
January 2018 DocID027487 Rev 3 1/32

32

AN4656
Application note

Bootloading procedure for STLUX™ and STNRG™ digital
controllers

Max Cortiana, Ambrogio D’Adda

Introduction

This specification contains the description of how to load a code on STLUX and where not
differently specified also on STNRG devices through the bootloader embedded in the
system memory of the device (the ROM memory). Through this firmware, the device
memory can be erased and programmed using a standard communication interface.This
code allows the memories, including the program, code and RAM, to be written into the
device through the standard serial interface UART.

Following a step-by-step guided procedure, it is possible through the standard “Flash loader
demonstrator” application released by STMicroelectronics to download an application code
into the device and it is also possible to specifically configure STLUX features.

For further information on the STLUX family features, pinout, electrical characteristics,
mechanical data and ordering information, please refer to the specific STLUX device
datasheet.

Reference document

For hardware information on the STLUX controller and product specific SMED
configuration, please refer to the STLUX and STNRG product datasheets.

www.st.com

http://www.st.com

Contents AN4656

2/32 DocID027487 Rev 3

Contents

1 Acronyms . 5

2 Description . 6

3 Bootloader protocol interface . 7

3.1 Peripherals settings . 7

3.2 Commands description . 7

3.2.1 Synchronization . 8

3.2.2 GET command . 9

3.2.3 Read Memory command . 11

3.2.4 Erase Memory command . 13

3.2.5 Write Memory command . 16

3.2.6 GO command . 19

4 Memory model . 21

5 Software model . 22

6 Timing . 23

7 Error management . 24

Error management . 24

8 Erase/Write EEPROM routines in RAM . 25

9 How to bootload your code to a STLUX device 26

9.1 Introduction . 26

9.2 Bootloading in AutoDetect mode . 26

9.3 Bootloading with ST Flash loader demonstrator 26

9.3.1 Configuring the desired UART channel . 26

9.3.2 Checking the memory content . 27

9.3.3 Running the Flash loader demonstrator . 27

10 Revision history . 31

DocID027487 Rev 3 3/32

AN4656 List of tables

32

List of tables

Table 1. List of acronyms . 5
Table 2. Allowed commands. 7
Table 3. Sector codes. 15
Table 4. Errors . 24
Table 5. Valid addresses . 24
Table 6. Initial checking . 27
Table 7. Document revision history . 31

List of figures AN4656

4/32 DocID027487 Rev 3

List of figures

Figure 1. Synchronization: Host side . 8
Figure 2. Synchronization: STLUX side . 8
Figure 3. GET command: Host side. 9
Figure 4. GET command: STLUX side . 10
Figure 5. Read Memory command: Host side . 11
Figure 6. Read Memory command: STLUX side . 12
Figure 7. Erase command: Host side. 13
Figure 8. Erase command: STLUX side . 14
Figure 9. Write Memory command: Host side . 17
Figure 10. Write Memory command: STLUX side . 18
Figure 11. GO command: Host side . 19
Figure 12. GO command: STLUX side . 20
Figure 13. Running the Flash loader demonstrator - step 1 . 28
Figure 14. Running the Flash loader demonstrator - step 2 . 28
Figure 15. Running the Flash loader demonstrator - step 3 . 29
Figure 16. Running the Flash loader demonstrator - step 4 . 29
Figure 17. Running the Flash loader demonstrator - step 5 . 30

DocID027487 Rev 3 5/32

AN4656 Acronyms

32

1 Acronyms

A list of acronyms used in this document:

Table 1. List of acronyms

Acronym Description

BL Bootloader- used to load the user program without the emulator

DAC Digital-to-analog converter

DALI Digital addressable lighting interface

ECC Error Correction Code

FSM Finite state machine

FW Firmware loaded and running on the CPU

GPIO General purpose input/output

HSE High-speed external crystal - ceramic resonator

HSI High-speed internal RC oscillator

I2C Inter-integrated circuit interface

IAP In-application programming

ICP In-circuit programming

ITC Interrupt controller

IWDG Independent watchdog

LSI Low-speed Internal RC oscillator

MCU Microprocessor central unit

MSC Miscellaneous

PM Power management

RFU Reserved for future use

ROP Read-out protection

RST Reset control unit

RTC Real-time clock

SMED State machine event driven

STMR System timer

SW Software, is the firmware loaded and running on the CPU (synonymous of FW)

SWIM Single-wire interface module

UART Universal asynchronous receiver/transmitter

WWDG Window watchdog

Description AN4656

6/32 DocID027487 Rev 3

2 Description

The bootloading can be operated either with a user developed downloader application or
with the “Flash loader demonstrator” (loader) available from STMicroelectronics.

