

Introduction
the ARM Cortex-M3

Exception / Interrupt

Hsuan-Cheng Lin

 2012.6.6

Outline

● The ARM processor
● The Cortex-M3
● The Registers
● Exceptions
● The NVIC and Interrupt Control
● Interrupt Behavior
● Reference

The ARM Processor(1)
● ARM - Advanced RISC Machines (1990)

Small size,Low cost,Low power consumption,High performence
● License : IP core (Semiconductor intellectual property core)

ARM cores(wiki)

Architecture Family

ARMv1 ARM1

ARMv2 ARM2,ARM3

ARMv3 ARM6,ARM7

ARMv4 StrongARM,ARM7TDMI,ARM9TDMI

ARMv5 ARM7EJ,ARM9E,ARM10E,XScale

ARMv6 ARM11,ARM Cortex-M

ARMv7 ARM Cortex-A,ARM Cortex-M,ARM Cortex-R

ARMv8 No cores available yet.
Will support 64-bit data and addressing.

The ARM processor(2)

Development of the ARM Architecture

The ARM processor(3)

The ARM processor(4)
● Many semiconductor or IC design firms hold ARM licenses:

Analog Devices, AppliedMicro, Atmel, Broadcom, Cirrus Logic, Energy
Micro, Faraday Technology, Freescale, Fujitsu, Intel (through its
settlement with Digital Equipment Corporation), IBM, Infineon
Technologies, Marvell Technology Group, Nintendo, NXP Semiconductors,
OKI, Qualcomm, Samsung, Sharp, STMicroelectronics, and Texas Instruments.

● ARM Cortex-A8
Apple A4 (iPhone 4, ipad, iPod touch, Apple TV);
NVIDIA Tegra 2/3; Samsung Exynos; TI OMAP4....

● ARM Cortex-A9
Apple A5 (iPhone 4S, ipad2...);

The Cortex-M3

The Cortex Series
● A Profile (ARMv7-A): Application processors required to run complex applications .

High-end embedded operating systems.(Symbian, Linux, and Windows Embedded)
Highest processing power, virtual memory system support with Memory Management Units (MMUs).
High-end mobile phones and electronic wallets for financial transactions.

● R Profile (ARMv7-R): Real-time.

High-end breaking systems and hard drive controllers.
High processing power and high reliability are essential and
for which low latency is important.

● M Profile (ARMv7-M): Microcontroller targeting low-cost applications.

Processing efficiency is important and cost, low power consumption,
low interrupt latency, and ease of use are critical.
Industrial control applications, including real-time control systems.

● The Cortex processor families are the first products developed on architecture v7.

● The Cortex-M3 processor is based on one profile of the v7 architecture,
called ARM v7-M, an architecture specification for microcontroller products.

The Cortex-M3 processor(1)
● Greater performance efficiency
 Allowing more work to be done without increasing the frequency or power requirements.

● Low power consumption
 Enabling longer battery life, especially critical in portable products including wireless

 networking applications.
● Lower-cost solutions
 Reducing 32-bit-based system costs close to those of legacy 8-bit and 16-bit devices and
 enabling low-end, 32-bit microcontrollers to be priced at less than US$1 for the first time.

● Enhanced determinism
 Guaranteeing that critical tasks and interrupts are serviced as quickly as possible but in a

 known number of cycles.
● Improved code density
 Ensuring that code fits in even the smallest memory footprints.

● Ease of use
 Providing easier programmability and debugging for the growing number of 8-bit and 16-bit

 users migrating to 32-bit.
● Wide choice of development tools
 From low-cost or free compilers to full-featured development suites from many
 development tool vendors.

The Cortex-M3 processor(2)

Relative performance for
ARM7TDMI-S (ARM) and Cortex-M3 (Thumb-2)

Relative code size for
ARM7TDMI-S (ARM) and Cortex-M3 (Thumb-2)

The Cortex-M3 processor(3)

STM32F10x Block Diagram

The Cortex-M3 processor(4)
● The Cortex-M3 processor has two modes and two privilege levels.
● The operation modes (thread mode and handler mode) determine

whether the processor is running a normal program or running an
exception handler like an interrupt handler or system exception
handler.

● The privilege levels (privileged level and user level) provide a
mechanism for safeguarding memory accesses to critical regions as
well as providing a basic security model.

