Digital Image Processing

Introduction

Digital Image Definition

- An image can be defined as a twodimensional function $f(x, y)$
- x, y : Spatial coordinate
- F: the amplitude of any pair of coordinate x, y, which is called the intensity or gray level of the image at that point.
- X,y and f, are all finite and discrete quantities.

Fundamental Steps in Digital Image Processing:

Outputs of these processes generally are images

Fundamental Steps in DIP:

Step 1: Image Acquisition The image is captured by a sensor (eg. Camera), and digitized if the output of the camera or sensor is not already in digital form, using analogue-to-digital convertor

Fundamental Steps in DIP:

Step 2: Image Enhancement

The process of manipulating an image so that the result is more suitable than the original for specific applications.

The idea behind enhancement techniques is to bring out details that are hidden, or simple to highlight certain features of interest in an image.

Fundamental Steps in DIP:

Step 3: Image Restoration

- Improving the appearance of an image
- Tend to be mathematical or probabilistic models. Enhancement, on the other hand, is based on human subjective preferences regarding what constitutes a "good" enhancement result.

Fundamental Steps in DIP:

Step 4: Colour Image Processing
Use the colour of the image to extract features of interest in an image

Fundamental Steps in DIP:

Step 5: Wavelets

Are the foundation of representing images in various degrees of resolution. It is used for image data compression.

Fundamental Steps in DIP:

Step 6: Compression

Techniques for reducing the storage required to save an image or the bandwidth required to transmit it.

Fundamental Steps in DIP:

Step 7: Morphological Processing

Tools for extracting image components that are useful in the representation and description of shape.

In this step, there would be a transition from processes that output images, to processes that output image attributes.

Fundamental Steps in DIP:

Step 8: Image Segmentation

Segmentation procedures partition an image into its constituent parts or objects.

Fundamental Steps in DIP:

Step 9: Representation and Description

- Representation: Make a decision whether the data should be represented as a boundary or as a complete region. It is almost always follows the output of a segmentation stage.
- Boundary Representation: Focus on external shape characteristics, such as corners and inflections (انحناءات)
- Region Representation: Focus on internal properties, such as texture or skeleton (هيكلية) shape

Fundamental Steps in DIP:

Step 9: Representation and Description

- Choosing a representation is only part of the solution for transforming raw data into a form suitable for subsequent computer processing (mainly recognition)
- Description: also called, feature selection, deals with extracting attributes that result in some information of interest.

Fundamental Steps in DIP:

Step 9: Recognition and Interpretation Recognition: the process that assigns label to an object based on the information provided by its description.

Fundamental Steps in DIP:

Step 10: Knowledge Base Knowledge about a problem domain is coded into an image processing system in the form of a knowledge database.
image \rightarrow 2-D $f_{n} \rightarrow f(x, y)$ $x d y \rightarrow$ spatial coordinates.
amp. of \rightarrow for (x, y) pair \rightarrow called intensity or gray level q ing.
when $\rightarrow x, y$ o amp. of $f \rightarrow$ are finite \& discrete
\rightarrow The image is called digital image.
DIP \rightarrow Processing of dig. ing.
\rightarrow ing. is composed of picture elements called Pixels.

Elements F DP:

Ing sensor $\rightarrow 2$ devices.
$1 \rightarrow$ Physical device sensitive to energy rad by the obj
$2 \rightarrow$ digitize (convert op of ply. der to digital form).

Specialized Ing. Processing $H / w=$
\rightarrow Consists of digitizer $+\mathrm{H} / \mathrm{w}$.
Performs opes of $A C U$.
digitizing \& arithmetic of logic operation eg: $A L U \rightarrow$ averaging to \downarrow noise.
\rightarrow Performs In. for fast throughputs. (digitizing of angng video at 30 frams/se

Computer:
\rightarrow ing. processing system range from PC to a super computer.
\rightarrow dedicated app. (SQl.) custom Computers ace used to achieve ref. performance.

Ing. Processing S/w:
S/w \rightarrow consists of specialized modules for specific task.
$\left.\begin{array}{c}\text { Quell designed } \\ \text { Package }\end{array}\right\} \rightarrow \begin{gathered}\text { minim codes of uses } \\ \text { Specieti specific fasces }\end{gathered}$
more advanced \rightarrow integrates the modes. of Commands.

Mass storage:
\rightarrow provides storage for processing ing.
\rightarrow Dig. Storage $\rightarrow \mathcal{Z}$ principal categories. \rightarrow (compute menory).

