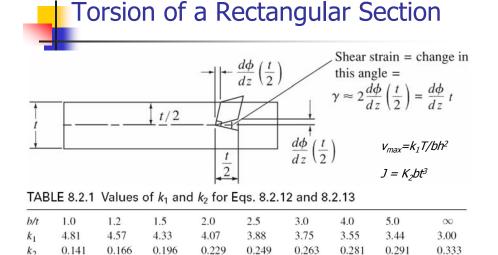
ENCE 710 Design of Steel Structures

VII. Chapter 8 - Torsion

C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland

Introduction

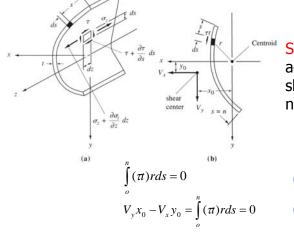
Following subjects are covered:


- Pure torsion
- Shear center
- Torsional differential equation
- Torsional stresses
- Analogy between torsion and plane bending
- Open vs closed thin-wall sections
 Reading:
- Chapters 8 of Salmon & Johnson
- AISC Design Guide 9 Torsional Analysis of Structural Steel Members

Torsion of a Prismatic Shaft $T = \int_{A} r^{2} \frac{d\Phi}{dz} G dA = GJ \frac{d\Phi}{dz} = GJ\Phi^{\prime}$ (S & J 8.2.5) $\tau_{t} = \gamma G = Gr \frac{d\Phi}{dz} = \frac{Tr}{J}$ (S & J 8.2.6)

For Circular Section w J = polar moment of in	,
$\tau_t = 16 T/\pi t^3$	(S & J 8.2.8)
For rectangular section	on w/thickness t
• $\tau_t = T t/J$ • where torsional constant	(S & J 8.2.11) ant
$J = K_2 b t^3$	(S & J 8.2.13)
■ K ₂	(S & J Table 8.2.1)

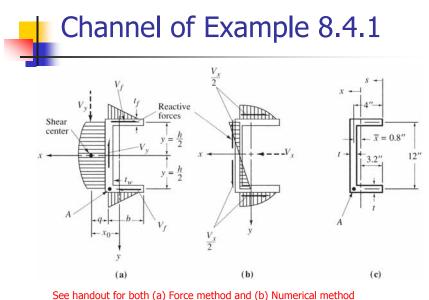
3

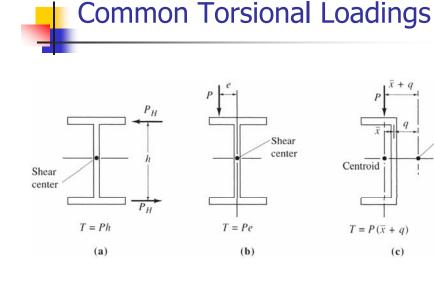

2

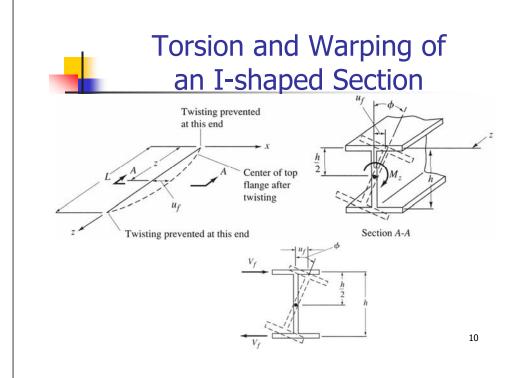
5

7

Stresses on Thin-wall Open Sections in Bending


Shear Center – forces acting through the shear center will cause no torsional stresses


(S & J 8.4.1)


(S & J 8.4.2)

6

Shear Center • a. Y-axis $y_{0} = -\frac{1}{V_{x}}\int_{o}^{n} (\pi)rds$ $= \frac{V_{x}}{I_{x}I_{y} - I_{xy}^{2}} \begin{bmatrix} I_{xy}\int_{o}^{s} ytds - I_{x}\int_{o}^{s} xtds \end{bmatrix}$ • b. X-axis $= \frac{1}{V_{y}}\int_{o}^{n} (\pi)rds$ $= \frac{1}{V_{y}}\int_{o}^{n} (\pi)rds$ $= \frac{-V_{y}}{I_{x}I_{y} - I_{xy^{2}}} \begin{bmatrix} I_{y}\int_{o}^{s} ytds - I_{xy}\int_{o}^{s} xtds \end{bmatrix}$

Solution to the Torsional **Differential Equation**

- Pure Torsion (Resisting moment of an unrestrained cross section)
- Warping Torsion (Resisting moment of a restrained cross section)
- Total Torsional Resisting Moment
 - $M = G J \Phi' E C_w \Phi'''$
- Solution to the differential Equation
 - homogeneous solution $\phi_n = A e^{mz}$ a.
 - Particular solution h.

