
Introduction
The term "microservices" describes a software architectural style

that gives modern developers a way to design highly scalable,

flexible applications by decomposing the application into discrete

services that implement specific business functions. These services,

often referred to as "loosely coupled," can then be built, deployed,

and scaled independently.

The "microservices" style is linked to other trends that make this

a practical approach. Things like containerization, Agile methods,

DevOps culture, cloud services, and the widespread adoption —

both culturally and technically — of continuous integration and con-

tinuous delivery/deployment (CI/CD) methods across the industry

are making it possible to build truly modular, large-scale, service-op-

timized systems for both internal and commercial use.

This Refcard aims to introduce the reader to microservices and to

define their key characteristics and benefits.

What Are Microservices?
Microservices are business functions that are "loosely coupled,"

which can then be built, deployed, and scaled independently.

Each service communicates with other services through stan-

dardized application programming interfaces (APIs), enabling the

services to be written in different languages, to use different technol-

ogies and even different infrastructure. The concept differs com-

pletely from systems built as monolithic structures, where services

were inextricably interlinked and could only be deployed and scaled

together. However, microservices do share common goals with EAI

and SOA architectures.

As each individual service has limited functionality, it is much small-

er in size and complexity. The term "microservice" comes from this

discrete functionality design, not from its physical size.

Getting Started
With Microservices

CONTENTS

 ö Introduction

 ö What Are Microservices?

 ö Why a Microservices Architecture?

 ö Benefits

 ö Design Patterns for Microservices

 ö Operational Requirements for
Microservices

 ö The Future, Serverless Computing,
and FaaS

 ö Conclusion

BROUGHT TO YOU IN PARTNERSHIP WITH

1

WRITTEN BY ANDY HAMPSHIRE
GLOBAL ARCHITECT AT TIBCO

http://www.flogo.io/?utm_source=dzone&utm_medium=contentsyndication&utm_campaign=microservices-refcard

http://www.flogo.io/?utm_source=dzone&utm_medium=contentsyndication&utm_campaign=microservices-refcard

3 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH MICROSERVICES

Figure 1: Evolution of Software Application Architectures

Why a Microservices Architecture?
Microservices architectures have risen in popularity because their

modular characteristics lead to flexibility, scalability, and reduced

development effort. Deployment flexibility, in addition to the rise

of cloud-native serverless and function-as-a-service deployment

options (such as AWS Lambda and Microsoft Azure Cloud Functions),

have created the perfect environment for microservices to flourish

in today's IT landscape. These deployment platforms enable micro-

services and functions to be scaled from inactivity to high volume

and back again. Cloud-based services also allow businesses to pay

only for the compute capacity they use.

As businesses are continuously looking to be more agile, reduce

bottlenecks, and improve application delivery times, microservices

architecture continues to rise in popularity. Some of the advantages

of using microservices include:

• Application components can be built in different program-

ming languages.

• Each service can be independently deployed, updated,

replaced, and scaled.

• Each service is responsible for a single part of the overall

functionality and executes it well.

• Use of cloud-native function-as-a-service deployment

options is possible.

• "Smart endpoints and dumb pipes" — each microservice

owns its domain logic and communicates with others

through simple protocols.

Benefits of Microservices
INDEPENDENT SCALING
Each microservice can scale independently. As each instance of a

microservice is fully independent, you have the option to deploy

multiple instances of a service. This could be on the same hardware,

on different machines, on cloud-based infrastructure, or any com-

bination of these. With cloud (both private and public), the ability

to scale based on demand means that the service is always able to

provide the desired SLAs.

INDEPENDENT UPGRADES
Each service is deployed independently of any other services.

Changes local to a service can be easily made by a developer

without requiring coordination with other teams. For example, new

business requirements and bug fixes can be implemented through

updates to the underlying implementation. Where new versions

introduce changed APIs, new versions of the service can be built

and deployed alongside and service users can migrate to the new

version as desired.

EASY(ER) MAINTENANCE
As code in a microservice is limited in functional scope, it should

be easier to maintain — its impact on the rest of the code base is far

more limited, and its codebase ultimately smaller and easier to un-

derstand. Integration testing only needs to be performed at the API

level to ensure backward compatibility to other code, so testing can

be focused on the business functionality. Anecdotally ,this results

in systems that are far better tested, as tests are better and more

comprehensively targeted.

TECHNOLOGY INDEPENDENCE
Developers are now free to pick the language and tools that are

best suited for their service. As interoperability is at the API level,

developers are free to innovate within the confines of their service.

It also means that any future rewrite of the service can utilize newer

technologies, as opposed to being tied to past decisions — thus

taking advantage of technological advances in the future.

FAULT AND RESOURCE ISOLATION
With any large application, finding the cause of a code issue like

a memory leak or an unclosed database connection can be hard.

But with microservices, this can be easier to manage, as periodic

restarts of a misbehaving service only affect the users of that service.

A smaller, simpler code base often makes finding errors and issues

quicker and easier. This improved fault isolation also limits how

much of an application a failure can affect, but with critical com-

ponents, it is still important to understand the cascading impact of

failures. However, as faults are isolated to a single service, they can

be ultimately resolved independently and quickly.

