

OPENCV TUTORIAL: IMAGE PROCESSING

INTRODUCTION

What is OpenCV? This might be the 'basic' question that

comes first to your mind. Well, it stands for ‘Open Source

Computer Vision Library’ initiated by some enthusiast

coders in ‘1999’ to incorporate Image Processing into a

wide variety of coding languages. It has C++, C, and Python

interfaces running on Windows, Linux, Android and Mac.

Before, I get into the use of OpenCV; Let’s get familiar with

the same. As, by now you must have understood that it is a

'library', so to use the functions available in the library you

would need a compiler.

To start off, you need to install 'OpenCV' and a 'compiler'

and then establish a linkage between the two (i.e. Compiler

is able to use the functions available with the library).

Getting Started:

OpenCV can be downloaded from the following link:
http://sourceforge.net/projects/opencvlibrary/

Choose any of the several available versions. Prefer OpenCV2.1, if

interested in simple image processing (we have used that version

while preparing this tutorial).

Next, you would need a compiler like DevC++, CodeBlocks,

VisualC++. These can be downloaded from the following links:

 DevC++ : http://sourceforge.net/projects/dev-cpp/files/Binaries/Dev-

C%2B%2B%204.9.9.2/devcpp-4.9.9.2_setup.exe/download

 CodeBlocks : http://www.codeblocks.org/downloads/26/

 VisualC++ : http://www.microsoft.com/visualstudio/en-us/products/2010-

editions/visual-cpp-express

Install one of the above compilers and next you would need to

link the library with the installed compiler.

http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/dev-cpp/files/Binaries/Dev-C%2B%2B%204.9.9.2/devcpp-4.9.9.2_setup.exe/download
http://sourceforge.net/projects/dev-cpp/files/Binaries/Dev-C%2B%2B%204.9.9.2/devcpp-4.9.9.2_setup.exe/download
http://www.codeblocks.org/downloads/26/
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express

For integrating OpenCV with DevC++ :

 First of all, you have to indicate the header files you want to add. For

that, select Tools->Compiler Options.

 Then click on the plus sign(under compiler set to configure) to add a

new compiler named here, OpenCV.

 To finish on, in the section Add the following commands.. write

-L"C:\OpenCV2.1\lib" -lcxcore210 -lcv210 -lcvaux210 -lhighgui210 -

lml210

 [note that the text in inverted commas is basically the location of the

 lib(libraries) folder of OpenCV2.1. So, it won't work well if u've not

 installed OpenCV in the default folder.]

Configuring included files

Next, click on Directories and then on C Includes to add all the headers,

located in some C:\OpenCV2.1 subdirectories. You only need to

add C:\OpenCV2.1\include\opencv in the include tab to get things to

work.

If you want to code in C++ then do the same for C++ includes

Configuring static library files
In the libraries section under the same heading directories you will

need to add C:\ OpenCV2.1\lib . (if already present, ignore this

step.)

Configuring dynamic library files

And to finish, add the bin directory where the dlls are:

i.e. add C:\ OpenCV2.1\bin to binaries subdivision.

Congratulations..!!
With this, You are done with configuring OpenCV with DevCPP, you can

try running a sample code.

OpenCV can also be configured with CodeBlocks and VisualC++ by

following the instructions on provided link

CodeBlocks: http://opencv.willowgarage.com/wiki/MinGW

VisualC++: http://www.scribd.com/doc/60304851/Steps-to-Integrate-Opencv-2-2-

With-Visual-Studio-2010

http://opencv.willowgarage.com/wiki/MinGW
http://www.scribd.com/doc/60304851/Steps-to-Integrate-Opencv-2-2-With-Visual-Studio-2010
http://www.scribd.com/doc/60304851/Steps-to-Integrate-Opencv-2-2-With-Visual-Studio-2010

By now, you must be having a compiler integrated with

OpenCV library. Before I move to next section in which I

will take you through basic image processing let me

introduce you to the basic OpenCV modules.

Basically there are four modules. I’ll explain briefly about each

module.

 cv: Main OpenCV functions, Image processing and vision

algorithms.

 cvaux: Auxiliary (experimental) OpenCV functions.

 cxcore: Data structures, linear algebra support, XML

support drawing functions and other algorithms.

 highgui: GUI functions, Image and Video I/O.

Depending on what your program implements you wish to use,

you should include corresponding modules.

