## ENCE 710 <br> Design of Steel Structures

## VII. Chapter 8 - Torsion

C. C. Fu, Ph.D., P.E.

Civil and Environmental Engineering Department University of Maryland

## Introduction

Following subjects are covered:

- Pure torsion
- Shear center
- Torsional differential equation
- Torsional stresses
- Analogy between torsion and plane bending
- Open vs closed thin-wall sections

Reading:

- Chapters 8 of Salmon \& Johnson
- AISC Design Guide 9 - Torsional Analysis of Structural Steel Members


Torsion of Homogeneous Sections

- For Circular Section w/diameter t
- $J=$ polar moment of inertia $=\pi t^{4} / 32$
- $\tau_{t}=16 \mathrm{~T} / \pi t^{3}$
(S \& J 8.2.8)
- For rectangular section w/thickness t
- $\tau_{t}=T t / J$
(S \& J 8.2.11)
- where torsional constant
- $J=K_{2} b t^{3}$
(S \& J 8.2.13)
- $K_{2}$
(S \& J Table 8.2.1)
- For I-shaped, Channel, and Tee Section
- J = $\Sigma 1 / 3 b t^{3} \quad(S \& 38.2 .14)$


## Torsion of a Rectangular Section



TABLE 8.2.1 Values of $k_{1}$ and $k_{2}$ for Eqs. 8.2.12 and 8.2.13

| $b / t$ | 1.0 | 1.2 | 1.5 | 2.0 | 2.5 | 3.0 | 4.0 | 5.0 | $\infty$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $k_{1}$ | 4.81 | 4.57 | 4.33 | 4.07 | 3.88 | 3.75 | 3.55 | 3.44 | 3.00 |
| $k_{2}$ | 0.141 | 0.166 | 0.196 | 0.229 | 0.249 | 0.263 | 0.281 | 0.291 | 0.333 |

## Shear Center

## - a. Y -axis let $\mathrm{V}_{\mathrm{y}}=0$

- $y_{0}=-\frac{1}{V_{x}} \int_{0}^{n}(t) r d s$
(S \& J 8.4.3)

-b. X-axis
let $V_{x}=0$
- $x_{o}=\frac{1}{V_{y}} \int_{o}^{n}(\pi t) r d s$
(S \& J 8.4.4)



## Common Torsional Loadings

## Torsion and Warping of an I-shaped Section


(a)

(b)

(c)



## Solution to the Torsional Differential Equation

Pure Torsion (Resisting moment of an unrestrained cross section)

- Warping Torsion (Resisting moment of a restrained cross section)
- Total Torsional Resisting Moment
- $\quad M=G J \phi^{\prime}-E C_{w} \Phi^{\prime \prime}$
- Solution to the differential Equation
a. homogeneous solution - $\Phi_{n}=A e^{m z}$
b. Particular solution

```
\Phi}=A\operatorname{sinh}\lambdaz+B\operatorname{cosh}\lambdaz+
```

$\Phi_{p}=C_{1}+C_{2} z+C_{3} z^{2}+\ldots$.

- Loading Condition

Loading Con

- Uniformly distributed
- Linearly varying
- Boundary Conditions
- $\Phi=0 \quad$ No rotation

Pinned or fixed end

- $\Phi^{\prime}=0 \quad$ Section cannot warp
- $\Phi^{\prime \prime}=0 \quad$ Section can warp freely

Pinned or free end

## Torsional Stresses

- Torsional Stresses
- Pure Torsional Shear Stresses $\tau_{t}=G t \Phi^{\prime}$
- Warping Shear Stresses
$\tau_{w s}=-E S_{w s} \Phi^{\prime \prime \prime} / t$
- Warping Normal Stresses
$\sigma_{w s}=E W_{n s} \Phi^{\prime \prime}$
- Torsional Properties
- J = Torsional Constant
- $\mathrm{C}_{\mathrm{w}}=$ Warping Constant
- $\mathrm{W}_{\mathrm{ns}}=$ normalized warping function at pt. S
- $\mathrm{S}_{\mathrm{ws}}=$ Warping statical moment
- $\mathrm{Q}=$ Statical moment


## Torsional Case of Example 8.5.1

Case of Example 8.5.1 Concentrated torsional moment at midspan; torsionally simply supported

(a) Distribution of
total torsional moment
$M_{2}=M_{3}+M_{w}$
$M_{z}=M_{x}+M_{w}$
causing shear in flange
(b) Distribution of portion of torsional moment $M_{\text {, }}$
due to Saint-Venant
torsion (pure torsion)
(c) Distribution of portion of torsional moment $M_{m}$
due to warping torsion

## Normal and Shear Stresses

## of an Open Section






- Total normal stress: a combination of axial stress, major axis bending stress, lateral bending stress, and warping normal stress (left).
- Total shear stress is the sum of vertical shear stress, horizontal shear stress, St. Venant torsional shear stress (generally relatively small), and warping shear stress (right).


## Warping of Cross-section

Normal stress
distribution
distribution
when warping
when warping
is restrained



## Data for Example 8.5.2



## Analogy between Flexure and Torsion


$P_{H}=\frac{T}{h}$


Flexure Analogy (S\&] 8.6)

10

Comparison of lateral shear on flange due to warping torsion with that from simple lateral flexure analogy



## Shear Flow

in a Closed Thin Wall Section

(a)


$\sigma_{z}=0$
(b)

## Forces on a Cut Thin-wall Section

(a) $\begin{aligned} T & =G J \theta \\ J & =4 A^{2} / \int_{S} d s / t\end{aligned}$

(S\& 8.2.5)
(S\&J 8.10.12)
(b)


## Normal and Shear stresses of a Close Section



- Figure 8.9 illustrates the general box girder normal stresses which can occur in a curved or skewed box-shaped girder.
- Closed box sections are extremely efficient at carrying torsion by means of St. Venant torsional shear flow (Figure 8.10). When combined with vertical shear in the webs, this shear flow is always subtractive in one web and additive in the other.