1. Sthort-ferm storage for used during processing.
2. Oh-line storage for fast recall (opt, media, discs)

3-archival storage. (infrequent access)
(man. tapes)
image \rightarrow 2-D $f_{n} \rightarrow f(x, y)$ $x d y \rightarrow$ spatial coordinates.
amp. of \rightarrow for (x, y) pair \rightarrow called intensity or gray level q ing.
when $\rightarrow x, y$ o amp. of $f \rightarrow$ are finite \& discrete
\rightarrow The image is called digital image.
DIP \rightarrow Processing of dig. ing.
\rightarrow ing. is composed of picture elements called Pixels.

Elements F DP:

Ing sensor $\rightarrow 2$ devices.
$1 \rightarrow$ Physical device sensitive to energy rad by the obj
$2 \rightarrow$ digitize (convert op of ply. der to digital form).

Specialized Ing. Processing $H / w=$
\rightarrow Consists of digitizer $+\mathrm{H} / \mathrm{w}$.
Performs opes of $A C U$.
digitizing \& arithmetic of logic operation eg: $A L U \rightarrow$ averaging to \downarrow noise.
\rightarrow Performs In. for fast throughputs. (digitizing of angng video at 30 frams/se

Computer:
\rightarrow ing. processing system range from PC to a super computer.
\rightarrow dedicated app. (SQl.) custom Computers ace used to achieve ref. performance.

Ing. Processing S/w:
S/w \rightarrow consists of specialized modules for specific task.
$\left.\begin{array}{c}\text { Quell designed } \\ \text { Package }\end{array}\right\} \rightarrow \begin{gathered}\text { minim codes of uses } \\ \text { Specieti specific fasces }\end{gathered}$
more advanced \rightarrow integrates the modes. of Commands.

Mass storage:
\rightarrow provides storage for processing ing.
\rightarrow Dig. Storage $\rightarrow \mathcal{Z}$ principal categories. \rightarrow (compute menory).

1. Sthort-ferm storage for used during processing.
2. Oh-line storage for fast recall (opt, media, discs)

3-archival storage. (infrequent access)
(man. tapes)

Ing. displays:
\rightarrow Color TV monitors.
\rightarrow monitors diven by the Alp q images graphics display cards that are an integral port of the Computer system.
Hard Copy:
\rightarrow devices for recording images
sincludes laser printers, film cameras, inkjef units,
\rightarrow digital units such as optical \&CD-ROM dishes.

N/working:
\rightarrow default f_{n} in any computer sees.
$\rightarrow T$ data used in ing Processing app. imp. Thing is BW (tr. A data)

Elements of visual Perception:
\rightarrow DIP is based on mathematical of probabilistic formulations, human intuition 4 analys is.
\rightarrow ing. formation \rightarrow perceived by humans.
Structure of the Haman eye:

diameter \rightarrow approx. 20 mm .
membranes \rightarrow cornea, sclera.
Corner:
\rightarrow atramparent tissue that covers the anterior pout of the ege.
Sclera
\rightarrow opaque mend covers other side of the eye.
choroid \rightarrow below sclera.

$$
\rightarrow 2 \text { divisions }
$$

1. Cilia ny body
2. Iris

Iris \rightarrow contracts dexpands to decide how much and. \& light can be allowed
front \rightarrow visible pigment.
back \rightarrow black "

Lens \rightarrow concentric layers of fibrous cell. \rightarrow suspended by ciliriary body.
$\rightarrow 60-70 \%$ water, 6% fat of \uparrow protien than other parts of eye.
\rightarrow Contains Vellow pigmentation, changes on age.
\rightarrow If clouding occurs, then it is called cataract, That \downarrow color vision + loss of dear vision.

Retina
\rightarrow innermost mems.
$\rightarrow 2$ receptors
cones rods.
Cones $\rightarrow 6$ to 7 million cones.
\rightarrow The centrally located elem is called fovea.
\rightarrow visible to dark (bright light)
\rightarrow each fovea indie comected to the wore and.
cone vision \rightarrow called as bright dight
sion or 1 photopic.

