
Physics 200 Lecture 1

Introduction & Programming

Lecture 1

Physics 200
Laboratory

Monday, January 31st, 2011

A programming language useful to this course must provide a minimal set
of components that can be used to combine numbers (computational tools),
compare quantities and act on the result of that comparison (conditional
control), repeat operations until a condition is met (loops), and contain
functions that we can use to input data, and output results (i/o). Almost
any language will suffice, but I have chosen to use Mathematica’s program-
ming environment as the vehicle for this course. The reasoning is that 1. The
input/output functions of Mathematica are easy to use, and require little
additional preparation1 2. We will be focused on the ideas, numerical and
otherwise, associated with the methods we study, and I want to draw a clear
distinction between those ideas and issues of implementation. This course
is not meant to teach you everything you need to know about programming
– we will discuss only the bare essentials needed to implement the methods
from class. Instead, we will focus on the physical motivation and tools of
analysis for a variety of techniques. My hope is that the use of Mathematica
allows us to discuss implementation in a homogeneous way, and our restric-
tion to the basic programming structure of Mathematica (as opposed to the
higher level functionality) allows for easy porting to the language of your
choice.

Here, we will review the basic operations, rendered in Mathematica, falling
under each category – we’ll look at the arithmetic operations, compar-
isons, loops and i/o. In addition, we must be able to use variable names
that can be assigned values, and there is a scoping for these construc-
tions in Mathematica similar to C. Functions, in the sense of C, exist in
Mathematica, and we will use a particular (safe) form, although depending

1There are libraries to import audio and video, for example, in C++, but the resulting
internal representation can be more difficult to work with. In addition, the linking of
libraries is a machine-specific detail of the programming that I do not want to address.

1 of 21

1.1. ARITHMETIC OPERATIONS Lecture 1

on the context, there are faster (and slower) ways to generate functions. In
this class, we will bundle almost every set of computations into a function,
and this is to mimic good coding practice that is enforced in more traditional
languages (for a reason – the logic and readability one gains by breaking
calculations up into named constituents cannot be overvalued). Finally, we
will look at two important ideas for algorithm development: Recursion and
Function pointers. Both are supported in Mathematica, and these are also
available in almost any useful programming language.

1.1 Arithmetic Operations

All of the basic arithmetic operations are in Mathematica – we can add and
subtract, multiply, divide, even evaluate trigonometric functions. The only
occasional hiccup we will encounter is the distinction, made in Mathematica,
between an exact quantity and a number – in Figure 1.1, we can see that
when presented with 1/4, Mathematica responds by leaving the ratio alone,
since it is already reduced. What we are most interested in is the actual
numerical value. In order to force Mathematica to provide real numbers,
we can wrap expressions in the N function, as in In[5], or we can specify
decimal places, as in In[6] of Figure 1.

Mathematica is aware of most mathematical constants, like π and e, and
when necessary, I’ll tell you the name of any specific constant of interest.
Finally, all angles used in trigonometric functions (and returned by arc-trig
functions) are in radians.

1.2 Comparison Operations

We will use most comparison operations, and Mathematica outputs True or
False to any of the common ones – we can determine whether a number is
greater than, less than, or equal to another number using >, <, == (notice
that equality requires a double equals sign to distinguish it from assignment).
We denote “less than or equal to” with <=, and similarly for “greater than or
equal to” (>=). The logical “not” operation is denoted !, so that inequality is
tested using != (not equal). Finally, we can string together the True/False
output with “AND” (denoted &&) and “OR” (||). Some examples are shown
on the right in Figure 1.1.