Before trying to load your code through the UART interface using the bootloader, a series of
checks should be performed (checks are not needed if you use a brand new STLUX
device).

The bootloader is able to accept connections on different configuration of the UART device.
By default the devices are delivered from the factory configured to enable the bootloader on
all the available channels.This means that during the initial synchronization phase the
bootloader performs polling for the synchronization character on each channel for 1/Nth of
the available time where N is the number of enabled channels. In this condition it is possible
that when the external loader sends the synchronization character to the physically
connected channel, the bootloader is checking one of the other channels. As
a consequence the bootloader does not detect the synchronization character and then the
external loader signals a missing connection.

DocID027487 Rev 3 7/32

AN4656 Bootloader protocol interface

32

3 Bootloader protocol interface

3.1 Peripherals settings

This section describes the hardware setting of the communication peripherals:

The UART setting:

 Data frame: 1 start bit, 8 data bit, even parity bit, 1 stop bit

 Automatic speed detection - min.: 4800 bps - max.: 460.8 kbps

Mandatory: in order to perform the automatic speed detection the RX lines shall be
stable in the application board. To speed-up the automatic speed detection connect
the not used RX UART line to GND or pull-down with the 10 K resistor.

Note: All communication is verified by:
Checksum: all received bytes are XORed. A byte containing the computed XOR of all
previous bytes is added as the last byte of the data field (checksum byte). By XORing all the
received bytes, data + checksum, the result, at the end of the packet, must be 0x00;

According to the protocol established between the Host and BL (see Section 3.2 to
Section 3.2.6) there will be a byte accepted - ACK answer, or discarded - NACK answer.

ACK = 0x79

NACK = 0x1F

SYNCHR = 0x7F

3.2 Commands description

The supported commands are listed in Table 2:

Table 2. Allowed commands

Command
Command

code
Command description

GET 0x00 Gets the version and the allowed commands supported by the
current version of the BL.

Read Memory 0x11 Reads maximum 256 bytes of memory starting from an address
specified by the Host.

GO 0x21 Jumps to an address specified by the Host to execute
a loaded code.

Write Memory 0x31 Writes maximum 128 bytes to the RAM or the EEPROM starting
from an address specified by the Host.

Erase Memory 0x43 Erases from one to all the EEPROM sectors.

Bootloader protocol interface AN4656

8/32 DocID027487 Rev 3

3.2.1 Synchronization

Figure 1. Synchronization: Host side

Figure 2. Synchronization: STLUX side

The Host sends the SYNCHR byte as follows:

UART

SYNCHR byte: 0x7F

DocID027487 Rev 3 9/32

AN4656 Bootloader protocol interface

32

3.2.2 GET command

By this command the Host gets the version of the BL and the supported commands.

Figure 3. GET command: Host side

The Host sends the bytes as follows:

UART

Byte 1: 0x00 - command ID

Byte 2: 0xFF - complement

Bootloader protocol interface AN4656

10/32 DocID027487 Rev 3

Figure 4. GET command: STLUX side

The STLUX sends the bytes as follows:

Byte 1: ACK

Byte 2: N = 5 = the number of bytes to be sent -1 (1 ≤ N +1 ≤ 256)

Byte 3: version of the BL (0 < Version ≤ 255)

Byte 4: 0x00 - GET command

Byte 5: 0x11 - Read Memory command

Byte 6: 0x21 - GO command

Byte 7: 0x31 - Write Memory command

Byte 8: 0x43 - Erase Memory command

Byte 9: ACK

DocID027487 Rev 3 11/32

AN4656 Bootloader protocol interface

32

3.2.3 Read Memory command

This command allows reading from the memory (RAM, EEPROM or registers). When the BL
receives a Read Memory command it answers by an ACK byte and then waits for an
address (4 bytes; the 1st received is the MSB one) and a checksum byte. The BL checks
this address: if it is a valid address and the checksum is OK then the BL sends an ACK byte
otherwise sends a NACK byte and ends the command. When the address is valid and the
checksum is correct the BL waits for the number of bytes to be transmitted minus 1 (N) and
for its complemented byte (checksum of N); if the checksum is correct then the BL sends to
the Host the requested data [(N+1) bytes] starting from the received address, otherwise
sends an NACK before ending the command.