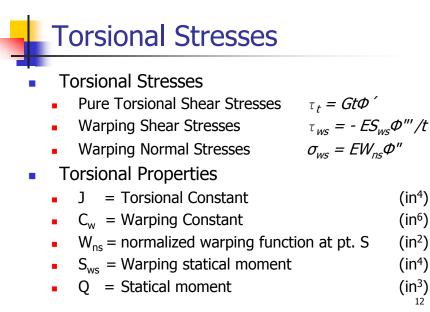
 $\Phi_n = A \sinh \lambda z + B \cosh \lambda z + C$ $\Phi_n = C_1 + C_2 Z + C_3 Z^2 + \dots$

Section cannot warp

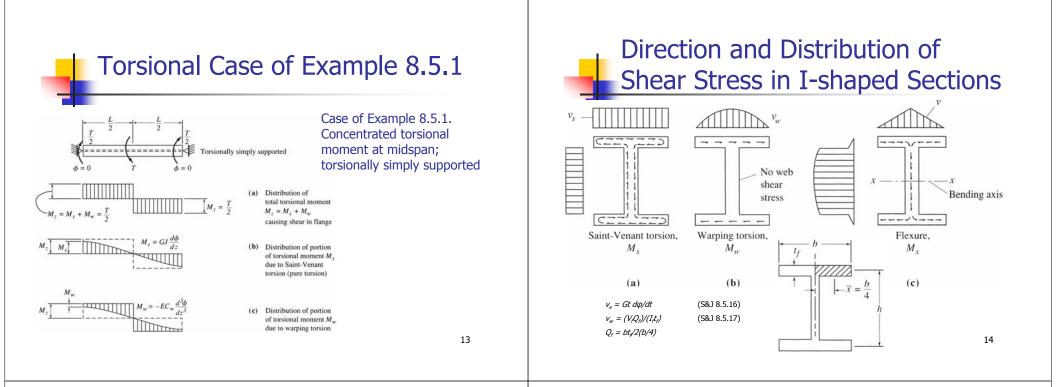
- Loading Condition
 - Constant

 $\Phi' = 0$

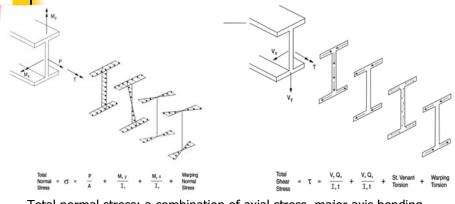
 $\Phi'' = 0$


- Uniformly distributed
- Linearly varying **Boundary Conditions**
- $\Phi = 0$ No rotation
 - Pinned or fixed end Fixed end Section can warp freely Pinned or free end

