Introduction of X-ray Reflectivity

X-ray Techniques

GIXRD: Grazing Incidence X-ray Diffraction

GISAXS: Grazing Incidence Small Angle X-ray Scattering

In GISAXS, the angle α_{i} is very small ($<0.5^{\circ}$) for GISAXS, X-ray penetrates the sample and reflection is very strong, beam stopper is required to protect detector.
In our experiment, $\alpha_{i}=1.8^{\circ}$, beam intensity is reduced dramatically, no stopper.

Simple Explanation - consider as diffraction of

 scattered x-ray$A B=A O \bullet \sin \alpha_{i}, A C=A O \bullet \sin \alpha_{f}$ In order to get interference pattern,

$$
A B+A C=m \lambda(m=1,2,3 \ldots)
$$

$d \sin \alpha_{i}+d \sin \alpha_{f}=m \lambda$
$\frac{\sin \alpha_{i}+\sin \alpha_{f}}{\lambda}=\frac{m}{d}$
Given wave-vector transfer

$$
q_{z}=\frac{2 \pi}{\lambda}\left(\sin \alpha_{i}+\sin \alpha_{f}\right)
$$

$$
q_{z, 2}=\frac{2 \pi * 2}{d}
$$

$$
\Delta q_{z}=\frac{2 \pi}{d}
$$

$$
q_{z}=\frac{2 \pi m}{d}
$$

$$
q_{z, j}=\frac{2 \pi^{*} j}{d}
$$

$$
d=\frac{2 \pi}{\Delta q_{z}}
$$

Reflection and Transmission at Single Surface

\exists transmitted wave only if $\quad \cos \left(\alpha_{t}\right) \leq 1$, i.e. $\alpha_{\mathrm{i}} \geq \alpha_{c}$

$$
\text { If } \alpha_{\mathrm{i}} \leq \alpha_{c}, \quad \begin{aligned}
& \text { - Incident wave totally externally reflected. } \\
& \text { - Transmitted wave exponentially damped with } \mathrm{z} .
\end{aligned}
$$

α_{c} critical angle for total external reflection of X-rays

$$
\alpha_{c}=\sqrt{2 \delta}=\sqrt{\frac{r_{0}}{\pi}} \times \lambda \times \sqrt{\rho} \approx 0.1 \text { to } 0.5^{\circ}
$$

Reflection and Transmission at Single Surface

- Fresnel equations:

Relationships between the amplitudes of incident,
transmitted and reflected beam.

wave-vector transfer

$q_{z}=\frac{2 \pi}{\lambda}\left(\sin \alpha_{i}+\sin \alpha_{f}\right)$

Amplitude

Reflection

$$
r\left(q_{z}\right)=\frac{E_{r}}{E_{0}}=\frac{q_{z}-\sqrt{q_{z}^{2}-q_{c}^{2}}}{q_{z}+\sqrt{q_{z}^{2}-q_{c}^{2}}}
$$

$$
R=r r^{*}=|r|^{2}=\left|\frac{E_{r}}{E_{0}}\right|^{2}
$$

Transmission

$$
t\left(q_{z}\right)=\frac{E_{t}}{E_{0}}=\frac{2 q_{z}}{q_{z}+\sqrt{q_{z}^{2}-q_{c}^{2}}}
$$

$$
T=t t^{*}=|t|^{2}=\left|\frac{E_{t}}{E_{0}}\right|^{2}
$$

Reflectivity from Multiple Layers

$$
q_{z, j}=\sqrt{q_{z}^{2}-q_{c, j}^{2}} . \quad r_{j, j+1}=\frac{q_{z, j}-q_{z, j+1}}{q_{z, j}+q_{z, j+1}},
$$

$q_{c, j}$ is the wave-vector transfer
in medium j at critical angle

$$
r=r_{0,1}+r_{1,2} e^{i q_{z, 1} d_{1}}+r_{2,3} e^{i\left(q_{z, 1} d_{1}+q_{z, 2} d_{2}\right)}+\cdots+r_{j, j+1} e^{i \sum_{k=0}^{j} q_{z, k} d_{k}}+\cdots
$$

Approximation

$$
\begin{aligned}
& r=r_{0,1}+r_{1,2} e^{i q_{z, 1} d_{1}}+r_{2,3} e^{i\left(q_{z, 1} d_{1}+q_{z, 2} d_{2}\right)}+\cdots+r_{j, j+1} e^{i \sum_{k=0}^{j} q_{z, k} d_{k}}+\cdots \\
& R\left(q_{z}\right)=\left|\sum_{j=0}^{n} r_{j, j+1} e^{i q_{z} z_{j}}\right|^{2} \text { with } r_{j, j+1}=\frac{q_{z, j}-q_{z, j+1}}{q_{z, j}+q_{z, j+1}} .
\end{aligned}
$$

A further approximation consists in neglecting the refraction and the absorption in the material in the phase factor in Eq. (1):

$$
r=\sum_{j=0}^{n} r_{j, j+1} e^{i q_{z} \sum_{m=0}^{j} d_{m}}
$$

A final approximation consists in assuming that the wave vector q_{z} does not change significantly from one medium to the next so that the sum in the denominator of $r_{j, j+1}$ may be simplified:

$$
\begin{align*}
& r_{j, j+1}=\frac{q_{z, j}^{2}-q_{z, j+1}^{2}}{\left(q_{z, j}+q_{z, j+1}\right)^{2}}=\frac{q_{c, j+1}^{2}-q_{c, j}^{2}}{4 q_{z}^{2}}=\frac{4 \pi r_{e}\left(\rho_{j+1}-\rho_{j}\right)}{q_{z}^{2}} \tag{2}\\
& \text { Where } q_{c, j}=\sqrt{16 \pi r_{e} \rho_{j}} \quad \begin{array}{l}
r_{e} \text { is the classical radius of the electron } \\
\rho_{\mathrm{j}} \text { is the electron density of layer } \mathrm{j}
\end{array}
\end{align*}
$$

