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Abstract. We classify rational triangles which unfold to Veech surfaces
when the largest angle is at least 3π

4
. When the largest angle is greater

than 2π
3

, we show that the unfolding is not Veech except possibly if it
belongs to one of six infinite families. Our methods include a criterion
of Mirzakhani and Wright that built on work of Möller and McMullen,
and in most cases show that the orbit closure of the unfolding cannot
have rank 1.

1. Introduction

The question considered in this paper is motivated by the following simple
problem: what can be said about the dynamical system consisting of a
billiard ball bouncing around a polygonal billiard table?

One approach to this problem uses the method of unfolding described
in [ZK] to transform the piecewise linear billiard path on a rational polyg-
onal table (i.e., a table whose angles are rational multiples of π) into a
straight path on a translation surface known as the “unfolding” of the poly-
gon, where the dynamics of straight-line flow might be better understood.
For example, Veech [Ve] proved that any translation surface whose affine
automorphism group is a lattice has “optimal dynamics” (i.e., straight-line
flow in any given direction is either completely periodic or uniquely ergodic)
and that the unfolding of an obtuse isoceles triangle with angles of the form

(πn ,
π
n ,

(n−2)π
n ) is such a surface. Similar methods were later used to deter-

mine whether other rational triangles also have this “lattice property,” and
several more individual lattice triangles and families of rational triangles
have been identified.

Combining Veech’s characterization of lattice triangles with the fact that
the orthic triangle provides a known periodic billiard trajectory in each
acute triangle, Kenyon and Smillie [KS] were able to formulate a number
theoretic criterion for the angles of an acute rational triangle that would be
satisfied by any lattice triangle. They used this criterion to classify all acute
and right-angled rational lattice triangles, up to the conjecture that their
computer search had identified all triples not satisfying the criterion. This
number theoretic conjecture was then proved by Puchta [Pu], completing
the classification.
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Less is known for obtuse triangles, as there is no obvious periodic billiard
trajectory in this case and so the methods of [KS] do not easily extend. After
the family of isoceles triangles originally described by Veech, the family of

lattice triangles with angles ( π2n ,
π
n ,

(2n−3)π
n ) was discovered independently in

[Vo] and [Wa], and more recently, computer-assisted computations of billiard
trajectories led Hooper [Ho] to identify one more obtuse lattice triangle, the
( π12 ,

π
3 ,

7π
12 ), and to conjecture that the list of known obtuse lattice triangles

is now complete. We prove half of this conjecture:

Theorem 1.1. A rational obtuse triangle with obtuse angle ≥ 135◦ has the
lattice property if and only if it belongs to one of the two known families

(πn ,
π
n ,

(n−2)π
n ) and ( π2n ,

π
n ,

(2n−3)π
2n ).

Our work on obtuse lattice triangles builds not so much on previous ap-
proaches to the problem as on recent results of a more complex analytical
nature, using the equivalent characterization of a lattice triangle as one
whose unfolding generates a Teichmüller curve. Möller [Mö] proved that
the period matrix of a Teichmüller curve has a block diagonal form, a re-
sult later extended by Filip [Fi] to the period matrix of any rank 1 orbit
closure. Combining this fact with an application of the Ahlfors variational
formula à la McMullen [Mc, Theorem 7.5], Mirzakhani and Wright [MW,
Theorem 7.5] gave a condition under which the unfolding of a triangle must
have orbit closure of rank ≥ 2. From this, one can immediately derive a
simple number-theoretic criterion that all obtuse rational lattice triangles
must satisfy.

The main technical result of this paper is a classification of all obtuse
rational triangles with obtuse angle > 2π

3 for which it is possible to apply the
[MW] criterion (this cutoff being chosen because there are significantly more
triangles with smaller obtuse angle for which it is not possible). This entails
a detailed case analysis, but a key ingredient is the use of approximation
by rational numbers of small denominator, combined with known estimates
on a particular number-theoretic function (the Jacobsthal function, which
was used by Puchta [Pu] and McMullen [Mc2] in related classifications). By
these means, we give a (computer-assisted) proof of the following theorem:

Theorem 1.2. An obtuse rational triangle with obtuse angle > 120◦ satis-
fies the [MW] criterion if and only if it does not belong to one of six (infinite)
one-parameter families of triangles and is not one of seven exceptional tri-
angles.

Two of these families are known families of lattice triangles. The com-
puter program of Rüth, Delecroix, and Eskin [RDE] has shown that the
seven exceptional triangles do not have the lattice property. And by finding
parallel cylinders of incommensurable moduli on the unfoldings, we are able
to prove that one of the remaining families is not a family of lattice trian-
gles. This allows us to complete the classification of rational obtuse lattice
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triangles with obtuse angle ≥ 135◦ and prove Hooper’s conjecture in this
case.

The paper is organized as follows. In §2, we derive the number-theoretic
criterion in the needed form from [MW]. In §3, we establish some prelim-
inary results about the solution sets of the inequalities derived in §2 and
explain the problems that arise when the obtuse angle is ≤ 120◦. In §4, we
outline the case analysis that will be used to prove Theorem 1.2. This case
analysis will be carried out in §§5–8. A description of the computer search
and its results is in §9. Finally, §10 contains the geometric argument used
to rule out the remaining family of triangles with angle ≥ 135◦, proving
Theorem 1.1.

Acknowledgements: This work was done during the (online) 2020 Uni-
versity of Michigan REU. We are very grateful to Alex Wright for suggesting
the problem and for his help and guidance. We would also like to thank Alex
Eskin for kindly offering to use his program, currently under development
by Vincent Delecroix and Julian Rüth, to check our exceptional triangles,
as well as the first triangle in each infinite family we found.

2. Derivation of the Criterion

In this section, we will briefly explain the setup in [MW, §§6–7] and
explain how [MW, Theorem 7.5] implies the criterion we will state in 2.1.

First of all, we will set a standard form to refer to rational triangles. We
write (p, q, r), with p, q, r ∈ N, p ≤ q ≤ r, gcd(p, q, r) = 1, to refer to the
triangle with angles (pπn ,

qπ
n ,

rπ
n ), where n = p + q + r. (The gcd condition

ensures that the choice of p, q, r is unique, and the p ≤ q ≤ r condition fixes
the order.)

Now, the unfolding of the triangle (p, q, r) is the translation surface (X,ω)
where X is the normalization of the curve yn = zp(z−1)q with holomorphic
differential ω = y−n+1zp−1(z − 1)q−1 dz. X has the obvious automorphism

y 7→ e2πi/ny, and the space of holomorphic 1-forms on X can be broken
into eigenspaces, where the eigenspace of eigenvalue e2πai/n has dimension
{−apn } + {−aqn } + {−arn } − 1 (the notation {x} meaning the fractional part
of x, x − bxc). An explicit basis for each eigenspace is described in [MW,

Lemma 6.1]. Plugging eigenforms of eigenvalues e2πai/n and e2πbi/n into the
integral given by the Ahlfors-Rauch variational formula, [MW, Proposition
7.3] shows that the resulting variation of the period matrix is nonzero if and
only if a + b ≡ 2 mod n. This fact is then applied in [MW, Theorem 7.5]
to see that if there is a ∈ (Z/n)× with 2a 6≡ 2 mod n such that both the

ea2πi/n and e(2−a)2πi/n eigenspaces are nonzero, then the unfolding has orbit
closure of rank > 1, as this corresponds to a nonzero off-diagonal derivative
of the period matrix in what would otherwise be a diagonal block (by work
of Filip [Fi]).

Proposition 2.1. The unfolding of an obtuse triangle (p, q, r) in the nota-
tion described above does not have the lattice property if there exists some
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a ∈ (Z/n)× with 2a 6≡ 2 mod n such that two of the following “mod n”
inequalities are satisfied:

(2.1) ap < 2p, aq < 2q, ar < 2r

Let [x]n be the representative of the mod n equivalence class of x which
is in [0, n). Then, for example, the “mod n” inequality ap < 2p is satisfied
if [ap]n < [2p]n. In what follows, we will almost entirely want to consider
numbers “mod n”; where it seems unlikely to cause confusion, we will drop
the bracket notation, which tends to clutter up equations. In a similar spirit,
we will write x ∈ (Z/n)× to mean “x is coprime to n.”

Proof. By the discussion above, a triangle does not have the lattice property
if there is some a ∈ (Z/n)× with 2a 6≡ 2 mod n such that{

−ap
n

}
+

{
−aq
n

}
+

{
−ar
n

}
> 1

and {
−(2− a)p

n

}
+

{
−(2− a)q

n

}
+

{
−(2− a)r

n

}
> 1

(these being the conditions for the eigenspaces to be nonzero). We rewrite
as follows: first of all, as c(p+q+r) = cn ≡ 0 mod n for any c, the left-hand
sides of these two inequalities must be integral, and as {x} < 1 (so each sum
is < 3), these inequalities are equivalent to

(2.2) [−ap]n + [−aq]n + [−ar]n = 2n

and

(2.3) [(−2 + a)p]n + [(−2 + a)q]n + [(−2 + a)r]n = 2n

Since a is a unit, we have [−ax]n = n− [ax]n for x = p, q, r (this being true
unless ax ≡ 0). We then note that

[(−2 + a)x]n =

{
[−2x]n + [ax]n [ax]n < [2x]n

[−2x]n + [ax]n − n [ax]n ≥ [2x]n
.