Image Processing

“Image Processing” is what it intuitively suggests.

Image processing is IMAGE + PROCESSING .

What is an Image?

 Image is a collection of PIXELS.

 Each pixel is like an array of numbers.

 These numbers determine the color of the pixel.

Now let me introduce you to different types of images. There are

three types of images:

Binary image,

Grayscale Image and,

Coloured image.

Each kind of image has few attributes attached to it like number

of channels and depth .

 Number of channels : Defines the dimension of array ,

each pixel is.

 Depth : Defines the maximum bit size of the number which

is stored in the array

Let’s have a closer look at different types of images.

Binary Image

Again, as the name suggest each number associated with

the pixel can have just one of the two possible values.

 Each pixel is a 1 bit number.

 It can take either 0 or 1 as its value.

 0 corresponds to Black

 1 corresponds to White

 Number of channels of a binary Image is 1

 Depth of a binary image is 1(bit)

 Example of a binary image

Grayscale Image

 Each pixel is a 8 bit number

 It can take values from 0-255

 Each value corresponds to a shade between black

and white(0 for black and 255 for white)

 Number of channels for a grayscale image is 1

 Depth of a gray scale image is 8(bits)

 Example of a grayscale image

RGB Image

 Each pixel stores three values:

1. R : 0-255

2. G : 0-255

3. B : 0-255

 Each number between 0-255 corresponds to a

shade of corresponding color

 Depth of a RGB image is 8(bits)

 Number of channels for a RGB image is 3

 Example of a RGB image

Starting with Processing Images

I will be using C language and DevC++ as compiler embedded with

OpenCV2.1. You need not worry if you are using a different compiler.

1. Displaying an image

To start, let’s get through a simple program of displaying an image already

saved on the disk (something similar to a ‘hello world type program’).

Every C code starts with inclusion of header file and this is nothing

different. So, we will include basic header files needed for our program.

We will need following header files:

 cv.h

 highgui.h

Image is stored as a structure IplImage with following elements.

There is no need to go into the details right now, we will get acquainted

with these elements during the course of the tutorial.

Steps involved:

We first need to initialize a pointer to the image (structure)

IplImage * input;

Next, load the desired image to the pointer

input = cvLoadImage(“filename.extension”,1);

[1 for colored and 0 for grayscale]

Note: The image must be stored in the same folder in which you save the

C program.

To display the loaded image you will need a window.

cvNamedWindow (“window name”, 1);

Again [1 for colored and 0 for grayscale]

Above command creates a window and to display the loaded image we

use the following command:

cvShowImage(“window name”, input);

Suppose you have an image named “shivendu.jpg” in the same folder in

which you save your code then your code would look something similar to

the following

#inclde “cv.h”

#include “ highgui.h”

Int main()

{

 IplImage * input;

 input = cvLoadImage(“shivendu.jpg”,1);

 cvNamedWindow(“Output”,1);

 cvShowImage(“Output”, input);

 }

If you try to execute this code the output window flickers just once. To

appreciate the output we need cvWaitKey(number)

 If 0 or negative number is given as input: - Waits indefinitely till key

press and returns the ASCII value of the key pressed.

 If positive number is given as input: - Waits for corresponding

milliseconds.

Now the final code looks like

#inclde “cv.h” // Include header files

#include “ highgui.h”

Int main()

{

 IplImage * input; // Variable declaration

 input = cvLoadImage(“shivendu.jpg”,1); // Loads the image

cvNamedWindow(“Output”,1); // Creates a window to

display image

 cvShowImage(“Output”, input); // Displays the image

cvWaitKey(0); // Waits till a key is pressed

 }

This simple code must have helped you in understanding the flow of the

program (This is how things work with OpenCV). A good programmer will

always clear the memory assigned to variables.

It is therefore advisable to release the image and destroy the window

created:

cvDestroyWindow("Output"); //destroy the window

cvReleaseImage(&input); //release the memory for the image

Include above two lines to make it a good simple code.

