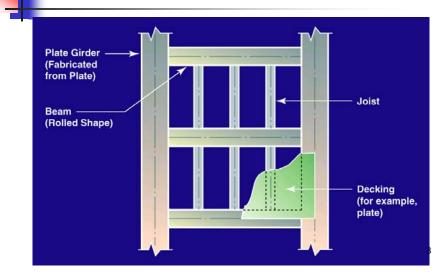
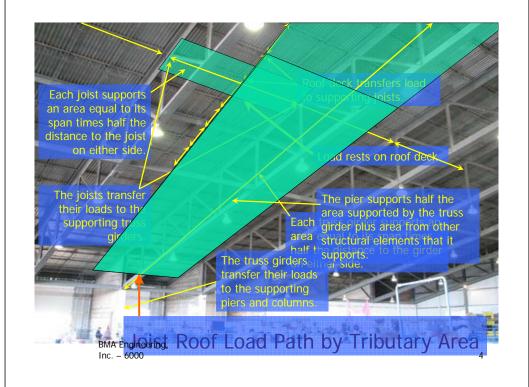
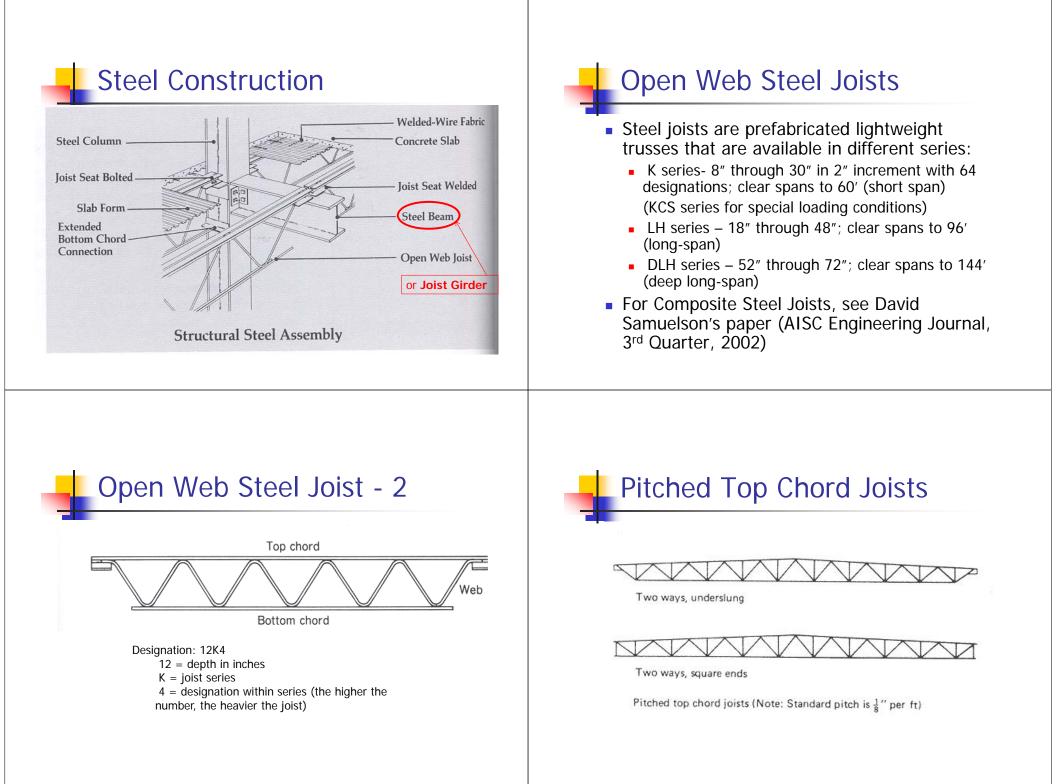
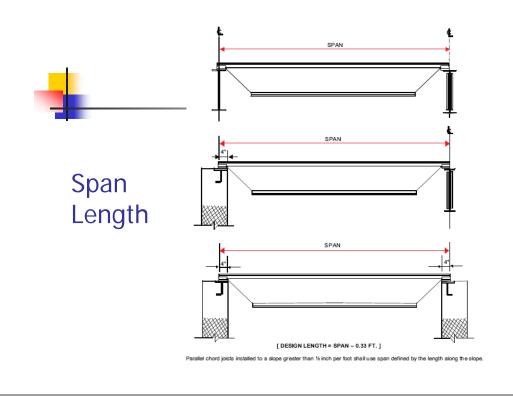
Introduction of Open Web Steel Joist, Deck and Composite Steel Joist

