Introduction
the ARM Cortex—M3
Exception / Interrupt

Hsuan—-Cheng Lin

2012.6.6

Outline

The ARM processor

The Cortex—M3

T 1

The Registers

Exceptions
The NVIC and Interrupt Control
Interrupt Behavior

Reference

The ARM Processor (1)

e ARM - Advanced RISC Machines (1990)

Small size,lLow cost,Low power consumption,High performence
e [[icense : 1P core (Semiconductor intellectual property core)

Architecture Family
ARMv1 ARM1
ARMv2 ARMZ , ARM3
ARMv3 ARM6 , ARM7
ARMv4 StrongARM, ARM7TDMI , ARMOTDMI
ARMvS ARM7EJ , ARMOE, ARM10E, XScale
ARMv6 ARM11,ARM Cortex-M
ARMv7 ARM Cortex-A,ARM Cortex-M,ARM Cortex-R
ARMvS8 No cores available yet.
Will support 64-bit data and addressing.

ARM cores(wiki)

The ARM processor (2)

Processor Architecture = Instruction Set + Programmer’'s model

4T

ARM7TDMI ARM926EJ-S ARM1136JF -S Cortex-A8/R4/M3/M1
ARM922T ARM9Y46E-S ARM1176JZF-S Thumb-2
Thumb ARM966E-S ARM11 MPCore
instruction set Improved SIMD Instructions Extonsions:
ARM/Thumb v7A (applications) — NEON

Interworking Unaligned data support

v7R (real time) — HW Divide

V7M (microcontroller) — HW
Divide and Thumb-2 only

Extensions:
Thumb-2 (6T2)
TrustZone (6Z)
Multicore (6K)

DSP instructions
Extensions:

Jazelle (5TEJ)

Note: Implementations of the same architecture can be very different
* ARM7TDMI - architecture v4T. Von Neuman core with 3 stage pipeline
ARM920T - architecture v4T. Harvard core with 5 stage pipeline and MMU
Development of the ARM Architecture

The ARM processor (3)

ARMTTOMIS

| Cuex-MS

Features
Architecture ARMvAT (von Neumann) ARMv7-M (Harvard)
ISA Support Thumb / ARM Thumb / Thump-2
Pipeline J-Stage 3-Stage + branch speculation
nferrupts | FIQ/IRQ NMI + 1 to 240 Physical Interrupts
Interrupt Latency 24-42 Cycles 12 Cycles
Sleep Modes None Integrated
Memory Protaction None § region Memory Protection Unit
Dhrystone 0,95 DMIPS/MHz (ARM mode) 1.25 DMIPSIMHz
Power Consumption | 0.28mWiMHz 0.19mWiMHz
Area 0.62mm2 (Core Only) 0.86mm2 (Core & Peripherals)*

The ARM processor (4)

Many semiconductor or IC design firms hold ARM licenses:

Analog Devices, AppliedMicro, Atmel, Broadcom, Cirrus Logic, Energy
Micro, Faraday Technology, Freescale, Fujitsu, Intel (through its
settlement with Digital Equipment Corporation), IBM, Infineon
Technologies, Marvell Technology Group, Nintendo, NXP Semiconductors,
OKI, Qualcomm, Samsung, Sharp, STMicroelectronics, and Texas Instruments.

ARM Cortex—AS8
Apple A4 (iPhone 4, ipad, iPod touch, Apple TV):
NVIDIA Tegra 2/3:; Samsung Exynos; TI OMAP4....

ARM Cortex—A9
Apple A5 (iPhone 4S, ipad2...):

[el=T

[@]

iPhone 45 iPhone 4

The Cortex—M3

The Cortex Series

A Profile (ARMv7-A): Application processors required to run complex applications

High-end embedded operating systems.(Symbian, Linux, and Windows Embedded)
Highest processing power, virtual memory system support with Memory Management Units (MMUs).
High-end mobile phones and electronic wallets for financial transactions.

R Profile (ARMv7-R): Real-time.

High-end breaking systems and hard drive controllers.
High processing power and high reliability are essential and
for which low latency is important.

M Profile (ARMv7-M): Microcontroller targeting low-cost applications.

Processing efficiency is important and cost, low power consumption,
low interrupt latency, and ease of use are critical.
Industrial control applications, including real-time control systems.

The Cortex processor families are the first products developed on architecture v7.

The Cortex-M3 processor is based on one profile of the v7 architecture,
called ARM v7-M, an architecture specification for microcontroller products.

The Cortex-M3 processor (1)

e Greater performance efficiency
Allowing more work to be done without increasing the frequency or power requirements.
e Low power consumption
Enabling longer battery life, especially critical in portable products including wireless
networking applications.
* Lower-cost solutions
Reducing 32-bit-based system costs close to those of legacy 8-bit and 16-bit devices and
enabling low-end, 32-bit microcontrollers to be priced at less than US$1 for the first time.
 Enhanced determinism
Guaranteeing that critical tasks and interrupts are serviced as quickly as possible but in a
known number of cycles.
* Improved code density
Ensuring that code fits in even the smallest memory footprints.
» Ease of use
Providing easier programmability and debugging for the growing number of 8-bit and 16-bit
users migrating to 32-bit.
* Wide choice of development tools

From low-cost or free compilers to full-featured development suites from many
development tool vendors.

................