Rods: \rightarrow the no. is 9,75 to 150 million
\rightarrow spreaded in Refing.
\rightarrow many rods have common nerve end \rightarrow so \downarrow visible to bright light
\rightarrow Sensitive to \downarrow levels q illumination.
eg: obj in sup appears \rightarrow dist when appears in moonlight.
Rodvision \rightarrow called scotopic or dim-ligat vision.
Image formation in the Eye:

Image
camera \rightarrow distance adjust, focal length (fixed)
ope \rightarrow dist is fixed \rightarrow change focal length by thickening or flatening the lens.
$17 \mathrm{~mm} \rightarrow$ dist: b / w retina a centre q
$14-17 \mathrm{~mm} \rightarrow$ changes when age is focussed t relaxed.
$17 \mathrm{~mm} \rightarrow$ to change focus upto 3 m .
calc: dimens of ing in retina.
tree $\rightarrow 15 \mathrm{~m}$ height.
dist. $\rightarrow 100 \mathrm{~m}$.
$h \rightarrow h t$ of retinal m g.

$$
\frac{15}{100}=\frac{h}{17} ; h=255 \mathrm{~mm}
$$

first \rightarrow ing. falls on fovea
then light receptors \rightarrow transform radiation energy to electrical imputes a send to brain
\rightarrow brain decodes it.

$$
\rightarrow \text { brain decodes }
$$

Image Sensing of Acquisition:
a) single imgng sensor

S semors \rightarrow transform iNlumination energy to digital images.
I/penergy $\xrightarrow{\text { A into vtg, by combining I/P dectric }}$ Pur a senoor.
ofp ofy \rightarrow dijitu.
(2) Img. Acs lasing senoor strips

Strip \rightarrow flaced on in-line arrangement of sensors in the form g strip.
used in aircraft \rightarrow monnded on aireraft.

s used to Obtain cross see 3-Dimages.
rotating x-ray sauce \rightarrow illuminates.
Sensors \rightarrow opp to some collets the x-ray en passes through ob
OPp of sensor \rightarrow be processed by reconsinction to Etain meaningful cross sect. ing.

Tone ing line out/increament of rofation 4 full tineas displacment (M) of seasor from leff to vight.
comb. single seasor with meotion to ghe a 2-Ding.
Img. Ackcuisition using sensor arrays:
$\rightarrow 2 D$ cursay
(consemms $\rightarrow 4000 \times 9000$ delem are urefo.
used in CCD cameras.

$$
\begin{aligned}
& 0<i(x, y)<\infty \\
& 0<\gamma(x, y)<1
\end{aligned}
$$

$\gamma(x, y) \rightarrow 0$ to $i \rightarrow($ (total reflection $)$. (absorption)
Image sampling of Quantization:

(B) B a scan live from

Cont. imp
 A to B.

Continuous ing. $\rightarrow f(x, y)$.
"with x \&y co-ordinates \& also in amplitude. To convect in dig form.,
\rightarrow have to sample the In both coordinates \& in amp.
Digitizing the Coordinate values is called sampling. 11. The amp values is called quantising.
\rightarrow sump. \& quant is applied to the line $A B$.
(b) \rightarrow is the plot q amp.
\rightarrow variation \rightarrow due to noise.
(c) $x \rightarrow$ to sample, we fake equally spaced

- samples along line $A B$.
to form dig. In. \rightarrow intensity values cor w to discrete quantities.
intensity scale $\rightarrow 8$ intensity intervalassign any one $\} \rightarrow$ to each sample (matching)
level
\rightarrow Thus samp. I quant. are carried out in line by line process.

Cont. ing. (fo sensor array)

ing. after sump of quantized.

2D image:

\rightarrow to sample cont. it contains Mrows Nidimms.

$$
(x, y) \rightarrow \text { diserte }
$$

Origit quid ing. $\} \rightarrow f(0,0)$
starts at
starts at
next $\rightarrow f(0,1)$

Co-ordinats of iny. $\left.\begin{array}{c}\text { called }\end{array}\right\} \rightarrow$ spatial domain
$x \notin y \rightarrow$ spatial Co-ordinats
$x \not x y \rightarrow$ defermines location -
$f \rightarrow$ forlensities.

$$
f(x, y)=\left[\begin{array}{cccc}
f(0,0) & f(0,1) \ldots & f(0, N-1) \\
f(1,0) & f(1,1) & \ldots & f(1, N-1) \\
\vdots & \vdots & & \vdots \\
f(m-1,0) & f(m-1,1) & \cdots & f(m-1),(N-1)
\end{array}\right]
$$

Image Inferpolation:
\rightarrow used as Zooning, shringing, rotatinga geoms op conuctions.
Interpolation \rightarrow plocess of using knowing data to ostimate values at unknown locations.
eg: an ing. 500×500 pixels, heed to male it 750×750 pixelsfit image gid 7 a a shrink to, olin

\rightarrow expand to specified size to obtain the Loomed image.
This method is called nearest neighbow in
new loe in orig. $\} \rightarrow \begin{aligned} & \text { image }\end{aligned}$ the by the inlenoty. image \rightarrow The nearest neigh jo the orig ing.
bilinear inter : \rightarrow we use H nearest neigh to estimate the intensity at a given beat Gicubic inter: \rightarrow use 16 nearesthous
\rightarrow used in Adobe phatoshop d in editing gan.