2 of 21

1.2. COMPARISON OPERATIONS Lecture 1

In[1]:= 3 ! 5

Out[1]= 8

In[2]:= 4"20

Out[2]= 80

In[3]:= N!Pi"E#
Out[3]= 1.15573

In[4]:= Sin!.1#
Out[4]= 0.0998334

In[5]:= 1"4
Out[5]=

1

4

In[6]:= 1.0 "4.0
Out[6]= 0.25

In[1]:= 3 ! 5

Out[1]= True

In[2]:= 7 " 5

Out[2]= True

In[3]:= 1 ! 2 && 2 # 3

Out[3]= False

In[4]:= 1 ! 2 !! 2 # 3

Out[4]= True

In[5]:= 3 $ 3

Out[5]= True

In[6]:= 2 % 3

Out[6]= True

Arithmetic Operations Logical Operations

Figure 1.1: Examples of basic arithmetic input and output and logical op-
erations.

3 of 21

1.3. VARIABLES Lecture 1

1.3 Variables

Unlike C++, variables in Mathematica can be instantiated by definition,
and do not require explicit typedef-ing. So setting a variable is as easy as
typing x = 5.0. The variable has this value (subject to scoping) until it
is changed, or “cleared” (closest to delete that exists in Mathematica) by
typing x = .

Variables, for us, will be “doubles” by default, and always take numerical
values. We can define tables and arrays, again by giving values to a variable
name. In Figure 1.2, we see a few different ways of defining variables –
first we define and set the variable p to have value 5 – Mathematica will
print an output in general, and in the case of defining variables, it prints
an output that reminds us of the variable’s value. To suppress printing
output, we use a semicolon at the end of a line – in the second example on
the left in Figure 1.2, we define q to have value 7, and the semicolon tells
Mathematica to just set the value without extra verbiage. As a check, if we
input q, and allow output, we get the correct value.

In[1]:= p ! 5

Out[1]= 5

In[2]:= p

Out[2]= 5

In[3]:= q ! 7;

In[4]:= x ! !1.0, 2.0, 3.0, 4.0"
Out[4]= !1., 2., 3., 4."
In[5]:= x

Out[5]= !1., 2., 3., 4."
In[6]:= y ! Table#j, !j, 1.0, 8.0, 1.0"$
Out[6]= !1., 2., 3., 4., 5., 6., 7., 8."
In[7]:= y

Out[7]= !1., 2., 3., 4., 5., 6., 7., 8."

In[1]:= q ! 9;

In[2]:= q

Out[2]= 9

In[3]:= q ! 10;

In[4]:= q

Out[4]= 10

In[5]:= x ! Table!j^2, "j, 1.0, 10.0, 2.0#$
Out[5]= !1., 9., 25., 49., 81."
In[6]:= x!!2$$
Out[6]= 9.

In[7]:= x!!2$$! 3.0

Out[7]= 3.

In[8]:= x

Out[8]= !1., 3., 25., 49., 81."

Defining Variables Setting Variables

Figure 1.2: Examples of defining and setting variable values.

We can define tables of fixed length by specifying the appropriate values for
each entry, using {...}, as in the definition of x on the left in Figure 1.2.

4 of 21

1.4. CONTROL STRUCTURES Lecture 1

The Mathematica command Table[f[j],{j,start,end,step}] can also
be used to generate tables that have values related to index number by the
function f[j] – in the definition of the array variable y, we use f[j] = j

for iterator j.

Once a variable or table has been defined by giving it a value, the value can
be accessed (by typing the name of the variable as input) or changed (using
the operator =) as shown on the right in Figure 1.2.

Variables can be used with the normal arithmetic operations, their value
replaces the variable name internally, just as in any programming language.
In Figure 1.3, we define x and y, and add them. We can perform operations
on elements of arrays, or on the arrays themselves (so the final example
in Figure 1.3 adds each element of the lists X and Y – note that you cannot
add together lists of different size).

1.4 Control Structures

The most important tools for us will be the if-then-else, while and for

operations. These can be used with logical operations to perform instruc-
tions based on certain variable values.

