will provide a brief introduction to
graph theory in order to establish the necessary background needed to explore the basics of
classical Ramsey theory. Many of the results we present served as the jumping-off points for
entire new branches of the discipline, and this brief introduction is meant only to familiarize
the reader with some key ideas and fundamental results.

2. Basics of Graph Theory

We should begin by first introducing some important concepts in graph theory that will
allow us to develop Ramsey theory later. First, we will establish what a graph is and some
important vocabulary used in the discussion of graphs.

Definition 2.1. A graph consists of two finite sets, V and E. Each element of V is called
a vertex. The vertex set of a graph G is denoted by V (G) or simply V . The elements
of E are unordered pairs of vertices called edges. An edge connecting vertices u and v is
denoted uv and u and v are said to be the edge’s ends. The edge set is denoted by E(G)
or simply E. [2]

Instead of referring to a graph by it vertex and edge sets, more commonly we consider
a visual depiction of a given graph. By convention, each element of the vertex set is repre-
sented by a dot, and each element of the edge set is represented by a line connecting two
dots. Figure 1 illustrates two equivalent depictions of a given graph.

All graphs are generally divided into two main classes, simple graphs and multigraphs.
The classifications depend the presence or absence of two features, loops and multiple edges.

Definition 2.2. An edge for which the two ends are the same is called a loop at the
common vertex. A set of two or more edges of a graph is called a set of multiple edges
if they have the same ends. [3]

1



2 INTRODUCTION TO RAMSEY THEORY

Figure 1. Two equivalent representations of a graph G where V (G) =
{v, w, x, y, z} and E(G) = {xy, yw, xz, wz, xw, wv}.

Definition 2.3. A graph is simple if it has no loops and no multiple edges. A graph is
considered a multigraph if it contains at least one loop or multiple edge. [3]

We have already seen an example of a simple graph in Figure 1. Figure 2 provides an
example of a multigraph. From here on, we will only be considering simple graphs in our
discussions.

Figure 2. A multigraph. Note the multiple edges connecting vertices x
and y and the loop connecting z to itself.

Next, we will define some important terms used when describing a graph.

Definition 2.4. The order of a graph G is the cardinality of V (G), denoted |V (G)|. The
size of a graph G is the cardinality of E(G), denoted |E(G)|. [2]

Definition 2.5. Given u, v ∈ V , if uv ∈ E, then u and v are adjacent. If an edge e has
a vertex v as an end, then v and e are incident. [2]

Definition 2.6. The neighborhood of a vertex v is the set of vertices adjacent to v. [2]

Definition 2.7. The degree of a vertex v, denoted deg(v), is the number of edges incident
with v. [2]
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Figure 3. A graph G. Here, the order of G is 4 and the size of G is 5. w
and y are adjacent, but x and z are not. x and edge e are incident. The
neighborhood of w is the set {z, y, x}, and deg(w)=3.

Figure 3 provides an example to illustrate these concepts. Now we will present a simple,
but useful result about graphs that we will use in proving more complicated results later.

Theorem 2.8. First Theorem of Graph Theory In a graph G, the sum of the degrees
of the vertices is equal to twice the number of edges. Alternatively, the number of vertices
with odd degree is even.

Proof. Let S =
∑

v∈V deg(v). Note that every edge is counted exactly twice in S because
each edge is incident with two vertices. Thus S = 2|E|. Furthermore, it is clear that S is
always even. Thus, we have

S =
∑
v∈V

deg(v) =
∑

v∈V such that
deg(v) is even

deg(v) +
∑

v∈V such that
deg(v) is odd

deg(v).

Summing the even degrees will result in an even number, so we know the first term of the
above sum is even. Then, because an even plus an odd is odd, the only way that S can be
even is if the second term of the above sum is also even. Because the second term is even
and we know that the sum of an odd number of odd degrees is odd, there must be an even
number of vertices with odd degree. [4]

�

In our development of Ramsey theory, we will consider a special type of graph called a
complete graph. Figure 4 provides several examples of complete graphs.

