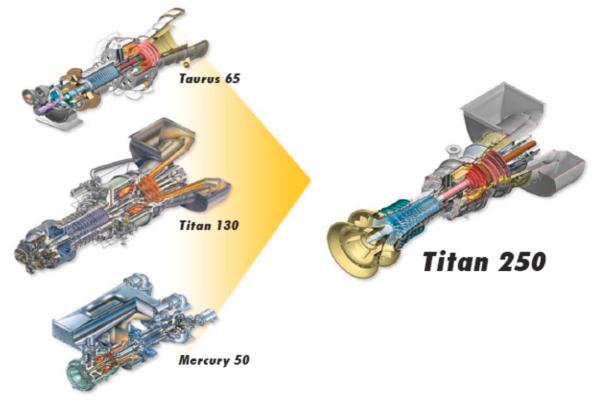

VGB Fachtagung 24-JUN-2009 Mannheim, Germany Ulrich Stang Manager Turbine Aerodynamics

Solar Turbines

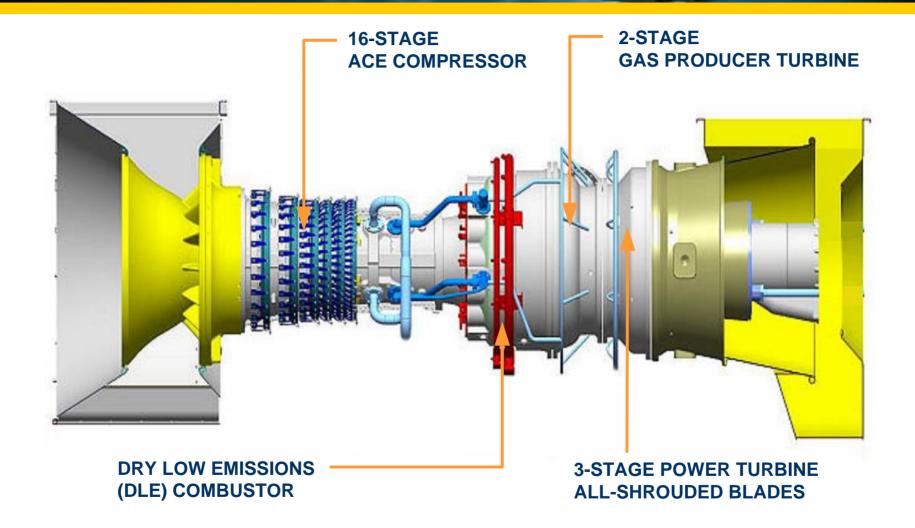

Solar Turbines Inc.

- <u>History</u>
 - Founded in 1927 As Prudden Airplane Company
 - Full Transition to Industrial Gas Turbines in 1970's
 - Caterpillar Subsidiary Since 1981
 - 6000 Employees in 96 Countries Worldwide
- Products
 - Over 12,500 Units Installed Worldwide (3100 in EAME)
 - Over 5,900 Compressor Sets and Mechanical Drive Units
 - More than 1.2 Billion Operating Hours (350 Million in EAME)
- <u>Titan 250 Timeline</u>
 - Program Kick-Off 2004
 - Hardware Delivered 2008
 - New Test Cell Commissioned 2008
 - First Light-Off 2008
 - Customer Delivery 2009

Pedigree

Leveraging Proven Technology

Overall Performance

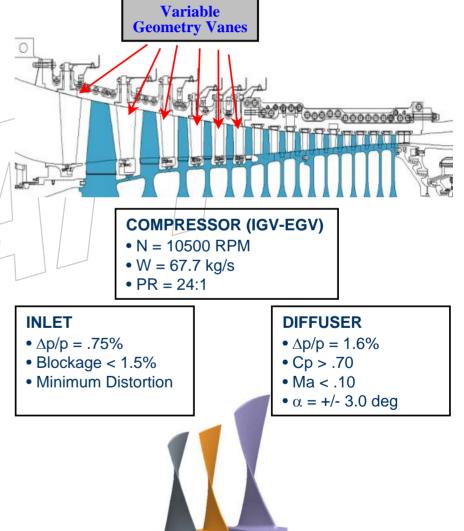

SYSTEM DESIGN GOALS

- Highest-Efficiency Gas Turbine in Class
- Design for Long-Life Industrial Applications
- Common Modular Design Throughout
- Minimum Package Footprint
- Advanced Aerodynamics, Optimized Cooling
- High Availability, Maximum Life-Cycle Benefits
- Wide Application Range for Compressors/
- Packaged Generator Set for High Efficiency
- Simple Cycle and Heat Recovery Installations

	Parameter	CS/MD	GS
_	Power Output	22,400 kW	21,745 kWe
	Heat Rate	8993 kJ/kW-hr	9259 kJ/kW-hr
	Efficiency	40.0% (shaft)	38.9% (generator)
	Exhaust Flow	245664 kg/hr	
	Exhaust Temperature	463 °C	
	Pressure Ratio	24:1	
	Power Turbine Speed	6,300 rpm (optimum) 7,000 rpm (maximum)	