Brightness:
\rightarrow sensation associated with the ant, of light stimulus.
\rightarrow light intensity depends on total light emitted ot the angle in which light is enilted.

Contrast:
\rightarrow diff in luminance of the o $5 \sqrt{5}$.
\rightarrow The perceived brightness on the suffice depends on location background.
Eg: sane shade box when lee in blacle t whistle screen.

Ing. formation: Model:
स-1) res of ing.

$$
f(x, y)
$$

$(x, y) \rightarrow$ determined by the socuce 7 ing. to gen some of $f(x, y) \neq 0$.

$$
0 \subset f(x, y)<\infty
$$

$f(x, y) \rightarrow 2$ components.

1. The amt. \& socuce illumination incident on the scene being viewed d.
2. The ant qilluming effactanced by the © oj in the scene.
Called as tiller ruining a refactance comp

$$
\begin{aligned}
& f(x, y)=i(x, y) r(x, y) \\
& 0 \leqslant i(x, y)<\alpha \\
& 0<r(x, y)<1
\end{aligned}
$$

reffactence \rightarrow bounded to of 1
$\rightarrow i(x, y)$ is determined by illum sou $\rightarrow r(x, y)$ " "A haral of inaged. ob; it is also clesed in Ix. q illum. through mediam.
So we use $f(x, y) \rightarrow$ instead $r(x, y)$ transnitfivity. (limits o to y).

Ing. \rightarrow generated by a physical process, its intensity is plop to energy radiated by a physical some.
So $f(x, y)$ is a non-zero of finite,

$$
0<f(x, y)<\alpha
$$

The In $f(x, y)$ characterized by 2 components.

1. ant of socuce illumination incident on the scene
2. ant. of illumination reflected by the objects in the scene.
they are called illumination $[i(x, y)] d$ reflectance $[r(x, y]$.
\rightarrow The 2 fm . Combine to form $f(x, y)$

$$
f(x, y)=i(x, y) r(x, y)
$$

$$
\begin{aligned}
& 0<i(x, y)<\infty \\
& 0<\gamma(x, y)<1
\end{aligned}
$$

$\gamma(x, y) \rightarrow 0$ to $1 \rightarrow$ (total reflection $)$. (absorption)

Image sampling of Quantization:

(B) a scan live from A to B.

Cont ing
 OD ${ }^{\circ} \mathrm{D}$
${ }_{1}$ DD
\qquad
sompling(o)

Digital Image Processing

Elements of Visual Perception

Structure of the human eye

FIGURE 2.1
Simplified
diagram of a cross section of the human eye.

- Image formation in the eye

FIGURE 2.3
Graphical representation of the eye looking at a palm tree. Point C is the optical center of the lens.

MATCHBAND EFFECT

- Perceived brightness

FIGURE 2.7
(a) An example showing that perceived
brightness is not a simple function of intensity. The relative vertical positions between the two profiles in (b) have no special significance; they were chosen for clarity.

- Simultaneous contrast

a b c
FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.
a b
FIGURE 2.9 Some
well-known optical illusions.

Optical illusion

Image Sensing and Acquisition

a
b
b
FIGURE 2.12
(a) Single imaging
sensor
(b) Line sensor.
(c) Array sensor.

o Image acquisition using a single sensor

FIGURE 2.13 Combining a single sensor with motion to generate a 2-D image.

- Using sensor strips

a b
FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

A simple image formation model

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

- Illumination and reflectance
- Illumination and transmissivity

$$
f(x, y)=i(x, y) r(x, y)
$$

Image Sampling and Quantization

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Sampling and quantization

a b
FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

- Representing digital images

FIGURE 2.18
Coordinate
convention used in this book to represent digital images.