Definition 2.9. The complete graph on n vertices, Kn, is the graph of order n where
uv ∈ E for all u, v ∈ V . [3]
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Figure 4. Examples of complete graphs, K3 (left), K4 (center), and K5 (right).

3. Subgraphs

Sometimes there will be instances when we do not want to consider a whole graph. In-
stead, we will want to focus on only part of a given graph, or a subgraph.

Definition 3.1. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆
E(G). We say that H ⊆ G. [2]

By this definition, any graph G is considered a subgraph of itself. If we are interested
in excluding this case, we would consider only proper subgraphs.

Definition 3.2. A subgraph H of a graph G is a proper subgraph of G if V (H) 6= V (G)
or E(H) 6= E(G). [2]

Next, we will define two special types of subgraphs, induced subgraphs and cliques. Fig-
ures 5 and 6 provides examples of these special cases.

Definition 3.3. A subgraph H of G is an induced subgraph of G if each edge of G
having its ends in V (H) is also an edge of H. The induced subgraph of G with vertex set
S ⊆ V (G) is called the subgraph of G induced by S. [3]

Definition 3.4. A clique of G is a complete subgraph of G. The clique number of a
graph G, denoted ω(G), is the order of the largest complete graph that is a subgraph of
G. [3]

4. Colorings

One of the most important topics from graph theory to consider when discussing Ramsey
theory is colorings. There are two main types of colorings, those on the vertices of a graph
and those on the edges of a graph. Our discussion of Ramsey theory will require only edge
colorings, but for the sake of completeness we will define both types.
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Figure 5. H is the subgraph of G induced by S where S = {w, x, y, z}.

Figure 6. H1, H2, and H3 are all subgraphs of G. Only H2 and H3 are
proper subgraphs. H3 is a clique. Because K5 is not a subgraph of G, we
can see that ω(G) = 4.

Definition 4.1. Given a graph G, a k-coloring of the vertices of G is a partition of
V (G) into k sets C1, C2, . . . , Ck such that for all i, no pair of vertices from Ci are adjacent.
If such a partition exists, G is said to be k-colorable. [4]

An example of a graph and a 4-coloring of its vertices is given in Figure 7.

Figure 7. A graph G and a 4-coloring of its vertices such that C1 =
{u, y}, C2 = {v, w}, C3 = {x}, and C4 = {z}.
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Definition 4.2. Given a graph G, a k-coloring of the edges of G is any assignment of
one of k colors to each of the edges of G. [4]

In our discussion of Ramsey theory, we will deal primarily with 2-colorings of the edges
of graphs. By convention, the colors referred to are typically red and blue. An example of
a graph and several 2-colorings of its edges is given in Figure 8.

Figure 8. Four possible 2-colorings of the edges of a graph.

Definition 4.3. A subgraph H of G is monochromatic if all its edges receive the same
color.

5. Ramsey Theory

Ramsey theory got its start and its name when Frank Ramsey published his paper “On
a Problem of Formal Logic” in 1930 [5]. The theorem was proved in passing, as a means
to a result about logic, but it turned out to be one of the first combinatorial results that
widely attracted the attention of mathematicians. We will prove the theorem in terms of
2-colorings of the edges of complete graphs, but also discuss how the result can be viewed
in terms of the old puzzle regarding mutual acquaintances and strangers at a party.

5.1. Ramsey’s Theorem.

Theorem 5.1. Ramsey’s Theorem Given any positive integers p and q, there exists a
smallest integer n = R(p, q) such that every 2-coloring of the edges of Kn contains either a
complete subgraph on p vertices, all of whose edges are in color 1, or a complete subgraph
on q vertices, all of whose edges are in color 2.

Proof. We will proceed by induction on p + q.

First we consider the base case in which p + q = 2. The only way this can be true is
if p = q = 1, and it is clear that R(1, 1) = 1.