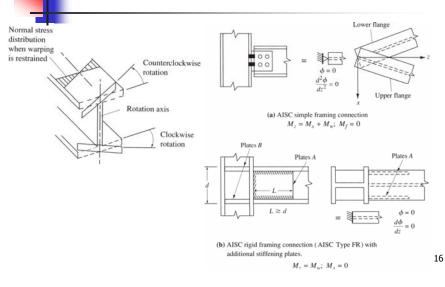
11

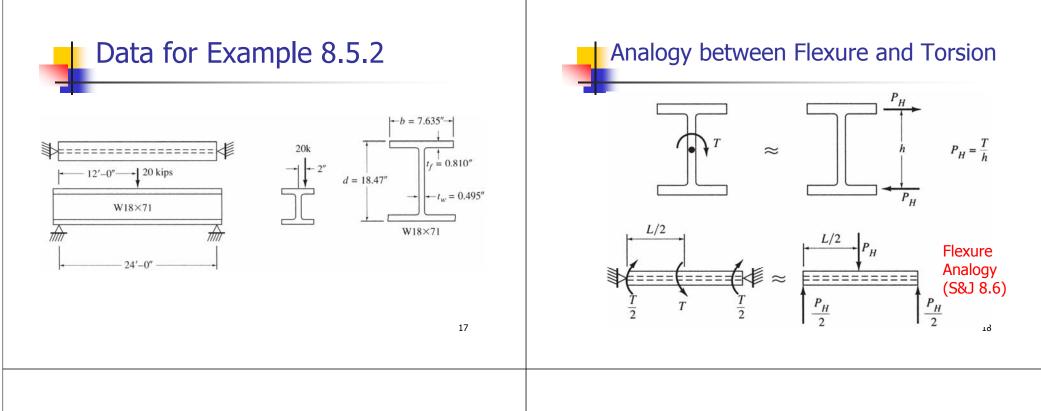

Shear

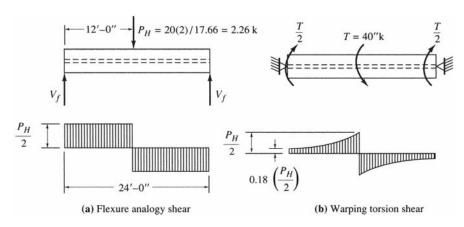
center


9

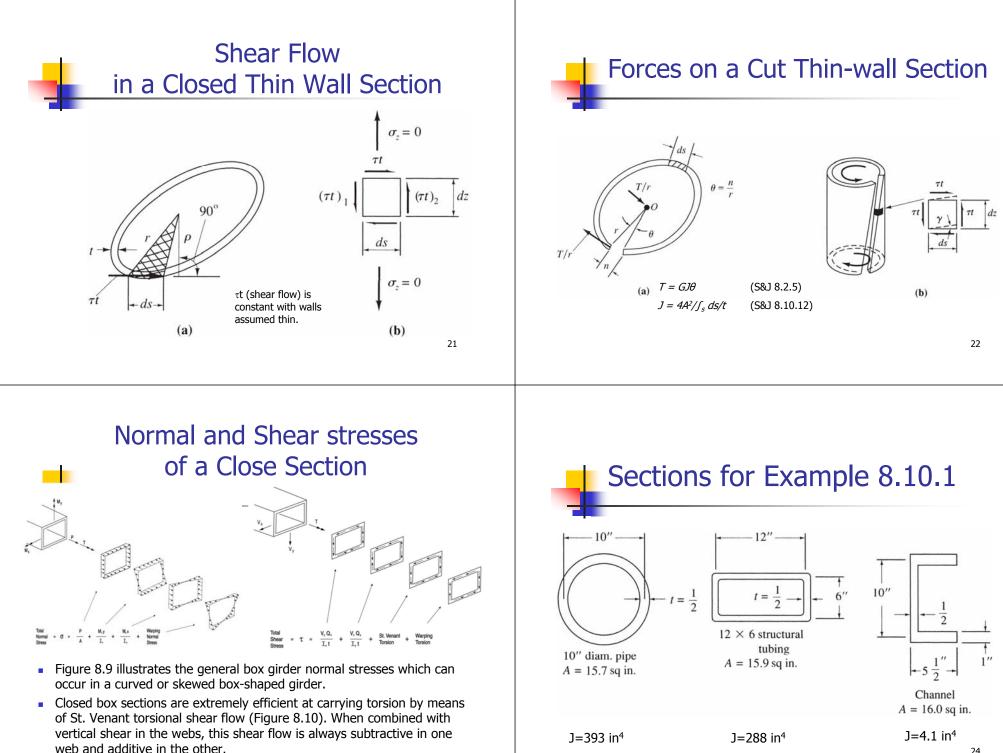
- (in⁴)




Normal and Shear Stresses of an Open Section


- Total normal stress: a combination of axial stress, major axis bending stress, lateral bending stress, and warping normal stress (left).
- Total shear stress is the sum of vertical shear stress, horizontal shear stress, St. Venant torsional shear stress (generally relatively small), and warping shear stress (right).

Warping of Cross-section



Comparison of lateral shear on flange due to warping torsion with that from simple lateral flexure analogy

TABLE 8.5.1 Summary of Stresses for Example 8.5.2

4	Type of Stress	$\begin{array}{l} \text{Support} \\ (z=0) \end{array}$	$ Midspan \\ (z = L/2) $
Example 8.6.1 By Flexural Analogy	Compression and tension maximum stresses:		
	Vertical bending, f_b	0	11.34
<i>f_b+f_{bw}</i> =31.9 ksi	Torsional bending, f_{bw}	0	<u>8.49</u> 19.83 ksi
<i>v+v_s</i> =4.17 ksi	Shear stress, web:		
	Saint-Venant torsion, v_s	2.40	0
	Vertical bending, v	<u>1.25</u> 3.65 ksi	1.25
	Shear stress, flange:		
	Saint-Venant torsion, v_s	3.92	0
	Warping torsion, v_w	0.05	0.27
<i>v+v_s+v_w</i> =5.32 ksi	Vertical bending, v	0.27	0.27
		4.24 ksi	0.54 ksi