 Operation Modes and Privilege Levels in Cortex-M3

ARM7: User/FIQ/IRQ/Supervisor/Abort/Undefined/System

The Registers (ARM7TDMI)

The Registers (Cortex-M3)

Exceptions/Interrupt

Interrupt vs Polling

Interrupt

Polling

Interrupt Controller
The Cortex-M3 processor includes an interrupt controller called the
Nested Vectored Interrupt Controller (NVIC).

Exception Types

● Exceptions are numbered:
1 to 15 for system exceptions.
16 and above for external interrupt inputs.

● Most of the exceptions have programmable
priority, and a few have fixed priority.

● Support 1-240 interrupt.

List of System Exceptions
Note: There is no exception number 0Note: There is no exception number 0

List of External Interrupts

● When an enabled exception occurs but cannot be carried out
immediately,it will be pended.
(a higher-priority interrupt service routine is running or
if the interrupt mask register is set)

● This means that a register in the NVIC (pending status) will
hold the exception request until the exception can be carried
out.

● This is different from traditional ARM processors.
CPSR->SPSR
Switch to ARM mode and Disable IRQ
...

Need to check the chip manufacturer's datasheets to determine the numbering of the interrupts.Need to check the chip manufacturer's datasheets to determine the numbering of the interrupts.

 Interrupt Set Pending Registers and
 Interrupt Clear Pending Registers

NVIC registers

Definitions of Priority(1)

 A Priority Level Register with 4-bit ImplementedAvailable Priority Levels with 3-Bit or 4-Bit Priority Width

Bit 7,6,5,4 Bit 3,2,1,0 Value

0000 0000 0x00

0010 0000 0x20

0100 0000 0x40

0110 0000 0x60

1000 0000 0x80

1010 0000 0xA0

1100 0000 0xC0

1110 0000 0xE0
 A Priority Level Register with 3-bit Implemented

Definitions of Priority(2)
● Supports three fixed highest-priority levels.(-3,-2,-1)

● Up to 256 levels of programmable priority.
(a maximum of 128 levels of preemption)

● More priority bits can also increase gate counts and
hence power consumption.

● The minimum number of implemented priority register
widths is 3 bits. (eight levels)

● This reduction of levels is implemented by cutting out
the LSB part of the priority cofiguration registers.
The reason for removing the LSB of the register instead of the MSB
is to make it easier to port software from one Cortex-M3 device to
another.

Definitions of Priority(3)

Bit 7 6 5 4 3 2 1 0

IRQ #0 0 0 0 0 0 0 0 1 0x01

IRQ #1 0 0 0 0 0 0 1 1 0x03

Bit 7 6 5 4 3 2 1 0

IRQ #0 0 0 0 0 0 1 0 1 0x05

IRQ #1 0 0 0 0 0 0 1 1 0x03

Bit 7 6 5 4 3 2 1 0

IRQ #0 0 1 0 1 0 0 0 0 0x50

IRQ #1 0 0 1 1 0 0 0 0 0x30

Bit 7 6 5 4 3 2 1 0

IRQ #0 0 1 0 0 0 0 0 0 0x40

IRQ #1 0 0 1 0 0 0 0 0 0x10

MSB LSB

Definitions of Priority(4)

 Available Priority Levels for Devices with 3-bit, 5-bit, and 8-bit Priority Level Registers

A: 8-bit register is further divided into two parts:
 preempt priority and subpriority

Q: If the priority level configuration registers are 8 bits wide,
 why there are only 128 preemption levels?

Definitions of Priority(5)

● Using a configuration register in the NVIC called Priority Group.
● The priority-level configuration registers for each exception

with programmable priority levels is divided into two halves.

● The upper half (left bits) is the preempt priority.

● The lower half (right bits) is the subpriority.

Definition of Preempt Priority Field and
Subpriority Field in a Priority Level Register in
Different Priority Group Settings

Definitions of Priority(6)

Bit
7,6

Bit
5

Bit
4,3,2,1,0

Preempt Subpriority

00 0
1

0 0000 0x00 0x00
0x20

01
0
1 0 0000 0x40

0x40
0x60

10 0
1

0 0000 0x80 0x80
0xA0

11
0
1

0 0000 0xC0
0xC0
0xE0

The Define of priority group 5

Definitions of Priority(7)

The Define of priority group 1

Bit 7,6,5 Bit
4,3,2,1,0 Preempt Subpriority

000 0 0000 0x00 0x00

001 0 0000 0x20 0x20

010 0 0000 0x40 0x40

011 0 0000 0x60 0x60

100 0 0000 0x80 0x80

101 0 0000 0xA0 0xA0

110 0 0000 0xC0 0xC0

111 0 0000 0xE0 0xE0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Preempt
priority[5:7]

Preempt priority
bit[4:2] (always 0)

Subpriority
(always 0)

Vector Tables

● Since the address 0x0 should be boot code, usually it will either be
Flash memory or ROM devices, and the value cannot be changed at run
time.

