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1. Introduction

This paper serves as an introduction to the concepts and main results of contact
homology in the case of embedded curves of a three dimensional contact manifold. We
will begin with preliminary definitions and examples of symplectic and contact manifolds
and their associated objects, and then proceed into defining and overviewing the basics
of embedded contact homology. The primary reference used will be Hutchings’s Notes
on Embedded Contact Homology [1] as well as his 2008 lectures at MSRI.

The fundamental objects of study for Embedded Contact Homology (ECH) are Reeb
orbits on contact manifolds, so we define:

Definition 1.1. A contact manifold (Y, λ) is a smooth, 2n + 1 dimensional manifold
together with a 1-form λ such that λ ∧ (dλ)n 6= 0.

Definition 1.2. The Reeb vector field R associated to a contact manifold (Y, λ) is the
vector field on Y defined by dλ(R, ·) = 0 and λ(R) = 1. A Reeb orbit is a closed orbit of
R. If γ is a Reeb orbit, we denote γk to be its k-fold iterate.

The contact structure on a contact manifold is the hyperplane field ξ = ker(λ). In
a sense, this is the more fundamental object of a contact manifold, and the 1-form λ
is just a tidy (non-unique) means of defining it. The non-integrability condition that
λ∧ (dλ)n 6= 0 is equivalent to the hyperplane configurations being generic at every point
in Y .

Example 1.3. The most basic example of a contact manifold is R2n+1. Let (x1, ..., xn, y1, ..., yn.z)
be coordinates on R2n+1; then there is a natural contact form which we can write ex-
plictly:

λ = dz +

n∑
i=1

xidyi

Notice:

dλ =

n∑
i=1

dxi ∧ dyi

We then see that λ ∧ (dλ)n is the standard volume form on R2n+1.
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Every contact manifold can be transformed into a symplectic manifold in several nat-
ural ways. The one we will use is called the symplectization. Given (Y, λ), the manifold
Y × R has an induced symplectic structure ω = d(etλ), where t is the coordinate given
to the R axis. The exponential coefficient is only special in the sense that it is a nowhere
vanishing function with nowhere vanishing derivative, which ensures ω ∧ ω 6= 0.

We define the symplecic action functional:

A : C∞(S1, Y )→ R

A(γ) =

∫
γ

λ

Where C∞(S1, Y ) is the free loop space on Y . It can be shown that the critical points of
A are Reeb orbits. The gradient vector field ∇A then defines flow “lines” between Reeb
orbits. These flows can be realized as cylinders in the syplectization Y × R. The basis
for contact homology is to in some way count these cylinders.

Another aspect of the Reeb orbits that we will use is the properties of their linearized
return maps. For any orbit α, we can consider the return map on the contact structure
ξ. Namely at a point x ∈ α, we can define a map in a neighborhood of x in ξx that takes
a point to the next point on its path following the vector flow (see Figure 1).

Figure 1. Return maps of α on the contact structure ξ.

The linearization of the map near x we denote as Pα, which is a symplectic linear map
with respect to dλ. Then we classify the orbit α based on the spectrum of Pα:

• α is nondegenerate if 1 /∈ spec(Pα).
• α is elliptic if the eigenvalues of Pα have norm 1 in C.
• α is hyperbolic if the eigenvalues are real.

2. J-holomorphic curves and Currents

To generalize the idea of flow lines of ∇A, we define J holomorphic curves between
Reeb orbits in the space Y × R, which will be the building blocks of ECH.
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Definition 2.1. An almost complex structure on an even dimensional manifold X is an
endomorphism of the tangent bundle J such that J2 = −1.

In the case of a symplectization X = Y × R, we define an admissible almost complex
structure J to be one that is R invariant, J(∂t) = R, J sends the contact structure ξ to
itself, and dλ(v, Jv) ≥ 0 for all v ∈ ξ. Any time we mention J , we assume it is generic
on the space of admissible almost-symplectic structures on Y × R.

Definition 2.2. A J holomorphic (or pseudoholomorphic) curve us a map u from a
Riemann surface (Σ, j) toX that is compatible with the almost complex structure, namely
du ◦ j = J ◦ du. We say a curve is somewhere injective if there exists z ∈ Σ such that
u−1(u(z)) = {z} and duz is injective.