Some Basic Relationships Between Pixels

- Neighbors of a pixel

$$
\begin{aligned}
& N_{4}(p): \text { 4-neighbors of } \mathrm{p} \\
& (x+1, y),(x-1, y),(x, y+1),(x, y-1)
\end{aligned}
$$

$N_{D}(p)$: four diagonal neighbors of p $(x+1, y+1),(x+1, y-1),(x-1, y-1)$, $(x-1, y+1)$
$N_{8}(p): 8$-neighbors of p
$N_{4}(p)$ and $N_{D}(p)$

- Adjacency
V : The set of gray-level values used to define adjacency
- 4-adjacency: Two pixels p and q with values from V are 4 -adjacency if q is in the set $N_{4}(p)$
- 8-adjacency: Two pixels p and q with values from V are 8 -adjacency if q is in the set $N_{8}(p)$
m-adjacency (mixed adjacency): Two pixels p and q with values from V are m -adjacency if
$\circ \mathrm{q}$ is in $N_{4}(p)$, or
$\circ \mathrm{q}$ is in $N_{D}(p)$ and the set $N_{4}(p) \bigcap N_{4}(q)$ has no pixels whose values are from V

a b c
FIGURE 2.26 (a) Arrangement of pixels; (b) pixels that are 8 -adjacent (shown dashed) to the center pixel; (c) m-adjacency.
- Subset adjacency
- S1 and S2 are adjacent if some pixel in S1 is adjacent to some pixel in S2
- Path
- A path from p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where $\left(x_{0}, y_{0}\right)=(x, y),\left(x_{n}, y_{n}\right)=(s, t)$, and pixels $\left(x_{i}, y_{i}\right)$ and $\left(x_{i-1}, y_{i-1}\right)$ are adjacent

- Region
- We call R a region of the image if R is a connected set
- Boundary
- The boundary of a region R is the set of pixels in the region that have one or more neighbors that are not in R
- Edge
- Pixels with derivative values that exceed a preset threshold
- Distance measures
- Euclidean distance

$$
D_{e}(p, q)=\left[(x-s)^{2}+(y-t)^{2}\right]^{\frac{1}{2}}
$$

- City-block distance

$$
D_{4}(p, q)=|(x-s)|+|(y-t)|
$$

- Chessboard distance

$$
D_{8}(p, q)=\max (|(x-s)|,|(y-t)|)
$$

- D_{m} distance: The shortest m-path between the points
- Linear operation
- H is said to be a linear operator if, for any two images f and g and any two scalars a and b,

$$
H(a f+b g)=a H(f)+b H(g)
$$

Basic Relationships Between Pixels

- Neighborhood
- Adjacency
- Connectivity
- Paths
- Regions and boundaries

Neighbors of a Pixel

- Any pixel $\mathrm{p}(x, y)$ has two vertical and two horizontal neighbors, given by

$$
(x+1, y),(x-1, y),(x, y+1),(x, y-1)
$$

- This set of pixels are called the 4-neighbors of P , and is denoted by $\mathrm{N}_{4}(\mathrm{P})$.
- Each of them are at a unit distance from P.

Neighbors of a Pixel (Contd..

- The four diagonal neighbors of $\mathrm{p}(x, y)$ are given by,
$(x+1, y+1),(x+1, y-1),(x-1, y+1),(x-1, y-1)$
- This set is denoted by $\mathrm{N}_{\mathrm{D}}(\mathrm{P})$.
- Each of them are at Euclidean distance of 1.414 from P.

Neighbors of a Pixel (Contd..)

- The points $\mathrm{N}_{\mathrm{D}}(\mathrm{P})$ and $\mathrm{N}_{4}(\mathrm{P})$ are together known as 8-neighbors of the point P , denoted by $\mathrm{N}_{8}(\mathrm{P})$.
- Some of the points in the $\mathrm{N}_{4}, \mathrm{~N}_{\mathrm{D}}$ and N_{8} may fall outside image when P lies on the border of image.

Neighbors of a Pixel (Contd..)

Neighbors of a pixel

a. 4-neighbors of a pixel \mathbf{p} are its vertical and horizontal neighbors denoted by $\mathrm{N}_{4}(\mathrm{p})$

b. 8-neighbors of a pixel p are its vertical horizontal and 4 diagonal neighbors denoted by $\mathrm{N}_{8}(\mathrm{p})$

Neighbors of a Pixel (Contd..)

\mathbf{N}_{D}	\mathbf{N}_{4}	\mathbf{N}_{D}
\mathbf{N}_{4}	\mathbf{P}	\mathbf{N}_{4}
$\mathbf{N}_{\mathbf{D}}$	\mathbf{N}_{4}	$\mathbf{N}_{\mathbf{D}}$

- N_{4} - 4-neighbors
- N_{D} - diagonal neighbors
- N_{8} - 8-neighbors $\left(\mathrm{N}_{4} \mathrm{U}_{\mathrm{D}}\right)$

Adjacency

- Two pixels are connected if they are neighbors and their gray levels satisfy some specified criterion of similarity.
- For example, in a binary image two pixels are connected if they are 4 -neighbors and have same value (0/1).

