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 Relational databases are the prevalent 
solution for storing enterprise data

 Some of the main benefits of RDBMS are

▪ Access to persistent data

▪ ACID Properties

▪ Integration

▪ Where multiple applications share data

▪ Standardized model
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 A major disadvantage with a RDBMS is the impedance 
mismatch with the object model

 This is partly mitigated by the availability of object-
relational mapping frameworks

 The typical DB model uses a RDBMS as an integration 
database

▪ Providing a data source for multiple applications

 An alternative is to create separate application databases

▪ And use web services to integrate the application databases
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Impedance mismatch – a term borrowed from electrical engineering
where (very broadly) the output does not match the input



 The volume of data has grown dramatically in 
recent years

▪ Caused by the onset of the web as a vehicle for 
trade, information and social networking 

▪ With the growth in data came a dramatic growth 
in users

 Managing the increase in data requires more 
computing resources

▪ Scale up or out
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 There are two basic methods for scaling 
computing resources

▪ Vertical scaling ("up")

▪ Buy bigger, more powerful machines

▪ Horizontal scaling ("out")

▪ Buy  more, cheaper, machines

 Many small machines in a cluster ends up 
being cheaper than scaling up

▪ And provides more resilience
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 RDBMS are not designed to run on clusters

▪ Though many DBMS products support distributed 
databases

▪ Primarily through writing to a highly available disk subsystem

▪ Though this subsystem may still be a single point of failure

 Organizations sought alternatives to RDBMS

▪ Google Dynamo

▪ Amazon BigTable

▪ Neither of these products use SQL

▪ They are NoSQL databases
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 There is no one definition of NoSQL

▪ And NoSQL databases differ significantly

▪ There is even disagreement over whether it stands for No 
SQL or Not only SQL

 Common NoSQL database characteristics

▪ Does not use relational model

▪ Runs well on clusters

▪ Open source (not always)

▪ Built for 21st century web applications

▪ Schema-less
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 NoSQL databases move away from the 
relational data model

 There are four main types of NoSQL database

▪ Key-value

▪ Document

▪ Column store

▪ Graph

 The data models used by the first three have 
some similarities
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 Modern programming language data structures 

have more complex structure than relations

▪ That allow lists and other structures to be nested

▪ We will refer to such structures as aggregates

▪ A collection of related objects to be treated as a unit

 Using aggregates makes it easier for databases 

to operate in clusters

▪ The aggregate can be used as a unit for replication 

and sharding
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 A relational database captures relationships 
using foreign keys in tables

▪ Combining tables entails joins

▪ Which may be expensive

▪ It does not capture the structure of an aggregate

 The same relational schema could have many 
different corresponding aggregates

▪ Let's look at our bank example
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 There are many different possible aggregates

▪ For example a Branch object could include a container 
holding its associated accounts

▪ Or Account objects could be independent of the Branch 
and contain a reference to the branch

 There are similar variations between the relationships 
between other entities

 The aggregates that are chosen should reflect the way 
that data is manipulated

▪ Data related to a single aggregate should be maintained 
at the same cluster
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 NoSQL databases are schema-less
 Before storing data in a relational database the schema 

has to be defined

▪ Tables, columns and their domains are defined

 NoSQL databases are much more casual

▪ Key-value store allows any data to be associated with the key

▪ Document databases do not make restrictions on what is 
contained in a document

▪ Column family databases allow any data to be stored in any 
column
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 Advantages

▪ Freedom and flexibility

▪ New data can be added as required

▪ Old data can be retained since un-needed columns do not 
have to be deleted

▪ Easier to deal with non-uniform data

 Disadvantages

▪ In practice most programs rely on schemata

▪ If the schema is only implicit it must be deduced

▪ The schema is moved from the data store to the application
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 NoSQL databases handle large amounts of 
data by scaling out

▪ Running on clusters of machines

 The data to be stored needs to be distributed 
across the cluster

▪ Sharding

▪ Replication
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 Sharding distributes data between nodes

▪ The goal is for users to get all, or most of, their data 

from one server

 Sharding methods

▪ By physical location

▪ Locate the Vancouver accounts in Vancouver servers

▪ Locate aggregates that are likely to be accessed 

together or in sequence in the same location

▪ Many NoSQL databases perform automatic sharding
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 Sharding can improve both read and write 

performance

▪ Sharding allows horizontal scaling for both reads and 

writes

 However sharding does not improve resilience

▪ Since sharding distributes data across many machines 

there is a larger chance of failure

▪ Particularly compared to a single machine that is highly 

maintained
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 Replication is the process of maintaining multiple 
copies of data

