

Introduction Safety Requirements in Component of an Embedded Software for

Self-defense Against the Failures with a Technique Combining Concept Lattice

and Graph.

Lala Madiha Hakik

Faculty of Sciences and Techniques,

University Hassan I, BP 577. Settat, Morocco,

Abstract
AUTOSAR applications are decomposed into

software components that interact with each other.

They can exchange either data or services, via

interfaces[1].
They cannot directly call the services of basic

software, that is to say the scheduler, the

communication bus, equipment, etc.

In this paper we worked on software architecture

AUTOSAR, object of the thesis that Caroline Lu[1]

found failings at components especially functionality

part of modules.

To remedy it has adopted a technique to develop

software defense such a configurable external

component, based on the observability and

controllability of the mechanisms provided by

standard software architecture Automobile emerging

AUTOSAR[2].

 Our approach is remodularization at the component

by introduction requirements for modification of the

functionality at the module using the Galois lattice

with Formal concept analysis FCA and directed

labeled graph for Self-defense Against the Failures.

Keyword: Embedded Software Automobile, ,

Component, Module, Remodularization, FCA, Graph,

Self-defense Against the Failures

1. Introduction
The embedded software in a computer is part of the

mechatronic system vehicle. Thus, hardware faults to

electronics and the environment (electromagnetic

interference, temperature variations...etc) are sources of

errors that can cause failure of the software.

They can cause, for example, by corruption of data,

parameters, even of code segments.

Moreover, the complexity of software is a factor in

increasing the number of software faults remaining,

these faults are likely to appear throughout

 Rachid El Harti

Faculty of Sciences and Techniques,

University Hassan I, BP 577. Settat, Morocco,

 the process of software development: when

specifications of developments design, of

implementation manual (possible error Interpretation)

or automatic.

In automobile, the concept of safety of operation is

characterized by availability property therefore

fitness of the use of a vehicle, it relates also reliability

whence capacity to ensure continuity of service and

also maintainability which is an ability to maintain

in operating condition. Finally, the notion of security

which is a system suitability did not know

catastrophic event.

In this context the thesis work of Caroline Lu [1] has

ensured the robustness of embedded software

AUTOSAR by adding a component defense

contributing to improve safety of operation of system.

In our approach we worked on architecture fault-

tolerant, for software platforms of modular Type and

multilayer the same than used by Caroline Lu [1]

focusing on the same requirements and the same

failures.

In our case, we conducted a remodularization at the

component level by introduction of Safety
requirements for modification of the functionality at

the component level using the Galois lattice with

Formal concept analysis FCA and directed labeled

graph for Self-defense Against the Failures.

This method combining concept lattice with FCA and

directed labeled graph was approved by a formalism.

we recall our approach comes after identification of

errors by the existing failure detector of embedded

system.

In this paper, section 2 presents our example, then we

describe the approach in Section 3. Related work is

presented in Section 4 and then we conclude in Section

5.

2. Illustration
This section presents the system studied [1] is

Embedded on a microcontroller 16 bits, S12XEP100

63

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10047

Freescale. It has the particularity to include

mechanisms of memory protection hardware (MPU).

The software architecture of our case is of type Autosr

(extracted from the thesis of Caroline Lu Toulouse

University [1] (see figure.1)) superimposes 4 layers.

The basic software has two layers of abstraction:

AUTOSAR Service Layer and AUTOSAR

MicroController Abstraction Layer MCAL.

Abstraction layer of microcontroller contains only

Module General Purpose Timer (GPT) which manages

hardware timers. The service layer is reduced to a real-

time executive, called "Trampoline OS" [Bechennec et

al. 2006]. This software is open source, developed by

Irccyn, from the OSEK OS and AUTOSAR OS

specification. The communication layer AUTOSAR

RTE is generated automatically in configuration

information from the application layer and basic

software. This code generation was carried out using

the commercial tool DaVinci 2.2 MICROSAR RTE

TM Vector (see figure 1).

The application layer includes 4 software components

with interfaces AUTOSAR. The "air conditioning"

component consists of the adaptation and porting an

existing automotive module. The "airbag" components

and " torque transmission "are synthetic. The rest

being represented by timers. The last synthetic

component "stub" represents the rest of the

environment application. It sends to the three other

components and data from the sensors and other

computers, they need (see figure 1).