The if-then-else construction operates as you would expect – we perform
instructions if a certain logical test returns True, and other instructions
(else) if it is False. The Mathematica structure is:

If[test, op-if-test-true, op-if-test-false]

In Figure 1.4, we define and set the value of x to 4. Then we use the If

statement to check the value of x – if x is less than or equal to 4, then we
set x to 5, else we set x to −1.

Using While is similar in form – we perform instructions while a specified test
yields True, and stop when the logical test returns False. The Mathematica
command that carries out the While “loop” is

While[test, op-if-test-true]

An example in which we set x to −1 and then add one to x if its value is
less than or equal to four is shown in Figure 1.4. In this example, we also

5 of 21

1.4. CONTROL STRUCTURES Lecture 1

In[1]:= x ! 2;
y ! 3;

In[3]:= x " y

Out[3]= 5

In[4]:= X ! Table!Sin!j", #j, 0.0, Pi, Pi$10%"
Out[4]= !0., 0.309017, 0.587785, 0.809017,

0.951057, 1., 0.951057, 0.809017,

0.587785, 0.309017, 1.22465!10"16"
In[5]:= Y ! Table!2.0 #j, #j, 1, 11, 1%"
Out[5]= #2., 4., 6., 8., 10.,

12., 14., 16., 18., 20., 22.$
In[6]:= X!!2""#Y!!1""
Out[6]= 0.618034

In[7]:= X " Y

Out[7]= #2., 4.30902, 6.58779, 8.80902, 10.9511,
13., 14.9511, 16.809, 18.5878, 20.309, 22.$

Figure 1.3: Using arithmetic operations with variables, list elements, and
lists.

In[1]:= x ! 4;

In[2]:= If!x " 4,
x ! 5;
,
x ! #1;";

In[3]:= x

Out[3]= 5

In[1]:= x ! "1

Out[1]= !1

In[2]:= While!x # 4,
Print!x";
x ! x $ 1;"

!1

0

1

2

3

4

In[1]:= For!x ! "1, x # 4, x ! x $ 1,
Print!x";"

!1

0

1

2

3

4

If Statement While Statement For Statement

Figure 1.4: Using Mathematica’s If, While and For.

6 of 21

1.5. FUNCTIONS Lecture 1

encounter the i/o function Print[x], which prints the value of the variable
x.

Finally, “for loops” perform instructions repeatedly while an iterator counts
from a specified start value to a specified end value – more generally, the
iterator is given some initial value, and a logical test is performed on a func-
tion of the iterator – while the logical test is true, operations are performed.
We can construct a “for loop” from a While loop, so the two are, in a sense
complimentary. In Mathematica, the syntax is:

For[j = initialval, f[j], j-update, operations]

where j is the iterator, f[j] represents a logical test on some provided
function of j, j-update is a rule for incrementing j, and operations is the
set of instructions to perform while f[j] returns True – each execution of
operations increments j according to j-update. This is easier done than
said – an example of using the for loop is shown in Figure 1.4. That example
produces the same results as the code in the While example in Figure 1.4.

1.5 Functions

Writing programs requires the ability to break, in our case, computational
instructions into logically isolated blocks – this aids in reading, and debug-
ging a program. These isolated blocks are called “functions”, generically, a
name for anything that takes in input and provides output. Mathematica

provides a few different ways to define programming functions. We will focus
on the Module form of function definition – the basic idea is:

functionname[input1 , input2] := Module[{ local variables },
operations;

Return[value];

]

Examples of the Module in action are shown below, but morally, the impor-
tant thing to remember is that we now have a function that can be called
with some inputs, returns some output, and has hidden local variables that
are not accessible to the “outside world”.

7 of 21

1.5. FUNCTIONS Lecture 1

In[1]:= HelloWorld!name_" :!
Module!#localvarx, localvary$,
localvarx ! 1.0;
localvary ! name;
Print!"Hello ", localvary";
Return!localvarx";"

In[2]:= X ! HelloWorld!"Joel""
Hello Joel

Out[2]= 1.