By Equation 2.2, we have

[ap]n + [aq]n + [ar]n = n

Assuming that (p, q, r) is an obtuse triangle, we must have r > n
2 , p, q < n

2 ,
and so

[−2p]n = n− 2p, [−2q]n = n− 2q, [−2r]n = 2n− 2r

So

[−2p]n + [ap]n + [−2q]n + [aq]n + [−2r]n + [ar]n = 3n

which means that in order to satisfy Equation 2.3, we must have [ax]n <
[2x]n for exactly two of p, q, r. And as

[2p]n + [2q]n + [2r]n = 2p+ 2q + 2r − n = n
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it is impossible to have [ax]n < [2x]n for all of p, q, r (as the sum of the [ax]n
would be between 0 and n), so we can replace “exactly two” with “two.” �

For the rest of the paper, we will investigate how to find such an a. As
we will see, the main difficulty is not finding elements of Z/n satisfying
two of the inequalities, but ensuring that one of these elements is a unit.
(The 2a 6≡ 2 condition is generally not a major consideration, although it
is often part of the problem in the families of triples where there is no such
a.) Initially, it was hoped that such an a could always be found for triples
with sufficiently large p or n, but this has turned out not to be true. (See
Proposition 3.7 for more details.)

3. Preliminaries

We start by defining notation and terminology that will be used through-
out the paper.

Definition 3.1. It will often be useful to refer to the set of solutions of one
of the inequalities described in Equation 2.1, so we set

Sp := {a ∈ [0, n) : [ap]n < [2p]n}
(defining Sq and Sr similarly).

It is worth noting that, in this obtuse case,

[2p]n = 2p, [2q]n = 2q, [2r]n = 2r − n = n− 2p− 2q

Definition 3.2. We will call a unit a ∈ (Z/n)× with the property 2a 6≡ 2
mod n a “usable” unit.

Clearly, there can be at most two unusable units, 1 and n
2 + 1. Of these,

1 is always unusable, and n
2 + 1 is unusable iff 4 divides n. (First of all, for

n
2 + 1 to be an integer, n must be even. And if n is divisible by 2 but not 4,
then n

2 + 1 is even, therefore not a unit. But if 4 divides n, n
2 + 1 is its own

inverse.)

Remark 3.3. With these definitions, we can restate our problem in the
following way: when does one of the intersections Sp ∩ Sq, Sp ∩ Sr, Sq ∩ Sr
contain a usable unit?

We start by considering usable units in Sp or Sq.

Remark 3.4. Suppose x < n
2 , and set a = gcd(x, n), x = ab, n = ac. As

gcd(b, c) = 1, b is invertible in Z/c, so we can let d be the representative in
[0, c) of the equivalence class of b−1 in Z/c. (In the future, we will write “let
d = b−1 ∈ (Z/c)×”.) Then

Sx = {kd+ lc : 0 ≤ k < 2b, 0 ≤ l < a}

Proposition 3.5. If x < n
2 , Sx contains a usable unit if and only if none

of the following is true: x = 1; x = 2 and n is even; or x = 4 and n ≡ 4
mod 8.
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Proof. We break into cases based on gcd(x, n):
If gcd(x, n) = 1, then if 1 < x (< n

2 + 1), x−1 ∈ Sx is a usable unit. (And
if x = 1, then S1 = {0, 1} does not contain a usable unit.)

If 1 < gcd(x, n) < x, then Sx contains all elements of Z/n equivalent to
kd mod c, for 0 ≤ k < 2b. Any unit mod c is coprime to all prime divisors
of c, so to be a unit mod n, it suffices to be coprime to all remaining prime
divisors of a. In particular, there are at least φ(a) units mod n equivalent
to a given unit mod c, by the Chinese remainder theorem. (As usual, we
use φ to denote Euler’s totient function.) We know that there are at least
two units mod c of the form kd, 0 ≤ k < 2b (namely, 1 and d), so φ(a) ≥ 2
implies that Sx contains ≥ 4 units, of which ≥ 2 must be usable. On the
other hand, a 6= 1 and φ(a) < 2 would imply a = 2, in which case the
unusable units are ≡ 1 mod c, and so the one or two units in Sx ≡ d mod c
must be usable.

Finally, if gcd(x, n) = x, we apply the same argument as in the previous
case, except that the two known units 1 and d coincide. So φ(a) ≥ 3 implies
that Sx contains ≥ 3 units, of which ≥ 1 must be usable, but one needs to
consider the cases φ(a) < 3, i.e., a = 1, 2, 3, 4, 6. For a = 3, 6, Sx contains
n
3 + 1, 2n3 + 1, of which ≥ 1 must be a usable unit. So the only cases in
which Sx might not contain a usable unit are x = 1, 2, 4 (dividing n). As
mentioned already, S1 = {0, 1} does not contain a usable unit. If x = 2 and
n is even, then S2 = {0, 1, n2 ,

n
2 + 1} does not contain a usable unit. And

if x = 4 and x divides n, then S4 = S2 ∪ {n4 ,
n
4 + 1, 3n4 ,

3n
4 + 1}, of which

the potential usable units are n
4 + 1, 3n4 + 1. If 8 divides n, these are units

(as they are coprime to n
4 , which shares the same prime factors as n), and

otherwise, if n ≡ 4 mod 8, these are even, so not units. �

Remark 3.6. Unfortunately, there are more cases when Sr does not contain
any usable units. In fact, this is guaranteed to happen if r = c

2c−1n; multiples

of r are multiples of 1
2c−1n = 2r− n, and so [ar]n < [2r]n implies [ar]n = 0,

i.e., Sr consists entirely of multiples of 2c− 1.

This remark is essential in the following proposition:

Proposition 3.7. There is no constant c such that the criterion of [MW]
can be applied to all triples with p > c.

Proof. We describe a method of constructing arbitrarily large examples in
which the [MW] condition is not satisfied: Let p be any prime > 2, and let
m be the product of all numbers < 2p excluding p. As gcd(m, p) = 1, take
c = m−1 ∈ (Z/p)×. Then consider triples of the form

n = (xp− c)m, q =
(p− 1)n

2p− 1
− p, r =

pn

2p− 1

for any positive integer x. (As 2p−1 divides m, q and r are indeed integers.)
By Remark 3.6, Sr does not contain a usable unit; it therefore suffices to
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show that Sp ∩ Sq does not contain a usable unit. But using the fact that

Sp = {kp−1 : 0 ≤ k < 2p}

from 3.4, we see that the only units Sp contains are 1, p−1, and as 1 is not
usable, we need only check that p−1 /∈ Sq. However, note that n ≡ −1 mod
p, so n+1

p = p−1 ∈ Z/n, which implies

p−1r =
n+ 1

p

pn

2p− 1
=

(n+ 1)n

2p− 1
≡ n

2p− 1
modn

=⇒ p−1q ≡ n− n

2p− 1
− 1 =

2p− 2

2p− 1
n− 1 >

2p− 2

2p− 1
n− 2p = 2q

so p−1 /∈ Sq. �

Experimentally, it seems that the triples with n
2 < r ≤ 2n

3 and p 6= 1, 2, 4
(as p = 1, 2, 4 leads to additional problems) for which the [MW] criterion
is not satisfied follow roughly this pattern, in that p is a small prime not
dividing n, n is highly composite, and r = c

2c−1n for some c. However,
the above proposition by no means gives the complete list of such triples;
because of this issue, the rest of the paper focuses on triangles with obtuse
angle > 120◦ (i.e., with r > 2n

3 ), where it has been possible to identify
precisely the cases in which the criterion cannot be applied.

4. Proof Outline

A more detailed statement of our main technical result is as follows.

Theorem 4.1. An obtuse rational triangle (pπn ,
qπ
n ,

rπ
n ) with obtuse angle

> 2π
3 satisfies the [MW] criterion (implying that the orbit closure of its

unfolding has rank ≥ 2) if and only if none of the following is the case:

(1) p = q = 1
(2) p = 1, q = 2, n is even
(3) p = 1, q = 4, r ≡ 7 mod 8
(4) p = 1, r = 3q + 1
(5) p = 2, r = 3q + 2
(6) p = 4, r = 3q + 4
(7) (p, q, r) is one of the following triples: (1, 4, 11), (1, 3, 16), (2, 3, 17),

(1, 4, 21), (1, 8, 19), (3, 8, 29), (2, 11, 29)

In fact, definitive results are already known for some of the triangles on
this list. As mentioned in the introduction, families 1 and 2 are known to be
families of lattice triangles (see [Ve], [Vo], [Wa]). The first element of family
3, the triangle (1,4,7), is the lattice triangle found by [Ho], although it does
not have obtuse angle > 2π

3 and therefore does not, strictly speaking, belong
on our list. And the half of family 4 with q odd (and > 1) is proven not to
have the lattice property in [Wa, Theorem B]. Furthermore, the unfoldings
of all the exceptional triangles in item 7 have been checked by the computer
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program of Rüth, Delecroix, and Eskin [RDE] and found to have dense orbit
closures.