Now we assume that the theorem holds whenever p + q < N , for some positive integer
N . Let P and Q be integers such that P + Q = N . Then P + Q − 1 < N , so by our
assumption we know that R(P − 1, Q) and R(P,Q− 1) exist.
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Consider any coloring of the edges of Kv in two colors c1 and c2, where v ≥ R(P −
1, Q) + R(P,Q − 1). Let x be a vertex of Kv. By the pigeonhole principle and because
v ≥ R(P −1, Q) +R(P,Q−1), we know that of the v−1 edges that x is incident to, either
R(P − 1, Q) edges are in color c1 or R(P,Q− 1) edges are in color c2.

If x is incident to R(P − 1, Q) edges of color c1, consider the KR(P−1,Q) whose vertices are
the vertices joined to x by edges of color c1, that is the subgraph induced by the neigh-
borhood of x. Because we know that R(P − 1, Q) exists, there are two possible cases to
consider. One is that this graph contains a KP−1 with all edges in color c1, in which case
this KP−1 together with x forms a monochromatic KP in color c1. The other possibility
is that KR(P−1,Q) contains a KQ with all edges in color c2. In either case, we can see that
R(P,Q) exists.

A parallel argument holds if x is incident to R(P,Q − 1) edges of color c2, and Kv again
contains one of the required monochromatic complete graphs.

Thus, R(P,Q) exists, and in fact, because we chose v such that v ≥ R(P −1, Q)+R(P,Q−
1), we know that R(P,Q) ≤ R(P,Q− 1) + R(P − 1, Q). [2]

�

If we consider this problem in terms of people at a party, Ramsey’s Theorem guarantees
that there is some smallest number of people at the party required to ensure that there is
either a set of p mutual acquaintances or q mutual strangers. Thus, the old puzzle that
asks us to prove that with any six people at a party, among them there must be a set of
three mutual aquaintances or a set of three mutual strangers actually requires us to show
that R(3, 3) = 6.

We should also note that Ramsey’s Theorem can be generalized to account for colorings in
any finite number of colors, not just 2-colorings.

Ramsey’s Theorem guarantees that this smallest integer R(p, q) exists but does little to
help us determine what its value is, given some positive integers, p and q. In general, this
is actually an exceedingly difficult problem.

5.2. Ramsey Numbers.

Definition 5.2. The integers R(p, q) are known as classical Ramsey numbers.

Paul Erdős was a Hungarian mathematician who made huge contributions to the fields
of combinatorics and graph theory. Commenting on the difficulty of determining Ramsey
numbers, he said,

“Suppose an evil alien would tell mankind ‘Either you tell me [the value of
R(5, 5)] or I will exterminate the human race.’ ... It would be best in this
case to try to compute it, both by mathematics and with a computer. If



8 INTRODUCTION TO RAMSEY THEORY

he would ask [for the value of R(6, 6)], the best thing would be to destroy
him before he destroys us, because we couldn’t. [6]”

Indeed, at the present relatively few nontrivial Ramsey numbers have been discovered.
It follows from the definition of Ramsey’s Theorem that for positive integers p and q,
R(p, q) = R(q, p), and we have already noted that R(1, 1) = 1. Similarly, it is easy to see
that for every positive integer k, R(1, k) = 1. Determining the values of R(2, k) is only
slightly more difficult.

Theorem 5.3. R(2, k) = k for all k ≥ 2

Proof. Choose some positive integer k ≥ 2. First we will show that R(2, k) > k−1 by con-
structing a 2-coloring on Kk−1 that contains neither a red K2 nor a blue Kk. The coloring
in which every edge is blue satisfies these requirements. It will certainly not contain a red
K2 and cannot possibly contain a blue Kk, so R(2, k) > k − 1.