In[3]:= Y ! HelloWorld!33";
Hello 33

In[4]:= Y

Out[4]= 1.

In[5]:= localvarx

Out[5]= localvarx

Figure 1.5: Example of defining, and then calling, a function in Mathematica

using Module.

8 of 21

1.5. FUNCTIONS Lecture 1

In Figure 1.5, we define the function HelloWorld, that takes a single ar-
gument called name – the underscore in the function definition defines the
argument of the function. The Module is set up with two local variables,
one takes the value of name (generally, a string), and the other is set to one.
The function itself prints a friendly greeting, and returns the value stored
in localvarx (i.e. one). As a check that the variable localvarx really is
undefined as far as the rest of the Mathematica “session” is concerned, the
last line in Figure 1.5 calls localvarx – the fact that Mathematica returns
the variable name, unevaluated, indicates that it is not currently defined.

We can use all of our arithmetic, logical, and control operations inside the
function to make it do more interesting things. As an example, the two
functions defined in Figure 1.6 are used to sort an array of numbers in
increasing order.

In[1]:= Swap!inlist_, a_, b_" :! Module!#holder, outlist$,
outlist ! inlist;
holder ! outlist!!b"";
outlist!!b"" ! outlist!!a"";
outlist!!a"" ! holder;
Return!outlist";"

In[2]:= InsertionSort!inlist_" :! Module!#outlist, indexx, indexy, curelm, Nlist$,
outlist ! inlist; %" Nlist now stores the length of the list "&
Nlist ! Length!outlist";
For!indexx ! 2, indexx # Nlist, indexx ! indexx $ 1,
curelm ! outlist!!indexx"";
indexy ! indexx % 1;
While!indexy & 0 && outlist!!indexy"" & curelm,
outlist ! Swap!outlist, indexy, indexy $ 1";
indexy ! indexy % 1;";

outlist!!indexy $ 1"" ! curelm;";
Return!outlist""

In[3]:= InsertionSort!#5, 2, 4, 6, 1, 3$"
Out[3]= !1, 2, 3, 4, 5, 6"
In[4]:= InsertionSort!#%4, 1, 7, 2, 3, %10$"
Out[4]= !!10, !4, 1, 2, 3, 7"

Figure 1.6: Definition of the function InsertionSort – this function takes
a list and sorts the elements of the list in increasing order.

The first function we define is Swap – this takes a list, and two numbers as
input, swaps the value of the elements of the list using the two numbers as
array indices, and returns an array with the two elements interchanged. For
the InsertionSort function, we go through the input array, and sequen-
tially generate a sorted list of size indexx-1, increasing indexx until it is
the size of the entire array. This is an inefficient, but straightforward way

9 of 21

1.6. INPUT AND OUTPUT Lecture 1

to sort lists of numbers.

1.6 Input and Output

There are a wide variety of Mathematica functions that handle various in-
put and output. We will introduce specific ones as we go, I just want to
mention two at the start that are of interest to us. The first, we have already
seen: Print[stuff] prints whatever you want, and can be used within a
function to tell us what is going on inside the function.

The second output command we will make heavy use of is ListPlot, this
function takes an array and generates a plot with the array values as heights
at locations given by the array index. ListPlot can be used to visualize
arrays of data, or function values. A few examples are shown in Figure 1.7.

1.7 Recursion

Most programming languages support a notion of “recursion” – this is the
idea that a function can call itself. Recursion can be useful when design-
ing “divide-and-conquer” algorithms. As a simple example of a recursive
function, consider DivideByTwo defined below. This function takes a num-
ber, and, if it is possible to divide the number by two, calls itself with the
input divided by two. If the number cannot be divided by two, the func-
tion returns the non-dividable-by-two input. In order to check divisibility, I
have defined the function IsDivisableByTwo – this checks divisibility using
Mathematica’s built-in Round command.