● However, the vector table can be relocated to other memory locations
in the Code or RAM region where the RAM is so that we can change the
handlers during run time.
This is done by setting a register in the NVIC called the vector
table offset register (address 0xE000ED08).

By default, the vector table starts at address zero,
and the vector address is arranged according to the exception number times 4.

Vector Tables

● The address offset should be aligned to the vector table size,
extended to the power of 2.

● For example, if there are 32 IRQ inputs, the total number of exceptions will be
32 + 16 (system exceptions) = 48.

Extending it to the power of 2 makes it 64. (2,4,8,16,32,64)
Multiplying it by 4 makes it 256 (0x100). (64 * 4 = 256)

Therefore, the vector table offset can be programmed as 0x0, 0x100, 0x200, and
so on.

Interrupt Inputs and Pending Behavior(1)

● When an interrupt input is asserted, it will be pended.
Even if the interrupt source de-asserts the interrupt,
the pended interrupt status will still cause the
interrupt handler to be executed when the priority is
allowed.

 Interrupt Pending

Interrupt Inputs and Pending Behavior(2)

● If the pending status is cleared before the processor
starts responding to the pended interrupt,the interrupt
can be canceled.(for example, because pending status
register is cleared while PRIMASK/FAULTMASK is set to 1)

● The pending status of the interrupt can be accessed in
the NVIC and is writable, so you can clear a pending
interrupt or use software to pend a new interrupt by
setting the pending register.

 Interrupt Pending Cleared Before Processor Takes Action

Interrupt Inputs and Pending Behavior(3)

● When the processor starts to execute an interrupt,the interrupt
becomes active and the pending bit will be cleared automatically.

● When an interrupt is active, you cannot start processing the same
interrupt again until the interrupt service routine is terminated
with an interrupt return (also called an exception exit).

● Then the active status is cleared and the interrupt can be
processed again if the pending status is 1.

Interrupt Active Status Set as Processor Enters Handler

Interrupt Inputs and Pending Behavior(4)

● If an interrupt source continues to hold the interrupt
request signal active, the interrupt will be pended
again at the end of the interrupt service routine.

● This is just like the traditional ARM7TDMI.

 Continuous Interrupt Request Pends Again After Interrupt Exit

Interrupt Inputs and Pending Behavior(5)

● If an interrupt is pulsed several times before the
processor starts processing it, it will be treated as
one single interrupt request.

Interrupt Pending Only Once, Even with Multiple Pulses Before the Handler

Interrupt Inputs and Pending Behavior(6)

● If an interrupt is de-asserted and then pulsed again
during the interrupt service routine, it will be pended
again.

Interrupt Pending Occurs Again During the Handler

Fault Exceptions

● A number of system exceptions are useful for
fault handling.

There are several categories of faults:

• Bus faults

• Memory management faults

• Usage faults

• Hard faults

SVC and PendSV

● SVC (System Service Call) and PendSV (Pended System Call)
are two exceptions targeted at software and operating
systems.

● SVC is for generating system function calls.

● Which can provide a more robust system by preventing the
user applications from directly accessing hardware.

● The actual hardware-level programming is handled by
device drivers.

SVC as a Gateway for OS Functions

SVC and PendSV(1)
● PendSV (Pended System Call) works with SVC in the OS.

Although SVC (by SVC instruction) cannot be pended (an
application calling SVC will expect the required task to be
done immediately), PendSV can be pended and is useful for an
OS to pend an exception so that an action can be performed
after other important tasks are completed.

● PendSV is generated by writing 1 to the NVIC PendSV pending
register.

A Simple Scenario Using SYSTICK to Switch Between Two Tasks
Problem with Context Switching at the IRQ

SVC and PendSV(2)

1. Task A calls SVC for task switching (for example, waiting for some work to complete).

2. The OS receives the request, prepares for context switching, and pends the PendSV exception.

3. When the CPU exits SVC, it enters PendSV immediately and does the context switch.

4. When PendSV finishes and returns to Thread level, it executes Task B.

5. An interrupt occurs and the interrupt handler is entered.

6. While running the interrupt handler routine, a SYSTICK exception (for OS tick) takes place.

7. The OS carries out the essential operation, then pends the PendSV exception and gets ready
 for the context switch.

8. When the SYSTICK exception exits, it returns to the interrupt service routine.

9. When the interrupt service routine completes, the PendSV starts and does the actual context
 switch operations.

10. When PendSV is complete, the program returns to Thread level;
 this time it returns to Task A and continues the processing.