As Theorem 4.1 is proved by a rather complicated case analysis followed
by computer-checking of certain triples, we will explain here how all the
parts fit together. (We will basically split into cases along two major axes,
the size of gcd(q, n) and the size of q.)

In §5, we will derive a new form for Sp, which will be particularly useful
when some gcd condition is satisfied. In particular, we almost entirely deal
with the case gcd(q, n) > 2 and partially deal with the case gcd(q, n) = 2.
The main tool will be the Chinese remainder theorem (cf. the proof of
Proposition 3.5), but some extra complications do arise when gcd(q, n) is a
small power of 2. (This is perhaps the case where the 2a 6≡ 2 requirement
becomes most problematic.)

In §6, we will finish the proof for q ≤
√
n
2 . Applying the results of the

previous section, as well as the obvious but useful fact that c(p+ q+ r) ≡ 0
mod n for all c, we will see that in this case, Sp∩ (Sq ∪Sr) contains a usable
unit if Sp does. There are only a few special cases in which Sp does not

contain a usable unit, and in these cases (still assuming q ≤
√
n
2 ), we prove

that either Sq ∩ Sr contains a unit or (p, q, r) belongs to families (1)–(3) in
Theorem 4.1.

The case q >
√
n
2 will be addressed in §§7–8. In §7, we will quickly deal

with the case gcd(q, n) > 2 and then, for the cases gcd(q, n) = 1 or 2, we
will give the first part of a rational approximation argument to prove that if
n satisfies certain bounds, Sq ∩ Sr must contain a unit. (These bounds are
related to the Jacobsthal function, which will be introduced in this section.)
Although the main idea is not very complicated, there are many special

cases to be checked, corresponding to the scenarios in which q−1r
n (or its

counterpart in the gcd(q, n) = 2 case) is well-approximated by a fraction of
denominator ≤ 3. The proofs of the special cases, which make up §8, tend
to use the same few ideas, but the approach and the resulting bound are
slightly different each time, so that it does not seem possible to condense
the proofs in any useful way.

Using the bounds obtained in §§7–8 and known bounds on the Jacobsthal
function (which we will introduce in Definition 7.3), together with a com-
puter experiment that greatly decreased the size of the search space, we were
able to reduce the proof of Theorem 4.1 to an easy computer calculation.
(It will suffice to check all triples with n ≤ 10000.) The details of this are
contained in §9.

5. Observations about the case gcd(q, n) > 1

We start with a new characterization of Sp and Sq (really, of Sx for any
x < n

2 ). Thinking of multiples of x (mod n) “jumping along” the number
line from 0 to n, the first two jumps starting when Sx passes 0 are in the
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“target zone” [0, 2x), and then the jumps leave the target zone until they
reach n again. Translating this into a formula, we have the following:

Observation 5.1. If x < n
2 ,

Sx =

{⌈
nm

x

⌉
,

⌈
nm

x

⌉
+ 1 : 0 ≤ m < x

}
(where as usual, dre is the smallest integer ≥ r).

This description will be most useful in §6, but we have introduced it now
because of the following corollary:

Corollary 5.2. If x divides y and y < n
2 , then Sx ⊂ Sy. In particular,

Sgcd(q,n) ⊂ Sq, and if gcd(p, q) > 1, then Sp ∩ Sq ⊃ Sgcd(p,q) contains the

usable unit gcd(p, q)−1 (which exists since gcd(p, q, n) = 1).

This corollary is useful for the following lemma.

Lemma 5.3. Suppose l > 2 is a prime factor of q and n, and r > 2n
3 . Then

Sl ∩ Sr (and hence Sq ∩ Sn) contains a usable unit. (The same holds when
q is replaced everywhere by p.)

Proof. As l divides n,

Sl =

{
kn

l
,
kn

l
+ 1 : 0 ≤ k < l

}
where everything of the form kn

l is definitely not a unit. Now, if l2 divides

n, every kn
l + 1 is a unit mod n, and if not, then kn

l + 1 is a unit except

when k = −(nl )
−1 mod l. (This follows from the Chinese remainder theorem

and the fact that kn
l + 1 ≡ 1 modulo every prime divisor of n except for

possibly l.) Of course, k = 0 gives the unit 1, which is non-usable, but as we
stipulated l > 2, none of these are n

2 +1, so every element of {knl +1} except 1
and potentially one other element is a usable unit. Now, as gcd(q, r, n) = 1,

we have gcd(r, l) = 1, so for each j, there is some k so that kn
l r ≡

jn
l .

Now, as

kn

l
+ 1 ∈ Sr ⇐⇒

[
jn

l
+ r

]
n

∈ [0, 2r − n) ⇐⇒ jn

l
∈ [n− r, r) ⊃

[
n

3
,
2n

3

]
any j ∈ Z/l with j

l ∈ [13 ,
2
3 ] corresponds to some element kn

l +1 ∈ Sl∩Sr. As

1 /∈ Sr and there is only potentially one non-unit of the form kn
l + 1, if there

are two j such that jn
l ∈ [n3 ,

2n
3 ], at least one of them must correspond to a

usable unit in Sl ∩ Sr. But this condition is clearly satisfied for l ≥ 3. �

The previous lemma can be applied in all cases where gcd(q, n) has a
prime factor other than 2. In the following two lemmas we will basically
deal with the case when gcd(q, n) is a power of two ≥ 4, although we will
revisit this case the next two sections.
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Lemma 5.4. Suppose gcd(q, n) = 2m for some m ≥ 3, q > 8, and r > 2n
3 .

Then Sq ∩ Sr contains a usable unit. Similarly, if gcd(q, n) = 4, q > 4, and
either r ≥ 3n

4 or 8 divides n, then Sq ∩Sr contains a usable unit. Similarly,

if gcd(q, n) = 2, q > 2, r ≥ 3n
4 , and 4 divides n, then Sq ∩ Sr contains a

usable unit.

Proof. For the first part of the assertion: we write q = 2mb, n = 2mc, with
gcd(b, c) = 1. We let d = b−1 ∈ Z/c. Then 1 < d < c = 2−mn, and
gcd(d, c) = 1 implies that d is coprime to all factors of n except possibly 2.
We let e = d if d is odd and e = d+2−mn otherwise; then 1 < e < 2−m+1n is
a unit mod n. (We have that e is coprime to all factors of n except possibly
2. If d is odd, then d = e is coprime also to 2, therefore to n. On the other
hand, if d is even, then c = 2−mn must be odd, so d+ 2−mn is odd and still
coprime to 2−mn.) Furthermore, the set {e+ kn

4 } consists of units mod n, as
n
4 and n have the same prime divisors. And as 1 < e < n

4 , this set consists of

usable units. Then, as gcd(q, r, n) = 1, r is odd, so {(e+ kn
4 )r} = {er + ln

4 }
has some element in [0, n4 ) ⊂ [0, 2r−n). This means that at least one of the

elements of {e+ kn
4 } is a usable unit in Sq ∩ Sr.

For the assertion about gcd(q, n) = 4 and r ≥ 3n
4 and the assertion about

gcd(q, n) = 2, the proof is the same, except that we consider the set {e+ kn
2 },

and [0, n2 ) ⊂ [0, 2r−n). (In the case gcd(q, n) = 2, d is odd because 4 divides
n, so c is even.) For the assertion about gcd(q, n) = 4 and 8 divides n, d
must be odd, and we consider the set {d+ kn

4 }. �

Lemma 5.5. Suppose gcd(q, n) = 4 and neither of the two conditions in
the previous lemma are satisfied (i.e., 8 does not divide n and 2n

3 < r ≤ 3n
4 ),

and suppose q > 16. Then Sq ∩ Sr contains a usable unit.

Proof. As before, we write q = 4b, n = 4c, with gcd(b, c) = 1 and c odd. We
let d = b−1 ∈ (Z/c)×; then letting y = d if d is odd and y = d+ n

4 otherwise,
we have that y, y + n

2 ∈ (Z/n)× by the Chinese remainder theorem. (These
are coprime to c, therefore to all prime divisors of n but 2, and we choose y
to be odd.) For the same reason,{

y, y +
n

2
, 2y +

n

4
, 2y +

3n

4
, 4y +

n

4
, 4y +

3n

4

}
are all units mod n. (Recall that c is odd, so 2y, 4y ∈ (Z/c)×.) Furthermore,
if q > 16, these are all usable units, as unusable units are ≡ 1 mod c, but
b > 4 is the smallest multiple of y such that by ≡ 1 mod c.