Design Patterns for Microservices
DEFINING/DECOMPOSING SERVICES
The first big challenge in getting started with microservices is how

to identify the services. Developers often think about services as

technical services, much like they would when building a functional

library. But microservices are much more about solving a business

problem than just a technical one.

So, as we start to think about things in terms of business services,

it is often tempting to think along object-oriented lines, and start

4 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH MICROSERVICES

to create services like Customer or Order. But this doesn't go far

enough. These OO-like services are too much like "God" services,

and they need to be broken down into domains more closely

aligned to business-led requirements. Getting the balance right is

key, but difficult. Techniques like domain-driven design can help

you get the balance right for your environment.

EVENT-DRIVEN ARCHITECTURE
Microservices architectures are renowned for being eventually

consistent, given that there are multiple datastores that store state

within the architecture. Individual microservices can themselves be

strongly consistent, but the system as a whole may exhibit eventual

consistency in parts. To account for the eventual consistency proper-

ty of a microservices architecture, you should consider the use of an

event-driven architecture where data changes in one microservice

are propagated to interested microservices via events.

Figure 2: Typical Event Architecture

A pub-sub messaging architecture may be employed to realize the

event-driven architecture. One microservice may publish events as

they occur in its context, and the events would be communicated

to all interested microservices, which can proceed to update their

own state. Events are a means to transfer state from one service

to another, so that all parts of the application reach an eventually

consistent state.

DATABASE DESIGN
Unlike a monolithic application, which can be designed to use a

single database, microservices should be designed to use a separate

logical database for each microservice. Sharing databases is discour-

aged and is an anti-pattern, as it makes the database an integration

point, stops services being truly independent and introduces a

scaling bottleneck. The problems start because the structure of data,

the granularity and scope of transactions, and the business require-

ments will almost certainly overlap.

To solve this conundrum, look at the options to decide what works

best in your use case. A database per service scales well, but

doesn't work well when multiple services need to share the same

data. Sharing databases for related services is a compromise that

is often considered, but has issues with scaling, autonomy, and

independence of services. Other options include Command Query

Responsibility Segregation (CQRS) and the Saga data pattern. Each

has pros and cons that should be considered but are still better than

the monolithic database.

API GATEWAYS TO CENTRALIZE ACCESS TO MICROSERVICES
All your microservices will be potentially used by disparate clients,

ranging from mobile apps to other microservices. As these clients

could be external, or in the case of a mobile client, from third-party

applications or part of the same infrastructure, we have the issue of

how to manage our interfaces. All services will have an API, but will

all the APIs be implemented in the same way — for example, REST

and JSON? For external clients, how are you going to manage access

to the services? What about security?

This is where an API gateway comes in. It acts as a facade that

centralizes the aforementioned concerns at the network perimeter,

where the API gateway would respond to client requests over a pro-

tocol native to the calling client. The gateway can manage security

demands outside the architecture, where clients can identify them-

selves to the API gateway through a token-authentication scheme

like OAuth. It can also manage things like data format changes

(XML<->JSON translation) for clients and services that are unable to

handle multiple formats.

The gateway also needs to be aware of operational considerations

for the services it is proxying, especially where the services are run-

ning in a service mesh. Working well with service discovery, service

replication, and service migration becomes essential when services

can dynamically scale.

Operational Requirements for Microservices
Microservices are not the silver bullet that will solve all architectural

or infrastructure problems in your existing applications. Moving to

microservices may help, but that could also be just a byproduct of

refactoring your application and rewriting code to a new platform.

True success requires significant investment in understanding the

new technologies and taking advantage of them.

SERVICE REPLICATION
Each service needs to be able to replicate, to manage loads, and

to be resilient. There should be a standard mechanism by which

services can easily scale based on metadata. A container-optimized

application platform such as Kubernetes, CloudFoundry, Amazon

EKS, or Red Hat's OpenShift, can simplify this process by defining

scaling and recovery rules.

SERVICE DISCOVERY
In a microservice world, multiple services are typically distributed in

a container application platform. Service infrastructure is provided

https://dzone.com/articles/concepts-of-cqrs
https://dzone.com/articles/concepts-of-cqrs
https://dzone.com/articles/microservices-using-saga-pattern

5 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH MICROSERVICES

by containers and virtual images, both for on-premise and hybrid-/

cloud-orientated deployments. The services may scale up and down

based on certain predefined rules, so the exact location of a service

may not be known until the service is deployed and ready to be used.

The dynamic nature of a service's endpoint address is handled by

service registration and discovery. Each service registers with a bro-

ker and provides more details about itself (including the endpoint

address). Other consumer services then query the broker to find out

the location of a service and invoke it.

There are several ways to register and query services, such as

ZooKeeper, etcd, Consul, Kubernetes, Netflix Eureka, and others. Ku-

bernetes, in particular, makes service discoverability very easy, as it

assigns a virtual IP address to groups of like resources and manages

the mapping of DNS entries to those grouped resources.