We only consider J-holomorphic curves up to biholomorphism of the domains. As
mentioned, we are concering ourselves with J holomorphic curves between Reeb orbits
on X = Y × R, so we must define precisely what we mean by this. We define an orbit
set α to be a collection of pairs (αi,mi), where αi is a Reeb orbit and mi is the covering
multiplicity of the orbit. A J-holomorphic curve between orbit sets α = {(αi,mi)} and
β = {(βj ,mj)} is one for which Σ has a puncture for each orbit. We also require that
for each i, there is a component of u(Σ) that is asymptotic at +∞ to a mi-fold cover of
R× αi, and similarly for the βj at −∞ (Figure 2).

Figure 2. A J-holomorphic curve in Y × R with two orbits at ±∞.

Definition 2.3. A J-holomorphic current between orbit sets α and β is a finite set
of pairs C = {(Ck, dk)}, where the Ck are distinct irreducible somewhere injective J-
holomorphic curves in Y ×R and the dk are positive integers, such that the positive ends
of the Ck curves are at covers of the Reeb orbits αi, the sum over k of dk times the total
covering multiplicity of all ends of Ck at covers of αi is mi, and similarly for the negative
ends.

Embedded Contact Homology will count homology classes of J-holomorphic currents
between a pair of orbit sets. We denoteM(α, β) to be the Moduli space of J-holomorphic
currents between α and β.
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3. Motivating ECH: The Gromov invariant

We briefly retreat to the case of any closed, symplectic 4 manifold (X,ω) to state
an important result due to Taubes that will serve as a motivating example for ECH.
First we choose an almost complex structure J that is compatible with ω in the sense
that ω(v, Jv) ≥ 0 for all v ∈ Tx(X) (also called ω-tame). For any J-holomorphic curve
u : (C, j)→ X, we define the Fredholm index:

ind(C) := −χ(C) + 2〈C1(TX), [C]〉 (3.1)

Where χ(C) is the Euler characteristic of (the domain of) C, C1(TX) is the first Chern
class of the tangent bundle (thought of as an element of the second cohomology group),
[C] is the homology class of C, and 〈 , 〉 denotes the pairing of cohomology and homology
groups via Poincaré duality.

Proposition 3.2. If C is not multiply covered, the Fredholm index ind(C) is the dimen-
sion of the moduli space of curves near C.

Our use of the word “near” here is with respect to deformations of C. This is quantified
in § 2.3 of [1], along with a proof that this moduli space is in fact a manifold. A second
index that can be defined for J-holomorphic curves is the Seiberg-Witten index:

I(C) := 〈C1(TX), [C]〉+ C · C (3.3)

Where C ·C denotes the self intersection number of C (which we assume to be embedded).

Remark 3.4. It is now that our restriction to dimension 4 symplectic manifolds comes
into play. There are two useful properties of J-holomorphic curves in four dimensions
that are important. The first is positivity of intersections. Namely, if C1 and C2 are
distinct somewhere injective J-holomorphic curves, then ther intersection points are finite,
isolated, and of positive multiplicity. The second is the adjunction formula:

〈C1(TX), [C]〉 = χ(C) + C · C − 2δ(C) (3.5)

Where C is somewhere injective and δ(C) is a weighted count of singularities of C in X
(points where it is not locally an embedding).

Combining equations (3.1), (3.3), and (3.5), we observe:

ind(C) = I(C)− 2δ(C)

This shows that the maximum attainable value of ind(C) is the Seiberg-Witten index,
with equality happening when δ(C) = 0 ⇐⇒ C embedded. These are useful equations
in defining Taubes’s Gromov invariant on X. Roughly speaking, this fixes a homology
class A ∈ H2(X) and assigns to it a count Gr(X,ω,A) ∈ Z of “admisible” holomorphic
curves with the same homology class in X after choosing J generically. An important
case happens when I(A) = 0, in which case the curves are embedded and disjoint. For a
more detailed treatment, see [1] §2.5.