Thumb &
Thumb-2 decode

Instruction interface Data interface

(3]
=
>
=%
-
(-
=
-]

The Cortex-M3 processor (2)

Relative Benchmark Performance (per MHz)

¢ [WARMTTOMS @ Cartee-M3 |
160%

120,
a0t
40%,

Industrial Metwarking Offlce Telecom

Relative performance for
ARM7TDMI-S (ARM) and Cortex-M3 (Thumb-2)

Relative Benchmark Code Size
| @ ARMTTOMI-S @ Comax-h2 |

M0%
80% -
T0%
50% |
30%

Industrial Metworking Office Telecoms

Relative code size for
ARM7TDMI-S (ARM) and Cortex-M3 (Thumb-2)

he Cortex-—

M3 processor (3)

ARM Lita
high-speed
bus matrix/

arbiter
i,
72 MHz)

DMA: Direct memory access
RTC: Real-lime clock

AWU: Auto wake-up capability with RTC alarm

™ Flash
= IF

32 KB-128 KB
Flash memory

Power supply
Reg1.8V
POR/PDR/AVD

aom g 6 KB-16720 KB SRAM

XTAL oscll ators

22 kHz + 4~16 MHz

20 B backup registarn

intemal RC csclilators
32 kHz + B MHz

PLL

-~

ARM paripheral bus

i {ma. 36 MHZ)
Bridge
6 x 16-bit PWM —
synchronized AC tmer g .- 3 X 16=bit thmer b o ol o 1% USB 2.0FS
Upto 16 external ITs <— & = 2 x watchdog <> 1XCAN2.0B
g R ndependent and T
32/49/80 1/0s Hé E window) 2 X USART/LIN
= - amaricard/
1x 5Pl i = IrDA modem control
1 or 2 x 12-bit ADC
1 % USART/LIN . ’ 16 channeis/1 Msps - 1% 5P
smartcardArDA —i-
madem control e mmmeey o Temperature sensor - 2xPC

POR: Power-on resel
PDR: Power-down reset

FVD: Programmable voltage detector

STM32F10x Block Diagram

The Cortex-M3 processor (4)

e The Cortex—-M3 processor has two modes and two privilege levels.

e The operation modes (thread mode and handler mode) determine
whether the processor is running a normal program or running an
exception handler like an interrupt handler or system exception
handler.

e The privilege levels (privileged level and user level) provide a
mechanism for safeguarding memory accesses to critical regions as
well as providing a basic security model.

ARMT7: User/FIQ/IRQ/Supervisor/Abort/Undefined/System

Privileged User

When running an exception Handle Mode

When running main program | Thread Mode Thread Mode

Operation Modes and Privilege Levels in Cortex-M3

‘he Registers (ARM7TDMI)

Modes
=3 Pirivileged modes-
Estcep b imsde g

Usar Syatem Suparviaar Ao L rrche forei il Intarnapl | Fast iedesrupt
Ao R A o Fo A RO
L i F1 LIk Fil i L]
1 e nz na i o i e
A R LE A3 A3 Aol | A3
AL R A4 A AL AL R
P A ns N Fra Feh L
F R AL AL i Fi; B
A AT AT AT AT AT | AY
e Pal RE ns Fis FE fh, Pesg
F R A LE Fa P Py, Fm
A0 Rt A0 R0 A0 RO :';h Fi_kag
e m mie e i (1R ih"h m_fg
oz g miE A1E s HIE |'."_:|:_h PAT &g
Ri3 Ri13 Fi3 me [AED am ., R uret e R iy P, mam
Fia Rt Frid_ s E;'bhﬁu_m 2, Fnd_urel I?;'.';-., Rl I:--F'l-.. Rl
(o= PE o Po (= FC o=
OFER CFSR CPEA CPEA CRoR CPEF CPER

S, SPSMave P SPRa B SPSRwea [SRR B SPSiUR
Nl Bhat el raodan' nudtwlﬂnrw&ﬂmmﬂlrﬂ'
i DD b ST 5 Ponar S0 Tl e gpeden e

Name

RO

R1

R2

R3

R4

RS

RE

R7

A8

R§

R10

R11

R12

The Registers (Cortex—-M3)

R13 (MSP)

R13 (PSP)

R14

R15

Functions (and Banked Registers)

General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purposa Register
General-Purposa Register
General-Purpose Register
General-Purpose Register
General-Purpose Register

Main Stack Pointer (MSP), Pracess Stack Pointer (PSP

Link Reglster (LR}
Program Counter (PC)

JL

=t

Name Functions
; _"u
xPR Program Status Registers
FRIMASK
FAULTMASK Interrupt Mask ' opecial
Registers Registers
BASEPRI
}- Low Registers _
CONTROL Control Register
—
Register Function
*PSR Provide ALU flags (zero flag, carry flag), execution status, and current executing interrupt
number
PRIMASK Disable all interrupts except the nonmaskable interrupt (NMI) and HardFault
FAULTMASK Disable all interrupts except the NMI
BASEPRI Disable all interrupts of specific priority level or lower priority level
CONTROL Define privileged status and stack pointer selection
» High Reqisters

Exceptions/Interrupt

Interrupt vs Polling

™

it

Interrupt

o

Polling

Interrupt Controller

The Cortex-M3 processor includes an interrupt controller called the
Nested Vectored Interrupt Controller (NVIC).

r—-"—=-""===-= 1 f__________.l r——————————l
: BSP [: AP1 | : AP2 |
|

INTR | i 1 | :
Plc : cPU 1 : : cPU 2 | : CPU 3 |
| |

| |
82 SQA || MM INTR : : NM INTR | Nm TR |
' | i . |
| T | :
NMI l I B |

| 1o I |
I LOCAL Lo LOCAL L i LOCAL '
| APIC Lo APIC | APIC '
| 1 L 2 L 3 |
| |UINTING LINTING| | | [LINTING LINTIN® : | |LINTINO LINTIN1 :

| (| |

1

e e e el e R R e il i el ol W B

LINTINY

< H . : }
<NV : : : >
«< . ' . g

NM
B2594.-
EQUIVALENT i
PICS
....... . |~
INTERRUPT INPUTS || ne
. APIC

Exception Types

e Exceptions are numbered:
1 to 15 for system exceptions.
16 and above for external interrupt inputs.

e Most of the exceptions have programmable
priority, and a tew have ftixed priority.

e Support 1-240 interrupt.