SERVICE OBSERVABILITY
Some of the most important aspects of managing a microser-

vices-based architecture are service monitoring, metrics, and

logging. Through metrics, you can understand how an application

runs in its normal state. You can then understand what's not normal,

enabling you to take proactive action if, for example, a service is con-

suming unexpected resources. Elasticsearch, Fluentd, and Kibana

can aggregate logs from different microservices, provide a consis-

tent visualization, and make that data available to business users.

When things go wrong, distributed tracing tools like Zipkin can give

you a holistic view of the end-to-end process alongside performance

metrics. This can help find and solve most runtime problems.

RESILIENCE
Software failures will occur, no matter how much or how well you

test. This becomes all the more important when multiple micros-

ervices are deployed to different platforms. The key concern is not

"how to avoid failure" but "how to deal with failure." It's important

for services to automatically take corrective action to ensure user

experience is not impacted. The Circuit Breaker pattern allows you

to build in resiliency — Netflix's Hystrix is a good library that imple-

ments this pattern.

DEVOPS
Continuous integration and continuous delivery/deployment (CI/

CD) are very important in order for microservices-based applica-

tions to succeed. These practices ensure that bugs are identified via

automated testing and human factors are removed by automated

deployment pipelines.

On the CI side, the pipeline will take code from a developer's

checked-in source, build it, and deploy it to a testing environment

where it is tested both in isolation and in relation to service users.

On the CD side, there are two options. First is "Delivery," where

the tested code is sent to the production repository ready for final

deployment. Second is "Deployment," where the code is deployed

automatically to the production environments.

Figure 3 - The DevOps Cycle [1]

DEPLOYMENT
Being able to automate the Delivery/Deployment process is essen-

tial to a successful microservices program. But automated deploy-

ment through to production needs to be carefully managed. Re-

gardless of whether deployment is fully automated or not, the Blue/

Green deployment pattern is a good way of managing risk. In this

scenario, existing services are running on the "green" system, and

updated services are deployed to the "blue" system. The request

routing (API gateway or service mesh) manages the switchover to

the new version of the service, often in a phased manner to ensure

that the service introduces no problems.

The Future, Serverless Computing, and FaaS
When people first start experimenting with microservices, they often

default to using familiar techniques — for example, simple request/

reply services based on RESTful APIs. The problem with this syn-

chronous approach is that, as you have to wait for a response, the

services become dependent on each other. If one service is running

slower or doesn't respond, it means the service that called it will

run slower or fail with a timeout. This coupling can mean losing

some of the benefits of a microservices architecture, creating a more

interdependent structure akin to a Request/Reply Service-Oriented

Architecture (SOA) style.

If you design your services using an event-driven or Pub/Sub mod-

el, you can ensure that parts of your application continue to work,

as opposed to the entire application becoming unresponsive. Take

Netflix as an example. On occasion, you might notice that the "con-

tinue watching" button doesn't appear. This is because a specific

service isn't available. However, that doesn't mean all of Netflix

stops. Users can still browse for shows and watch previews, so

other aspects of the Netflix service are still available, even though

one service may not be.

https://dzone.com/articles/circuit-breaker-pattern
https://dzone.com/articles/blue-green-deployment-news
https://dzone.com/articles/blue-green-deployment-news

6 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH MICROSERVICES

Developers that fully embrace a microservices approach realize

that true scalability is enabled with loose coupling and event-driv-

en architecture. A service can be asynchronous, performing an

action, broadcasting a message, and continuing on with its primary

function without having to wait for a response from another service.

This lends well to the adoption of Serverless and Function-as-a-Ser-

vice (FaaS) platforms going forward, giving businesses easy access

to "on-demand" capacity at a competitive price.

Conclusion
The microservices architectural style has well-known advantages. It

can certainly help businesses evolve and innovate faster.

Consider the operational requirements of microservices carefully,

in addition to the benefits, before moving to a microservices archi-

tecture — especially if you are refactoring an existing monolithic

application. Better software engineering, organizational culture,

and architecture will be enough to make your existing structure

more agile, without having to jump to microservices. In this case, a

natural migration may be a better way to proceed. But for new ap-

plications, microservices and FaaS are probably the best options

available to us today.

Devada, Inc.

600 Park Offices Drive

Suite 150

Research Triangle Park, NC

888.678.0399 919.678.0300

Copyright © 2019 Devada, Inc. All rights reserved. No part

of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by means electronic,

mechanical, photocopying, or otherwise, without prior written

permission of the publisher.

DZone communities deliver over 6 million pages each

month to more than 3.3 million software developers,

architects, and decision makers. DZone offers something for

everyone, including news, tutorials, cheat sheets, research

guides, feature articles, source code, and more. "DZone is a

developer’s dream," says PC Magazine.

Written by Andy Hampshire
Andy Hampshire has worked in the IT industry for over 30 years (been there, done that, and got quite a few
t-shirts). Andy loves most forms of motorsport, so when Andy is not playing with (or working on) his cars and
bikes he can often be found watching racing, at the moment mostly at Kart tracks supporting his son’s racing
“career”. Away from work and cars, his idea of heaven is walking with his dog in the Surrey Hills where he lives,
as far away from the rest of humanity as possible!