Figure 5. Read Memory command: Host side

Note: Table 5 on page 24 shows the valid addresses. If the BL receives a not valid address an
ADD_ERROR occurs (see Table 4 on page 24).

Bootloader protocol interface AN4656

12/32 DocID027487 Rev 3

Figure 6. Read Memory command: STLUX side

The Host sends the bytes as follows:

UART

Byte 1: 0x11 - command ID

Byte 2: 0xEE - complement

Byte3 to Byte 6: the start address

Byte 3: MSB

Byte 6: LSB

Byte 7: checksum: XOR (Byte 3, Byte 4, Byte 5, Byte 6)

Byte 8: the number of bytes to be read - 1 (0 < N ≤ 255)

Byte 9: checksum: NOT Byte 8

DocID027487 Rev 3 13/32

AN4656 Bootloader protocol interface

32

3.2.4 Erase Memory command

The Erase command allows erasing the EEPROM memory sector by sector. When the BL
receives an Erase command, it answers by an ACK byte and then waits for the number of
sectors to erase (one byte), the sector codes and a checksum byte; if the checksum is
correct then the BL erases the memory and sends an ACK byte to the Host, otherwise
sends a NACK byte to the Host and ends the command. Some details:

1. N is the number of sectors to erase: 0 ≤ N ≤ 32.

2. The TBL receives N+1 bytes (see Table 3).

Figure 7. Erase command: Host side

Note: 1. The “Total Erase” erases PROGRAM EEPROM and DATA EEPROM (33 KB). The BL
erases the memory sector by sector and not by a “Global Erase operation” because it
doesn't work in user mode.

2. A sector is 1 kbyte; therefore the granularity with the Erase command is 8 blocks.

Bootloader protocol interface AN4656

14/32 DocID027487 Rev 3

Warning: If the Host sends a sector code not allowed (see Table 3) the
command fails, therefore also the correct sector code will be
ignored.

Figure 8. Erase command: STLUX side

The Host sends the bytes as follows:

UART

Byte 1: 0x43 - command ID

Byte 2: 0xBC - complement

Byte 3: 0xFF or number of sectors to erase (0 ≤ N ≤ 32); if N > 32 a CMD_ERROR occurs.

Byte 4 or N+1 Bytes: 0x00 or [N+1 bytes and then checksum: XOR (N, N+1 bytes)]

DocID027487 Rev 3 15/32

AN4656 Bootloader protocol interface

32

Table 3. Sector codes

Sector code EEPROM Addr<15:0>

0x00 8000h → 83FFh

0x01 8400h → 87FFh

0x02 8800h → 8BFFh

0x03 8C00h → 8FFFh

0x04 9000h → 93FFh

0x05 9400h → 97FFh

0x06 9800h → 9BFFh

0x07 9C00h → 9FFFh

0x08 A000h → A3FFh

0x09 A400h → A7FFh

0x0A A800h → ABFFh

0x0B AC00h → AFFFh

0x0C B000h → B3FFh

0x0D B400h → B7FFh

0x0E B800h → BBFFh

0x0F BC00h → BFFFh

0x10 C000h → C3FFh

0x11 C400h → C7FFh

0x12 C800h → CBFFh

0x13 CC00h → CFFFh

0x14 D000h → D3FFh

0x15 D400h → D7FFh

0x16 D800h → DBFFh

0x17 DC00h → DFFFh

0x18 E000h → E3FFh

0x19 E400h → E7FFh

0x1A E800h → EBFFh

0x1B EC00h → EFFFh

0x1C F000h → F3FFh

0x1D F400h → F7FFh

0x1E F800h → FBFFh

0x1F FC00h → FFFFh

0x20 4000h → 43FFh

Bootloader protocol interface AN4656

16/32 DocID027487 Rev 3

3.2.5 Write Memory command

This command allows writing the memory (RAM, EEPROM or registers). When the BL
receives a Write Memory command, it sends an ACK to the Host and then waits for an
address (4 bytes; the 1st received is the MSB one) and a checksum byte. The BL checks
this address: if it is a valid address and the checksum is OK, the BL sends an ACK byte
otherwise it sends a NACK byte and ends the command. If the address is valid and the
checksum is OK, the BL will receive the following next bytes in sequence:

 N (one byte), which contains the number of data bytes to be received minus 1

 N+1 data bytes and the checksum (XOR of “N” and N+1 data bytes).