List of System Exceptions

Note: There is no exception number 0

Exception | Exception Type Priority Description

Number

1 Heser =3 (Highest) Reset

2 NI —2 Nonmaskable interrupt (external NMI input)

3 Hard Fault -1 All fault conditions, if the corresponding fault
handler is not enabled

4 MemManage Fault | Programmable Memory management fault; MPU violation or access
to illegal locations

5 Bus Fault Programmable Bus error; occurs when AHB interface receives an
error response from a bus slave (also called prefetch
abort if it is an instruction fetch or data abort ifitis a
dara access)

6 Usage Fault Programmable Exceptions due to program error or trying to access
coprocessor (the Cortex-M3 does not support a
COProcessor)

7-10 Reserved NA -

11 SvCall Programmable System Service call

12 Debug Monitor Programmable Debug menitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA -

14 PendSV Programmable Pendable request for system device

15 SYSTICK Programmable System Tick Timer

List of External Interrupts

Need to check the chip manufacturer's datasheets to determine the numbering of the interrupts.

Exception Number Exception Type Priority
16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

255 External Interrupt #239 Programmable

e When an enabled exception occurs but cannot be carried out
immediately,it will be pended.

(a higher—-priority interrupt service routine is running or
if the interrupt mask register is set)

e This means that a register in the NVIC (pending status) will

hold the exception request until the exception can be carried
out.

e This is different from traditional ARM processors.
CPSR—>SPSR

Switch to ARM mode and Disable IRQ

Address Name Type Reset Description
AxERGAEARS ICTR RO - Intervupt Controller Tvpe Register, ICTR
Fre T ; et e
E:EES?? - :::E_:;E:ﬁ EW @x00000008 Interrupt Set-Enable Registers Add Mame T React Value] Cestriotion
X = OxE000E200 € SETPEN DE 3 | RIW 0 Pending for external interrupt #0-31
O«EQQ0EL88 - NVIC ICERD- RW Bxdoedon0d Interrupt Clear-Enable Registers bit[0] for interrupt #0 (exception #16)
BEARGXE1SC NVIC_ICERT bit[1] for interrupt #1 {exceprion #17)
OxEoddEoe - NVIC ISPRO- RW dxfoeddanad Interrupt Set-Pending Rﬂ@
BxER@EREZIC NVIC_ISPRY bit[31] for interrupt #31 {exceprion #47)
S : .] Write 1 to ser bit to 1) write 0 has no effect
OxEGEDEZ88 - NVIC ICPRO- RW @x00000000 Interrupt Clear-Pending Registers S
BREOBIESC NVIC ICPR7 Read value indicates the current status
OxEQQOE204 | SETPEMDN R 0 Pending for external interrupt #32-63
OxEOBBEI0E - NVIC IABRO- RO dxdoed00nd Interrupt Active Bit Register . . .
ot Write 1 1o set bit to 1; write 0 has no effect
BxER@BE31C NVIC IABRT
Read value indicates the current status
ONEQOOE400 - NVIC IPRO- RW @xB0000006 Interrupt Priority Register 0«EQQ0E208 | SETPENDZ | R/W 0 Pending for external interrupt #64-95
OxEQODE4EC NVIC_IPRS9 Wiite 1 to set bic to 1; write 0 has na effect
. Read value indicates the current status
NVIC registers . " :
0xE000E280 CLRPEN Dg > | RAW 0 Clear pending for external interrupt #0-31
bit[0] for interrupt #0 {exceprion #16)
bit| 1] for interrupt #1 {excepuon #17)
bit| 31] for interrupt #31 {exception #47)
Write 1 to clear bit to 0; write @ has no effect
Read value indicates the current punding status
0xEOD0OE284 | CLRPEMD1 R/ 0 Clear pending for external interrupt #32-63
Wiite 1 to clear bit to 0; wrte 0 has no effect
Read value indicates the current p{‘nding status
OxEQONEZRE | CLRPEMDZ R 0 Clear pending for external interrupt #64-95

Whrite 1 to clear bit to 1; write { has no effect

Read value indicates the current pending status

Interrupt Set Pending Registers and
Interrupt Clear Pending Registers

Definitions of Priority(1)

Implemented levels
for Cortex-M3 with

Implemented levels
for Cortex-M3 with

HneRpony 3 bits priority width 4 bits priority widih
3 — —%— -3 —%— -3
-2 [m] —%— -2 —%— -2
-1 - —x%— -1 —— 1

0 t—5 - 0
- —X— 0x10
0x20 — —>— 0x20 —— 0x20
— —%— 0x30
0x40 — —%— 0x40 —— 0x40
- —3— 0x50
0x60 — —3¢— 0xB0 —%— 0x60
] Programmable A
0x80 —| Exceptions —— 0x80 —>— 0x80
- —3%— 0x90
0XAO — —%— OxAQ —%— OXAO
- —— 0xBO
0xCO — —— 0xCO0 —— 0xCO0
— —%— 0xDO
0xE0 — —>— 0xEO0 —— OxEO
— —%— OxFO
OxFF —

Lowest priority

Available Priority Levels with 3-Bit or 4-Bit Priority Width

Bit7 | Bit6 | BitS | Bitd | Bic3 | Bic2 |Bic1 Bit 0
Implemented Not implemented, read as zero
Bit 7,6,5,4 Bit 3,2,1,0 Value
0000 0000 0x00
0010 0000 0x20
0100 0000 0x40
0110 0000 0x60
1000 0000 0x80
1010 0000 OxAO
1100 0000 0xCO
1110 0000 OxEO
A Priority Level Register with 3-bit Implemented
Bit7 | Bité | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 Bit 0

Implemented

Not implemented, read as 0

A Priority Level Register with 4-bit Implemented

Definitions of Priority(2)

Supports three fixed highest-priority levels. (-3,-2,-1)

Up to 256 levels of programmable priority.
(a maximum of 128 levels of preemption)

More priority bits can also increase gate counts and
hence power consumption.