ENCE710 – Advanced Steel Structures

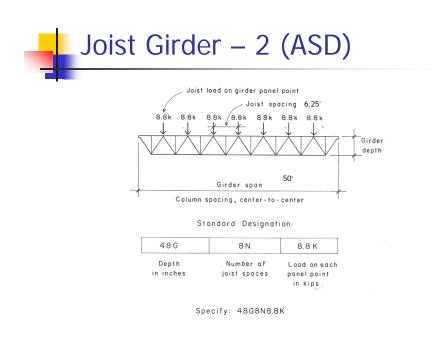

C. C. Fu, Ph.D., P.E. Department of Civil & Environmental Engineering University of Maryland College Park, MD

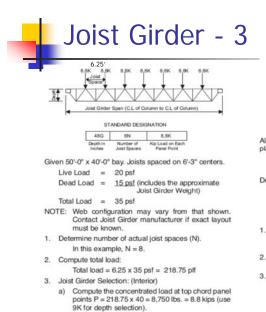

SJI Recommended Code of Standard Practice for Steel Joists and Joist Girders


1.4 DESIGN


- In the absence of ordinances or specifications to the contrary, all designs prepared by the specifying professional shall be in accordance with the applicable Steel Joist Institute Specifications and Load Table of latest adoption.
- 1.5 RESPONSIBILITY FOR DESIGN AND ERECTION
 - When material requirements are specified, the seller shall assume no responsibility other than to furnish the items listed in Section 5.2 (a). When Material requirements are not specified, the Seller shall furnish the items listed in Section 5.2(a) in accordance with applicable Steel Joist Institute Specifications of latest adoption, and this code. The Seller shall identify material by showing size and type. In no case shall the Seller assume any responsibility for the erection of the item furnished.

Example of a Typical Floor Plan





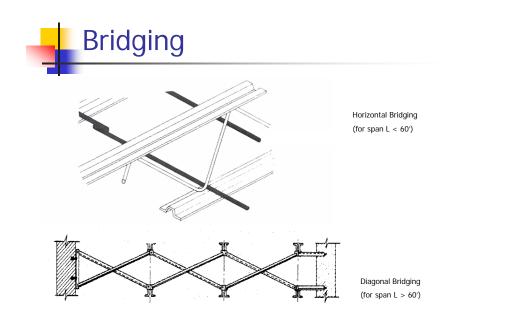
Joist Girders

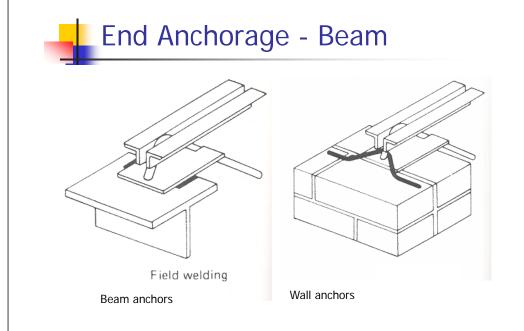
- Designed to carry the regularly spaced, concentrated loads consisting of the end supports of joists.
- Designation: 48G 8N 8.8K
 - 48G = depth in inches
 - 8N = number of joist spaces
 - 8.8K = load on each panel point in kips

b) Select Joist Girder depth:

Refer to the Joist Girder Design Guide Weight Table for the 50'-0" span, 8 panel, 9.0K Joist Girder. The rule of about one inch of depth for each foot of span is a good compromise of limited depth and economy. Therefore, select a depth of 48 inches.

- c) The Joist Girder will then be designated 48G8N8.8K.
- d) The Joist Girder table shows the weight for a 48G8N9K as 43 pounds per linear foot. The designer should verify that the weight is not greater than the weight assumed in the dead load above.
- e) Check live load deflection:
- Live load = 20 psf x 40 ft. = 800 plf. Approximate Joist Girder moment of inertia = 0.027 NPLd = 0.027 x 8 x 9 x 50 x 48 = 4666 int.