The incoming data are always written in the RAM before being loaded in the final location.

At this point, the BL:

 Checks whether the Host wants to write in the RAM or in EEPROM

 Programs the Host data to the memory starting from the received address

 Reads the programmed data and calculates the checksum in order to check if the
programming operation was successful.

Finally, at the end of the command, the BL sends the ACK byte if the write operation is
completed successfully otherwise sends a NACK byte and ends the command.

Even if the Host receives an NACK, and IF THIS ERROR IS NOT DUE TO N > 127, the
memory is being programmed with “something”, BUT in any case it is necessary to
reprogramm it because there has been an error during the transmission or
programming. If the error is due to N > 127 the memory is not programmed.

The Host can send a Write command with at most 128 data bytes (N = 127). In order to write
the data in the EEPROM memory locations, the BL can performs two different write
operations:

 WordWrite: writes a word in the EEPROM. It is used when the bytes number (N+1)
sent from the Host is less than 128, in this case the BL will perform this operation
N+1 times.

Note: Even if the BL writes a byte the hardware write operation executed is a WordWrite.

 BlockWrite: writes a block in the EEPROM. It is used when the bytes number (N+1)
sent from the Host is 128 AND the destination address is an integer module of 128, in
other words, in order to use this operation the block sent from the Host shall be aligned
with a memory block.

DocID027487 Rev 3 17/32

AN4656 Bootloader protocol interface

32

Figure 9. Write Memory command: Host side

Bootloader protocol interface AN4656

18/32 DocID027487 Rev 3

Figure 10. Write Memory command: STLUX side

The Host sends the bytes as follows:

Note: 1. Table 5 on page 24 shows the valid addresses. If the BL receives a not valid address an
ADD_ERROR occurs (see Table 4 on page 24).

2. In order to download an application into the EEPROM the Host shall send more
consecutive “Write commands”. The only way to accomplish fast writing is to send as much
as possible “Write commands” aligned to the EEPROM data block.

UART

Byte 1: 0x31 - command ID

Byte 2: 0xCE - complement

Byte 3 to Byte 6: the start address

Byte 4: MSB

Byte 7: LSB

Byte 7: checksum: XOR (Byte 3, Byte 4, Byte 5, Byte 6)

Byte 8: Bytes number to receive (0 ≤ N ≤ 127); if N > 127 a CMD_ERROR occurs in the BL.

N+1 data bytes: (max. 128 bytes)

Checksum byte: XOR (N, N+1 data bytes)

DocID027487 Rev 3 19/32

AN4656 Bootloader protocol interface

32

As a reference value, to program the full 32 kByte EEPROM memory with the BL connected
at 115200 bps transferring data blocks of 128 bytes aligned to memory sectors, the following
timing should apply:

 128 data bytes + 10 overhead protocol bytes = 138 bytes corresponding to 1518 bits

 32 kbyte / 128 bytes = 256 data packets

 1518 x 256 / 115200 = 3.373 s minimum transfer time

 256 x 3.5 ms = 0.896 s programming time (with typical block programming time)

 3.373 + 0.896 = 4.269 s total memory programming time (typical value).

3.2.6 GO command

This command allows running the application downloaded in the EEPROM or any other
code by making a branch to an address specified by the Host. When the BL receives a GO
command, it answers by an ACK byte and then waits for an address (4 bytes; the 1st byte
received is the MSB one) and a checksum byte; if it is a valid address and the checksum is
OK, the BL sends an ACK byte otherwise it sends a NACK byte and ends the command.
When the address is valid and the checksum is OK, the BL removes the Erase and Write
routines from the RAM and then the program counter of the CPU jumps automatically to this
address.