The minimum number of implemented priority register
widths is 3 bits. (eight levels)

This reduction of levels is implemented by cutting out

the LSB part of the priority cofiguration registers.
The reason for removing the LSB of the register instead of the MSB
is to make it easier to port software from one Cortex-M3 device to
another.

Definitions of Priority(3)
Bt 7 6 5 4 3 2 1 0

IRQ #1 0x03

IRQ #1 0x03

MSB LSB
Bt 7 6 5 4 3 2 1 0

IRQ #1 0x30

IRQ #1 0x10

Definitions of Priority(4)

Priority Exception Devices with 3-Bit Devices with 5-Bit Devices with 8-Bit
Level Type Priority Configuration | Priority Configuration | Priority Configuration
Registers Registers Registers

—3 (Highest) | Reset -3 -3 -3

3 MM =2 -2 =1

-1 Hard fault -1 -1 -1

0, Exceptions with | Ox00 Ox00 0x00, 0x01
programmable
priority level

13 020 0x08 0x02Z, 0x03

OxFF 0xED 0xF& 0«FE, OsFE

Available Priority Levels for Devices with 3-bit, 5-bit, and 8-bit Priority Level Registers

Q: If the priority level configuration registers are 8 bits wide,
why there are only 128 preemption levels?

A: 8-bit register is further divided into two parts:
preempt priority and subpriority

Definitions of Priority(5)

Bits Name Type | Reset | Description Priority Group Preempt Priority Field Subpriority Field
Vakie o Bit [7:1] Bit [0]
316 | VECTKEY R = Access key, Dx05FA must be written to this field to write 1 Bic [7:2] Bir [1:0]
to this register, otherwise the write will be ignored; the 3 Bit [7:3] Bit [2:0]
read-back value of the upper half word is DsFADS 3 Bic [7:4] Bit [3:0]
15 EMDIAMMESS R = Indicares endianness for data: 1 for big endian (BEE) = T
and 0 for lictle endian; this can only change after a reser 3 B_H: 3 Hj_t]
10:8_{_priGROUP D Rw |0 Priority group 3 Bit [7:5] e |
6 Bit [7] Bit [6:0]
2 SYSRESETREQ W = Requests chip control logic to generate a reser -
1 YECTCLRACTIVE W - Clears all active state information for exceprions, 4 ik ald B
typically used in debug or O5 to allow system 1o recover Definition of Preempt Priority Field and
from system error { Reset is safer) .. . |d . .. | . .
0 WECTRESET W = Resets the Correx-M3 processor (excepr debug logic), Sl_'lbprlorlty Fle Ina P“O“ty_ Leve ReQISter In
bur this will nor reset circuits ourside the processor Different P”O”ty G roup SettlngS
e [Using a configuration register in the NVIC called Priority Group.
e The priority—-level configuration registers for each exception
with programmable priority levels is divided into two halves.
e The upper half (left bits) is the preempt priority.
e The lower half (right bits) is the subpriority.

Definitions of Priority(6)

Implemented levels
for Cortex-M3 with

Preempt levels

with priority group

Highest priority 3 bits priority width setto 5
=3 =] E —— -2 —— -2 Subpnarity levels
1 — | Harmd Fault —— 1 —— -1
0 4 ¥ 3 ¥ 0
0 0 \
0x20 = —— w20 == 0x20
Ox40 — —— (nd) » T4 \F o Ox40
x50 — —X— (xB0 —— Qi
] Programmabie
0x80 —| Exceplions —— OB —— (%80 i —— DxE0
(0 — —— OxAd —— (xAD
0xC0 - s () e OG0 i e (13100
OxEQ — —x— (xEJ —— xED
FF

Lowest priority

Bit? | Bit6 | BitS |Bicd | Bie3 | Bie2 | Biel | Bit0
Preempt Sub
priofty priofity
The Define of priority group 5
Bit Bit Bit ..
7.6 5 4.3.2.1.0 Preempt Subpriority
0 0x00
00 1 0 0000 0x00 0x20
0 0x40
01 1 0 0000 0x40 0x60
0 0x80
10 1 0 0000 0x80 OXAO
0 0xCO
11 1 0 0000 0xCO OXEO

Definitions of Priority(7)

Highest pricrity

Implemented levels
for Cortex-h3 with

Preampt levels

with prionty group

i 3 bits pricrity width setto 1

3 — Resal —— -3 —x— -3

2 AW —e —y 2 Sutpriority levels

1 —|__Hard Fault —x— —— =

(i “ S — b]

a 0
Ox20 — —— (%20 —H— x20 —— —H— 020
Ded0 — —— (x40 —— 4 —P —— Oxd0
=G0 — —¥— Ox60 —— (uB) ——P —— Ox60
| Programmable

0xB0 — Exceptions —— (OxBD —¥— () —Pp —— (B0
OxAD — = (AD —p— OxAl ——Pp —— (mAD
OxC0 —| —— OxC0 —¥— C0 ——Pp —— OxCO
OxEQ — —#— OxED —¥— OxE0 ——P —H— OxED
OxFF =

Lowest priority

Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit O
Preempt Preempt priority Subpriority
priority[5:7] bit[4:2] (always 0) (always 0)
The Define of priority group 1
Bit 7,6,5 Bit Preempt | Subpriorit
000 g,3,2,1,0 | LCCMPL | SUBPTIONLILY
000 0 0000 0x00 0x00
001 0 0000 0x20 0x20
010 0 0000 0x40 0x40
011 0 0000 0x60 0x60
100 0 0000 0x80 0x80
101 0 0000 0xAO 0xAO
110 0 0000 0xCO 0xCO
111 0 0000 0xEO 0xEO

Vector Tables

Address

Exception Number

Value (Word Size)

(00000000

MSP initial value

(00000004

1

Reset vector (program counter initial value)

(00000008

2

NMI handler starting address

(x0000000C

3

Hard fault handler

starning address

Other handler starting address

By default, the vector table starts at address zero,
and the vector address is arranged according to the exception number times 4.