The important result concerning the Gromov invariant, due to Taubes, is its relation-
ship to the Seiberg Witten invariant of X. This is an invariant that counts solutions
to the Seiberg-Witten equations via the map SW (X) : Spinc(X) → Z. Through an
identification of the spaces H2(X) and Spinc(X), Taubes proves that:
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Theorem 3.6 (Taubes). If the dimension of the maximal positive definite subspace of
H2(X;R) is greater than 1, then

SW (X) = Gr(X,ω, ·)

4. Defining ECH

Returning our focus to symplectizations, we can’t immediately apply the Gromov
invariant to Y × R because its compactification has boundary, whereas we assumed X
was closed above. Taking inspiration from Taubes’s result, Embedded Contact Homology
tries to construct a similar invariant on a symplectization Y × R which similarly agrees
with Seiberg Witten Floer homology, which is constructed from solutions to the Seiberg
Witten equations. That is, we wish to define a chain complex associated to a contact
manifold (Y, λ) with almost complex structure J whose homology is isomorphic to the

S-W Floer homology ĤM∗(Y ).
We will first define the ECH chain complex, then we will develop more general versions

of the Fredholm and SW indices used above as well as overview the relative adjunction
formula in the case of a symplectization. We will then discuss a lemma of partition
conditions wich allows us to demonstrate that the differential map on ECH is well defined.

4.1. The ECH Chain Complex. Let Y be a closed, oriended 3 manifold with contact
form λ, and assume the Reeb orbits on Y are nondegenerate. Fix Γ ∈ H1(Y ) and define
ECH(Y, λ,Γ) to be the homology of the chain complex C• that is freely generated by a
finite set of pairs α = {(αi,mi)}, where:

• The αi are distinct embedded Reeb orbits,
• The mi are positive integers,
•
∑
imi[αi] = Γ, and

• If αi is hyperbolic, then mi = 1.

To define the differential map d on C•, we choose J a generic admissible almost complex
structure. Then we must define a reasonable index I (analagous to the SW index) which
we use to count I = 1 curves between orbit sets. These counts serve as the weights Mα,β

in the following definition of the differential map:

d(α) =
∑
β

Mα,ββ

We will now detail the choice of index I as well as its relationship to the Fredholm index
and the relative adjunction formula.

4.2. The Fredholm Index. Fix a J-holomorphic curve C between α and β, and let qi,k
denote the multiplicities of the positive ends of C at αi. Here, k is the index counting
the ends of C and i is the index keeping track of the Reeb orbits themselves (which could
be multiply covered). Similarly, let qj,k denote the multiplicities at the negative ends at
βj . Then the Fredholm index is:

ind(C) = −χ(C) + 2C1(ξ|C , τ) +
∑
i,k

czτ (α
qi,k
i )−

∑
jk

cz(β
qj,k
j ) (4.1)

Here, τ is a choice of trivialization on the orbits αi and βj . This trivialization allows us
to compute a well-defined first Chern class of ξ over C with respect to τ , which is denoted
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as C1(ξ|C , τ) above. The czτ terms are the Conley-Zehnder indices of the orbits, which
we define now.

Let γ be a Reeb orbit (not necessarily embedded), and τ a trivialization of ξ|γ , define
czτ (γ) as follows:

• If γ is hyperbolic, then the linearized return map Pγ has real eigenspaces, which
it rotates by nπ (with respect to the trivialization). Then we let czτ (γ) = n.

• If γ is elliptic, then the linearized flow rotates its eigenspaces by some angle 2πθ
with respect to the trivialization. Then we let czτ (γ) = 2bθc+ 1.

It can be shown that ind(C) is independent of the choice of trivialization, and in fact:

Theorem 4.2. If J is generic, and C is not multiply covered, then the space M(α, β) of
curves near C is a manifold of dimension ind(C).

The proof of this theorem comes in two parts. The first is demonstrating thatM(α, β)
is a manifold of of dimension the index of a deformation operator defined in § 2.3 of [1].
The second is showing that for generic J , the Fredholm index coincides with the index
of the deformation operator.