A concrete example of the function in action is shown in Figure 1.8 – we are
using the Print command to see what value the function DivideByTwo gets
at each call – you can see that it is called four times for the input 88.

The function DivideByTwo returns a concrete result when its input is not
divisable by two.

10 of 21

1.7. RECURSION Lecture 1

In[1]:= X ! Table!Sin!j", #j, 0, 2 Pi, 2 Pi$100.0%";
In[2]:= ListPlot!X"

Out[2]=
20 40 60 80 100

!1.0

!0.5

0.5

1.0

In[3]:= Y ! Table!j^2, #j, 0, 6, 1.0%";
In[4]:= ListPlot!Y, PlotJoined " True"

Out[4]=

1 2 3 4 5 6 7

5

10

15

20

25

30

35

Figure 1.7: Plotting arrays of data.

11 of 21

1.7. RECURSION Lecture 1

In[1]:= IsDivisableByTwo!inx_" :! Module!#div$,
div ! inx %2;
If!div " Round!div" # 0,
Return!False";
,
Return!True";";"

In[2]:= DivideByTwo!num_" :! Module!#oput$,
Print!num";
oput ! num;
If!IsDivisableByTwo!oput" $ True,
oput ! DivideByTwo!oput %2.0";";

Return!oput";"
In[3]:= DivideByTwo!88"

88

44.

22.

11.

Out[3]= 11.

Figure 1.8: Example of recursive function definition – you must provide both
the recursive outcome (call the function again with modified input) and the
final outcome (the definition of the end point).

12 of 21

1.8. FUNCTION POINTERS Lecture 1

1.8 Function Pointers

It is important that functions be able to call other functions – we can ac-
complish this in a few different ways. One way to make a function you write
accessible to other functions is to define it globally, and then call it. That is
the preferred method if you have a “helper” function that is not meant to
be called by “users”. The function Swap in the insertion sort example Fig-
ure 1.6 is such a support function – it is not meant to be called by a user
of the function InsertionSort, it is purely a matter of convenience for us,
the programmer.

But sometimes, the user must specify a set of functions for use by a program.
In this case, we don’t know or care what the names of the functions supplied
by the user are – they are user-specified, and hence should be part of the
argument of any function we write. This “variable” function is known, in
C, as a “function pointer” – a user-specifiable routine. Because of the low-
key type-checking in Mathematica, we can pass functions as arguments to
another function in the same way we pass anything. It is up to us to tell the
user what constraints their function must satisfy. As an example, suppose
we write a function that computes the time average of some user-specified
function f(t) – that is, we want to write a function that takes:

TimeAverage(f) =
1

T

∫ T

0
f(t) dt. (1.1)

We’ll use Mathematica’s Integrate function for now. Our function, called
TimeAverage below, takes as input the function f(t) and the period of in-
terest, T , and returns the right-hand side of (1.1). The code and two user
test cases is shown in Figure 1.9.

1.9 Mathematica-Specific Array Syntax

Most programming languages have a notion of memory allocation (whether
the responsibility of the programmer, compiler, or operating system) – we
need a way to store values of various sorts. An array of numbers can be
viewed as a vector, but we could also have an array of alphanumeric char-
acters, called a “string”, or an array of some more exotic collection of data
(think of an array of arrays of numbers of length 2, for example).

Mathematica uses “Table”s to store information. The simplest tables are

13 of 21

1.9. MATHEMATICA-SPECIFIC ARRAY SYNTAX Lecture 1

In[1]:= TimeAverage!f_, T_" :! Module!#tavg$,
tavg ! %1&T' Integrate!f!t", #t, 0, T$";
Return!tavg";"

In[2]:= userfunction1!t_" :! Sin!t"^2
In[3]:= TimeAverage!userfunction1, 2 Pi"
Out[3]=

1

2

In[4]:= userfunction2!x_" :! Sin!x" Cos!x"
In[5]:= TimeAverage!userfunction2, 2 Pi"
Out[5]= 0