We will see that one of these must be in Sr: First of all, as r is odd, we
have y(r+ n

2 ) ≡ yr+ n
2 , and if neither of these is in [0, 2r−n) ⊃ [0, n3 ], we can

assume yr ∈ (n3 ,
n
2 ). (Otherwise we switch y and y+ n

2 .) Then 2yr ∈ (2n3 , n),

and as r is odd, {n4 r,
3n
4 r} = {n4 ,

3n
4 }. Assuming without loss of generality

that n
4 r ≡

n
4 , yr ∈ (n3 ,

n
2 ) implies (2y + n

4 )r ∈ (11n12 ,
n
4 ). (Otherwise we

would pick 2y + 3n
4 .) Then 2y + n

4 /∈ Sr would imply (2y + n
4 )r ∈ (11n12 , n),

i.e., 2y ∈ (2n3 ,
3n
4 ). Repeating this argument, we assume without loss of
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generality that 3n
4 r ≡

3n
4 , and then 2y ∈ (2n3 ,

3n
4 ) implies (4y+ 3n

4 )r ∈ ( n12 ,
n
4 ),

which is within our target zone. So if the first four units listed above are not
in Sr, then one of the last two is, and this one is a usable unit in Sq∩Sr. �

We will end with a proposition about the case gcd(q, n) = 2, whose strat-
egy is similar to that of the previous proposition.

Proposition 5.6. If gcd(q, n) = 2, 4 does not divide n, and there is some
m ∈ N such that q > 2m and r ≥ 3n

4 + n
2m+2 , then Sq ∩ Sr contains a usable

unit.

Proof. As before, we write q = 2b, n = 2c, with gcd(b, c) = 1 and c odd. Let
d = b−1 ∈ Z/c and y := d if d is odd and y := d+ n

2 otherwise. As c is odd,

2ky + n
2 is a unit mod n (k ∈ N), and is in Sq if q > 2k.

First of all, if yr ≤ n
2 , then y ∈ Sq ∩ Sr is the needed unit. (There is no

issue of usability here, as n
2 + 1 is not a unit, and 1 /∈ Sr.) If this fails, we

see if (2y+ n
2 )r ≤ n

2 . If these both fail, we have that yr > n
2 , and as n

2 r ≡
n
2 ,

we have 2yr < n
2 ; combining these two, we must have yr ∈ (n2 ,

3n
4 ). We

continue to 4y+ n
2 ; if this is not in Sr, we have 4yr < n

2 , and combined with

the previous conditions, we get yr ∈ (n2 ,
5n
8 ), etc. So continuing this process

to 2m(< q), we get that either there is some l ≤ m with (2ly + n
2 )r ≤ n

2

and so 2ly + n
2 is a usable unit in Sq ∩ Sr, or yr ∈ (n2 ,

(2m+1)n
2m+1 ). Then if

r ≥ 3n
4 + n

2m+2 , yr < 2r − n and so y is a usable unit in Sq ∩ Sr. �

6. The case q ≤
√
n
2

In the first part of this section, we prove that Sp ∩ (Sq ∪ Sr) contains a

usable unit if Sp does (in the case q ≤
√
n
2 ). We recall from Proposition

3.5 that Sp almost always contains a usable unit; however, there can be
problems when p = 1, 2, 4, and these are dealt with in the second part of
this section.

Lemma 6.1. If Sp contains a usable unit and q ≤
√
n
2 , Sp ∩ Sr or Sp ∩ Sq

contains a usable unit.

Proof. First of all, we can assume gcd(p, q) = 1, as otherwise Sp∩Sq contains
the usable unit gcd(p, q)−1 (see Corollary 5.2).

Suppose we have a ∈ Sp \ Sr. Then we have 0 ≤ [ap]n < 2p and

n > [ar]n ≥ [2r]n = n− 2p− 2q

Now, as p+ q + r = n, [x]n < n, and [ar]n > 0, we have

[ap]n + [aq]n + [ar]n = n or 2n

In the first case,

[ap]n ≥ 0, [ar]n ≥ n− 2p− 2q =⇒ [aq]n ≤ 2p+ 2q

So either [aq]n < 2q, in which case a ∈ Sq, or 2q ≤ [aq]n ≤ 2p + 2q < 4q.
(We assumed gcd(p, q) = 1, so p < q.) Then a− 2 ∈ Sq.
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In the second case,

[ap]n < 2p, [ar]n < n =⇒ [aq]n ≥ n− 2p+ 2 =⇒ a+ 2 ∈ Sq
So we conclude that a ∈ Sp \ Sr implies that one of a, a± 2 ∈ Sq.

Recalling the description of Sp and Sq in Observation 5.1, if there are
elements of Sp and Sq within distance 2 of each other, then there must be
integers 0 ≤ b < p, 0 ≤ c < q such that∣∣∣∣⌈nbp

⌉
(+1)−

(⌈
nc

q

⌉
(+1)

)∣∣∣∣ ≤ 2 =⇒ |bq − cp| < 4
pq

n

If q ≤
√
n
2 , then 4pqn ≤ 1, so as b, c, p, q are integers, the only way this can

happen is if bq = cp, and as we assumed gcd(p, q) = 1, this only can happen
for b = c = 0. So the only elements of Sp and Sq within distance 2 of each
other are 0, 1(∈ Sp ∩ Sq). Then by the previous paragraph, all elements of
Sp other than {0, 1} must be in Sr. So if Sp contains a usable unit, this
usable unit is in Sp ∩ Sr. �

Proposition 6.2. If Sp does not contain a usable unit and q ≤
√
n
2 and

r > 2n
3 and n ≥ 30, then either (p, q, r) belongs to one of families 1, 2, 3 in

Theorem 4.1 (in which case the [MW] criterion is not satisfied) or Sq ∩ Sr
contains a unit.

Proof. We recall from Proposition 3.5 that Sp does not contain usable units
exactly when: p = 1; p = 2 and n is even; or p = 4 and n ≡ 4 mod 8.

We will start by considering the case gcd(q, n) = 1 and q > 1. We write
[q−1]n = kn

p +m for some 0 ≤ k < p and 0 ≤ m < n
p . (In all of these cases,

note that p divides n.) Letting l = [kq]p, we have kn
p q ≡

ln
p mod n, and we

claim that m > n
pq , as otherwise mq < n

p (equality not being possible since

gcd(q, n) = 1) and so, if l > 0,

n ≥ (l + 1)n

p
>
ln

p
+mq >

ln

p
> 1 =⇒

[(
kn

p
+m

)
q

]
n

6= 1

and if l = 0, then [mq]n = mq > 1.
Now,

q−1r ≡ q−1(−p− q) ≡ −p
(
kn

p
+m

)
− 1 ≡ −mp− 1

We claim [q−1r]n = n − mp − 1: first of all, m < n
p , so mp < n, and if

p > 1, then mp+ 1 < n also, as n is also a multiple of p. On the other hand,
if p = 1, then m + 1 < n unless q−1 = m = n − 1, but this would imply

q = n− 1 > n
2 . Now, using that q ≤

√
n
2 ,

mp+ 1 >
n

q
+ 1 ≥ 4q + 1 > 2p+ 2q =⇒ [q−1r]n < [2r]n,

so q−1 ∈ Sq ∩ Sr is a usable unit.
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At this point, we just need to put together what we have already proved.
If p = 2, 4, then the above gives a proof for gcd(q, n) = 1 (automatically
q > 1), and as gcd(p, q, n) = 1, the only other option is that gcd(q, n) > 1
has some prime factor other than 2, in which case Lemma 5.3 applies. So
the only case to consider is p = 1. If gcd(q, n) = 1 and q > 1, then we use
the above; if q = 1, then this is family 1 in Theorem 4.1. If gcd(q, n) > 1
is not a power of two, then Lemma 5.3 applies, and if gcd(q, n) is a power
of two ≥ 16, then Lemma 5.4 applies. So it remains to consider the cases
gcd(q, n) = 2, 4, 8 (and p = 1).

• gcd(q, n) = 2:
– q = 2: This is family 2 in Theorem 4.1.

– q > 2 and 4 divides n: r ≥ n −
√
n
2 − 1 > 3n

4 for n ≥ 11, so by
Lemma 5.4, Sq ∩ Sr contains a usable unit.

– q > 2 and 4 does not divide n: r ≥ n−
√
n
2 − 1 > 7n

8 for n ≥ 30,
so by Proposition 5.6 (applied with m = 1), Sq ∩ Sr contains a
usable unit.

• gcd(q, n) = 4:
– q = 4 and 8 does not divide n: This is family 3 in Theorem 4.1.
– q = 4 and 8 does divide n: One of n

4 + 1, 3n4 + 1 is a usable unit

in Sq ∩ Sr if r ≥ 3n
4 (which is true, by the above, for n ≥ 11).

– q > 4: r > 3n
4 for n ≥ 11, so by Lemma 5.4, Sq ∩ Sr contains a

usable unit.
• gcd(q, n) = 8:

– q = 8: One of n
4 + 1, 3n4 + 1 is a usable unit in Sq ∩ Sr if r ≥ 3n

4
(in particular, for n ≥ 11).

– q > 8: By Lemma 5.4, Sq ∩ Sr contains a usable unit.

�

At this point, it might be worth noting in families 1–3 in Theorem 4.1,
Sp and Sq both do not contain usable units, by Proposition 3.5, so that the
[MW] criterion is definitely not satisfied. (Indeed, families 1 and 2 are the
known families of lattice triangles.)