Next, suppose that the edges of Kk are 2-colored in some fashion. If any of the edges
are red, then Kk will contain a red K2. If none of the edges are red, then we are left with
a blue Kk. So R(2, k) ≤ k.

Thus, we can conclude that R(2, k) = k for all k ≥ 2.
�

The difficulty of determining additional Ramsey numbers grows quickly as p and q
increase.

Theorem 5.4. R(3, 3) = 6.

Proof. Consider any 2-coloring on K6. Choose some vertex v from the graph. Because
there are 5 edges incident to v, by the pigeon hole principle, at least three of these edges
must be the same color. We will call them vx, vy, and vz, and we will suppose they are
red. If at least one of xy, xz, or yz is red, then we have a red K3. If none of these is red,
then we have a blue K3. Thus, R(3, 3) ≤ 6.

Next, consider the 2-coloring on K5 as depicted in Figure 9. This coloring does not contain
a monochromatic K3 in either red or blue, so we know that R(3, 3) > 5.

Thus, R(3, 3) = 6. [4]
�

Theorem 5.5. R(3, 4) = 9.

Proof. First, consider a coloring on K8 as depicted in Figure 10. This coloring does not
contain a red K3 or a blue K4, so we know that R(3, 4) > 8.

Now we just need to show that R(3, 4) ≤ 9. Recall that we have already shown that
R(2, 4) = 4 and R(3, 3) = 6.
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Figure 9. A 2-coloring on K5 that contains no monochromatic K3.

Figure 10. A 2-coloring on K8 (left). Its red and blue monochromatic
subgraphs are isolated to the right for closer inspection.

Let G be any complete graph of order at least 9. Consider any 2-coloring on G. Choose
some vertex v from the graph. We will consider the following cases:

Case 1: Suppose that v is incident with at least four red edges. Let S be the set of
vertices that are adjacent to v by a red edge. Because S contains at least four vertices and
because R(2, 4) = 4, the 2-coloring of the edges that are within the subgraph induced by S
must produce either a red K2 or a blue K4 within this subgraph itself. If there is a red K2

within the subgraph, then, together with v, we have found a red K3 in G. If there is a blue
K4 within the subgraph induced by S then we obviously have already found one within G.

Case 2: Suppose that v is incident with at least six blue edges. Let T be the set of
vertices that are adjacent to v by a blue edge. Because T contains at least six vertices and
because R(3, 3) = 6, the 2-coloring of the edges that are within the subgraph induced by
T must produce either a red K3 or a blue K3 within the subgraph itself. If there is a red
K3 within this subgraph, we obviously also have one within G. If there is a blue K3 within
the subgraph, then, together with v, we have found a blue K4 within G.

Case 3: Suppose that v is incident with fewer than four red edges and fewer than six
blue edges. Then the order of G must be at most 9. However, we already assumed that the
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order of G is at least 9, so the order of G is exactly 9. Then, we know that v is incident with
exactly three red edges and exactly five blue edges. Because v was chosen arbitrarily, we
can assume this holds true for all nine vertices of G. If we consider the red monochromatic
subgraph of G, we have a graph with nine vertices, each of which has degree 3. However,
this provides a contradiction because Theorem 2.8 states that the number of vertices with
odd degree must be even. Thus, this case can never occur.

We conclude that R(3, 4) = 9. [4]
�

Clearly, determining the value of even very small Ramsey numbers is not a trivial
problem. In fact, the only other known classical Ramsey numbers are the following:
R(3, 5) = 14, R(3, 6) = 18, R(3, 7) = 23, R(3, 8) = 28, R(3, 9) = 36, R(4, 4) = 18,
and R(4, 5) = 25. There is only one nontrivial Ramsey number known for the generalized
version of the theorem that allows more than two colors, R(3, 3, 3) = 17.

In cases for which it is not yet possible to determine the exactly value of a Ramsey number,
it is often still possible to establish bounds for the value.