Since the address 0x0O should be boot code,
Flash memory or ROM devices, and the value

time.

However, the vector table can be relocated
in the Code or RAM region where the RAM 1is
handlers during run time.
This is done by setting a register in the NVIC called the vector
table offset register (address OxEOOOEDOS) .

usually it will either be
cannot be changed at run

to other memory locations
so that we can change the

Vector Tables

3130 29 28 T 6 : 0
Has TBLOFF Reserved
L— TELBASE
Bits Field Function
[31:30] - Reserved
[29] TBELBASE Table base is in Code (0} or RAM (1)
[28:7] TBLOFF Wector table base offset field. Contains the offset of the table base from the bottom of the SRAM
or CODE space.
[6:0] - Reserved.

e The address offset should be aligned to the vector table size,
extended to the power of 2.

e For example, if there are 32 IRQ inputs, the total number of exceptions will be
32 + 16 (system exceptions) = 48.

Extending it to the power of 2 makes it 64. (2,4,8,16,32,64)
Multiplying it by 4 makes it 256 (0x100). (64 * 4 = 256)

Therefore, the vector table offset can be programmed as 0x0, 0x100, 0x200, and
SO on.

Interrupt Inputs and Pending Behavior (1)

Inferrupt

Request \

Interrupt

Pending Status
/ Handler Mode

Thread
Processor Mada
Mode

Interrupt Pending

When an interrupt input is asserted, it will be pended.
Even if the interrupt source de—asserts the interrupt,
the pended interrupt status will still cause the

interrupt handler to be executed when the priority is
allowed.

Interrupt Inputs and Pending Behavior (2)

Intermupt |- |

Reguest \

Interrupt
Pending Status r

Pending status
cleared by software

Thread

Processor Made
Moda

Interrupt Pending Cleared Before Processor Takes Action

e [f the pending status is cleared before the processor
starts responding to the pended interrupt,the interrupt
can be canceled. (for example, because pending status
register is cleared while PRIMASK/FAULTMASK is set to 1)

e The pending status of the interrupt can be accessed in
the NVIC and is writable, so you can clear a pending
interrupt or use software to pend a new interrupt by
setting the pending register.

Interrupt Inputs and Pending Behavior (3)

Interrupt request

cleared by software
Interrupt [{‘
Request \
Interrupt
Pending Status
Interrupt
Active Stalus 4

Handler Mode = Interrupt returned

Procassor Thraad
Mode Mode

Interrupt Active Status Set as Processor Enters Handler

e When the processor starts to execute an interrupt,the interrupt
becomes active and the pending bit will be cleared automatically.

e WWhen an interrupt is active, you cannot start processing the same
interrupt again until the interrupt service routine is terminated
with an interrupt return (also called an exception exit).

e Then the active status is cleared and the interrupt can be
processed again if the pending status is 1.

Interrupt Inputs and Pending Behavior (4)

Interrupt request stays active

Interrupt |

Requast

Interrupt

Pending Status

Active Stane interrupt refurned

Handier Mode

Processor Thread
Made Maode { Interrupt re-entared

Continuous Interrupt Request Pends Again After Interrupt Exit

[
<)
\

If an interrupt source continues to hold the interrupt
request signal active, the interrupt will be pended
again at the end of the interrupt service routine.

This is Jjust like the traditional ARM7TDMI.

Interrupt Inputs and Pending Behavior (5)

Multiple interrupt pulses
before antaring I1SA

Intarrupt I

Ragjuest \

Interrupt I

Pending Status

Interrupt I]—

Active Status

Handler Moda

Thread /
Processor Mode Interrupt returned

Mode

Interrupt Pending Only Once, Even with Multiple Pulses Before the Handler

If an interrupt is pulsed several times before the
processor starts processing it, it will be treated as
one single interrupt request.

Interrupt Inputs and Pending Behavior (6)

Interrupt request

pulsed again
Interrupl | [
Reguast \
Interrupt |TI1EF‘;UFId|
Pending Status oty
afain
Interrupt |_|
Active Status

Handlar Moda

Interrupt retumed /'\/\
Thread
Frocessor Mode Interrupt re-entered

Maoda

Interrupt Pending Occurs Again During the Handler

If an interrupt is de—asserted and then pulsed again
during the interrupt service routine, it will be pended
again.

Fault Exceptions

e A number of system exceptions are useful for
fault handling.
There are several categories of faults:
Bus faults
Memory management faults
Usage faults
Hard faults

SVC and PendSV

Privilaged

Unprivileged

JC JF

AP j gﬁ::rz > Peripherals

I |
I |
I |
I |
| Keamel |
: ks : Hardware
I |
I |
I |

Lzar
Program sy
I
I
I
I
I

"l:'.q_______?

Operating Systam
I |

SVC as a Gateway for OS Functions

SVC (System Service Call) and PendSV (Pended System Call)
are two exceptions targeted at software and operating
systems.

SVC is for generating system function calls.

Which can provide a more robust system by preventing the
user applications from directly accessing hardware.

The actual hardware—level programming is handled by
device drivers.

SVC and PendSV (1)

e PendSV (Pended System Call) works with SVC in the OS.
Although SVC (by SVC instruction) cannot be pended (an
application calling SVC will expect the required task to be
done immediately), PendSV can be pended and is useful for an
OS to pend an exception so that an action can be performed
after other important tasks are completed.

e PendSV is generated by writing 1 to the NVIC PendSV pending
register.