7. The case q >
√
n
2 , part 1

The main technique in this case is a rational approximation argument,
which will be started at the end of this section and finished in §8. We will
begin by eliminating the cases in which this argument cannot be used. (This
includes the case gcd(q, n) > 2, where we recall results from §5, as well as
the case r = 3q + p, which turns out to be problematic.) The second half
of this section introduces the number theoretic background necessary for
the argument (in particular, the Jacobsthal function) and deals with the
cases in which the rational approximation has denominator > 3; when the
denominator is ≤ 3, one needs to use a slightly different strategy (depending
on fairly fine case distinctions), which will be the topic of §8.
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Lemma 7.1. Suppose q >
√
n
2 , r > 2n

3 , gcd(q, n) > 2, and n ≥ 1024. Then
Sq ∩ Sr contains a usable unit.

Proof. If gcd(q, n) is not a power of two, then this follows by Lemma 5.3.
If gcd(q, n) is a power of two ≥ 8 and n ≥ 256, then q > 8, so this follows
by Lemma 5.4. If gcd(q, n) = 4, then n ≥ 1024 implies q > 16, so one of
Lemma 5.4 or Lemma 5.5 applies. �

Proposition 7.2. If r = 3q + p, then the [MW] criterion is applicable iff
p 6= 1, 2, 4.

Proof. First of all, as gcd(p, q, r) = 1, we must have gcd(p, q) = 1, and then
since n = 4q + 2p, we must have gcd(p, n) = 1, 2, 4.

We write p = ab, n = ac, with gcd(b, c) = 1. Let d = b−1 ∈ (Z/c)× if b−1

is odd, and d = b−1 + c otherwise. Then d ∈ (Z/n)× is a usable unit if b 6= 1
(i.e., p 6= a), and

0 ≡ dn = d(4q + 2p) =⇒ 4dq ≡ −2a

Then [dq]n = kn
4 −

a
2 for some k = 1, 2, 3, 4, and dr ≡ 3kn

4 −
a
2 mod n. If

k = 1, dq < n
4 < 2q, so d ∈ Sp ∩ Sq. If k = 3, dr = n

4 −
a
2 < 2q = [2r]n, so

d ∈ Sp ∩ Sr. We claim that k 6= 2, 4: if a = 1, then as n is even, k = 2, 4
would imply dq has nonzero fractional part; if a = 2, then k = 2, 4 would
imply dq ≡ −1 mod n

2 , which, given that q < n
2 , implies q = n

2 −
p
2 , which

is impossible since q = n
4 −

p
2 ; and if a = 4, k = 2, 4 would imply dq is even,

but d, q are odd.
So we have shown that if p 6= a = 1, 2, 4, then there is a usable unit in

Sp ∩Sq or Sp ∩Sr. It remains to see what happens if p = 1, 2, 4. First of all,
as n = 4q + 2p (with q odd if p is even), these are exactly the cases where
Sp does not contain a usable unit, by Proposition 3.5. So one it suffices to
check that Sq ∩ Sr does not contain a usable unit. And as n = 4q + 2p and
gcd(p, q) = 1, we must have gcd(q, n) = 1, 2.

If gcd(q, n) = 1, then

0 ≡ q−1(4q + 2p) = 4 + 2q−1p =⇒ q−1p ≡ −2 mod
n

2

In particular, q−1r ≡ 3 + q−1p ≡ 1 mod n
2 , and as q 6= r, this must mean

q−1r = n
2 + 1, so for k < n

2 , we have

[kq−1r]n =

{
k k even
n
2 + k k odd

and as [2r]n = 2q < 2q + p = n
2 and Sq = {kq−1 : 0 ≤ k < 2q}, Sq ∩ Sr

consists entirely of even numbers, i.e., does not contain a unit.
Similarly, if gcd(q, n) = 2, then writing q = 2b, n = 2c, d = b−1 ∈ (Z/c)×

if b−1 is odd and b−1 + n
2 otherwise, we have

Sq = {kd+
ln

2
: 0 ≤ k < q, 0 ≤ l < 2}
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and

dr = d
(n

2
+ q
)
≡ n

2
+ 2

(as d is odd). Then, as r also is odd, for k < q < n
4 ,

[(kd+
ln

2
)r]n =

{
2k k + l ≡ 0 mod 2

2k + n
2 k + l ≡ 1 mod 2

so [2r]n = 2q < n
2 implies that Sq ∩ Sr can only have elements kd+ ln

2 with
k + l even. But as p is odd, n

2 = 2q + p is odd, and d is odd, so this means
Sq ∩ Sr consists entirely of even numbers and therefore does not contain a
unit. �

So we have established that families 4–6 in Theorem 4.1 are indeed families
for which the [MW] condition is not satisfied. Now, before stating the next
lemma, we must introduce a new function:

Definition 7.3. The Jacobsthal function j(n) is defined to be the smallest
integer m such that any sequence of m consecutive integers must contain a
number coprime to n.

This function was introduced in [Ja] and will be our main tool to prove
the existence of units in Sq ∩ Sr. We will need a few facts about j(n) first.

Definition 7.4. We will call an arithmetic progression {a + xb : x ∈ Z}
mod n a “good” progression if gcd(a, b, n) = 1. (The gcd condition exactly
ensures that a sequence of j(n) consecutive terms includes a number coprime
to n.)

Our goal will be to find an arithmetic progression of length j(n) in Sq∩Sr,
provided that n is sufficiently large. For the purposes of the following lemma,
it will suffice to establish a preliminary bound on j(n), though we will need
somewhat more in §9.

Fact 7.5. [Ka, Satz 4] Let ω(n) be the number of distinct prime factors of
n. Then

j(n) ≤ 2ω(n)

Fact 7.6. [Ro, Théorème 11] For n ≥ 3,

ω(n) ≤ 1.3841
lnn

ln lnn

Remark 7.7. For the purposes of the next lemma, we will establish a bound
of the form j(n) < cn for n > 10000: Combining Facts 7.5 and 7.6,

j(n) ≤ 2ω(n) < eln 2×1.39 lnn/ ln lnn < e.97 lnn/ ln lnn

The function f(x) = x
.97

ln ln x
−1 has negative derivative for x > e, so for

n > 10000 we have

j(n)/n < f(n) < f(10000) < .006
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Lemma 7.8. Suppose gcd(q, n) = 1, 2, q >
√
n
2 , r > 2n

3 , and n > 10000. If

24j(n)2 <
√
n, then one of the intersections Sp∩Sq, Sp∩Sr, Sq∩Sr contains

a usable unit unless p = 1, 2, 4 and r = 3q + p (see Proposition 7.2).

Proof. If gcd(q, n) = 1, recall Sq = {kq−1 : 0 ≤ k < 2q}. We note that
Sq ∩ Sr does not contain unusable units, because 1 /∈ Sr, and if n

2 + 1 is a
unit, n is even, so q is odd, and then [(n2 +1)q]n = n

2 +q > 2q, so n
2 +1 /∈ Sq.

If gcd(q, n) = 2, as usual, we write q = 2b, n = 2c and let d = b−1 ∈ Z/c.
We can choose z = d or d+ n

2 such that z is a unit and such that the subset
S′q := {kz : 0 ≤ k < q} ⊂ Sq contains no unusable unit but 1. (If c is odd,
then n

2 + 1 is not a unit, so we choose z to be whichever one of these is odd.

If c is even, d and d+ n
2 are both units, and we choose the one which is b−1

mod n.) Then S′q ∩ Sr does not contain unusable units.

We let x = [q−1r]n/n or [zr]n/n, depending on whether gcd(q, n) = 1 or

2. By hypothesis, we can choose some N ∈ (12j(n),
√
n

2j(n)). Then Dirichlet’s

approximation theorem states that there are relatively prime integers α, β
with 1 ≤ β ≤ N such that ∣∣∣∣x− α

β

∣∣∣∣ < 1

βN

Suppose there is some γ ∈ (Z/β)× with {γαβ } ∈ [19 ,
2
9 ]. Then, for k < j(n),∣∣∣∣(γ + kβ)

(
x− α

β

)∣∣∣∣ < (γ + kβ)
1

βN
<
j(n)

N
<

1

12

So (γ + kβ)q−1r or (γ + kβ)zr is within n
12 of γα

β n ∈ [n9 ,
2
9 ], and hence in

[0, n3 ] ⊂ [0, 2r − n). This means that

{(γ + kβ)q−1 : 0 ≤ k ≤ j(n)− 1} ⊂ Sr
(or the same when q−1 is replaced by z). And, for k < j(n),

γ + kβ < j(n)N <

√
n

2
< q =⇒ {(γ + kβ)q−1 : 0 ≤ k ≤ j(n)− 1} ⊂ Sq

(or the same for z and S′q). Then Sq ∩ Sr or S′q ∩ Sr contains a good
progression of length j(n), and hence a usable unit.