5.3. Bounds on Ramsey Numbers.

As we have already seen, in many cases we are able to establish a lower bound for some
Ramsey number R(p, q) by finding a complete graph Kn and a 2-coloring of Kn such that
there is no monochromatic Kp or Kq. In this case we would know that R(p, q) > n.

There has been some progress with determining bounds beyond simply constructing a
2-coloring. Some of the most important results are given below. The first of these we have
actually already proven when we originally proved Theorem 5.1.

Theorem 5.6. If p ≥ 2 and q ≥ 2, then R(p, q) ≤ R(p− 1, q) + R(p, q − 1).

The next result was originally proved by Erdős and Szekeres in 1935 [7]. It involves the
binomial coefficient

(
n
k

)
, where

(
n
k

)
= n!

k!(n−k)! for 0 ≤ k ≤ n. Our proof relies on Pascal’s
rule which we will prove first.

Lemma 5.7. Pascal’s Rule
(
n
k

)
+
(

n
k+1

)
=
(
n+1
k+1

)
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Proof. (
n

k

)
+
(

n

k + 1

)
=

n!
k!(n− k)!

+
n!

(k + 1)!(n− (k + 1))!

=
n!(k + 1)

k!(n− k)!(k + 1)
+

n!(n− k)
(k + 1)!(n− (k + 1))!(n− k)

=
n!(k + 1)

(n− k)!(k + 1)!
+

n!(n− k)
(k + 1)!(n− k)!

=
n!(k + 1) + n!(n− k)

(k + 1)!(n− k)!

=
n!(k + 1 + n− k)
(k + 1)!(n− k)!

=
n!(n + 1)

(k + 1)!(n− k)!

=
(n + 1)!

(k + 1)!(n− k)!

=
(n + 1)!

(k + 1)!((n + 1)− (k + 1))!

=
(

n + 1
k + 1

)
.

�

Theorem 5.8. For integers p and q such that p, q ≥ 2, R(p, q) ≤
(
p+q−2

p−1

)
= (p+q−2)!

(p−1)!(q−1)! .

Proof. We will proceed by double induction on p and q.

First we consider the base case in which p = q = 2. We have already seen that R(2, 2) = 2,
so it is easy to find that R(2, 2) = 2 ≤ (2+2−2)!

(2−1)!(2−1)! = 2!
(1!)(1!) = 2. Clearly the theorem holds

in this case.

Now we assume that the theorem holds for R(p − 1, q) and R(p, q − 1). By Theorem
5.6, we know that R(p, q) ≤ R(p− 1, q) + R(p, q − 1). So with our assumption we have

R(p, q) ≤ R(p− 1, q) + R(p, q − 1)

≤
(

(p− 1) + q − 2
(p− 1)− 1

)
+
(

p + (q − 1)− 2
p− 1

)
=

(
p + q − 3

p− 2

)
+
(

p + q − 3
p− 1

)
.
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Finally, by Lemma 5.7, we know that(
p + q − 3

p− 2

)
+
(

p + q − 3
p− 1

)
=
(

p + q − 2
p− 1

)
.

Thus, we can conclude that

R(p, q) ≤
(

p + q − 2
p− 1

)
.

[8] �

Finally, we will provide a lower bound for a special class of Ramsey numbers for which
p = q.

Theorem 5.9. If n is an integer satisfying
(
n
a

)
< 2(a

2)−1, then R(a, a) > n.

Proof. Let a be a positive integer, and let n be an integer such that
(
n
a

)
< 2(a

2)−1.

To determine that R(a, a) > n, we need to show that there is a 2-coloring on Kn that
contains neither a blue monochromatic Ka nor a red monochromatic Ka. We will proceed
by counting the colorings that do not meet this criterion, that is, colorings of Kn that
contain either a blue monochromatic Ka or a red monochromatic Ka.