Figure 11. GO command: Host side

Note: Table 5 on page 24 shows the valid addresses. If the BL receives a not valid address an
ADD_ERROR occurs (see Table 4 on page 24).

Bootloader protocol interface AN4656

20/32 DocID027487 Rev 3

Figure 12. GO command: STLUX side

The Host sends the bytes as follows:

UART

Byte 1: 0x21 - command ID

Byte 2: 0xDE - complement

Byte 3 to Byte 6: the start address

Byte 3: MSB

Byte 6: LSB

Byte 7: checksum: XOR (Byte 3, Byte 4, Byte 5, Byte 6)

DocID027487 Rev 3 21/32

AN4656 Memory model

32

4 Memory model

The STLUX microcontroller has:

 2-kByte RAM split to:

– Short addressing zero page, 256 Bytes

– 16-bit addressing, 1.25 kbytes

– Stack, 512 Bytes

– (16-bit addressing, 2048 Bytes)

 1-kByte data EEPROM

 2-kByte boot ROM

 32-kByte EEPROM split to:

– 32x4 Bytes interrupt vector

– All remaining Host programming area

For more information see the STLUX family memory map in the specific device datasheet.

The STNRG microcontroller has:

 6-kByte RAM split to:

– Short addressing zero page 256 Bytes

– 16-bit addressing, 1.25 kBytes

– Stack, 512 Bytes

– (16-bit addressing, 6144 Bytes)

 1-kByte data EEPROM

 2-kByte boot ROM

 32-kByte EEPROM split to:

– 32x4 bytes interrupt vector

– All remaining Host programming area

For more information see the STNRG family memory map in the specific device datasheet.

Software model AN4656

22/32 DocID027487 Rev 3

5 Software model

The boot code can download up to 128 byte at a time. The first 130 bytes of the RAM
(from 0x00) will be used to store the data coming from the serial interface, thus allowing the
boot using the stack. Moreover, other 26 bytes are used by the BL as temporary variables.

The RAM memory contains the Erase routine starting from 0x00A0 and the Write routine
starting from 0x0150; total memory space allocated for both routines is 304 bytes.

The usage of the stack is limited to less than 16 bytes for internal function calls with
the maximum nesting of three levels.

The Boot code does not use in any case interrupt functions, and all the internal devices are
handled in the polling mode.

Resuming, the RAM memory allocated by the BL is from 0x0000 to 0x01CF, plus 16 bytes
allocated before the default address of the stack pointer (0x07FF).

Note: 1. The peripheral (UART) used during the boot phase remains in power on when the user
leaves the boot to execute an application.

2. The ROM part not used from the bootloader (“empty”) shall be filled by 0x71 in order to
avoid that the BL falls in an infinite loop without any reset if it jumps into these “empty”
locations.

DocID027487 Rev 3 23/32

AN4656 Timing

32

6 Timing

This section reports some information about the timing of the bootloader. In order to use
correctly the bootloader is necessary to respect some temporal intervals as described in
following paragraphs.

After the hardware reset the bootloader goes in an initialization phase before going into the
synchronization phase. Therefore the user shall wait a time of at least 10 ms before sending
a synchronization message.

If the EEPROM memory has been at least once already programmed and the user wants to
reprogram it (see Table 6 on page 27) then he shall send the synchronization message
within 1 second from the hardware reset.

After a GO command the bootloader removes the Erase and Write routines from the RAM
memory before sending to the Host address. The time necessary to remove these routines
is about 150 s.

Error management AN4656

24/32 DocID027487 Rev 3

7 Error management

Error management

Note: Table 5 depends on the specific device of the STLUX family. Please refer to the specific
device datasheet.

Table 4. Errors

ERROR Description Actions

CMD_ERROR If a denied command is received.

If an parity error occurs during its
transmission.

If an error occurs during its execution.

Sends NACK and goes
back to command
checking.

ADD_ERROR If a received command contains a denied
destination address (see Table 5).

Sends NACK and goes
back to command
checking.