The question is now if such a γ exists. If β > 10000, Remark 7.7 implies
that there is an element δ of (Z/β)× in [β9 ,

2β
9 ], so α−1δ is such a γ. For

β ∈ [4, 10000], a computer search reveals that the only values of β for which
this is not the case are β = 4, 10, 18, 30. For β = 4, we take γ = α−1, so
we are “aiming for” 1

4 and are permitted an error < 1
12 ; for β = 10, we

take γ = α−1 if x > α
β , allowing an error of < 7

30 , and γ = 3α−1 if x ≤ α
β ,

allowing an error of < 3
10 ; for β = 18 we take γ = α−1 or 5α−1 (for x > α

β

or x ≤ α
β , resp.) and are allowed an error of < 5

18 ; and for β = 30, γ = α−1

or 7α−1, allowing an error of < 7
30 . So the bound 12j(n) < N is sufficient,

as this gives an accumulated error < j(n)
N < 1

12 .
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For β ≤ 3, it is clearly impossible to aim for a unit in (0, 13), so we will
need a slightly more sophisticated method of choosing a good progression
in Sq ∩ Sr. It is for that reason that we separately treat each case x ≤ α

β or

x > α
β for each α ≤ β ≤ 3 in §8. �

8. The case q >
√
n
2 , part 2

What follows is a list of propositions explaining what happens when x
is over- or under-approximated by a given fraction of denominator ≤ 3.
The proof strategies are very similar in each proposition: there is a certain
balancing act involved, as one identifies a good arithmetic progression of
length ≥ j(n) which is in Sr because sufficient error has built up that x is
very far from its approximation, but on the other hand, one is not allowed to
wait too long for the error to build up, as multiples of q−1/z may no longer
be in Sq. As each case is somewhat different in terms of minimal size of error,
needed amount of built-up error, size of q, and resulting necessary bounds
on n, it has not been possible to condense these in any useful way. (To be
clear, each proposition is a proof of Lemma 7.8 in the case described in the
statement of the proposition.) The bounds obtained in these propositions
will also be used in §9 to determine what needs to be checked by computer,
as this is where the reduction algorithm described there is least useful. (We
do not claim that these bounds are optimal, as they are not, but they will
be sufficient to reduce the needed computation to checking only triples with
n ≤ 10000.)

Proposition 8.1. The case α = 0 and the case α = 1, β = 3, x ≤ α
β .

Proof. As r > 2n
3 , [0, n3 ] ⊂ [0, 2r − n), so in any of these cases q−1/z is a

usable unit in Sq ∩ Sr. �

Proposition 8.2. The case α = 1, β = 3, x > α
β . In this case, we use that

j(n) < n
216 .

Proof. We write q−1r/zr = n
3 +m, with 0 < m < n

3N . First of all, if r ≥ 3n
4 ,

2r − n ≥ n
2 > x, so q−1/z is a usable unit in Sq ∩ Sr, so we may assume

r < 3n
4 . And if gcd(3, n) = 1, then 3q−1/3z is a usable unit in Sq ∩ Sr, so

we may assume m ∈ Z. Also, in this case, r > 2n
3 implies 2r − n ≥ n

3 + 2,

so if m = 1, then q−1/z ∈ Sq ∩ Sr. We therefore assume m ≥ 2 ∈ Z. At
this point, it will be convenient to consider the gcd(q, n) = 1 and 2 cases
separately.

In the gcd(q, n) = 1 case, m ≥ 2, r < 3n
4 , and

(2q − 3j(n))m > 2
(n

4
− 3j(n)

)
>
n

3

when 6j(n) < n
6 . Then, if we let l be the smallest positive integer such

that (2 + 3l)m > n
3 , we must have 2 + 3l ≤ 2q − 3j(n) + 2. Furthermore,
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3j(n)m < j(n)
N n < n

3 , and so

{(2 + 3k)q−1 : l ≤ k ≤ l + j(n)− 1} ⊂ Sq ∩ Sr

as [(2 + 3k)q−1r]n = [2n3 + (2 + 3k)m]n ∈ [0, n3 ) and 2 + 3k < 2q for k in this
range. So Sq ∩ Sr contains a good progression of length j(n), and therefore
a usable unit. (This is the prototype for the arguments that will be used
throughout this section.)

In the gcd(q, n) = 2 case, we will need to deal with the case m = 2
separately before applying an argument as above. In this case,

zr ≡ n

3
+ 2 =⇒ 2r ≡ qn

3
+ 2q =⇒ 2r ≡ 2qmod

n

3
=⇒ r ≡ qmod

n

6

Assuming 2n
3 < r < 3n

4 (so also n
8 < q < n

3 ), this can only happen if
r = n

2 + q, which we recognize as the case r = 3q+ p, which is dealt with in
Proposition 7.2. So we may assume m ≥ 3. Then

(q − 3j(n))m ≥ 3
(n

8
− 3j(n)

)
>
n

3

when 9j(n) < n
24 . Then by the same argument as before, S′q ∩ Sr contains

a good progression of the form (2 + 3k)q−1 of length j(n), and therefore a
usable unit.

�

Proposition 8.3. The case α = 1, β = 2, x ≤ α
β . In this case, we use

j(n) < n
24 .

Proof. As before, we write q−1r/zr = n
2 −m with 0 ≤ m < n

2N . If r > 3n
4 ,

then q−1/z ∈ Sq∩Sr is a usable unit, so we may assume r ≤ 3n
4 . To establish

a lower bound on m, we again split into cases based on gcd(q, n).
If gcd(q, n) = 1, then r 6= n

2 implies that m 6= 0. Also m 6= 1
2 , as otherwise

we would have 2q−1r ≡ −1 and 2r−n = n− q 6= n−2p−2q. Now we apply
the same argument as before:

(2q − 2j(n))m ≥ n

4
− 2j(n) >

n

6

for 2j(n) < n
12 , so if l is the smallest positive integer so that (1 + 2l)m > n

6 ,

we have that 1 + 2l ≤ 2q − 2j(n) + 1. Then 2j(n)m < j(n)
N n < n

3 , so as
before,

{(1 + 2k)q−1 : l ≤ k ≤ l + j(n)− 1} ⊂ Sq ∩ Sr
gives a good progression of length j(n).

If gcd(q, n) = 2, recall that z ≡ ( q2)−1 mod n
2 , so zr ≡ −m mod n

2

implies r ≡ −m q
2 mod n

2 . Given that r ∈ (2n3 , n − q) and q ∈ (0, n3 ), we

can immediately rule out m ≤ 2. If m = 3, we must have r = n − 3
2q, so

p = q
2 , and then by Proposition 3.5, Sp = Sp ∩ Sq must contain a usable

unit. Similarly, if m = 4, then we must have r = n−2q, i.e., p = q, violating
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the condition gcd(p, q, n) = 1. So it suffices to consider the case m ≥ 5. In
this case

(q − 2j(n))m ≥ 5
(n

8
− 2j(n)

)
>
n

6

as long as 10j(n) < 11n
24 , so by the same argument as in the previous para-

graph, S′q ∩ Sr contains a good progression of the form (1 + 2k)z of length
j(n), and therefore a usable unit. �

Proposition 8.4. The case α = 1, β = 2, x > α
β . In this case, we use

j(n) < n
60 .

Proof. We have q−1r/zr = n
2 + m, 0 < m < n

2N . If r ≥ 4n
5 , then q−1/z ∈

Sq ∩ Sr is a usable unit, so we may assume r < 4n
5 . Also, if n is odd,

2q−1 ∈ Sq ∩ Sr is a usable unit, so we may assume n is even, and so m ∈ Z.
As usual, we break into cases at this point.

Suppose gcd(q, n) = 1. Then q−1r = n
2 + 1 implies r = 3q + p, which is

covered by Proposition 7.2. The case m = 2 will require more work: first of
all, this implies n = 6q+ 2p, r = 5q+ p, so 2r−n > n

2 + 2 and q−1 ∈ Sq ∩Sr
unless q ≤ p+ 2.

• q = p: Sp = Sp ∩ Sq contains a usable unit by Proposition 3.5.
• q = p+1: n = 8p+6, and q is odd, so p must be even. If 3 divides p,

then gcd(p, n) = 6, and so Sp ∩ Sr contains a usable unit by Lemma
5.3. Otherwise, we have gcd(p, n) = 2. We write p = 2a, n = 2c and
choose d to be coprime to n and ≡ a−1 mod c. Then

d(4p+ 3) ≡ 0 mod
n

2
=⇒ d = −8

3
+
kn

6

for some k = 1, . . . , 6. As d is an integer, we rule out k = 3, 6 (since
then d would have fractional part 1

3), and as d is odd, we additionally

rule out k = 2, 4 (since then n−8
3 , 2n−83 are even if they are integers).

If k = 1,

dq = d(p+ 1) ≡ 2 + d =
n

6
− 2

3
< 2q =⇒ d ∈ Sp ∩ Sq.

And if k = 5,

dr = d(6p+ 5) ≡ 12 + 5d ≡ n

6
− 4

3
< 2r − n =⇒ d ∈ Sp ∩ Sr.