Uzage fault; retum to
thread with active interrupt

Bty Context Contex! Context
! swilching switching switching i

riarity e s
aveTicK 4 08 Context switching Context switching
' SYSTICK 4 08 0s
JD | L B B

IRG

|
|
|
|
RQH
|‘
|

I
|
I
|
I
|
I
|

|
i I | 1
i i i i I
i | i | |
| | | | |
i | i I i | |
| | | | | I :
| | i | | 1
| | | | | |
| | | i | i #

| i
Thread — Task A Task B Task A
mar] (ma) (me) G '-\ (e)) L)
z \ Time /
Time , IRQ processing

A Simple Scenario Using SYSTICK to Switch Between Two Tasks thayed

Problem with Context Switching at the IRQ

=N O Ul W~

10.

SVC and PendSV (2)

Priorty 1
SYSTICK (OS5)
SYSTICK — 7

)

1161

1 [8]

]
ISR startad '\ |SH continues
I et
mermipt D 1[9] 18R completed
SVC (08) pend Context | [

PendSWV switch in | Context switch

Interrupd ’
SVC and ; [2] PendSY 18! accined | in PendSV
PendSy (1 | |
/ S ! L [10]
i ' | 1
Thraad — Task A !
Time v

Example Context Switching with PendSV

Task A calls SVC for task switching (for example, waiting for some work to complete).
The OS receives the request, prepares for context switching, and pends the PendSV exception.
When the CPU exits SVC, it enters PendSV immediately and does the context switch.

When PendSV finishes and returns to Thread level, it executes Task B.

An interrupt occurs and the interrupt handler is entered.

While running the interrupt handler routine, a SYSTICK exception (for OS tick) takes place.

The OS carries out the essential operation, then pends the PendSV exception and gets ready
for the context switch.

When the SYSTICK exception exits, it returns to the interrupt service routine.

When the interrupt service routine completes, the PendSV starts and does the actual context
switch operations.

When PendSV is complete, the program returns to Thread level;
this time it returns to Task A and continues the processing.

SVC and SWI (ARM7)

e [you have used traditional ARM processors
(such as the ARM7), vyou might know that they
have a software interrupt instruction (SWI).

e The SVC has a similar function, and in fact
the binary encoding ot SVC instructions is
the same as SWI in ARMT.

However, since the exception model has
changed, this instruction is renamed to make
sure that programmers will properly port
software code from ARM7 to the Cortex—M3.

The NVIC and Interrupt Control

NVIC Overview

NVIC - Nested Vectored Interrupt Controller.
An integrated part of the Cortex-M3 processor.

[ts control registers are accessible as memory-mapped
devices.

NVIC also contains control registers for the MPU, the
SYSTICK Timer, and debugging controls.

The NVIC supports 1 to 240 external interrupt inputs
(IRQs) .

NVIC also has a Nonmaskable Interrupt (NMI) input.

NVIC can be accessed as memory location OxEOOOEOOQO.

NVIC
The Basic Interrupt Contiguration

e Fach external interrupt has several registers associated
with it:
- Enable and clear enable registers
- Set—pending and clear—pending registers
- Priority level

- Active status

e A number of other registers can also affect the interrupt
processing:

- Exception—masking registers. (PRIMASK, FAULTMASK, and BASEPRI)
- Vector Table Offset register
- Software Trigger Interrupt register

- Priority Group

each bit represents one interrupt input.

NVI

C

Interrupt Enable and Clear Enable
e The SETENA/CLRENA registers are 32 bits wide;

e Since the first 16 exception types are system
exceptions, external interrupt #0 has a start exception
number of 16.

Address Name Type Reset Value Description
OxEQOOETO0 SETENAD R 0 Enable for external interrupe #0-31
bit[0] for interrupt #0 (exception #1716}
bit[1] for interrupr #1 (exception #17)
bit[31] for intel F— - -
. OxEQDOETED CLREMNAD R/ Clear enable for external interrupt #0-31
Write 1 to set b
e acilue Srcls bit] 0] for interrupt #0
bit[1] for interrupt #1
OxEQDOET 04 SETEMNA RN 0 Enable for exter
Wite 1 toset b)
bit[31] for interrupt #31
Read value indi] : :
Write 1 to clear bit to O; write 0 has no effect
EEONEIES SN B 4 hahiie Yor el Read value indicates the current enable status
Write 1 toset b
| OxEQDOET 54 CLRENAT Rjw Clear Enable for external interrupt #32-63
Read value indi :
Write 1 to clear bit to O; write 0 has no effect
B B B Read value indicates the current enable status
OxEQNOETEE CLREMAZ R/ Clear enable for external interrupt #64-95

White 1 to clear bit to §; write 0 has no effect

Read value indicares the current enable srarus

Interrupt Set Enable Registers and Interrupt Clear Enable Registers

(OXEOOOE100-0xEOOOE11C, OXEOOOE180-0xEOOOE19C)

NVIC
Interrupt Pending and Clear Pending

e [f an interrupt takes place but cannot be executed
it will be pended.

immediately,

For instance,
handler

1S running.

it another higher—-priority interrupt

Address Name Type Reset Value Description
IEQDOETO0 SETENAD R 0 Enable for external interrupe #0-31
bit[] for interrupt #0 {exception #16)
bit[1] for interrupt #1 (exception #£17)
bit[31] for inte OxEQDOET B0 CLRENAD R Clear enable for external interrupe #0-31
VATER) Byt | bit] 0] for interrupr #0
Read value ind bit[1j'FUril'ltEI'I"l.lF|t #1
OxEODOET 04 SETEMA R/ 0 Enable for exte
: i "
PP p— bit[31] for inte rrupt #31
i Write 1 o clear bit to 0; write 0 has no effect
Read value ind
Read value indicates the current enable status
OxEQQOET 08 SETEMNAZ Ry 0 Enable for exte
OxEDDDETE4 CLREMNAT R Clear Enable for external interrupt #32-63
Write 1 to set |
Write 1 to clear bit to O; write 0 has no effect
Read value ind
Read value indicates the current enable starus
IxEQNOETRE CLREMAZ R Clear enable for external interrupt #64-95

Wite 1 to clear bit ta (; write D has no effect

Read value indicates the current enable starus

Interrupt Set Enable Registers and Interrupt Clear Enable Registers

(OXEOOOE100-0xEOOOE11C, OXEOOOE180-0xEOOOE19C)

NVIC = Priority Levels

e Fach register can be further divided into preempt
priority level and subpriority level based on priority
group settings.