Table 5. Valid addresses

Device Memory Address <15:0>

32k

RAM 0000h → 07FFh (0FFFh or 017FFh)

DATA EEPROM 4000h → 43FFh

OPTION BYTES 4800h → 487Fh

PERIPHERAL REGISTERs 5000h → 57FFh

PROGRAM EEPROM 8000h → FFFFh

DocID027487 Rev 3 25/32

AN4656 Erase/Write EEPROM routines in RAM

32

8 Erase/Write EEPROM routines in RAM

There are some routines or a part of them that shall be downloaded into the RAM. They are:

 Erase routine

 Write EEPROM routine

The Erase routine shall be loaded into the RAM starting from 0xA0 whereas the Write
EEPROM routine is starting from 0x150. They are contiguous to the RAM.

The user can download them by Write commands in the RAM.

The routines are contained in an *.s19 file (E_W_ROUTINEs_STLux_ver_1.2.s19).

How to bootload your code to a STLUX device AN4656

26/32 DocID027487 Rev 3

9 How to bootload your code to a STLUX device

9.1 Introduction

As previously said, the bootloader is stored into the internal 2 Kbytes boot ROM memory
and its main task is to download the application program into the internal program memory
through the UART peripheral. Data are provided by any device (Host) that can send
information through the serial interface. To avoid system locks due to application execution
errors (e.g.: the application jumps erroneously into the BL code), all the unused ROM
memory is padded with the hexadecimal value 0x71 that corresponds to an illegal opcode.

STLUX devices have a single UART peripheral which configuration may be switched to
different IO lines depending on the application requirements. The bootloader (BL) may be
configured either to use a specific UART configuration or to autodetect it.

The bootloading procedure is enabled by setting the option bytes OPTBL / nOPTBL
corresponding to the address 0x487E / 0x487F as specified in Table 6.

9.2 Bootloading in AutoDetect mode

The default configuration for the BL is the AutoDetect mode. In this mode, after the reset the
BL performs a polling in order to detect which channel is connected to a boot source via the
UART.

The AutoDetect mode automatically polls all the available UART channels on STLUX or
STNRG family devices. The polling procedure uses 4 mS to check one RX line, so when
checking one line, the others are not considered. For this reason, when all serial lines are
checked (as the default), the first synchronization is problematic.

Note: To speed-up the automatic speed detection, connect to GND or pull-down the not used RX
UART line with the 10 Kresistor. This disables the bootloading check on this RX UART
line.

9.3 Bootloading with ST Flash loader demonstrator

Since the Flash loader demonstrator doesn't handle this AutoDetect mode, the bootloader
should be configured to check only the desired channel.

9.3.1 Configuring the desired UART channel

Setting the option bytes

To properly configure the UART boot source, the MSC_OPT0 and nMSC_OPT0 option
bytes must be modified so to indicate the proper UART source to be scanned during the
bootloading procedure. For the option bytes configuration, please refer to STLUX product
datasheets.

Writing the option bytes can be performed via the SWIM building a simple Raisonance
project with the declaration.

 At 0x4815 CONST const. u16 MSC_OPT0 = 0x11EE;
this indicates the UART channel is OP0(0, 1) and the bootloader must check for this
channel only as a boot source.

DocID027487 Rev 3 27/32

AN4656 How to bootload your code to a STLUX device

32

The same thing can be performed via the SWIM with the IAR toolset - new release which
allows directly to handle the option bytes content.

9.3.2 Checking the memory content

In order to enable the bootloader, the Read-out protection for the EEPROM must be
disabled. So the address 0x4800h must be set to its default value 0x00h (brand new
devices are configured like that). If so, the loader can check the EEPROM content of the
0x8000h address as specified below and starts checking for boot sources according to the
UART channel configuration.

If the EEPROM is virgin, then the bootloader waits for an indefinite time for a connection on
the set UART channel. If the EEPROM is programmed and the booling is allowed, the
bootloader waits for one second checking for a connection on the set UART channel, then
jumps to the code stored in the EEPROM.

So basically using a brand new STLUX device with the MSC_OPT0 option byte properly
configured to a single UART channel and a virgin EEPROM allows to easily download your
code through the UART connection with the Flash loader demonstrator.

9.3.3 Running the Flash loader demonstrator

Now you are ready to connect your PC with your STLUX device and run the Flash loader
demonstrator. The program Shell will appear.