Approximation

$$
\begin{equation*}
r_{j, j+1}=\frac{q_{z, j}^{2}-q_{z, j+1}^{2}}{\left(q_{z, j}+q_{z, j+1}\right)^{2}}=\frac{q_{c, j+1}^{2}-q_{c, j}^{2}}{4 q_{z}^{2}}=\frac{4 \pi r_{e}\left(\rho_{j+1}-\rho_{j}\right)}{q_{z}^{2}} \tag{2}
\end{equation*}
$$

Thus,

$$
r=4 \pi r_{e} \sum_{j=1}^{n} \frac{\left(\rho_{j+1}-\rho_{j}\right)}{q_{z}^{2}} e^{i q_{z} \sum_{m=0}^{j} d_{m}}
$$

If the origin of the z axis is chosen to be at the upper surface (medium 0 at a depth of $z_{1}=0$), consider that the material is made of an infinite number of thin layers, the sum may then be transformed into an integral over z, and the reflection coefficient becomes:

$$
\begin{equation*}
r=\frac{4 \pi r_{e}}{q_{z}^{2}} \int_{-\infty}^{+\infty} \frac{d \rho(z)}{d z} e^{i q_{z} z} d z \tag{3}
\end{equation*}
$$

Replacing $\left(4 \pi r_{e} \rho_{s}\right)^{2} / q_{z}{ }^{4}$ by $R_{F}\left(q_{z}\right)$:
$\rho(z)$ is the electron density at z altitude
$R\left(q_{z}\right)=r \cdot r^{*}=R_{F}\left(q_{z}\right)\left|\frac{1}{\rho_{s}} \int_{-\infty}^{+\infty} \frac{d \rho(z)}{d z} e^{i q_{z} z} d z\right|^{2}$ and

$$
\frac{R\left(q_{z}\right)}{R_{F}\left(q_{z}\right)}=\frac{1}{\rho_{s}^{2}} T F\left[\rho^{\prime}(z) \otimes \rho^{\prime}(z)\right]
$$

Examples

The data inversion gives the autocorrelation function of the first derivative of the electron density

$$
\frac{R\left(q_{z}\right)}{R_{F}\left(q_{z}\right)}=\frac{1}{\rho_{s}^{2}} T F\left[\rho^{\prime}(z) \otimes \rho^{\prime}(z)\right]
$$

R_{F} : Fresnel reflectivity of the substrate

$z(\AA$)
Ref: X-ray and neutron reflectivity principles and applications, 2009

Examples

Grazing Incidence Small Angle X-ray Scattering (GISAXS)

Standard 3D growth (Volmer-Weber)

Example : 20 A Ag/MgO(001) 500 K

- Shape
- Sizes
- Size distributions
- Particle-particle pair correlation function

Anisotropic islands:
truncated square pyramids with (111) facets

Examples

Self-organized growth of magnetic cobalt dots on an interfacial dislocation network: $\mathrm{Co} / \mathrm{Ag} / \mathrm{MgO}(100)$

Co islands are ordered
F. Leroy et al, PRL 95, 185501 (2005)

Schematic of BNL Experiment Geometry

Pilatus 100K Detector System	
Pixel size	$172 \times 172 \mu^{2}$
Format	$487 \times 195=94965$ pixels
Active area	$83.8 \times 33.5 \mathrm{~mm}^{2}$
Counting rate	$>2 \times 10^{6} \mathrm{counts} / \mathrm{s} /$ pixel
Energy range	$3-30 \mathrm{keV}$
Readout time	$<2.7 \mathrm{~ms}$
Framing rate	$>200 \mathrm{~Hz}$

$\mathbf{K}_{\mathbf{i}}$ is the direction of incident X ray, pointing to sample.
The recorded image is the reflected beam intensity image

Sample: spec_start_S144_00190

Local Average

$$
\frac{R\left(q_{z}\right)}{R_{F}\left(q_{z}\right)}=\frac{1}{\rho_{s}^{2}} T F\left[\rho^{\prime}(z) \otimes \rho^{\prime}(z)\right]
$$

$$
\log \left[I_{0} \bullet R\left(q_{z}\right)\right]-\log \left[I_{0} \bullet R_{F}\left(q_{z}\right) / \rho_{s}^{2}\right]=\log \mid T F\left[\rho^{\prime}(z) \otimes \rho^{\prime}(z)\right]
$$

Local average (Green curve) is defined as:
$\log \left[R_{F}\left(q_{z}\right) / \rho_{s}^{2}\right] \approx \frac{1}{N} \sum_{q_{z}=q_{z 1}}^{q_{z 2}} \log \left[R\left(q_{Z}\right)\right]$
$\Delta q_{z}=q_{z 2}-q_{z 1}>$ oscillation period

Sb film only deposited on Si (100)

Film thickness vs. Growth time

Two methods get the similar result for Sb deposition on Si (100).