Allowable deflection for plastered ceilings = L/360 = $\frac{50x12}{360}$ = 1.67 in

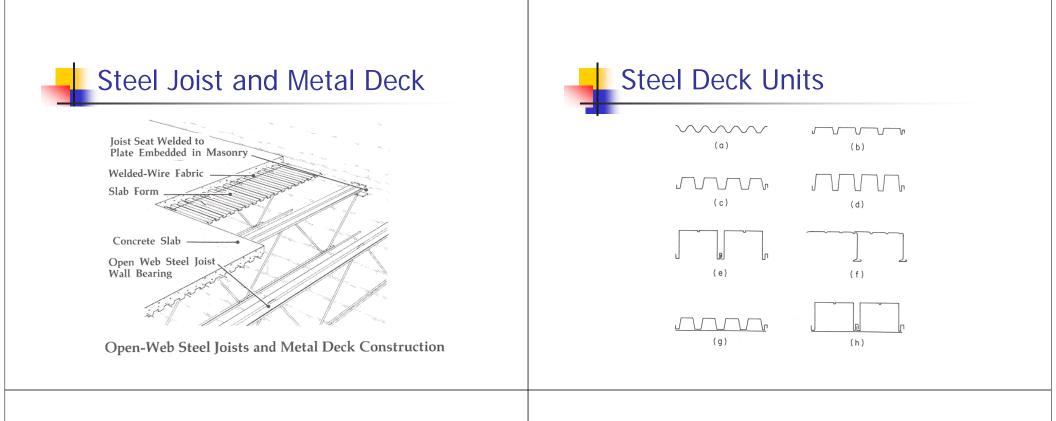

effection =
$$1.15 \left[\frac{5wL^4}{384EI} \right] = \frac{1.15x5 \left(\frac{0.800}{12} \right) (50x12)}{384x29,000x4666}$$

= 0.96 in. < 1.67 in., Okay

Live load deflection rarely governs because of the relatively small span-depth ratios of Joist Girders.

- The purpose of the Design Guide Weight Table for Joist Girders is to assist the specifying professional in the selection of a roof or floor support system.
- It is not necessary to use only the depths, spans, or loads shown in the tables.
- Holes in chord elements present special problems which must be considered by both the specifying professional and the Joist Girder Manufacturer. The sizes and locations of such holes shall be clearly indicated on the structural drawings.

Standard Load Table/Open Web Steel Joists, K-Series (ASD)


Joist Designation	18K3	18K4	18K5	18K6	18K7	18K9	18K10	20K3	20K4	20K5	20K6	20K7	20K9	20K10	22K4	22K5	22K6	22K7	22K9	22K10	22K11
Depth (In.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
Approx. Wt. (lbs./ft.)	6.6	7.2	7.7	8.5	9	10.2	11.7	6.7	7.6	8.2	8.9	9.3	10.8	12.2	8	8.8	9.2	9.7	11.3	12.6	13.8
Span (ft.) ↓ 18	550 550																				
19			550	550	550		550		_			_	_				-	-		-	-
19	514 494	550 523	523	523	523	550 523	550														
20	463	550	550	550	550	550	550	517	550	550	550	550	550	550	-	-	-	-		-	-
	423	490	490	490	490	490	490	517	550	550	550	550	550	550							
21	420	506	550	550	550	550	550	468	550	550	550	550	550	550							
	364	426	460	460	460	460	460	453	520	520	520	520	520	520							
22	382	460	518	550	550	550	550	426	514	550	550	550	550	550	550	550	550	550	550	550	550
	316	370	414	438	438	438	438	393	461	490	490	490	490	490	548	548	548	548	548	548	548
23	349	420	473	516	550	550	550	389	469	529	550	550	550	550	518	550	550	550	550	550	550
	276	323	362	393	418	418	418	344	402	451	468	468	468	468	491	518	518	518	518	518	518
24	320	385	434	473	526	550	550	357	430	485	528	550	550	550	475	536	550	550	550	550	550
	242	284	318	345	382	396	396	302	353	396	430	448	448	448	431	483	495	495	495	495	495
25	294	355	400	435	485	550	550	329	396	446	486	541	550	550	438	493	537	550	550	550	550
	214	250	281	305	337	377	377	266	312	350	380	421	426	426	381	427	464	474	474	474	474

Black figures: TOTAL safe uniformly distributed load-carrying capacities (lb/ft)

Red figures: LIVE loads (lb/ft) which will produce an approximate deflection of L/360.

Metal Decking

- Metal decking is used for floor and roof applications.
- Determine type of decking, thickness, gage of metal, finish required, and method of attachment
- Unit: square (100 sf)

Finish, Depths, Gages and Grades

Finish:

- unpainted
- primed
- painted
- galvanized
- Depths: from 9/16" to 7.6"
- Gages: from 10 (0.135") to 28 (0.0149")
- Grades: Yield points from 33 to 80 ksi (See Richard Heagler's paper "Form Deck – A Versatile Family of Products," by AISC, 2003)

Quantity takeoff

- Determine the LF of each different type of joist, use manufacturer's table to find the weight per ft and total weight.
- Note type and number of accessories:
 - bridging (diagonal or horizontal)
 - end anchorage (beam or wall)