(Maximum width of 8 bits and a minimum width of 3 bits.)

Address Mame Type Reset Value Descnption

OxEQO0E400 PRI_Q /W 0 {&-bir) Priority-level exzernal interrupt #0
(=EQDOE4T PRI_T R (1 {B-hit) Priority-level external interrupt #1
IxEODOE4TF PRI_31 RO (1 {&-hit) Priority-level external interrupr #31

Interrupt Priority-Level Registers (OXEOOOE400-OxEOOOE4EF)

Address MName Type Reset Value Description

OxEQOOEDT 8 PRI_4 R 0 Priority level for memeory managemenr faule
OxEQDOEDT 9 PRI_S R 0 Priority level for bus fault
DxEQOOEDT A PRI_& R 1] Priorry level for usage fault
OxEQOOEDT B

DxEQODOED C - - - -

OxEQDOED D - - - -

0OxEQDOEDT E - - - -

OxEQOOEDTF PRI_11 R/ 1] Prionty level for SVC
OxEQDOED2ZO PRI_12 R 1] Priority level for debug monitor
OxEQDOED2T N = - -

OxEQOOED22 PRI_14 R 0 Priority level for PendSY
OxEQOOED23 PRI_15 RO 0 Pricrty level for SYSTICK

System Exceptions Priority-Level Register
(OXEOOOED18-0xEOOOED23; Listed as Byte Addresses)

NVIC - Active Status

Each external interrupt has an active status bit.
When the processor starts the interrupt handler,
the bit is set to 1 and cleared when the interrupt
return is executed.

Address Name Type Reset Value Description
OxEQNOE3ND ACTIVED R 0 Active starus for external interrupt #0-31

bit[0] for interrupe #0

bit[1] for interrupt #1

bit[21] for interrupt #31
OxEONOE3N ACTIVET R 0 Active starus for external interrupt #32-63

Interrupt Active Status Registers (OXEOOOE300-0xEOOOE31C)

NVIC
Example Procedures in Setting Up

an Interrupt

1.When the system boots up, the priority group register might
need to be set up. By default the priority group O is used.

2.Copy the hard fault and NMI handlers to a new vector table
location if vector table relocation is required.

3.The Vector Table Offset register should also be set up to get
the vector table ready.

4.Set up the interrupt vector for the interrupt.

Since the vector table could have been relocated, you might
need to read the Vector Table Offset register, then calculate
the correct memory location for your interrupt handler.

5.S5et up the priority level for the interrupt.

6.Enable the interrupt.

Make sure that you have enough stack memory if you allow a
large number of nested interrupt levels.

Interrupt Behavior

Interrupt/Exception Sequences

e When an exception takes place, a number of things happen:
Stacking (pushing eight registers contents to stack)

Vector fetch (reading the exception handler starting
address from the vector table)

Update of the stack pointer (SP), 1link register (LR),
and program counter (PC)

Stacking (1)

When an exception takes place, the registers PC, PSR,
RO - R3, R12, and LR are pushed to the stack.

If the code that is running uses the PSP, the process stack
will be used.

If the code that is running uses the MSP, the main stack
will be used.

Afterward, the main stack will always be used during the
handler,so all nested interrupts will use the main stack.

The reason the registers RO—R3, R12, LR, PC, and PSR are
stacked is that these are caller saved registers,
according to C standards. (C/C++ standard Procedure Call
Standard for the ARM Architecture, AAPCS, Ref 5)

The general registers (RO—R3, R12) are located at the end
of the stack frame so that they can be easily accessed
using SP-related addressing.

Stacking (2)

(assuming that the SP value is N before the exception)

cﬁ?ﬂ%ﬁ:' N8 | N4 [N32 [N28 [N24 [N-20 | N-16 | N-12 |

SO SRR RN

(HWDATA) Ro | R1 | r2 | R3 | R12 | LR |

¥

Time
Stacking Sequence

Address Data Push Order
Old 5P (N) -= {Previously pushed data) -
(N-4) PSR 2
(M-8) PC 1
(N-12) LR 8
(N-16) R12 7
(N-20) R3 6
(N-24) R2 5
(N-28) R1 4
New SP (N-32) -= RO 3

Stack Memory Content After Stacking and Stacking Order

Vector Fetches

While the data bus is busy stacking the registers, the
instruction bus carries out another important task of
the interrupt sequence.

[t fetches the exception vector from the vector table.
Since the stacking and vector fetch are performed on

separate bus interfaces, they can be carried out at the

same time.

Register Updates

e After the stacking and vector fetch are completed, the
exception vector will start to execute. On entry of the
exception handler, a number of registers will be updated:

+ SP: The Stack Pointer (either the MSP or the PSP) will be updated
to the new location during stacking.

During execution of the interrupt service routine, the MSP will
be used if the stack is accessed.

+ PSR: The IPSR (the lowest part of the PSR) will be updated to the
new exception number.

- PC: This will change to the vector handler as the vector fetch

completes and starts fetching instructions from the exception
vector.

- LR: The LR will be updated to a special value called EXC RETURN.
This special value drives the interrupt return operation. The
last 4 bits of the LR have a special meaning.

e A number of other NVIC registers will also be updated.