So one of Sp ∩ Sq and Sp ∩ Sr contains the usable unit d.
• q = p + 2: This case is very similar to the previous one, but now
n = 8p+12 and p is odd, so if 3 divides p, gcd(p, n) = 3, and Sp∩Sr
contains a usable unit by Lemma 5.3. Otherwise gcd(p, n) = 1, and
p−1(8p+12) ≡ 0 mod n implies p−1 = −2

3+kn
12 for some k = 1, . . . , 12.

As p−1 must be an odd integer, k cannot be divisible by 2 or 3, so
the possible values of k are 1, 5, 7, 11. If k = 1, 7,

p−1q = p−1(p+ 2) ≡ n

6
− 1

3
< 2q =⇒ p−1 ∈ Sp ∩ Sq.
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If k = 5, 11,

p−1r = p−1(6p+ 10) ≡ n

6
− 2

3
< 2r − n =⇒ p−1 ∈ Sp ∩ Sr.

So we can assume m ≥ 3 (still in the case gcd(q, n) = 1). Now

(2q − 2j(n))m > 3
(n

5
− 2j(n)

)
>
n

2

if 6j(n) < n
10 . By the usual argument, we have a good sequence of the form

(1 + 2k)q−1 of length j(n) in Sq ∩ Sr and hence a usable unit.
Now suppose gcd(q, n) = 2. First of all, if n

2 is even, then z+ n
2 ∈ Sq ∩Sr

is a usable unit. On the other hand, if n
2 is odd, 2z + n

2 is also a usable

unit, as it is odd and relatively prime to n
2 (and 2 < q

2 = z−1 mod n
2 , so it

is usable), and

(2z +
n

2
)r ≡ 2zr +

n

2
≡ 2m <

n

N
<
n

3
so 2z + n

2 ∈ Sq ∩ Sr is a usable unit. �

Proposition 8.5. The case α = 2, β = 3, x ≤ α
β . In this case, we use

j(n) <
√
n
6 .

Proof. As usual, we write q−1r/zr = 2n
3 −m for some 0 ≤ m < n

3N . In this
case, we will show

{(2 + 3k)q−1/z : 0 ≤ k ≤ j(n)− 1} ⊂ Sq ∩ Sr.

As 3j(n) <
√
n
2 < q, this is in Sq. And (2 + 3k)q−1r/zr ≡ n

3 − (2 + 3k)m,
so for these to be in Sr, it suffices that 3j(n)m < n

3 . So we have a good
progression of length j(n) in Sq ∩ Sr. �

Proposition 8.6. The case α = 2, β = 3, x > 2
3 . In this case, we use

j(n) <
√
n
6 and j(n) < n

24 .

Proof. We write q−1r/zr = 2n
3 + m for some 0 < m < n

3N . If 3 does not

divide n, then 3q−1/3z is a usable unit in Sq∩Sr, so we can assume 3 divides
n, and so m ∈ Z. We start with gcd(q, n) = 1, splitting into cases based on
the size of r.

If r ≥ 17n
24 , we will show that {(2 + 3k)q−1/z : 0 ≤ k ≤ j(n) − 1} is in

Sq ∩ Sr. For Sq, it suffices that 3j(n) < q. For Sr, we have

(2 + 3k)q−1r/zr ≡ n

3
+ (2 + 3k)m <

n

3
+ 3j(n)m <

5n

12
≤ 2r − n

as N > 12j(n). So Sq ∩ Sr has a good progression of length j(n).
If r < 17n

24 (and so q > 7n
48 ), we split into cases based on gcd(q, n). If

gcd(q, n) = 1, m = 1 implies r ≡ q mod n
3 , and q < n

3 implies r = 2n
3 + q =

5q + 2p > 3n
4 , so in this case it suffices to consider m ≥ 2. Then

(2q − 3j(n))m > 2

(
7n

24
− 3j(n)

)
>
n

3
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if 6j(n) < n
4 , and 3j(n)m < n

3 , so by the usual argument, there is a good

progression of the form (1 + 3k)q−1 of length j(n) in Sq ∩ Sr.
Now, suppose gcd(q, n) = 2. If n

2 is even, z + n
2 is also a usable unit in

Sq, which is also in Sr as

(z +
n

2
)r ≡ zr +

n

2
≡ n

6
+m <

n

6
+

n

3N
<
n

3

On the other hand, if n
2 is odd, 4z + n

2 is a usable unit in Sq, which is also
in Sr as

(4z +
n

2
)r ≡ 4zr +

n

2
≡ n

6
+ 4m <

n

6
+

4n

3N
<
n

3
(since N > 12j(n) ≥ 24). �

Proposition 8.7. The case α = β. In this case, we use j(n) < 3
√
n

14 .

Proof. We write q−1r/zr = n−m for some 0 < m < n
N .

Suppose gcd(q, n) = 1. Then p + q ≡ mq, so m = 1 is impossible, and
m = 2 implies p = q, so Sq = Sp∩Sq contains the usable unit q−1. Similarly,
m = 3 is impossible, as p+ q ≤ 2q < 3q < n. So we have

(2q − j(n))m ≥ 4(2q − j(n)) > 4q ≥ 2p+ 2q

if j(n) < q. Then if l is the smallest positive integer such that [lq−1r]n <
[2r]n = n− 2p− 2q, we have l ≤ 2q − j(n), and j(n)m < n

3 , so by the usual

argument there is a good progression {kq−1 : l ≤ k ≤ l+j(n)−1} ⊂ Sq∩Sr.
Suppose gcd(q, n) = 2. Then zr is odd, so m must be odd. By the

same argument as in the proof of Proposition 8.3, we must have m ≥ 5.
Furthermore m 6= 5, as this would imply p ≡ 3q

2 mod n
2 , but p ≤ q and

q < n
3 make this impossible. So m ≥ 7, and

(q − j(n))m ≥ 7q − 7j(n) > 4q ≥ 2p+ 2q

if 7j(n) < 3q. Then, as in the previous paragraph, there is a good progres-
sion of the form kq−1 of length j(n) in S′q ∩ Sr. �

The most restrictive bounds needed in these propositions were j(n) <
√
n
6

and j(n) < n
216 . These are certainly satisfied under the conditions of Lemma

7.8, but this information will be useful in the next section.

9. Computer verification

At this point, we have proved Theorem 4.1 up to finitely many exceptions.
We will see what remains to be checked, give a computer-assisted proof that
vastly less must actually be checked, and then present the results of the
checking. (We start with the assumption that we will check all triples with
n ≤ 10000.)

Recall that we split the proof into major cases q ≤
√
n
2 and q >

√
n
2 . When

q ≤
√
n
2 , Lemmas 6.1 and 6.2 prove the theorem for n ≥ 30. When q >

√
n
2

and gcd(q, n) > 2, Lemma 7.1 proves the theorem for n ≥ 1024, and when
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q >
√
n
2 and gcd(q, n) ≤ 2, Lemma 7.8 proves the theorem for n > 10000 and

24j(n)2 <
√
n. So the only case in which checking triples up to n = 10000

will not complete the proof is the case q >
√
n
2 , gcd(q, n) ≤ 2.

Remark 9.1. By the bounds on the Jacobsthal function introduced in §7,

j(n)2 < 41.4
lnn

ln lnn = n
1.4 ln 4
ln lnn

(which we are comparing to 1
24

√
n).

We write pm# for the product of the first m primes and ω(m) for the
number of distinct prime factors of m. Values of the function

H(n) := max
ω(m)=n

j(m)

for n ≤ 24 have been computed by Hajdu and Saradha [HS]. We will use
their computed values, along with the obvious observation that ω(n) < m for
n < pm#, to obtain bounds on j(n) for small n better than those presented
in §7. (From now on, every statement we make about the maximum value
of j(n) in some particular range can be attributed to their computations.)

Remark 9.2. For n ≥ p25# > 2.3× 1036, we have ln lnn > 4.4, and so

j(n)2 < n
1.4 ln 4
ln lnn < n2/4.4 <

1

24
n1/2.

So our bound holds for n ≥ p25#. And for n < p25#, we have ω(n) ≤ 24
and therefore j(n) ≤ 236. Then for n > 242(236)4 this bound holds, and
for n ≤ 242(236)4 we have ω(n) ≤ 11, and therefore j(n) ≤ 58. So for
n > 242(58)4 this bound holds, and for n ≤ 242(58)4 we have ω(n) ≤ 10, so
j(n) ≤ 46. Then this bound holds for n > 242(46)4, and for n ≤ 242(46)4

we have ω(n) ≤ 9, so j(n) ≤ 40. Then this bound holds for n > 242(40)4 =
1.47456×109, but the reduction process stops here, as we still have ω(n) ≤ 9.

It therefore remains to check triples with q >
√
n
2 and gcd(q, n) ≤ 2 up

to n = 1.47456 × 109. However, we will by no means check all of them
individually. Instead, we use the following strategy: First of all, if we find
some k coprime to n with k < q so that kq−1r/zr is in [0, n3 ], kq−1/kz is a
usable unit in Sq ∩Sr. As mentioned previously, any n in this range has ≤ 9
prime factors, so if one can find 10 powers of distinct primes c1, . . . , c10 < q
so that ciq

−1r/cizr ∈ [0, n3 ], then at least one of the ci must be coprime to

n, and so one of the ciq
−1/ciz must be a usable unit in Sq∩Sr. We will split

the interval from 0 to n into subintervals, the idea being to show that for
almost all of the subintervals, if q−1r/zr is in this subinterval, then there
are such c1, . . . , c10. In order to get better bounds, we will divide into cases
r > 4n

5 and 2n
3 < r ≤ 4n

5 .