 Example Context Switching with PendSV

SVC and SWI (ARM7)
● If you have used traditional ARM processors
(such as the ARM7), you might know that they
have a software interrupt instruction (SWI).

● The SVC has a similar function, and in fact
the binary encoding of SVC instructions is
the same as SWI in ARM7.
However, since the exception model has
changed, this instruction is renamed to make
sure that programmers will properly port
software code from ARM7 to the Cortex-M3.

The NVIC and Interrupt Control

NVIC Overview

● NVIC - Nested Vectored Interrupt Controller.

● An integrated part of the Cortex-M3 processor.

● Its control registers are accessible as memory-mapped
devices.

● NVIC also contains control registers for the MPU, the
SYSTICK Timer, and debugging controls.

● The NVIC supports 1 to 240 external interrupt inputs
(IRQs).

● NVIC also has a Nonmaskable Interrupt (NMI) input.

● NVIC can be accessed as memory location 0xE000E000.

NVIC
The Basic Interrupt Configuration

● Each external interrupt has several registers associated
with it:

•Enable and clear enable registers

•Set-pending and clear-pending registers

•Priority level

•Active status

● A number of other registers can also affect the interrupt
processing:

•Exception-masking registers. (PRIMASK, FAULTMASK, and BASEPRI)

•Vector Table Offset register

•Software Trigger Interrupt register

•Priority Group

NVIC
Interrupt Enable and Clear Enable

● The SETENA/CLRENA registers are 32 bits wide;
each bit represents one interrupt input.

● Since the first 16 exception types are system
exceptions, external interrupt #0 has a start exception
number of 16.

Interrupt Set Enable Registers and Interrupt Clear Enable Registers
(0xE000E100-0xE000E11C, 0xE000E180-0xE000E19C)

NVIC
Interrupt Pending and Clear Pending

● If an interrupt takes place but cannot be executed
immediately, it will be pended.
For instance, if another higher-priority interrupt
handler is running.

 Interrupt Set Enable Registers and Interrupt Clear Enable Registers
(0xE000E100-0xE000E11C, 0xE000E180-0xE000E19C)

NVIC - Priority Levels
● Each register can be further divided into preempt

priority level and subpriority level based on priority
group settings.
(Maximum width of 8 bits and a minimum width of 3 bits.)

 Interrupt Priority-Level Registers (0xE000E400-0xE000E4EF)

 System Exceptions Priority-Level Register
(0xE000ED18–0xE000ED23; Listed as Byte Addresses)

NVIC - Active Status
● Each external interrupt has an active status bit.
● When the processor starts the interrupt handler,

the bit is set to 1 and cleared when the interrupt
return is executed.

Interrupt Active Status Registers (0xE000E300-0xE000E31C)

NVIC
Example Procedures in Setting Up

an Interrupt

1.When the system boots up, the priority group register might
 need to be set up. By default the priority group 0 is used.
2.Copy the hard fault and NMI handlers to a new vector table
 location if vector table relocation is required.
3.The Vector Table Offset register should also be set up to get
 the vector table ready.
4.Set up the interrupt vector for the interrupt.
 Since the vector table could have been relocated, you might
 need to read the Vector Table Offset register, then calculate
 the correct memory location for your interrupt handler.
5.Set up the priority level for the interrupt.
6.Enable the interrupt.

Make sure that you have enough stack memory if you allow a
large number of nested interrupt levels.

Interrupt Behavior

Interrupt/Exception Sequences

● When an exception takes place, a number of things happen:

• Stacking (pushing eight registers contents to stack)

• Vector fetch (reading the exception handler starting
 address from the vector table)

• Update of the stack pointer(SP), link register(LR),
 and program counter(PC)

Stacking(1)
● When an exception takes place, the registers PC, PSR,

R0 - R3, R12, and LR are pushed to the stack.
● If the code that is running uses the PSP, the process stack

will be used.
If the code that is running uses the MSP, the main stack
will be used.

● Afterward, the main stack will always be used during the
 handler,so all nested interrupts will use the main stack.

● The reason the registers R0–R3, R12, LR, PC, and PSR are
 stacked is that these are caller saved registers,
 according to C standards. (C/C++ standard Procedure Call
 Standard for the ARM Architecture, AAPCS, Ref 5)

● The general registers (R0–R3, R12) are located at the end
 of the stack frame so that they can be easily accessed
 using SP-related addressing.