The coexistence of air conditioning, airbag and torque

transmission functions at the same computer is only

illustrative and may be unrealistic today.

 Figure 1. Multi-level Software Architecture

AUTOSAR extracted from the thesis of Caroline Lu

Toulouse University [1].

We are interested in the failures in components
including functionality part of modules.
To remedy this problem, Caroline Lu [1] has
found failings at the component level especially
functionality part of modules has developed a software

defense such a configurable external component, based

on the observability and controllability of the

mechanisms provided by standard software architecture

automobile emerging AUTOSAR.

Our work has focused on the functional patterns of 3

components: air conditioning, airbag, torque

transmission, while using the security requirements for

optimization of the component without errors.

In this paper we have limited ourselves in one case of

the functional pattern air conditioning component (see

figure2 composed of 3 modules: a Manual Control, a

filtering and an operating mode with data consumed

and produced data), the same methodology is

applicable to other components.

Figure 2. Functional pattern of "air conditioning"

modules extracted from the thesis of Caroline Lu

Toulouse University [1].

We believe that the Formal Concept Analysis (FCA)

and graph can bring interesting ways to solve this

problem because this technical method led us to a

formalism resulting in a functional pattern for each

component allowing it of appropriating; with safety

requirements, self-defense against the alleged failures.

In our approach, we focused only on safety

requirement (table 1), for preparing the concept lattice

of figure 3.

Table1. Safety requirement and type of specific

failure[1].

Safety requirement Type of specific failure

R1: The calculation of

operation mode should only

be done when all of the

input from the manual

control data and the filter are

available.

F1:Dataflow : Value

exchanged unwanted

F2: Dataflow: Execution

sequence unwanted

64

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10047

3. Proposed approach
The Formal Concept Analysis (FCA) [3] [4] [5] [6] [7]

[8] is a technical data analysis that allows you to group

entities with common characteristics. A concept is a

maximal set of entities (extension of the concept)

sharing a maximal set of characteristics (intension of

the concept). The FCA is used in software engineering

for solving several problems [4].

Configurations In the context of our problem, we

studied one configuration with FCA.

The configuration with FCA is to define a formal

context C: the set O of entities studied (or formal

objects) Set A of characteristics (or formal attributes)

and the relationship R ⊆ O × A.

The formal context associated to the functional

pattern of modules "Air conditioning" component in

Figure 2. This context is represented by the triplet

 (O, A, R).

Context (formal context C).

- O is the set of the modules with independent

requirements.

- A is the set of independent requirements or gathered

by the relationship "And", whether data consumed or

produced data.

 - R is the relation between objects and attributes, it is

a relationship of safety and control data " Provide" or

"Available ".

Table2. Legend of figure 3.

Objects Attributs

CM: Control Module

Manual

F: Filtering Module

MF: Operation mode

E1: The input data from the

manual control are available.

E2: The input data from the

filter are available.

DC: Data consumed

DP: Data produced

E1: The input data from the

manual control are available.

E2: The input data from the

filter are available.

E1 And E2: The input data

from the manual control and

filtering are available.

Figure 3. Formal context 1 and lattice T(C1)

- Functional pattern of "air conditioning" -

3.1. Formalization of result of the obtained lattice

The lattice of Figure 3 is used as follows:

- For all concepts [{CM,F},{DP}], [{CM},{DP,E1}],

[{F},{DP,E2}], [{MF},{DC,E1 And E2}], objects and

attributes are considered as nodes characterized by:

CM, F, MF, DP, DC, E1, E2, E1 And E2.

- The relationship between objects and attributes are

represented by edges connecting each pair of nodes as

an example for the concept [{CM}, {DP, E1}] where

the nodes E1 and CM are connected by the edge (E1,

CM) image of couple (Attribute, Object).

It is found that all the conditions are met to define a

graph oriented, object of Figure 4 below from the

result of the lattice of the figure 3.

Definition 1 (Oriented Graph) [9]:

A graph G is a mathematical structure defined by a

pair (N, E) where N is a set of objects called nodes or

vertices and E part of N * N which represents a set of

65

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10047

arcs (also called edges) each connecting a pair of

nodes.