Let S be any subset containing a vertices of Kn. Let AS be the set of 2-colorings of
Kn in which the subgraph induced by S is either all blue or all red. We can count the
number of colorings in AS by considering that there are two ways to color the edges in the
subgraph induced by S so that it is monochromatic (either all blue or all red) and there
are 2(n

2)−(a
2) ways to color the remaining

(
n
2

)
−
(
a
2

)
edges of Kn. So, |AS | = 2 · 2(n

2)−(a
2).

We see that the number of 2-colorings containing either a red Ka or a blue Ka is given by
the cardinality of the union of all the AS ’s for all possible subsets S containing a vertices,∣∣∣∣∣∣

⋃
S:|S|=a

AS

∣∣∣∣∣∣ .
We know that the union can be no bigger than the sum of the sizes of the sets, so∣∣∣∣∣∣

⋃
S:|S|=a

AS

∣∣∣∣∣∣ ≤
∑

S:|S|=a

|AS |.

We have already determined that |AS | = 2 · 2(n
2)−(a

2), so
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∣∣∣∣∣∣
⋃

S:|S|=a

AS

∣∣∣∣∣∣ ≤
∑

S:|S|=a

|AS |

=
∑

S:|S|=a

2 · 2(n
2)−(a

2)

=
(

n

a

)
· 2 · 2(n

2)−(a
2).

So far we have shown that the number of 2-colorings containing a blue Ka or a red Ka

is less than or equal to
(
n
a

)
· 2 · 2(n

2)−(a
2). Therefore, if

(
n
a

)
· 2 · 2(n

2)−(a
2) is less than the total

number of possible 2-colorings of Kn, there must be a coloring containing neither a red Ka

nor a blue Ka.

There are 2(n
2) possible colorings of Kn, and we have assumed that

(
n
a

)
< 2(a

2)−1. Thus,

(
n

a

)
< 2(a

2)−1(
n

a

)
· 2 < 2 · 2(a

2)−1(
n

a

)
· 2 < 2(a

2)(
n

a

)
· 2 · 2(n

2)−(a
2) < 2(a

2) · 2(n
2)−(a

2)

= 2(a
2)+(n

2)−(a
2)

= 2(n
2).

Hence, there must be a 2-coloring of Kn containing neither a red Ka nor a blue Ka, and
we can conclude that R(a, a) > n. [8]

�

In addition to the bounds given by these theorems, a number of specific bounds have
also been found. Table 1 summarizes all the Ramsey numbers and bounds known at the
present for p, q ≤ 10 [9].
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Table 1. Known Ramsey numbers R(p, q) and bounds.

p, q 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10
3 1 3 6 9 14 18 23 28 36 40-43
4 1 4 9 18 25 35-41 49-61 56-84 73-115 92-149
5 1 5 14 25 43-49 58-87 80-143 101-216 125-316 143-442
6 1 6 18 35-41 58-87 102-165 113-298 127-495 169-780 179-1171
7 1 7 23 49-61 80-143 113-298 205-540 216-1031 233-1713 298-2826
8 1 8 28 56-84 101-216 127-495 216-1031 282-1870 317-3583 317-6090
9 1 9 36 73-115 125-316 169-780 233-1713 317-3583 565-6588 580-12677
10 1 10 40-43 92-149 143-442 179-1171 289-2826 317-6090 580-12677 798-23556

6. Open Problems

Clearly this field still offers a huge number of open problems. The most obvious of which
are finding more Ramsey numbers and improving the bounds we currently know. However,
there are many related open problems that go beyond this. We will highlight a few of these
problems, and the reader should note that, in most cases, there is a cash reward available
for the solutions.

Proposition 6.1. The limit limn→∞R(n, n)
1
n exists. [1]

Problem 6.2. Determine the value of c := limn→∞R(n, n)
1
n . [1]

Problem 6.3. Prove or disprove that R(4, n) > n3

logcn for some c, provided n is sufficiently
large. [1]

Proposition 6.4. For fixed k, R(k, n) > nk−1

logck for a suitable constant c > 0 and n large. [1]
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