▪ To improve read performance

▪ And improve availability and resilience

 Replication works better for read-intensive databases

▪ Since all copies of the data have to be updated when 
processing writes

▪ There are two replication schemes that handle writes in 
different ways

 Replication may lead to inconsistency

John Edgar 22



 In master-slave replication one copy is maintained as 
the definitive data source

▪ All updates are performed on this master copy and then 
propagated to the slaves

▪ Read requests are handled by the slaves

 Since the master handles all updates it is not good for 
write-intensive systems

 If the master fails one of the slaves is appointed as the 
new master

▪ Either manually or automatically
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 Master-slave replication does not improve write 
scalability

▪ Resilience is improved for slaves but not the master

▪ Master is a bottleneck and a single point of failure

 In peer to peer replication all replicas accept writes 
and have equal weight

▪ There is a trade-off between availability and inconsistency
▪ Read inconsistency can occur when changes have not been 

propagated to all replicas

▪ Write inconsistency can occur when two updates are performed at 
the same time
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 Sharding and replication can be combined

▪ Each shard is replicated

 In master – slave replication there is one 

master for each shard

 Peer to peer replication of shards is 

commonly used for column family databases
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 Relational databases guarantee consistency

▪ Through ensuring that transactions are processed atomically as 
if they occurred in isolation

▪ Databases interleave actions of transactions to improve 
throughput

▪ While identifying and preventing conflicts that could leave the 
database in an inconsistent state
▪ Often through locking

 When actions of two transactions conflict the database 
prevents one from starting before the other has finished

▪ Guaranteeing consistency becomes more difficult when the 
data resides on multiple servers
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T1 T2 A

Read(A) 1,000

Read(A) 1,000

Write(A) 1,500

Write(A) 1,100

Consider two transactions that affect a single bank account which initially holds
$1,000. In one transaction Bob (T1) is going to deposit $500 and in the second interest
of 10% is going to be added to the account.

This interleaving results in a lost
update caused by an unrepeatable
read which leaves the database in
an inconsistent state

T1 T2 A

Read(A) 1,000

Write(A) 1,500

Read(A) 1,500

Write(A) 1,650

In this version the database locks A
which prevents T2 from acting on A
(including reading it) until T1 has
completed



 It’s important to understand that locking mechanisms 
come with a cost

▪ A reduction in throughput
▪ i.e. less transactions are processed in a given time

 Controlling concurrency through locking in a 
distributed system is time consuming

▪ The process is more complex 

▪ And it takes time to communicate across the network

 NoSQL databases often relax their requirements for 
consistency
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 Controlling concurrency on a distributed 
system becomes more complex

▪ Particularly if the system is using peer to peer 
replication

▪ Where any node can process updates

 Conflicts must be detected across nodes

▪ And updates must be processed in the same order

▪ Note that in the example the account’s balance would 
be different if T2 occurred before T1
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 A common claim is that NoSQL databases to not 
guarantee ACID transactions

▪ That is, they drop acid

▪ Specifically they do not support atomic transactions

 Aggregate oriented databases do support atomic 
transactions

▪ But only within aggregates

▪ And not necessarily across aggregates

 Updates that affect multiple aggregates may result in 
inconsistent reads for some time

▪ Known as the inconsistency window
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The typical inconsistency window for
Amazon's SimpleDB is claimed to be
less than one second



 An additional issue for distributed databases 
is replication consistency
▪ Where updates reach different replicas at 

different times

▪ This may result in two users reading different 
values at the same time

 Over time replicas will have the same values
▪ That is they will be eventually consistent

▪ Replication consistency issues may result in an 
increase in the size of the inconsistency window
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 The CAP theorem states that it is only possible 
to maintain two out of three properties

▪ Consistency

▪ Availability

▪ If a node is available it can read and write data, or

▪ Every request received by a non-failing node in the system 
must result in a response

▪ Partition tolerance

▪ The cluster can survive communication breakdowns that 
separate it into multiple partitions
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 A distributed system must have partition tolerance