Stacking(2)
(assuming that the SP value is N before the exception)

 Stacking Sequence

Stack Memory Content After Stacking and Stacking Order

Vector Fetches

● While the data bus is busy stacking the registers, the

instruction bus carries out another important task of

the interrupt sequence.

● It fetches the exception vector from the vector table.

● Since the stacking and vector fetch are performed on

separate bus interfaces, they can be carried out at the

same time.

Register Updates
● After the stacking and vector fetch are completed, the

exception vector will start to execute. On entry of the
exception handler, a number of registers will be updated:
•SP: The Stack Pointer (either the MSP or the PSP) will be updated
 to the new location during stacking.
 During execution of the interrupt service routine, the MSP will
 be used if the stack is accessed.

•PSR: The IPSR (the lowest part of the PSR) will be updated to the
 new exception number.

•PC: This will change to the vector handler as the vector fetch
 completes and starts fetching instructions from the exception
 vector.

•LR: The LR will be updated to a special value called EXC_RETURN.
 This special value drives the interrupt return operation. The
 last 4 bits of the LR have a special meaning.

● A number of other NVIC registers will also be updated.

Exception Exits
● At the end of the exception handler, an exception exit

(known as an interrupt return in some processors) is
required to restore the system status so that the
interrupted program can resume normal execution.

● When the interrupt return instruction is executed,
the following processes are carried out:

1. Unstacking:
 The registers pushed to the stack will be restored.
2. NVIC register update:
 The active bit of the exception will be cleared.

Tail-Chaining Interrupts

● When an exception takes place but the processor is
handling another exception of the same or higher priority,
the exception will be pended.

● Skipping the unstacking and the stacking.

● The timing gap between the two exception handlers is
greatly reduced.

 Tail Chaining of Exceptions

Late Arrivals

● When an exception takes place and the processor has started
the stacking process, and if during this delay a new
exception arrives with higher preemption priority, the late
arrival exception will be processed first.

 Late Arrival Exception Behavior

More on the Exception Return Value(1)
● When entering an exception handler, the LR is updated to

a special value called EXC_RETURN, with the upper 28
bits all set to 1.

● When loaded into the PC at the end of the exception
handler execution, will cause the processor to perform
an exception return sequence.

● The EXC_RETURN value has bit [31:4] all set to 1, and
bit[3:0] provides information required by the exception
return operation.

● When the exception handler is entered, the LR value is
updated automatically, so there is no need to generate
these values manually.

Allowed EXC_RETURN Values on Cortex-M3

 Description of Bit Fields in EXC_RETURN Value

More on the Exception Return Value(2)

● If the thread is using the MSP (main stack), the value
of LR will be set to 0xFFFFFFF9 when it enters an
exception, and 0xFFFFFFF1 when a nested exception is
entered.

LR Set to EXC_RETURN at Exception (Main Stack Used in Thread Mode)

More on the Exception Return Value(3)

● If the thread is using PSP (process stack), the value of
LR would be 0xFFFFFFFD when entering the first exception
and 0xFFFFFFF1 for entering a nested exception.

LR Set to EXC_RETURN at Exception (Process Stack Used in Thread Mode)

Reference

● Definitive_Guide_To_The_ARM_Cortex_M3
● ARM ® v7-M Architecture Reference Manual
● ARM_Architecture_Overview
● STM32F103V100_Manual

	投影片 1
	投影片 2
	投影片 3
	投影片 4
	投影片 5
	投影片 6
	投影片 7
	投影片 8
	投影片 9
	投影片 10
	投影片 11
	投影片 12
	投影片 13
	投影片 14
	投影片 15
	投影片 16
	投影片 17
	投影片 18
	投影片 19
	投影片 20
	投影片 21
	投影片 22
	投影片 23
	投影片 24
	投影片 25
	投影片 26
	投影片 27
	投影片 28
	投影片 29
	投影片 30
	投影片 31
	投影片 32
	投影片 33
	投影片 34
	投影片 35
	投影片 36
	投影片 37
	投影片 38
	投影片 39
	投影片 40
	投影片 41
	投影片 42
	投影片 43
	投影片 44
	投影片 45
	投影片 46
	投影片 47
	投影片 48
	投影片 49
	投影片 50
	投影片 51
	投影片 52
	投影片 53
	投影片 54
	投影片 55
	投影片 56
	投影片 57
	投影片 58
	投影片 59
	投影片 60
	投影片 61
	投影片 62