4.3. The ECH index. Now we will define the ECH index of a curve C ∈M(α, β) that
is somewhere injective to be:

I(C) := C1(ξ|C , τ) +Qτ (C) +
∑
i

mi∑
k=1

czτ (αki )−
∑
j

mj∑
k=1

czτ (βkj ) (4.3)

Where Qτ (C) is the “relative intersection pairing”, which is the symplectization analogue
of the intersection number C · C in the Gromov invariant case. Note that the sums in
the ECH index are different from those in the Fredholm index. The former only sums
Conley-Zhender indices along orbits at the ends of C, whereas the latter sums over all
iterates of the orbits up to mi.

To define Qτ (C), we let S be an embedded (except at its boundary) surface in
[−1, 1]× Y (identified as the compactification of Y × R) with the following properties:

• ∂S =
∑
imi{1} × αi −

∑
jmj{−1} × βj ,

• S has the same relative homology class as the compactification of C,
• the projection π : S → Y is an immersion near the boundary,
• and the conormal at the boundary has winding number 0 with respect to the

trivialization τ .

To understand the last condition, fix x ∈ αi, and consider the rays obtained by projecting
S to Y as it approaches the boundary point x. The last condition says that these rays
do not rotate with respect to the trivialization τ as x moves around αi (see Figure 3).

Finally, to define Qτ (C), we pick S and S′ as defined above with different conormal
directions on the boundary and we set Qτ (C) to be the signed count of intersections of
the interiors of S and S′:

Qτ (C) := #
(
Ṡ ∩ Ṡ′

)
It can be shown that these boundary conditions make Qτ (C) well-defined.

A nice property of I is that only depends on α, β and the relative homology class of
C (and in particular, not on the choice of trivialization). For this reason, it is sometimes
written as I(α, β, [C]).
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Figure 3. The surface S near {1} × Y on a mi = 3 Reeb orbit, with
the projection rays not rotating as we move around the orbit.

Theorem 4.4 (Index Inequality). Let C ∈M(α, β) is not multiply covered. Then:

ind(C) ≤ I(C)− 2δ(C)

with equality holding if and only if C satisfies a particular set of “partition conditions.”

We will detail exactly what the partition conditions are later. This inequality is the
analagous statement of the equality we found in our discussion of the Gromov invariant.
Following similar reasoning, we obtain the corollary:

Corollary 4.5. If C ∈ M(α, β) has ECH index I(C) = 1, and J is chosen generically,
then C is embedded.

Proof. ) This follows immediately from Theorems 4.2 and 4.4 because, if J is generic,
then ind(C) is a dimension, so it is nonnegative. Then having I(C) = 1 forces δ(C) to
be zero to keep ind(C) nonnegative, and so C is embedded. �

The proof of Theorem 4.4 follows from two important formulas. The first is the relative
adjunction formula, and the second is the writhe bound. We will briefly describe these
in the next two sections, after which we will precisely define the partition conditions
referenced in Theorem 4.4.

4.4. Relative Adjunction Formula. The adjunction formula used in the Gromov in-
variant case will be of similar use in ECH. It allows us to compute the relative first Chern
class of a somewhere injective curve purely topologically:

C1(ξ|C , τ) = χ(C) +Qτ (C) + ωτ (C)− 2δ(C) (4.6)

where ωτ (C) is the asymptotic writhe of C. To define this, consider the slice C∩({T}×Y )
for some T ∈ R. For T � 0, this slice is a disjoint union of embedded braids ζ+i near each
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αi with mi strands. We can then use the trivialization τ to identify ζ+i with a link in the
solid torus S1 ×D2. By “flattening” the torus, we can compute the standard writhe of
ζ+i , which we will denote ωτ (ζ+i ), by counting crossings with sign. We can do the same
with the braids for T � 0, which we will denote ζ−i . Putting these together, we define
the asymptotic writhe of C to be:

ωτ (C) :=
∑
i

ωτ (ζ+i )−
∑
j

ωτ (ζ−i )

4.5. Write Bound. Recall the two summation terms in our expressions for ind(C) and
I(C) (equations 4.1 and 4.3). We will more compactly denote them as:

CZ ind
τ (C) :=

∑
i,k

czτ (α
qi,k
i )−

∑
j,k

czτ (β
qj,k
j )

CZIτ (C) :=
∑
i

mi∑
k=1

czτ (αki )−
∑
j

mj∑
k=1

czτ (βkj )

Then, with some work (and indeed this is the main part of the proof of Theorem 4.4),
one can show that:

ωτ (C) ≤ CZIτ (C)− CZ ind
τ (C)

with equality when C satisfies the aforementioned “partition conditions.” Using this in-
equality, Theorem 4.4 follows from equations 4.3 and 4.1.