▪ Unlike a single server system which can therefore provide 

consistency and availability

▪ Without partition tolerance the implication is that if a 

partition occurs all the nodes in the cluster go down

 As partition tolerance is required, distributed systems 

must choose between availability and consistency

▪ This is not an either / or choice

▪ Most often it is necessary to reduce consistency to increase 

availability
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 Consider Bob and Kate trying to book the last 
hotel room in the Grand Hotel in Vancouver

▪ On a peer to peer system with two nodes

▪ Bob is in Vancouver and Kate is in London

▪ If consistency is to be ensured then London must 
confirm Kate's booking with Vancouver

 If the network link fails then neither node can 
book rooms

▪ Which sacrifices availability
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 An alternative is to use master-slave replication

▪ All bookings for Vancouver hotels will be processed by the 

Vancouver node

▪ Vancouver is the master

 What happens if the network connection fails?

▪ Bob can still book the last room but Kate cannot

▪ Kate can see that a room is available but cannot book it

▪ There is an availability failure in London

▪ As Kate can talk to the London node but the node is unable to 

update data
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 A third alternative is to allow both nodes to 
accept reservations when the connection fails

▪ This increases availability

▪ But may result in both Bob and Kate booking the last 
room

▪ A consistency failure

 This reduction in consistency may be acceptable

▪ The hotel does not lose bookings

▪ And may keep a few spare rooms even when fully 
booked in case a room has to be vacated
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 There may be situations where some 
inconsistency is permissible

▪ These situations are domain dependent and 
would have to be identified

▪ By talking to the client

 Deciding to deal with some inconsistent 
updates (or reads) can be very useful

▪ The tradeoff may be for more availability or 
performance
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 NoSQL databases are said to follow the BASE 
properties rather than the ACID properties

▪ Basically Available

▪ Soft state

▪ Eventually consistent

 It is debatable how useful this is, or how well 
defined the properties are

▪ But its cute …
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 Read-Your-Writes consistency
▪ Once a process has updated a record it will always 

read the updated value
 Session consistency

▪ Read-Your-Writes consistency over a session
 Monotonic Read consistency

▪ Once a process sees a version of a value it will never 
see an earlier version of that value

 Monotonic Write consistency
▪ Updates are executed in the order in which they are 

performed
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 A key-value store has two columns

▪ The key – the  primary key for the store

▪ The value – which can be anything

 The value in a key-value store is not 
understood by the store

▪ It is the responsibility of the application that is 
accessing the value

 The structurally simplest NoSQL database
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 Consistency

▪ Applicable only for single key operations

▪ Eventual consistency a popular model

 Transactions

▪ Varies considerably between products

 Query features

▪ Key-values stores support querying by the key

▪ Querying by attributes of the value column is not supported

 Scaling – by sharding

▪ The value of the key determines the node on which the key is 
stored



 Keys should be well designed

▪ Use a naming convention

▪ Use meaningful and unambiguous names

▪ Use consistently named values for ranges

▪ e.g. dates

▪ Use a common delimiter

▪ Keep keys short while complying with the above

▪ Take implementation limitations into account
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 Generally the value will be driven by the 
application but some design issues remain

▪ What aggregates are to be used?

▪ One key – many values (e.g. customer123)

▪ Many keys – many values (e.g. customer123 address, 
customer 123name etc.)

▪ Large or small values?

▪ Large values reduce the number of reads

▪ But the time to read and write values increases
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 Uses for which key-value stores are suitable include

▪ Session information

▪ Storing configuration and user data information

▪ Shopping carts

 Examples of key-value stores

▪ Riak

▪ Redis

▪ Amazon WebServices Simple Db (and DynamoDB)

▪ Project Voldemort
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http://basho.com/posts/business/gaming-and-betting-companies-find-success-with-riak/




 Document databases store … documents …

▪ Often XML, JSON etc.