This general definition is a directed graph distinguishes

two vertices s1 and s2 the edge (s1, s2) of the edge

(s2, s1).

Figure 4. Oriented Graph result of the lattice of

figure 3.

to permit reading a functional pattern of the modules

"Air Conditioning", we did call the labeled directed

graph because it exists in the lattice relations "Provide"

or "Available", object of Figure 5 applied to the
following way:

 - The labeled them "provide" is used between two

nodes of the same type whether of modules or

requirements.

 - The labeled "Available" is used between two nodes

of different types.

Our approach to labeling is inspired by part of the

thesis Adil Anwar, Toulouse University [9] , treating

Directed Labeled Graph.

Definition 2 (Directed Labeled Graph) [9]:

Labeling of Graph G is a function l, or partial defined

 N ⋃ E to a set of labels L (l: N ⋃ E → L). For every

element x in the field, the element l(x) is called the label of

x.

The three types most common for labeling graphs are:

• The total labeling: in this case is the total function (defined

on a set N ⋃ E).

• The labeling of node: the domain of definition of l is N.

• The arc labeling: the domain of definition of l is E.

Typically, L is a set of integers but can also be a set of

strings.

A labeled graph G is thus fully defined by the triplet (N, E, L)

where N is an set of nodes, a set of edges E and l a function

defined on labeling N ⋃ E.

Figure 5. Directed Labeled Graph result of the lattice of

figure 3.

We find that our approach, led us so far to define

functional pattern model (figure 5) of the component

''Air conditioning " and will apply to other components

in observing the following definition:

Definition 3 (functional pattern Model "FPM"):

We define a functional model " FPM " as a directed

labeled graph defined by the triplet (N, E, l)

 (FPM = (N, E, l)) where N is the set of elements of

model to represent (modules, independent

requirements, requirements gathered, data produced,

consumed data) .

-E is a set of edges representing the relationships

between elements of N (E ⊂ N * N).

An arc is thus uniquely defined by the source node and

node destination.

- L is a function that allows to describe the nodes and

arcs of the graph. In reality the allows qualify the type

of nodes (module independent requirement,

requirement gathered, data produced, consumed data)

and semantic relationships between these elements

(Provide, available).

 - The labeled "provide" is used between two nodes of

the same type whether of modules or requirements.

 - The labeled "Available" is used between two nodes

of different types.

- l is defined by: l: N ⋃ E→L with L is the set of

possible labels in the model.

66

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10047

4. Related Work
The automobile approaches of software faults is still

relatively little thorough, which is explain by the recent

development of embedded computing. In Renault, for

example, failure analysis for computers are guided by a

model of physical faults. The equivalent in the software

does not yet exist[1].

 In the European EASIS project, software faults are

mixed with hard faults [1] [11]. software faults are

described: the scheduling mistakes, errors of

communication between software components, and

functional faults[1].

In the AUTOSAR consortium, each working group

expresses its assumptions fault for the software module

which is supported [1] [10].

The method of Caroline Lu[1] is to adopt a technique

to develop software defense such a configurable

external component, based on the observability and

controllability of the mechanisms provided by

standard software architecture Automobile emerging

AUTOSAR[2].

Different automated approaches have been proposed to

restructure object systems. We cite three: the clustering

algorithms, algorithms based on meta -heuristics and

those based on the FCA. The first aim to restructure

system by the distribution of some elements (eg

classes, methods , attributes) in groups such that the

elements of a group are more similar to each other with

elements of other groups [13] [14] . Approaches to

restructuring based on meta-heuristic algorithms [15]

[16] are generally iterative stochastic algorithms,

progressing towards a global optimum of a function by

evaluating a certain objective function (eg

characteristics or quality metrics). Finally, the

approaches based on FCA [17] [18] provide an

algebraic derivation of hierarchies of abstractions from

all entities of a system. Reference [4] presents a general

approach for the application of the FCA in the field of

object-oriented software reengineering. Recently, we

added the dimension of exploration using the FCA [7]

[8] and we have extended our research to introduce a

technique of adding a new functionality in a package

with FCA[12].

Our approach is remodularization at the component by

introduction requirements for modification of the

functionality at the module using the Galois lattice

with Formal concept analysis FCA and directed labeled

graph for Self-defense Against the Failures.