Adjacency (contd.)

- Let V be set of gray levels values used to define adjacency.
- 4-adjacency: Two pixels p and q with values from V are 4adjacent if q is in the set $\mathrm{N}_{4}(p)$.
- 8-adjacency: Two pixels p and q with values from V are 8 adjacent if q is in the set $\mathrm{N}_{8}(p)$.
- m-adjacency: Two pixels p and q with values from V are m adjacent if,
-q is in $\mathrm{N}_{4}(\mathrm{P})$.
$-q$ is in $N_{D}(p)$ and the set $\left[N_{4}(p) \bigcap N_{4}(q)\right]$ is empty (has no pixels whose values are from V).

Connectivity:

$$
V=\{1,2\}
$$

To determine whether the pixels are adjacent in some sense.

Let V be the set of gray-level

 values used to define connectivity; then Two pixels p, q that have values from the set V are:a. 4-connected, if q is in the set $\mathrm{N}_{4}(\mathrm{p})$
b. 8-connected, if q is in the set $\mathrm{N}_{8}(\mathrm{p})$
c. m-connected, iff
i. q is in $N_{4}(p)$ or
ii. q is in $N_{D}(p)$ and the set $N_{4}(p) \cap N_{4}(q)$ is empty

| 0 | $1 \cdots \cdots \cdots \cdots \cdots$ | |
| :--- | :--- | :--- | :--- |
| 0 | \vdots | |
| 0 | 0 | |
| 0 | 0 | 1 |$|$

0	$1 \cdots \cdots1$
0	20
0	$0 \quad 1$

0	$1 \cdots \cdots \cdots \cdots$
	\%
0	2. 0
0	$0 \quad 1$

Adjacency/Connectivity

0	1	1
0	1	0
0	0	1

8-adjacent
m-adjacent

Adjacency/Connectivity

- Pixel p is adjacent to pixel q if they are connected.
- Two image subsets S_{1} and S_{2} are adjacent if some pixel in S_{1} is adjacent to some pixel in S_{2}

Paths \& Path lengths

- A path from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates:
$\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$, where $\left(x_{0}, y_{0}\right)=(x, y)$ and $\left(x_{n}, y_{n}\right)=(s, t)$; $\left(x_{i}, y_{i}\right)$ is adjacent to $\left(x_{i-1}, y_{i-1}\right) \quad 1 \leq i \leq n$
- Here n is the length of the path.
- We can define 4 -, 8 -, and m-paths based on type of adjacency used.

Connected Components

- If p and q are pixels of an image subset S then p is comected to q in S if there is a path from p to q consisting entirely of pixels in S.
- For every pixel p in S, the set of pixels in S that are connected to p is called a of S .
- If S has only one connected component then S is called

Regions and Boundaries

- A subset R of pixels in an image is called a Region of the image if R is a connected set.
- The boundary of the region R is the set of pixels in the region that have one or more neighbors that are not in R .
- If R happens to be entire Image?

Distance measures

Given pixels p, q and z with coordinates $(x, y),(s, t),(u, v)$ respectively, the distance function D has following properties:

$$
\begin{aligned}
& \text { a. } D(p, q) \geq 0[\mathrm{D}(\mathrm{p}, \mathrm{q})=0 \text {, iff } \mathrm{p}=\mathrm{q}] \\
& \text { b. } \\
& \text { c. } \\
& D(p(p, q)=D(q, \mathrm{z}) \leq D(p, q)+D(q, \mathrm{z})
\end{aligned}
$$

The following are the different
Distance measures:

- Euclidean Distance:
$D_{e}(p, q)=\left[(x-s)^{2}+(y-t)^{2}\right]$
b. City Block Distance:
$D_{4}(p, q)=|x-s|+|y-t|$

		2		
	2	1	2	
2	1	0	1	2
	2	1	2	
		2		

C. Chess Board Distance: \rightarrow
$D_{8}(p, q)=\max (|x-s|,|y-t|)$

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Relationship between pixels (Contd..) Arithmetic/Logic Operations:

- Addition :
$p+q$
- Subtraction:
$p-q$
- Multiplication:
p^{*} q
- Division:
p / q
- AND:
p AND q
- OR :
pOR q
- Complement:

NOT(q)

Neighborhood based arithmetic/Logic :
Value assigned to a pixel at position ' e ' is a function of its neighbors and a set of window functions.