Exception Exits

e At the end of the exception handler, an exception exit
(known as an interrupt return in some processors) is
required to restore the system status so that the
interrupted program can resume normal execution.

e When the interrupt return instruction is executed,
the following processes are carried out:

1. Unstacking:

The registers pushed to the stack will be restored.
2. NVIC register update:

The active bit of the exception will be cleared.

Return Instruction Description
BX <reg> |f the EXC_RETURN value is still in LR, we can use the BX LR instruction to
perform the interrupt recum.

POP{PC}, or Very often the value of LR is pushed to the stack after entering the exception
POP{...., BC} handler. We can use the POP instruction, either a single POP or multiple POPs, to
put the EXC_RETURN value to the program counter, This will cause the processor
to perform the interrupt returm,

LDR, or LOM It is possible to produce an incerrupt return using the LOR instruction with PC as
the destination register.

Tail-Chaining Interrupts

Interrupt #1 l _I
Interrupt #2 | |
Interrupt Interrupt exits Interrup! exits
Event #1 ‘5. /
Interrupt Service V Interrupt Service
Routine #1 Houting #2
Main Program Main Program
Stacking : Unstacking :
Processor : ; ;
State

Thread Mﬂdﬂé Handler Mode . Handler Mode éThmad Mode

Téil Chaining of Exceptions

e When an exception takes place but the processor is
handling another exception of the same or higher priority,
the exception will be pended.

e Skipping the unstacking and the stacking.

e The timing gap between the two exception handlers is
greatly reduced.

Late Arrivals

Interrupt #1
(Low Prioity) -—rl

Interrupt #2 |
{High Priarity)
FTE'{:ESE“:’:: Thraad ElﬂE‘ﬂt":'n SE‘[IUE‘“EE Handier #2
T T T | T T I
Data Bus Stacking
i i i i i i |
Ins!rmgit; Thread Handler Instruction Fetch
&
+
Veetar Faleh

Late Arrival Exception Behavior

e When an exception takes place and the processor has started
the stacking process, and if during this delay a new
exception arrives with higher preemption priority, the late
arrival exception will be processed first.

More on the Exception Return Value(1)

When entering an exception handler, the LR is updated to
a special value called EXC RETURN, with the upper 28
bits all set to 1.

When loaded into the PC at the end of the exception
handler execution, will cause the processor to perform
an exception return sequence.

The EXC RETURN value has bit [31:4] all set to 1, and
bit|3:0] provides information required by the exception
return operation.

When the exception handler is entered, the LR value is
updated automatically, so there is no need to generate
these values manually.

Bits

LK 3 2 1 0

Descriptions | OxFFFFFFF | Return mode Return stack Reserved, | Process state

(Thread,/handler) mustbe | (Thumb/ARM)

0 Value Condition

Description of Bit Fields in EXC_RETURN Value | sFFFFFF Return to handler made

(FFFFFFFS Return to Thread mode and on return use the main stack

(xFFFFFFFD Return to Thread mode and on return use the process stack

Allowed EXC_RETURN Values on Cortex-M3

More on the Exception Return Value (2)

Interrupt #1

i Low priority) | |
Interrupt #2
(High priority) | |
’/ Intermpt exit
Stackin
2 Interrup! service Interrupt
routing #2 axit
Execution Intermupt
status event 1
Interrupt servica
routine #1 Unstacking
Main program
Main stack Main stack Main stack
. o it
[1 . : 3T 1
' Handler ! Handler ' Handler !
Thraad mode | mada | : : Thread mode
1]

:\ made _»‘\

LR = 0xFFFFFFF® LR = OxFFFFFFF1

LR Set to EXC_RETURN at Exception (Main Stack Used in Thread Mode)

e [f the thread is using the MSP (main stack), the value
of LR will be set to OxFFFFFFFS when it enters an
exception, and OxFFFFFFF1 when a nested exception is

entered.

More on the Exception

Interrupt &1

Return Value (3)

i{Low pricrity) [|

Intarrupt #2
(High pricrity) | |

/ Intermupt exit
Stackin
g Intarrupt sarvice Inler_rupt
routineg #2 axit
Execution Interrupt
status event #1

Interrupt servica

routing #1 Unstacking
hain program
Frocess stack Main stack Frocess stack
s o e
| 1 : VT 1
| I 1 |
Thread mode ! AN H;SSLE' HENCHEE ! Thread mode
1

e o

LR = OxFFFFFFFD LR = OxFFFFFFF

I moda
1

LR Set to EXC_RETURN at Exception (Process Stack Used in Thread Mode)

If the thread is using PSP (process stack), the value of
LR would be OxFFFFFFFD when entering the first exception
and OxFFFFFFF1 for entering a nested exception.

Reference

Definitive Guide To The ARM Cortex M3
ARM ® v7-M Architecture Reference Manual

ARM Architecture Overview
STM32F103V100 Manual

	投影片 1
	投影片 2
	投影片 3
	投影片 4
	投影片 5
	投影片 6
	投影片 7
	投影片 8
	投影片 9
	投影片 10
	投影片 11
	投影片 12
	投影片 13
	投影片 14
	投影片 15
	投影片 16
	投影片 17
	投影片 18
	投影片 19
	投影片 20
	投影片 21
	投影片 22
	投影片 23
	投影片 24
	投影片 25
	投影片 26
	投影片 27
	投影片 28
	投影片 29
	投影片 30
	投影片 31
	投影片 32
	投影片 33
	投影片 34
	投影片 35
	投影片 36
	投影片 37
	投影片 38
	投影片 39
	投影片 40
	投影片 41
	投影片 42
	投影片 43
	投影片 44
	投影片 45
	投影片 46
	投影片 47
	投影片 48
	投影片 49
	投影片 50
	投影片 51
	投影片 52
	投影片 53
	投影片 54
	投影片 55
	投影片 56
	投影片 57
	投影片 58
	投影片 59
	投影片 60
	投影片 61
	投影片 62