5. Conclusion and discussion

In this article, we present and illustrate a theoretical

case and propose a technique of introduction

requirements for modification of the functionality at

the module using the Galois lattice with Formal

concept analysis FCA and directed labeled graph for

Self-defense Against the Failures.

This method is approved by a formalism for the

elaboration of a functional pattern model.

6. References
[1] C. Lu. Robustesse du logiciel embarque multicouche une

approche reflexive application a l’automobile. Thesis.

Toulouse University. 2009.

 [2] Automotive Open Standard Architecture,

http://www.autosar.org

[3] B. Ganter and R. Wille. Formal Concept Analysis.

Mathematical Fondations. Spinge. 1999.

[4] T. Tilley, R. Cole, P. Becker, P.W. Eklund. A survey of

formal concept analysis support for software engineering

activities. In Int. Conf. Fomal Concept Analysis (ICFCA

2005), pages 250-271, 2005

[5] G. Arévalo, S. Ducass, and O. Nierstrasz. Lessons leaned

in appling fomal concept analysis to reverse engineering. In

Proceeding of the Third international conference on Fomal

Concept Analysis, ICFCA’05, pages 95-112, Berlin.

Heidelberg, 2005. Spinge-Velag.

 [6] B. Ganter and R. Wille. Formal Concept Analysis.

Mathematical Fondations. Spinge. 1999.

 [7] Lala Madiha Hakik, Rachid El Harti . " Exploring the

Redistribution Classes of a Package with an Approach Based

on Formal Concept Analysis ", Vol.2 - Issue 12 (December -

2013), International Journal of Engineering Research &

Technology (IJERT), ISSN: 2278-0181, www.ijert.org.

[8] Lala Madiha Hakik, Marianne Huchard, Rachid El Harti

et Abdelhak Djamel Seriai. Exploration de la redistribution

des classes d'un package par des techniques d'Analyse

Formelle de Concepts. The first conference in software

ngineering (CIEL 2012), France, 2012.

 [9] A. Anwar. Formalisation par une approche IDM de la

composition de modeles dans le profil VUML. Thesis.

Toulouse University. 2009.

[10] AM Salkham, Fault Detection, Isolatation and Recovery

(FDIR) On-Board Software Master’s Thesis, Chalmers

University of technology, Gotebor, Sweden,2005.

67

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10047

 [11] J. Bohm, M. Menzel, X. Chen , J.M. Dressler,

T.Eymann, M. Hilter, T. Kimmeskamp, V. Quenda.

Description of Fault Types for EASIS V2.0. Technical report,

Jun 2005.

[12] Lala Madiha Hakik, Rachid El Harti . " Technique of

Adding A New Functionality in A Package with An

Approach Based on Formal Concept Analysis ", Vol.2 - Issue

12 (December - 2013), International Journal of Engineering

Research & Technology (IJERT) , ISSN: 2278-0181 ,

www.ijert.org

[13] F.B. Abreu, G. Pereira, and P. Sousa. A coupling-guided

cluster analysis approach to reengineer the modularity of

object-oriented systems. In Proceeding of the confeence on

Software Maintenance and Reengineering. CSMR ‘OO, pages

13-, Washington, DC, USA, 2000. IEEE Compter Society

Press.

 [14] M. Bauer and M. Trifu. Architecture-aware adaptive

clustering of oo s ystems. In Poceedings of the Eighth

Euromicro Working Conference on Software Maintenance

and Reengineering (CSMR ‘O4), CSMR ‘O4, pages 3-,

Washington, DC, USA, 2004. IEEE Compter Society.

[15] M.O’Keeffe and M. i Cinneide. Seach-based refactoring

fo software maintenance. J. Syst. Softw., 81(4): 502-216,

April 2008.

[16] O. Seng, J. Stammel and D. Burkhart. Search- based

determination of refactorings for improving the class

structure of object-oriented systems, In Mike Cattolico, edito.

GECCO, pages 1909-1916. ACM, 2006.
[17] G.Snelting. Software reengineering based on concept

lattices. In CSMR, pages 3-10, 2000.
 [18] P. Tonella.Concept analysis for module restructuring.

IEEE Trans. Software Eng..27 (4): 351-363, 2001.

68

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10047