Figure 1.9: The function TimeAverage takes a function name as its argu-
ment, in addition to the period over which to average.

just lists of numbers, but we can make tables of tables (of tables), and use
these to store multiple pieces of information. As an example, in Figure 1.10,
we see a definition of a table – each entry contains two elements, one num-
ber, and one list of two numbers. This type of table would be useful, for
example, in encoding the time (the first element), and position-and-velocity
(the second pair) of a particle. In the example, if we ask for the second
element of our list, we get back an array consisting of one number, and an
array (as expected) – we can work our way down, so that tXV[[2,1]] gives
us back the first element of the array at location 2 of tXV, a “time” (if we
like). Finally, we can recover the position via tXV[[2,2,1]], literally “The
first element of the second element of the array tXV.”.

We can also use the built-in table command to construct such tables, and in
that context, we see at the bottom of Figure 1.10 the same tXV table built
automatically.

14 of 21

1.10. TIMING AND OPERATION COUNTS Lecture 1

In[1]:= tXV � � �0.0, �1.0, 0.1��, �0.1, �1.5, 0.2��, �0.2, �2.0, 0.3��,�0.3, �2.5, 0.4�� �;
In[2]:= tXV��2��
Out[2]= �0.1, �1.5, 0.2��
In[3]:= tXV��2, 1��
Out[3]= 0.1

In[4]:= tXV��2, 2��
Out[4]= �1.5, 0.2�
In[5]:= tXV��2, 2, 1��
Out[5]= 1.5

In[1]:= tXV � Table��t, �1 � .5 �t�.1�, .1 � t��, �t, 0, .3, .1��
Out[1]= ��0., �1., 0.1��, �0.1, �1.5, 0.2��, �0.2, �2., 0.3��, �0.3, �2.5, 0.4���

Figure 1.10: We can define tables (arrays) with elements consisting of mul-
tiple data types.

1.10 Timing and Operation Counts

Finally, we will be interested in timing our methods, so we need a basic
notion of counting the amount of time a particular algorithm will take to
run. The rules are simple: 1. Every addition, subtraction, multiplication or
division takes the “same” amount of time to execute. 2. We are interested
in the timing of an algorithm, up to constants that are machine specific.
While a particular computer may add in three microseconds, but take nine
microseconds to multiply, these are, up to order of magnitude, the same.
Our interest is generally in the scale of the computation, not the details.
So, given a problem with N parameters that we know (experimentally, say)
can be solved on an iPad in n seconds, our question will always be, how
many seconds does it take the iPad to solve the same type of problem with
M parameters?

To be concrete, a general matrix inversion problem for an N × N matrix
can be solved in T (N) = αN3 seconds, where α is a machine-specific (and
therefore uninteresting) constant. So we know what happens to the timing
if we double the size of the matrix – we octuple the timing: T (2N) =
α (2N)3 = 8T (N). It is this scaling that is of interest, so clearly, constants

15 of 21

1.10. TIMING AND OPERATION COUNTS Lecture 1

like α don’t really matter. We use the “O” notation to indicate the scaling,
so we would write: T (N) = O(N3) to suggest that the timing for a problem
of size N takes time proportional to N3, with constants of proportionality
set by the machine itself (and sometimes, our cleverness of implementation
– after all, .9N3 is worse than .01N3).

When counting operations, then, we can simply give the scaling with fun-
damentally interesting parameters in the problem. As a concrete example,
take the matrix dot product of a and b, both in IRN . We know that:

a · b =
N∑
i=1

ai bi (1.2)

and if we think of how the timing for this calculation goes with N , we have:

T (n) = α×N + α+ (N − 1) (1.3)

where α× is the constant associated with multiplication, α+ that associated
with addition. But, using our O notation, we can simplify:

T (n) ≤ max(α+, α×)N = O(N) (1.4)

so that fundamentally, the time it takes to compute the dot product scales
linearly with N . This suggests that if you knew, say, T (2) for your computer
(in order to get the coefficient out front of O(N)), you could compute T (100).