1. Creating an image

To create an image you need to provide the following details

 Size(height and width)

 Depth

 Number of channels

 And specify the pixel values

For creating an image we need we use the following function:

output=cvCreateImage(cvGetSize(input),IPL_DEPTH_8U,3)

This will create a RGB image(most general case among the three types of

images discussed) without specifying pixel values

2. Some common OpenCV functions

 output=cvCloneImage(input)
 -----Copies image from input to output

 cvCvtColor(input, output, conversion type)
 { Conv. type : CV_BGR2GRAY ,CV_BGR2HSV}
 -----Saves input image in output pointer in
 other color space

 cvSaveImage("output.jpg",output)
 -----Saves image pointed by output naming it output

3. Morphological operations on a image
There are two different kinds of morphological operations :

1. Erosion
2. Dilation

For carrying out morphological operations we need to specify type of
structural element and number of iterations.

Erosion erodes the image. It tries to bring uniformity in the image by
converting bright points in neighborhood of points of less intensity into
darker ones

 Input Image Eroded image

Notice the change in eyes, illuminates spots in the eyes are removed

because in the input image there is a stark change in illumination at points

near pupil.

Dilation dilates the image. It tries to bring uniformity in image by

converting dark points in neighborhood of points of higher intensity into

bright ones

 Input Image Dilated iamge

Here, is the code which erodes and dilates an image saved in the same

folder where c code is saved

#include "cxcore.h"

#include "highgui.h"

#include<cv.h>

int main()

{

int i=1;

IplImage* input;

IplImage* dilate;

IplImage* erode;

IplConvKernel *structure_element;

structure_element=cvCreateStructuringElementEx(i*2+1, i*2+1,

i,i,CV_SHAPE_ELLIPSE); // Defines the structural element

cvNamedWindow("ii", 1);

cvNamedWindow("oo_dilate",1);

cvNamedWindow("oo_erode",1);

input = cvLoadImage("apple.jpg",1);

cvShowImage("ii", input);

//make erode and dilate, clones of input (remember that cloning

automatically copies height, width etc.)

dilate=cvCloneImage(input);

erode=cvCloneImage(input);

//dilate image

cvDilate(input,dilate,structure_element ,1);

//cvDilate(input image pointer , output image pointer , structural element

, number of iterations)

//erode image

cvErode(input,erode,NULL,1);

//cvErode(input image pointer , output image pointer , structural element

, number of iterations)

cvShowImage("oo_dilate", dilate);

cvShowImage("input", input);

cvShowImage("oo_erode", erode);

cvWaitKey(0);

cvDestroyWindow("ii");

 cvDestroyWindow("oo_dilate");

 cvDestroyWindow("oo_erode");

cvReleaseImage(&input);

cvReleaseImage(&dilate);

cvReleaseImage(&erode);

return 0;

}

4. Thresholding an image

Thresholding an image is one of the simplest ways of image segmentation.

As the name suggests, it carries out its change according to a set

threshold.

To threshold an image following function is used:

cvThreshold(input, output, threshold, maxValue, thresholdType)]

Following threshold types are available

 CV_THRESH_BINARY
 -----max value if more than threshold, else 0

 CV_THRESH_BINARY_INV
 -----0 if more than threshold, else max value

 CV_THRESH_TRUNC
 -----threshold if more than threshold, else no change

 CV_THRESH_TOZERO
 ------no change if more than threshold else 0

 CV_THRESH_TOZERO_INV
 ------0 if more than threshold, else no change

Before we threshold the image we need to make a clone of the image.

Example image for binary image has been obtained from the example

grayscale image of ‘beautiful Lena’.

5. Image data

An image’s data is stored as a character array whose first element is

pointed by:-

Input->imageData (char pointer)

Number of array elements in 1 row is stored in

input->widthStep

 Accessing pixel values in a grayscale image:

To find the pixel value in an image we need to define a pointer of type

uchar:

uchar *pinput = (uchar*)input->imageData;

Following image will explain how an image is accessed.

To get the (i,j) pixel value we start traversing the first row pixel by pixel

Until we reach the end of it and then move to the next row and

 continue the process until we reach the (i,j) pixel.

int c = pinput[i*input->widthStep + j];

 --------stores the pixel value of (i,j) pixel in c

For a RGB image

uchar *pinput = (uchar*)input->imageData;

int b= pinput[i*input->widthStep + j*input->nChannels+0];

int g= pinput[i*input->widthStep + j*input->nChannels+1];

int r= pinput[i*input->widthStep + j*input->nChannels+2];

Let’s play with image data…. The following code will turn a RGB image

 into an image which has just red objects and other values assigned to

 zero and prints all image related data.