Titan 250 General Arrangement

A Caterpillar Company



Titan 250 Features Compressor

COMPRESSOR FEATURES

PERFORMANCE

- "Clean Sheet" Design
- 16-Stages of High-Efficiency Aerodynamics
 - 2 Stages More Than Titan 130
 - Built on Taurus 65 Success
- 6 Stages of Variable Guide Vanes
 - Optimized Airflow For Full Operating Range
- Sets New Standard for Compressor Efficiency
 - Within Experience Base
 - Unsurpassed Attention to Detail
- Multi-Stage CFD Code
 - Validated by Rig Testing
 - Mercury 50, Centaur 50 and Taurus 65
- Optimized for Wide Range of Operation
- Low-Loss, Minimum Distortion Inlet
- Compressor- Discharge and Inter-Stage Bleed

Titan 250 Features Compressor

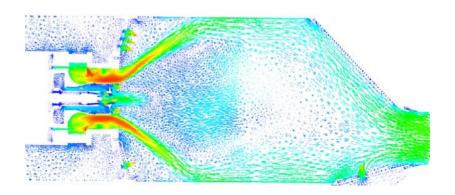
COMPRESSOR FEATURES

DURABILITY

- Welded Drum Design for Rigidity, Long Life
- Modular Annular Design
- Bearing Support Optimized Rotor Dynamics
- Extensive Vibration Analyses
- Latest Variable Guide Vane Bushing Design
 - Based on In-House Corrosion Testing
 - Prevent Lock-up in Field

MAINTAINABILITY

- Designed for Long Life and Maintainability
- Anti-Corrosion Aluminide Coating (Stages 1-12)
- In-Situ Two-Plane Trim Balancing
- All Airfoils Individually Field Replaceable
- 4-Piece Compressor Case (Mars, Titan 130)


Titan 250 Features Combustor

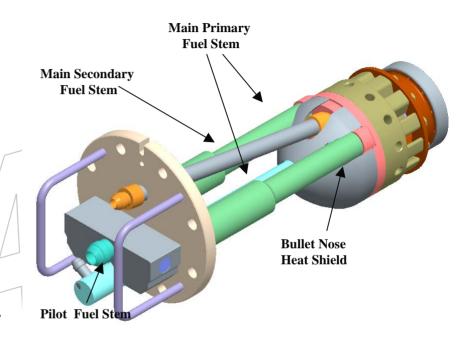
COMBUSTOR FEATURES

PERFORMANCE

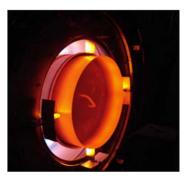
- Proven SoLoNOx Technology
- Canted Diffuser for Optimized Airflow
- Optimized Outer Dome For Good Swirler Flow
- Extensive CFD Used to Design
 - Diffuser
 - Liner
 - Injector
- Emissions (NOx/CO/UHC) ppm
 - Natural Gas: 15/25/10 /
 - Liquid Fuel: 60/30/15
 - Associated Gas (900–1600 WI) / 25/50/10
- Operating Range
 - 40 thru 100% Load
 - -29°C to 49°C (Gas/Liquid)

CFD Predictions of Internal Flow field

Titan 250 Features Combustor

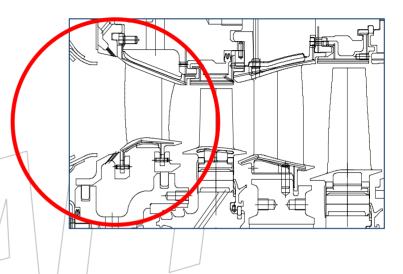

COMBUSTOR FEATURES

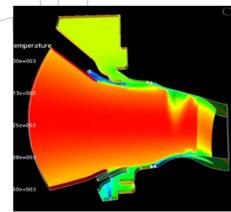
DURABILITY

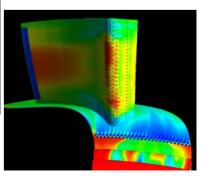

- Modular Annular Design
- Augmented Backside Cooled (ABC) Liner
- Simple Supported Pins
 - Reduce Dome Stress
- Independently controlled fuel flows
 - Main Primary, Main Secondary, Pilot
- Extensive Experience with HAST-X Material
- Modal Frequencies Per Design Criteria
- Injector Barrel Features Helmholtz Resonator
 - Oscillation Abatement

MAINTAINABILITY

- Designed for Long Life and Maintainability
- •14 Radial-Inflow Injectors Offset Stems
 - Proven Taurus 65 Experience
 - Easy Installation
 - Field Replaceable and Repairable


