
Today

 Software and system architecture

 Adaptation and self-adaptation

Introduction Distributed Systems
Architecture

MSIT Peer-to-Peer Computing

Northwestern University

Dealing with complexity

Distributed systems are complex pieces of software –

to master complexity: good organization

Different ways to look at organization of distributed

systems – two obvious ones

– Software architecture – logical organization of software

components and interconnections

– System architecture – their physical realization – the

instantiation of software components on real machines

2

MSIT Peer-to-Peer Computing

Northwestern University

Architectural styles

Organize into logically different components, and

distribute those components over the various

machines

– Component: modular, replaceable unit with well defined I/F

– Connector: a mechanism that mediates communication,

coordination or cooperation among components

Using components and connectors, different

architectural styles

3

Layered
Object-based

MSIT Peer-to-Peer Computing

Northwestern University

Architecture styles

Decoupling processes in

– Space (“anonymous” or referential decoupling) and

– Time (“asynchronous” or temporal decoupling)

Alternative styles

4

Event-based

Shared data-space

MSIT Peer-to-Peer Computing

Northwestern University

System arch – vertical distribution

Basic client/server model

– Server processes offer services use by clients processes

– Clients follow request/reply model in using services

– Clients/servers can be distributed across different machines

Traditional three-layered view

– User-interface layer – an application’s user interface

– Processing layer – application, i.e. without specific data

– Data layer – data to manipulate through the application

5

Internet search engine

MSIT Peer-to-Peer Computing

Northwestern University

System arch – horizontal distribution

Multi-tiered client/server architecture – result from

dividing the application into a user-interface,

processing components and data level - vertical

What’s horizontal distribution?

– Clients and servers split into logically equivalent parts, each

operating on its own share of the data set

– Each process logically equal to each other, acting both as

client and server – peer-to-peer

In all cases, we are dealing with overlay networks:

data is routed over connections setup between the

processes

6

MSIT Peer-to-Peer Computing

Northwestern University

Peer-to-peer architectures

Structured, DHT-based, P2P: nodes are organized

following a specific distributed data structure

– A structured network such as a logical ring, and make specific

nodes responsible for services based only on their ID

Unstructured P2P: nodes have randomly selected

neighbors

Hybrid P2P:

– Potentially combining each model’s strengths

– Some nodes are appointed special functions in a well-

organized fashion

7

MSIT Peer-to-Peer Computing

Northwestern University

Architecture and middleware

A key goal for middleware is to provide distribution

transparency

Typically, however, middleware adopts particular

architecture styles

– Makes it simpler to develop applications for that style

– Makes it hard/inefficient to do it with any other!

To alternatives – build different versions or make them

easy to adapt dynamically

– Interceptors: Intercept the usual flow of control when invoking

a remote object

• Make replication transparent

• Make handling MTU transparent

• …

8

MSIT Peer-to-Peer Computing

Northwestern University

Adaptation and self-management

To deal with changing environments/demands –

adaptive middleware

To facilitate software adaptation

– Separation of concerns: Separate specific from general

functionalities (e.g. reliability, security, …) and later weave

them together into an implementation

– Computational reflection: Let program inspect itself at runtime

and adapt/change its settings dynamically if necessary

– Component-based design: Organize a distributed application

through components that can be dynamically replaced when

needed

9

MSIT Peer-to-Peer Computing

Northwestern University

Self-management

Too many features, too many knobs, no sufficient

foresight, …

Self-*/Autonomics systems – self-configurable, self-

manageable, self-healing, self-optimizing

– Commonly, organized as a feedback control system

Structure of an autonomic element

– Managed element +

– Autonomic manager

• Monitor – both the managed element and its environment

• Analyze – the monitoring information to

• Plan – construct plan and

• Execute – execute those plans

One of today’s grand challenges

10

MSIT Peer-to-Peer Computing

Northwestern University

Question 2

How the architectural style adopted by a

distributed application impact its adaptability?

11