In the case r > 4n
5 , recall that by Propositions 5.4 and 5.6 (the latter

being applied with m = 3), if gcd(q, n) = 2, then Sq ∩ Sr contains a usable

unit. (As q ≥
√
n
2 > 50 for n > 10000, the conditions q > 2 and q > 8
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are satisfied.) So we may assume gcd(q, n) = 1, and Sq contains multiples
of q−1 up to 2q. Now, [0, 3n5 ] ⊂ [0, 2r − n), so it suffices to use this larger

interval. We will allow prime powers up to 80 (if n ≥ 6400 and q ≥
√
n
2 ,

then 2q ≥ 80). In this case, a computer check (partitioning n into 10000
subintervals) shows that there are c1, . . . , c10 unless q−1r is in [4957n5000 , n). We
note that this is the case considered in Proposition 8.7, except that the upper
bound on m is replaced by 43n

5000 . However, the upper bound is only needed

to ensure j(n)m < 3n
5 (this being the r > 4n

5 case), and as j(n) ≤ 40 given
our bound on n, this is still satisfied. So we may apply the proposition to

say that the [MW] condition is satisfied for q−1r ∈ [4957n5000 , n) if j(n) < 3
√
n

14 .

We will prove in Remark 9.3 below that j(n) <
√
n
6 for n ≥ 10000, so the

case q−1r ∈ [4957n5000 , n) will not require any additional checking.

Now we consider the case 2n
3 < r ≤ 4n

5 . Here q ≥ n
10 ≥ 1000 in the

range being considered, but we must use the smaller target interval [0, n3 ].
Allowing prime powers up to 1000 and partitioning n into 12000 subintervals,
the computer test reveals that there are c1, . . . , c10 unless

q−1r/zr ∈
[
n

3
,
4005n

12000

)
∪
[

5997n

12000
,
6007n

12000

)
∪
[

2n

3
,
8005n

12000

)
∪
[

11991n

12000
, n

)
We see that these exactly correspond to the cases x = 1

3 +ε, 12±ε,
2
3 +ε, 1−ε

considered in §8. As in the case r > 4n
5 , the propositions of §8 apply to our

situation, as the only difference is that the upper bound on m is replaced
by the bounds given here, but as j(n) ≤ 40, the strongest upper bound on
m needed in those propositions, 3j(n)m < n

3 , is satisfied for q−1r/zr in the
ranges shown above. So we may apply the propositions of §8 to say that for

q−1r/zr in these ranges, the [MW] criterion is satisfied if j(n) <
√
n
6 ,

n
216 .

As
√
n
6 ≤

n
216 for n ≥ 1296, i.e., in the range we are considering, it suffices

to see when j(n) <
√
n
6 .

Remark 9.3. For n > 1.47456× 109, by Remark 9.2, we have j(n)2 <
√
n

24 ,

so j(n) <
√
n
6 holds. Then for n ≤ 2× 109, j(n) ≤ 40, so for n > 36(40)2 =

57600, this holds. For n ≤ 57600, we have ω(n) ≤ 6, so j(n) ≤ 22. So for
n > 36(22)2 = 17424 this holds, and for n ≤ 17424 we have ω(n) ≤ 5, and

so j(n) ≤ 14. So j(n) <
√
n
6 holds for n > 36(14)2 = 7056, and n ≤ 7056 is

in the range that we plan to check anyway.

So there is no need for additional checking in the 2n
3 < r ≤ 4n

5 case either,
i.e., it suffices to check only n ≤ 10000.

Checking all triples in this range besides those belonging to the six excep-
tional families listed in Theorem 4.1, we find the following additional triples
for which the [MW] criterion is not satisfied: (1, 4, 11), (1, 3, 16), (2, 3, 17),
(1, 4, 21), (1, 8, 19), (3, 8, 29), (2, 11, 29). This is the list which appears in
item 7 in Theorem 4.1. For a summary of known results about these fami-
lies and exceptional cases, the reader is referred to §4.
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Figure 1. “Top” cylinder

Figure 2. “Bottom” cylinder

10. The family p = 1, q = 4, r ≡ 7 mod 8

In this section, we prove that the triangles in family 3 of Theorem 4.1
do not have the lattice property (excluding Hooper’s triangle, which has
r = 7 < 8 = 2

3n). As families 1–2 are known to be families of lattice

triangles, families 4–6 have r < 3n
4 , and the exceptional triangles in item 7

have been excluded by the computer program of Rüth, Delecroix, and Eskin
[RDE], the consequence of this section will be Theorem 1.1, the classification
of rational obtuse lattice triangles with obtuse angle ≥ 3π

4 .
Our first observation is that the unfoldings of triangles in this family have

a very simple form: the unfolding is in the shape of an n-pointed star (cf.
[Wa, Figure 1]), which, by chopping off the points and reassembling them,
can be thought of as an n-gon with four n

4 -gons attached to its edges (cf.
[Ho, Figure 1]). (Each n

4 -gon is attached to every fourth edge of the n-gon.)
We easily identify the two horizontal cylinders shown in Figures 1 and 2. (In
the images, only the relevant parts of the n-gon and attaching n

4 -gons are
shown. The black dots and dashes are intended to make edge identifications
clear. The blue and red dashes indicate the center lines of the corresponding
cylinders.)

Letting α := (n−2)π
n be the interior angle of a regular n-gon of side length

1, one can calculate that the “top” cylinder has height and circumference

ht = sin(α), ct = 2− 4 cos(α) + 2 cos(2α)− 2 cos(3α)
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and the “bottom” cylinder has height and circumference

hb = − sin(2α), cb = 1− 2 cos(α) + 2 cos(2α)

Comparing the moduli,
hb
cb
/
ht
ct

= 4 cos2(α)

We note that 4 cos2(α) ∈ Q would imply cos(2α) ∈ Q, and as 2α is a rational
angle, it is a well-known fact that this would imply 2α is a multiple of π

3 or
π
2 , i.e., α must certainly be a multiple of π

12 . For the first triangle in this

family, Hooper’s triangle, we have n = 12, and 4 cos2(α) = 3, as computed

in [Ho, Equation 8]. However, for all larger n = 12 + 8x (x ≥ 1), α = (n−2)π
n

is not a multiple of π
12 , and so the ratio of the moduli is irrational. By

[Ve, Remark on p. 582], this implies that the triangles of this family with
n > 12 do not have the lattice property, and as explained at the beginning
of this section, this argument completes the classification of rational lattice
triangles with obtuse angle ≥ 3π

4 .
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[Ka] H.-J. Kanold, Über eine zahlentheoretische Funktion von Jacobsthal, Math. Ann.
170 (1967), 314–326.

[KS] R. Kenyon and J. Smillie, Billiards on rational-angled triangles, Comment. Math.
Helv. 75 (2000), 65–108.

[Mc] C. T. McMullen, Billiards and Teichmüller Curves on Hilbert Modular Surfaces, J.
Amer. Math. Soc. 16 (2003), no. 4, 857–885.

[Mc2] C. T. McMullen, Teichmüller curves in genus two: Discriminant and spin, Math.
Ann. 333 (2005), 87–130.
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[RDE] Julian Rüth, Vincent Delecroix, and Alex Eskin. (2020, August 28). flat-
surf/flatsurf: 1.0.2 (Version 1.0.2). Zenodo. http://doi.org/10.5281/zenodo.4006153

[Ve] W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an appli-
cation to triangular billiards, Invent. Math. 97 (1989), 553–583.

[Vo] Y. B. Vorobets, Flat structures and billiards in rational polygons, Uspekhi Mat.
Nauk 51 (1996), 145–146 (in Russian).



26 ANNE LARSEN, CHAYA NORTON, AND BRADLEY ZYKOSKI

[Wa] C. Ward, Calculation of Fuchsian groups associated to billiards in a rational trian-
gle, Ergod. Th. & Dynam. Sys. 18 (1998), 1019–1042.

[ZK] A. N. Zemlyakov and A. B. Katok, Topological transitivity of billiards in polygons,
Math. Notes of the USSR Acad. Sci 18:2 (1975), 291–300. (English translation in
Math. Notes 18:2 (1976), 760–764.)

Department of Mathematics, Harvard University, Cambridge, MA 02138,
USA

Email address: larsen@college.harvard.edu

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109,
USA

Email address: nchaya@umich.edu

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109,
USA

Email address: zykoskib@umich.edu


	1. Introduction
	2. Derivation of the Criterion
	3. Preliminaries
	4. Proof Outline
	5. Observations about the case gcd(q,n) > 1
	6. The case q n2
	7. The case q > n2, part 1
	8. The case q > n2, part 2
	9. Computer verification
	10. The family p = 1, q = 4, r 7 mod 8
	References