A Caterpillar Company

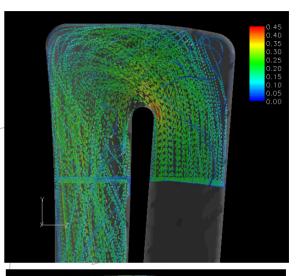

Titan 250 Features Gas Producer Turbine

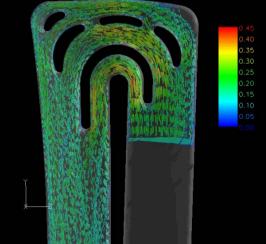

GAS PRODUCER TURBINE

PERFORMANCE

- Two-Stage Design, Similar to Titan 130
- Leveraged Taurus 65 Experience
- High Aspect Ratio Airfoils
- Optimized Work Split, High Stage Loading
 - Designed for Uncooled 2nd Blade
- Jump Cooling Experience Applied
- Extensive Application of Advanced CFD
 - Airfoil Design
 - Combustor Interface
 - Cooling Support
- Passive Tip Clearance Control

Titan 250 Features Gas Producer Turbine


GAS PRODUCER TURBINE

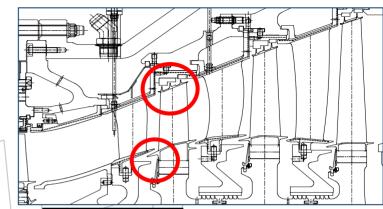

DURABILITY

- Advanced 1st Stage Nozzle and Blade Cooling
 - Showerhead Film Cooling
- 2nd Nozzle Cooled for Minimum Performance Impact
 - Internal Convection Cooling
- Optimized Cooling Passages (Advanced CFD)
- Under-platform Dampers
- Advanced Materials
 - Nozzles MAR-M-247
 - Blades SCRY-4
 - TBC Pt-Al Coatings (1st Stage Airfoils)

MAINTAINABILITY

- In-Situ Repair and Replacement Capability
- Borescope Access
- 2-Plane Trim Balance in Field
- Low-Speed Turning Gear (Cool down)
 - Avoid Rotor-Lock-up Issues

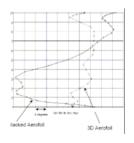
With Turning Vanes



Titan 250 Features Power Turbine

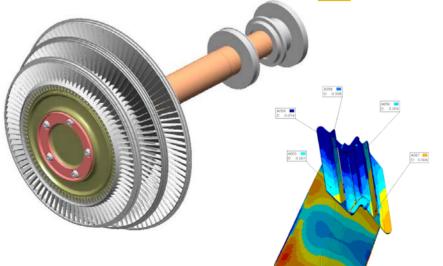
POWER TURBINE

PERFORMANCE


- Three-Stages
- Low RPM Design (6300 / 7000)
- Moderate Endwall Slope
- All Blades Shrouded
 - Reduced-Leakage Geometry
 - Increased Knife-Count
- High Efficiency, 3-D Airfoils
- Optimized Axial Gaps
- High Fidelity, Detailed CFD Models Used
 - Tip Gap Analysis
 - Purge Cavity Effects Captured
- Flat Power Curve across Speed Range
- Highest Efficiency Solar PT

Titan 250 Features Power Turbine

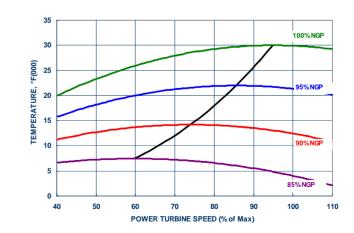
POWER TURBINE


DURABILITY

- Shrouded Blade Experience
 - Titan-130, Taurus-65
 - Low to Moderate AN² Levels
 - Clearances Set for Durability
- Extensive Experience with Materials
 - Nozzles : IN 939
 - Blades : IN792
- Vibration Testing on Shrouded Blades
- Proven, Reliable High-Time Bearings
 - Field-Retrofittable

MAINTAINABILITY

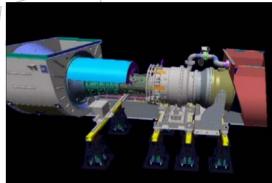
- Modular Design for Field Maintenance
 - Advanced Rail System
 - Dedicated Lubrication System
- Borescope Access


A Caterpillar Company

Validation

VALIDATION

- New Test Cell Commissioned in 2008
- Test Program Initiated in Sep-08
 - >250 Hours of Operation
 - Advanced Instrumentation
- Start Power Minimized
 - Guide Vane Optimization
- Component Performance Validated
 - Compressor Mapping
 - Power Turbine Mapping
 - Load Modulation
- Emissions Verified


A Caterpillar Company

Summary

SUMMARY

- Methodology
 - Lean, Interactive Processes
 - State-of-the-Art Design Tools
 - Experience From Prior Designs
 - Industry Design Experience
 - Maximum Commonality
- Design
 - Advanced Technology
 - Detailed Analyses
 - Highest Efficiency, Durable Components
 - Focus On Ease of Maintenance
- Validation
 - Attained Performance
 - Verification With Calibrated CFD
 - Extensive Engine Testing