W_{1}	W_{2}	W_{3}
W_{4}	W_{5}	W_{6}
W_{7}	W_{8}	W_{9}

$$
\begin{aligned}
\boldsymbol{p} & =\left(w_{1} \mathbf{a}+w_{2} \mathbf{b}+w_{3} \mathbf{c}+w_{4} \mathbf{d}+w_{5} \mathbf{e}+w_{6} \mathbf{f}+w_{7} \mathbf{g}+w_{8} \mathbf{h}+w_{9} \mathbf{i}\right) \\
& =\sum w_{i} f_{i}
\end{aligned}
$$

Arithmetic/Logic Operations

- Tasks done using neighborhood processing:
- Smoothing / averaging
- Noise removal / filtering
- Edge detection
- Contrast enhancement
-Issues
- Choice of $\mathrm{w}_{\mathrm{i}} \mathbf{t}^{\mathrm{s}}$ (N^{2} values)
- Choice of N, window size
- Computation at boundaries
- Do not compute at boundaries
- Pad with zeros and extend image boundary
- Pad assuming periodicity of image
- Extrapolation of image

END of Neighborhood

and Connectivity

Digital Image Processing

Colour Image Processing

Introduction

Today we'll look at colour image processing, covering:

- Colour fundamentals
- Colour models

Colour Fundamentals

In 1666 Sir Isaac Newton discovered that when a beam of sunlight passes through a glass prism, the emerging beam is split into a spectrum of colours

Colour Fundamentals (cont...)

The colours that humans and most animals perceive in an object are determined by the nature of the light reflected from the object For example, green objects reflect light with wave lengths primarily in the range of 500 - 570 nm while absorbing most of the energy at other wavelengths

Colour Fundamentals (cont...)

Chromatic light spans the electromagnetic spectrum from approximately 400 to 700 nm
As we mentioned before human colour vision is achieved through 6 to 7 million cones in each eye

Colour Fundamentals (cont...)

Approximately 66% of these cones are sensitive to red light, 33% to green light and 6% to blue light
Absorption curves for the different cones have been determined experimentally
Strangely these do not match the CIE standards for red (700 nm), green (546.1 nm) and blue (435.8 nm) light as the standards were developed before the experiments!

Colour Fundamentals (cont...)

Colour Fundamentals (cont...)

3 basic qualities are used to describe the quality of a chromatic light source:

- Radiance: the total amount of energy that flows from the light source (measured in watts)
- Luminance: the amount of energy an observer perceives from the light source (measured in lumens)
- Note we can have high radiance, but low luminance
- Brightness: a subjective (practically unmeasurable) notion that embodies the intensity of light
We'll return to these later on

CIE Chromacity Diagram

Specifying colours systematically can be achieved using the CIE chromacity diagram
On this diagram the x-axis represents the proportion of red and the y-axis represents the proportion of red used
The proportion of blue used in a colour is calculated as:

$$
z=1-(x+y)
$$

CIE Chromacity Diagram (cont...)

(C.I.E. CHROMATICITY DIAGRAM)

Green: 62\% green, 25\% red and 13\% blue

Red: 32\% green, 67\% red and 1\% blue

CIE Chromacity Diagram (cont...)

Any colour located on the boundary of the chromacity chart is fully saturated
The point of equal energy has equal amounts of each colour and is the CIE standard for pure white
Any straight line joining two points in the diagram defines all of the different colours that can be obtained by combining these two colours additively
This can be easily extended to three points

CIE Chromacity Diagram (cont...)

This means the entire colour range cannot be displayed based on any three colours
The triangle shows the typical colour gamut produced by RGB monitors

The strange shape is the gamut achieved by high quality colour printers

Colour Models

From the previous discussion it should be obvious that there are different ways to model colour

We will consider two very popular models used in colour image processing:

- RGB (Red Green Blue)
- HIS (Hue Saturation Intensity)

In the RGB model each colour appears in its primary spectral components of red, green and blue

The model is based on a Cartesian coordinate system

- RGB values are at 3 corners
- Cyan magenta and yellow are at three other corners
- Black is at the origin
- White is the corner furthest from the origin
- Different colours are points on or inside the cube represented by RGB vectors

RGB (cont...)

RGB (cont...)

Images represented in the RGB colour model consist of three component images - one for each primary colour
When fed into a monitor these images are combined to create a composite colour image
The number of bits used to represent each pixel is referred to as the colour depth A 24-bit image is often referred to as a fullcolour image as it allows $\left(2^{8}\right)^{3}=16,777,216$ colours

RGB (cont...)

The HSI Colour Model

RGB is useful for hardware implementations and is serendipitously related to the way in which the human visual system works However, RGB is not a particularly intuitive way in which to describe colours
Rather when people describe colours they tend to use hue, saturation and brightness RGB is great for colour generation, but HSI is great for colour description

The HSI Colour Model (cont...)