4.6. Partition Conditions. Let γ be an embedded Reeb orbit, and let m be a positive
integer. We define two paritions P+

γ (m) and P−γ (m) of the integer m:

• If γ is hyperbolic with positive eigenvalues, then P+
γ (m) = P−γ (m) = (1, ..., 1),

• If γ is hyperbolic with negative eigenvalues, then P+
γ (m) = P−γ (m) = (2, ..., 2, 1)

if m is odd and (2, ..., 2) if m is even, and
• If γ is elliptic, then it has an associated monodromy angle θ (wich is irrational

by our assumption that γ and all of its iterates are nondegenerate). Then the
parition for P+

γ (m) is the horizontal cordinates of the maximal concave lattice
path between (0, 0) and (m, bmθc) lying below the y = θx line (see Figure 4).
The negative partition P−γ (m) is the horizontal components of the minimal convex
lattice path between the origin and (m, dmθe) lying above y = θx.

With this definition, we say what it means for a curve C to satisfy the “partition condi-
tions” referenced above. For each i, the curve C induces a partition of mi. For example,
if α = {α1, 4} and C has two ends at +∞, then the paritition of 4 that C induces is either
(1, 3) or (2, 2). We say that C satisfies the partition conditions if these induced paritions
are equal to our prescribed partitions above for each mi and mj . Namely, they are equal
to P+

αi
(mi) on the positive ends and are equal to P−βj

(mj) on the negative ends.

As a final ingredient, we will state a classification theorem for low ECH index curves
which is useful in defining the differential.

Proposition 4.7. Suppose J is generic, and let α, β be orbit sets and let C ∈ M(α, β)
be a J-holomorphic current. Then:

(1) I(C) ≥ 0, with equality holding if and only if C is a union of trivial cylinders or
covers thereof.
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Figure 4. Maximal and minimal lattice paths defining the partitions of
m. The red dots form the partition P+

γ (m) and the blue dots form the

partition P−γ (m)

(2) If I(C) = 1, then C = C0 t C1, where I(C0) = 0 and C1 is embedded with
I(C1) = 1.

Here “trivial cylinder” means a cylinder of the form γ × R, with γ an embedded Reeb
orbit.

5. Defining the differential

Recall our ansatz for the differential:

∂(α) =
∑
β

Mα,ββ

for some weighting Mα,β . We expect these weights to count curves between α and β in
some way. We can now precisely define it using the language of th ECH index. Define:

Mk(α, β) := {C ∈M(α, β) | I(C) = k}
We saw that for generic J , the moduli space has dimension ind(C). In the case of
embedded I(C) = 1 curves, the dimension of M1(α, β) will also be 1 by the Index
Inequality (4.4). There is also a natural 1 dimensional R action on M1(α, β) given by
translating the R coordinate. We then expect the quotientM1(α, β)/R to be a finite set
of points (provided it is compact). Then we write:

∂(α) =
∑
β

#(M1(α, β)/R)β

The above argument shows that this is a plausible definition for a differential that is well
defined. There are still subtleties to show compactness, which can be shown using the
partition conditions and the classification of J-holomorphic currents. See [1] for a full
treatment. The harder result, due to Huchings and Taubes, is that ∂2 = 0. The difficulty
lies in trying to glue I = 2 curves together, when their boundary partitions are different.

As a final word, we state the main connection to Seiberg-Witten theory:

Theorem 5.1. If Y is connected, there is a canonical isomorphism of graded modules:

ECH•(Y, λ,Γ, J) ∼= ĤM
−•

(Y )
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Where ĤM
−•

(Y ) is the Seiber-Witten Floer cohomology.
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