Table 6. Initial checking

Checks
EEPROM location

0x8000

EE check
Opt_byte
0x487E

EE check
Opt_byteN

0x487F

Actual EEPROM status
→ action

1st Not 0x82 and not 0xAC Don't care Don't care EE virgin → jump to BL

2nd 0x82 or 0xAC 0x55 0xAA
EE programmed booting
allowed → jump to BL

3rd 0x82 or 0xAC Not 0x55 Not 0xAA
EE programmed booting
not allowed → jump to

EEPROM reset

How to bootload your code to a STLUX device AN4656

28/32 DocID027487 Rev 3

Figure 13. Running the Flash loader demonstrator - step 1

Select the right COM port for the connection and push the NEXT button. Then a new menu
will appear.

Figure 14. Running the Flash loader demonstrator - step 2

DocID027487 Rev 3 29/32

AN4656 How to bootload your code to a STLUX device

32

Figure 15. Running the Flash loader demonstrator - step 3

Select as a target device for the connection the STLUX or STNRG, then press NEXT to
enter the next step.

Figure 16. Running the Flash loader demonstrator - step 4

How to bootload your code to a STLUX device AN4656

30/32 DocID027487 Rev 3

Now to download your code, you need to choose “Download to device” and to give the
complete path and name of the file you want to download to the STLUX. The acceptable file
formats are *.bin and *.hex. When you set the proper file indications, press NEXT to start
downloading the code. You can follow the downloading process reading the bar in the next
shell. When the download will be complete, the Flash loader demonstrator will highlight it.

Figure 17. Running the Flash loader demonstrator - step 5

DocID027487 Rev 3 31/32

AN4656 Revision history

32

10 Revision history

Table 7. Document revision history

Date Revision Changes

15-Jun-2015 1 Initial release.

04-Dec-2015 2

Updated the main title, added STNRG device to the
main title, Section : Introduction on page 1 and
Section 9.3.3: Running the Flash loader demonstrator
on page 27.

Updated Section 4: Memory model on page 21 (added
STNRG description).

Updated Figure 15: Running the Flash loader
demonstrator - step 3 on page 29 and Figure 17:
Running the Flash loader demonstrator - step 5 on
page 30 (replaced by new figures).

Minor modifications throughout document.

09-Jan-2018 3
Updated Section 3.1: Peripherals settings on page 7
and Section 9.2: Bootloading in AutoDetect mode on
page 26 (added text).

AN4656

32/32 DocID027487 Rev 3

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 Acronyms
	Table 1. List of acronyms

	2 Description
	3 Bootloader protocol interface
	3.1 Peripherals settings
	3.2 Commands description
	Table 2. Allowed commands
	3.2.1 Synchronization
	Figure 1. Synchronization: Host side
	Figure 2. Synchronization: STLUX side

	3.2.2 GET command
	Figure 3. GET command: Host side
	Figure 4. GET command: STLUX side

	3.2.3 Read Memory command
	Figure 5. Read Memory command: Host side
	Figure 6. Read Memory command: STLUX side

	3.2.4 Erase Memory command
	Figure 7. Erase command: Host side
	Figure 8. Erase command: STLUX side
	Table 3. Sector codes

	3.2.5 Write Memory command
	Figure 9. Write Memory command: Host side
	Figure 10. Write Memory command: STLUX side

	3.2.6 GO command
	Figure 11. GO command: Host side
	Figure 12. GO command: STLUX side

	4 Memory model
	5 Software model
	6 Timing
	7 Error management
	Error management
	Table 4. Errors
	Table 5. Valid addresses

	8 Erase/Write EEPROM routines in RAM
	9 How to bootload your code to a STLUX device
	9.1 Introduction
	9.2 Bootloading in AutoDetect mode
	9.3 Bootloading with ST Flash loader demonstrator
	9.3.1 Configuring the desired UART channel
	9.3.2 Checking the memory content
	Table 6. Initial checking

	9.3.3 Running the Flash loader demonstrator
	Figure 13. Running the Flash loader demonstrator - step 1
	Figure 14. Running the Flash loader demonstrator - step 2
	Figure 15. Running the Flash loader demonstrator - step 3
	Figure 16. Running the Flash loader demonstrator - step 4
	Figure 17. Running the Flash loader demonstrator - step 5

	10 Revision history
	Table 7. Document revision history