 Documents are self-describing hierarchical tree 
structures

▪ Documents are similar but do not have to be identical
▪ And can have different schema

 Document databases are similar to key-value stores

▪ Except that the value is a document

▪ And the document can be examined, rather than just 
being obtained
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 Consistency

▪ Using MongoDB as an example, the database uses 
master-slave replication

▪ The level of consistency can be specified
▪ That is, the number of nodes to which an update has to be 

propagated before it is deemed successful

▪ Making write consistency stronger reduce availability

 Availability

▪ Availability is improved through replication
▪ Data is duplicated across nodes

▪ Allowing data to be read even when the master node is unavailable
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 Queries

▪ Document databases allow documents to be queried 
without first retrieving the entire document

▪ Different document databases provide different query 
features

 Scaling

▪ Scaling for reads is supported by adding more slaves

▪ Scaling for writes is supported by sharding

▪ A shard key is selected that determines how documents are 
broken into shards
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 Documents can be grouped into collections

▪ Grouping similar documents together

▪ Documents in a collection do not have to have identical 
structure

▪ But should contain documents of the general type

▪ Documents in a single collection will typically be 
processed by the same application code

▪ If not, consider if the collection should be split

 Documents in a collection can be operated on as 
a group
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 Uses for which document databases are suitable 
include

▪ Event logging

▪ Content management systems

▪ Web analytics

▪ E-commerce

 Examples of document databases

▪ MongoDB

▪ CouchDB
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https://www.mongodb.com/who-uses-mongodb




 Column-family stores group column families and are a 
refinement of columnar databases

▪ A columnar database stores each column separately
▪ Which greatly increases the speed of aggregate operations on 

column data

▪ But makes accessing an entire row inefficient

 Column-families contain multiple related columns

▪ But may still break down what would be a single table in a 
relational database into multiple tables

▪ Rows in a column-family do not have to have the same 
columns as other rows
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 Column family DBs appear similar to relational 
databases

▪ They have rows and columns

▪ Rows are identified by unique identifiers

 There are important differences

▪ Column family DBs do not support multi-row transactions

▪ In some column family DBs column values are not typed
▪ The data is interpreted at the application level

▪ Column family DBs are typically de-normalized
▪ The same key may identify different column families

▪ Column values may include lists and other structures
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Customer ID lname fname address …

Bobson Bob 123 Bobville Rd

16735 56122 98735

Thermal Detonator Pulse Rifle BFG

Product column family

Customer column familyRow key

 Different customers rows can have different numbers of products
 The product ID is used as a column name

▪ Data is stored in column name order

▪ Column values, the product names are repeated for each customer

▪ But joins are not required to return customer information



 Consistency

▪ Column-family stores use peer to peer replication

▪ The level of consistency can be specified

▪ By selecting the number of nodes that have to respond to a 

read or write  before it is committed

 Availability

▪ Availability is improved through replication

▪ Using peer to peer replication improves availability

▪ Which can be further improved by reducing consistency
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 Queries

▪ Column-families can be queried

▪ Although query languages are not as rich as SQL

▪ Do not, for example, allow joins or subqueries

▪ Columns can be indexed to improve efficiency

▪ Data in rows are sorted by column names

 Scaling

▪ Scaling for reads or writes is achieved by adding 
additional nodes
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 Uses for which column-family stores are suitable 
include

▪ Event logging

▪ Content management systems, blogging sites

▪ Counters

 Examples of column-family stores

▪ Cassandra

▪ HBase

▪ Google BigTable
▪ Designing BigTable schema
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https://devops.com/top-10-reasons-use-cassandra/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/docs/schema-design




 Graph databases are designed to efficiently store 
relationships

▪ Nodes map to entities and edges to relationships

 Nodes  have properties such as name
 Edges have types such as likes

▪ Edges can be set to bidirectional

▪ Different edges in the same graph can have different types
▪ For example likes and employee

 Traversing relationships in a graph database is fast

▪ The relationships are stored persistently
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 Graph databases support a set of specialized 
operations

▪ Uni0n

▪ Combines two graphs by taking the union

▪ Intersection

▪ Combines two graphs by taking the union

▪ Traversal

▪ Traverses the graph from a given node, visiting all 
connected nodes
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 Isomorphism

▪ Two graphs are isomorphic if they have corresponding vertices 
and edges between vertices

 Order – number of vertices
 Size – number of edges
 Degree – the number of edges of a vertex
 Closeness

▪ A measure of distance between vertices

 Betweenness

▪ A measure of how connected vertices are

▪ Can be used to identify vulnerable paths
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 Uses for which graph databases are suitable 
include
▪ Storing connected data such as social networks

▪ Location based services

▪ Recommendation engines

▪ Tracking infections
 Examples of graph databases

▪ Neo4j

▪ Titan

▪ OrientDB
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https://neo4j.com/customers/