#include "cv.h"

#include "highgui.h"

int main()

{

 int i , j;

 IplImage* input;

 IplImage* output;

 input=cvLoadImage(“input.jpg",1);

 cvNamedWindow("ii",1);

 cvShowImage("ii",input);

 printf("nChannels=%d width=%d height=%d widthstep=%d depth=%d

align=%d",input->nChannels,input->width,input->height,input-

>widthStep,input->depth,input->align);

 output=cvCreateImage(cvSize(input->width, input->height),input-

>depth, input->nChannels);

 uchar *pinput = (uchar*)input->imageData;

//saving data pointer of input image as pinput

 uchar *poutput = (uchar*)output->imageData;

//saving data pointer of output image as poutput

 for(i=0;i<input->height;i++)

 for(j=0;j<input->width;j++)

 {

 poutput[i*input->widthStep + j*input->nChannels + 2]

 =pinput[i*input->widthStep + j*input->nChannels + 2];

//copying red elements of input to output

 poutput[i*input->widthStep + j*input->nChannels + 0]=0;

//initialising blue elements of output image as 0

 poutput[i*input->widthStep + j*input->nChannels + 1]=0;

//initializing green elements of output image as 0;

 //Note: initialing B and G as 0 may be excluded but recommended as it

may take garbage value, test it yourself

 }

 cvNamedWindow("aa",1);

 cvShowImage("aa",output);

 cvWaitKey(0);

 cvDestroyWindow("ii");

 cvDestroyWindow("aa");

 cvReleaseImage(&output);

 cvReleaseImage(&input);

 return 0;

}

6. Video Input

What is a video? A video is basically a collection of continuous images

displayed at a certain rate (generally 30 frames per second).

To extract the frames from video first we need to attach this video to the

input stream and then extract those as and when required.

To attach the video to input stream we use the following function

CvCapture* capture=cvCreateFileCapture("file_name.avi");

And for extracting frames use the following function:

 Ipl Image* input_frame=cvQueryFrame(capture);

7. Camera Input

First camera needs to be initialized and then image is captured and further

operations can be carried out on that image.

Use the following command for initiating the camera:

CvCapture *capture=cvCreateCameraCapture(0);

0 stands for default webcam and to access other camera connected to the

computer use 1 as argument.

Starting a camera takes time, so make sure that sufficient time has passed

before we capture the image. This can be achieved through

for(int i=0;i<100000000&& capture!=NULL ;i++);

Finally image is captured and stored in variable of type IplImage*

frame=cvQueryFrame(capture);

8. Video input through camera

This is similar to video input all you need is attach the video from camera

to the input stream. Following function helps us do so:

CvCapture *capture=cvCreateCameraCapture(0);

There is no need to initialize the camera in this case because frame is

captured regularly. Again, 0 for default webcam and use 1 for input

through external camera.

9. Playing with the mouse

For moving the mouse we use the following function declaration:

void Mouse_Move(DWORD dx,DWORD dy)

{

 DWORD event=0;

 event = MOUSEEVENTF_ABSOLUTE|MOUSEEVENTF_MOVE;

 mouse_event(event, dx*65535/Get_ScreenWidth(),

dy*65535/Get_ScreenHieght(), 0, 0);

}

Function definition for Get_ScreenWidth():

LONG Get_ScreenWidth()

{

 RECT rect;

 GetWindowRect(GetDesktopWindow(),&rect); //Get Desktop rect

 return rect.right - rect.left;

}

Function definition for Get_Screen_Hieght():

LONG Get_ScreenHieght()

{

 RECT rect;

 GetWindowRect(GetDesktopWindow(),&rect); //Get Desktop rect

 return rect.bottom - rect.top;

}

Pass the x and y co-ordinates of the screen as parameters and mouse

pointer will be moved to the corresponding location.

Following function prints the RGB values of the pixel at which mouse

pointer is pointing to.

void my_mouse_callback(int event, int x, int y, int flags, void* param)

{

 uchar *pimage = (uchar*)image->imageData;

printf("\nx=%d\t y=%d\n r=%d \tg=%d \tb=%d\n",x,y,

pimage[y*image->widthStep + x*image->nChannels+2], pimage[y*image-

>widthStep + x*image->nChannels+1], pimage[y*image->widthStep +

x*image->nChannels+0]);

}

To call the above declared function use the following:

cvNamedWindow("image",1);

 cvSetMouseCallback("image", my_mouse_callback, NULL);

 cvShowImage("image",image);

10. Displaying an Image in Full screen

Displaying an image in full screen basically means getting rid of the

borders. This can be done by using a handle for the image.