Given that, what is T (N) for matrix-vector multiplication?

Bibliography

1. Cormen, Thomas H. & Charles E. Leiserson, Ronald L. Rivest. Intro-
duction to Algorithms. The MIT Press, 1990.

16 of 21

1.10. TIMING AND OPERATION COUNTS Lecture 1

Lab

In this laboratory, we will explore elements of programming and manipulating
basic output. Use the provided boxes for answers, and to show any work relevant
to your calculation.

Problem 1.1

Predict the output of the command DivideByTwo[76]:

Problem 1.2

We can view arrays in a variety of ways. In this problem, we’ll make a list of
particle locations. Suppose we have one hundred particles to keep track of, each
has three spatial coordinates, so we could imagine generating a table with 100
entries, each entry is itself a set of three values. Using the Table command,
construct a table that spaces our “particles” evenly along the line from r0 = 0
to rf = 1 x̂ + 1 ŷ + 1 ẑ (so the first particle is at the origin, and the hundredth
particle sits at {1, 1, 1}). If you call your table Xlist, what is the output of:
Xlist[[72,2]]? Provide both the numerical answer to five digits, and describe
your interpretation of this entry in words, below:

17 of 21

1.10. TIMING AND OPERATION COUNTS Lecture 1

Problem 1.3

Suppose we make a table using the command:

ret = Table[{j, Table[Table[m,{m,1,k}],{k,1,j}]},{j,1,10}]

What will the output of ret[[8,2,5,3]] be? (Predict first, then check).

18 of 21

1.10. TIMING AND OPERATION COUNTS Lecture 1

Problem 1.4

Write a function that takes two vectors a and b and outputs the dot product
a · b using the Sum command. Note that your function should fail if the two
vectors are not of the same length (you can check the length of a list using
Length) – failure should be indicated with a printed statement, and a return
value that could not be a valid dot-product output.

There is a Timing command that can be used to find how many seconds it
takes to perform a particular operation – the usage is: Timing[ops], and
the output is { timing, return value of ops} (i.e. a table with two
entries). Using this command, write a function that takes, as its argument, an
integer (call it nsize), and returns the amount of time it took to compute the

dot-product of a · b for a, b ∈ IRnsize. Using your function, create a table of
the amount of time it takes to compute the dot-product for vectors of length
10000, 20000, . . . , 100000 (in steps of 10000). Use ListPlot with your table
to estimate the amount of time it takes your computer (running Mathematica)
to perform an arithmetic operation – describe your procedure for determining
this value.

19 of 21

1.10. TIMING AND OPERATION COUNTS Lecture 1

Problem 1.5

Write a function that takes input parameters T and m, and output (in a table
of length two) that contains: 1. The frequency (f , not ω) of a sinusoidal wave
that is zero at t = 0 and t = T and contains m full cycles, and 2. A plot of this
sinusoidal function that has time as its x-axis. Give the output of

yourfunc[4 Exp[1], 3]

in the space below:

20 of 21

1.10. TIMING AND OPERATION COUNTS Lecture 1

Problem 1.6

Construct a function that takes as input the height z at which a solid body
approaches a sphere of radius R = 1, as shown below, and outputs the angle
θ at which the body “bounces” off the sphere (use angle of incidence equals
angle of reflection). What is the angle θ if z = 0.25 (answer below)?

z

R

in
θ

out

Figure 1.11: A solid body approaches a sphere at height z, and bounces off
of it at angle θ.

Make a table of angles for a range of heights z (you can use the built-in command
RandomReal[{-1,1}] to specify a random number from −1 to 1, for example)
– using the Histogram function, generate a histogram of output angles for
100000 input heights. Sketch your histogram on the range −π −→ π (this
means you will need to modify the output for z < 0).

21 of 21