The HSI model uses three measures to describe colours:

- Hue: A colour attribute that describes a pure colour (pure yellow, orange or red)
- Saturation: Gives a measure of how much a pure colour is diluted with white light
- Intensity: Brightness is nearly impossible to measure because it is so subjective. Instead we use intensity. Intensity is the same achromatic notion that we have seen in grey level images

HSI, Intensity \& RGB

Intensity can be extracted from RGB images which is not surprising if we stop to think about it

Remember the diagonal on the RGB colour cube that we saw previously ran from black to white

Now consider if we stand this cube on the black vertex and position the white vertex directly above it

HSI, Intensity \& RGB (cont...)

Now the intensity component of any colour can be determined by passing a plane perpendicular to the intenisty axis and containing the colour point
The intersection of the plane with the intensity axis gives us the intensity component of the colour

HSI, Hue \& RGB

In a similar way we can extract the hue from the RGB colour cube
Consider a plane defined by the three points cyan, black and white
All points contained in this plane must have the same hue (cyan) as black and white cannot contribute hue information to a colour

The HSI Colour Model

Consider if we look straight down at the RGB cube as it was arranged previously
We would see a hexagonal shape with each primary colour separated by 120° and secondary colours at 60° from the primaries So the HSI model is composed of a vertical

Blue Magenta intensity axis and the locus of colour points that lie on planes perpendicular to that axis

The HSI Colour Model (cont...)

To the right we see a hexagonal shape and an arbitrary colour point

- The hue is determined by an angle from a reference point, usually red

- The saturation is the distance from the origin to the point
- The intensity is determined by how far up the vertical intenisty axis this hexagonal plane sits (not apparent from this diagram

The HSI Colour Model (cont...)

Because the only important things are the angle and the length of the saturation vector this plane is also often represented as a circle or a triangle

HSI Model Examples

HSI Model Examples

Converting From RGB To HSI

Given a colour as R, G, and B its H, S, and I values are calculated as follows:

$$
\begin{aligned}
& H=\left\{\begin{array}{ll}
\theta & \text { if } B \leq G \\
360-\theta & \text { if } B>G
\end{array} \quad \theta=\cos ^{-1}\left\{\frac{\frac{1}{2}[(R-G)+(R-B)]}{\left[(R-G)^{2}+(R-B)(G-B)\right]}\right\}\right. \\
& S=1-\frac{3}{(R+G+B)}[\min (R, G, B)] \quad I=\frac{1}{3}(R+G+B)
\end{aligned}
$$

Converting From HSI To RGB

Given a colour as H, S, and I it's R, G, and B values are calculated as follows:

- RG sector ($0<=H<1209$

$$
R=I\left[1+\frac{S \cos H}{\cos (60-H)}\right] \quad G=3 I-(R+B) \quad B=I(1-S)
$$

-GB sector $\left(120^{\circ}<=H<2409\right.$

$$
R=I(1-S) \quad G=I\left[1+\frac{S \cos (H-120)}{\cos (H-60)}\right] \quad B=3 I-(R+G)
$$

Converting From HSI To RGB (cont...)

- BR sector $\left(240^{\circ}<=H<=360{ }^{\circ}\right)$

$$
R=3 I-(G+B) \quad G=I(1-S) \quad B=I\left[1+\frac{S \cos (H-240)}{\cos (H-180)}\right]
$$

HSI \& RGB

RGB Colour Cube

H, S, and I Components of RGB Colour Cube

Manipulating Images In The HSI Model

 In order to manipulate an image under the HIS model we:- First convert it from RGB to HIS
- Perform our manipulations under HSI
- Finally convert the image back from HSI to RGB

RGB -> HSI -> RGB

RGB -> HSI -> RGB (cont...)

Hue

Saturation

Intensity

RGB Image

Chapter 6
 Color Image Processing

a
b
FIGURE 6.4 Primary and secondary colors of light and pigments. (Courtesy of the General Electric Co., Lamp Business Division.)

Chapter 6
 Color Image Processing

Number System	Color Equivalents					
Hex	00	33	66	99	CC	FF
Decimal	0	51	102	153	204	255

TABLE 6.1

Valid values of each RGB component in a safe color.
a
b
FIGURE 6.10
(a) The 216 safe RGB colors.
(b) All the grays in the 256 -color RGB system (grays that are part of the safe color group are shown underlined).

Chapter 6
 Color Image Processing

FIGURE 6.11 The RGB safe-color cube.