//generate window

cvNamedWindow("main_win", CV_WINDOW_AUTOSIZE);

//move it to initial

cvMoveWindow("main_win", 0, 0);

//set it's size to maximum possible

cvSetWindowProperty("main_win", CV_WINDOW_FULLSCREEN,

CV_WINDOW_FULLSCREEN);

//show the image

cvShowImage("main_win", cv_img);

//set up the handle for the image

HWND win_handle = FindWindow(0, "main_win");

//if handle fails to load

if (!win_handle)

{

 printf("Failed FindWindow\n");

}

//modify the 'handle' so that 'window' is deprived of borders

SetWindowLong(win_handle, GWL_STYLE, GetWindowLong(win_handle,

GWL_EXSTYLE) | WS_EX_TOPMOST);

//show the new window

ShowWindow(win_handle, SW_SHOW);

Now, some playing with human features:

11. Haar Cascades

Haar like features are digital image features used in object recognition.

Haar Cascades are trained classifiers used for detecting features like face,

eyes, upper body etc.

These cascades are stored in the data folder of OpenCV.

Firstly, you need to load cascade and then use the cascade to detect the

presence of the corresponding feature. In most cases you need to mark

the region of your interest. Following code detects eyes and marks a

rectangle around the eyes.

#include "cv.h"

#include "highgui.h"

#include "math.h"

#include "cxcore.h"

static CvMemStorage* storage = 0;

static CvHaarClassifierCascade* cascade = 0;

const char* cascade_name =

"C:/OpenCV2.1/data/haarcascades/haarcascade_eye.xml";

// This is the address of the cascade used for eye detection on my machine

void detect_and_draw(IplImage* img);

int main()

{

 IplImage* frame; //Initialise input image pointer

 cascade = (CvHaarClassifierCascade*)cvLoad(cascade_name, 0, 0, 0);

 int c;

 if(!cascade)

 {

 fprintf(stderr, "ERROR: Could not load classifier cascade\n");

 return -1;

 }

 frame = cvLoadImage("reformed.jpg",1);

 storage = cvCreateMemStorage(0);

 detect_and_draw(frame);

 cvWaitKey(0);

 return 0;

}

void detect_and_draw(IplImage* img)

 {

 int scale = 1;

 // Create a new image based on the input image

 IplImage* temp = cvCreateImage(cvSize(img->width/scale,img-

>height/scale), 8, 3);

 // Create two points to represent the face locations

 CvPoint pt1, pt2;

 int i;

 // Clear the memory storage which was used before

 cvClearMemStorage(storage);

 // Find whether the cascade is loaded, to find the faces. If yes, then:

if(cascade)

 {

 // There can be more than one face in an image. So create a growable

sequence of faces.

 // Detect the objects and store them in the sequence

 CvSeq* faces = cvHaarDetectObjects(img, cascade, storage,

 1.1, 2, CV_HAAR_DO_CANNY_PRUNING,

 cvSize(40, 40));

 // Loop the number of faces found.

 for(i = 0; i < (faces ? faces->total : 0); i++)

 {

 // Create a new rectangle for drawing the face

 CvRect* r = (CvRect*)cvGetSeqElem(faces, i);

 // Find the dimensions of the face, and scale it if necessary

 pt1.x = r->x*scale;

 pt2.x = (r->x+r->width)*scale;

 pt1.y = r->y*scale;

 pt2.y = (r->y+r->height)*scale;

 // Draw the rectangle in the input image

 cvRectangle(img, pt1, pt2, CV_RGB(255,0,0), 3, 8, 0);

 }

 }

 // Show the image in the window named "result"

 cvShowImage("result", img);

 // Release the temp image created.

 cvReleaseImage(&temp);

 }

12. Cropping an Image

cvSetImageROI(img, cvRect(origin_x,origin_y, width, hieght));

IplImage *face = cvCreateImage(cvGetSize(img),img->depth,img-

>nChannels);

 cvCopy(img, face, NULL); //Copies interested area of image in face

 cvResetImageROI(img);

13. Blob detection edge detection

These are some of other actions which can be performed using OpenCV

And there are numerous other interesting features of OpenCV

available for playing with the images. Enjoy! Playing with images

