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Preface

This book, or more accurately, these notes, originated in the class notes that I compiled
when I taught the two-semester sequence on Abstract Algebra at Florida Atlantic Univer-
sity for the Fall 2019 – Spring 2020 academic year. At my university, the students who take
this course are either advanced undergraduates or first year graduate students. Throughout
the course, I personally typeset the lecture notes and made them available for my students.
Supplemental exercises were added as well. By the end of the course, I had accumulated
most of the material in this document. After the course was completed, I organized the
somewhat disjoint set of notes into the present form, correcting some cross-references and
filling some gaps. This book consists primarily of the notes from my lectures plus material
that was added for completeness. It is only fair to mention that a considerable amount of
editing has also been performed.

The purpose of this book (or collection of notes) is to provide an introduction to the
theory of abstract algebra. The goal is to lay a solid foundation for future study of alge-
braic topics. It is intended to be accessible to first year graduate students and advanced
undergraduate students in mathematics. A typical two-semester sequence on Abstract Al-
gebra at the introductory level would cover most of the material. Chapters two, three, four
and five provide a solid introduction to group theory, ring theory, linear algebra and fields.
Chapter one, a background chapter, contains much of our conventions concerning notation
and terminology as well as a review of the material from set theory and elementary number
theory necessary for the rest of the book.

Algebra is one of the fundamental areas of mathematics. Like most of modern math-
ematics, it is no exaggeration to say that Algebra is very abstract. The many abstract
structures and constructions that exist in Algebra can be difficult to grasp upon first en-
counter. For this reason, it is sometimes helpful to have a “handle” to lend support. In
its essence, Algebra is the study of polynomial equations. While not intending to be an
oversimplification of the matter, keeping this in mind can be of help to a student trying to
make sense of the many abstract notions that arise.

For instance, Number Theory can be considered as that subset of Algebra that is con-
cerned with polynomial equations for which the coefficients involve only natural numbers.
Likewise, the origins of Group Theory lie in the study of solutions to polynomial equations
in one variable. It was Galois who stressed the importance of looking at the permutations
of the set of roots of a polynomial in one indeterminate. This led to what is now called
Galois Theory, as well as to the notion of a group acting on a set, hence to what is now
called Group Theory.

The set of solutions to a system of polynomials in several variables is called an alge-
braic variety. Algebraic Geometry arose as the study of algebraic varieties. Linear Algebra
is the study of systems of linear equations. Arising out of this study are what we now call
vector spaces, and more generally, modules. Matrices turn out to have both practical and
theoretical importance in Linear Algebra. Ring Theory can be thought of as the natural
abstraction of the addition and multiplication operations possessed by the set of square
matrices. Commutative Algebra naturally developed out of the study of properties of rings
of functions on algebraic varieties.





CHAPTER 1

Preliminaries and Prerequisites

Chapter 1 is intended to be used as a reference by the subsequent chapters. We assume
the reader is familiar with most of the material. This chapter is not intended to be a sub-
stitute for an undergraduate textbook on Discrete Mathematics. Conventions, notation and
terminology are established. Without undermining the importance of the subject matter,
the goal of Chapter 1 is to efficiently and concisely set the table for the rest of the book.
Therefore, a practical, or utilitarian approach is taken.

1. Background Material from Set Theory

Sets are the basic building blocks of abstract mathematics. We begin with sets of
numbers, sets of letters, sets of sets, or sets of variables. We combine them, operate on
them, compare them. Functions, relations and binary operations are themselves defined as
sets.

A rigorous definition of a set is not attempted. Rather, we adopt the naive approach
that a set is an abstract collection of objects, or elements. It is important to emphasize that
the key property or attribute a set is required to possess is that it is possible to distinguish
in an unambiguous way those elements that are in the set from those not in the set.

1.1. Sets and operations on sets. A set is a collection of objects X with a member-
ship rule such that given any object x it is possible to decide whether x belongs to the set
X . If x belongs to X , we say x is an element of X and write x ∈ X . Suppose X and Y are
sets. If every element of X is also an element of Y , then we say X is a subset of Y , or that
X is contained in Y , and write X ⊆ Y . If X and Y are subsets of each other, then we say X
and Y are equal and write X = Y . The set without an element is called the empty set and
is denoted /0. The set of all subsets of X is called the power set of X , and is denoted 2X .
Notice that /0 and X are both elements of 2X . The union of X and Y , denoted X ∪Y , is the
set of all elements that are elements of X or Y . The intersection of X and Y , denoted X ∩Y ,
is the set of all elements that are elements of X and Y . The complement of X with respect
to Y , denoted Y −X , is the set of all elements of Y that are not elements of X . The product
of X and Y , denoted X ×Y , is the set of all ordered pairs of the form (x,y) where x is an
element of X and Y is an element of Y .

Let I be a set and suppose for each i ∈ I there is a set Xi. Then we say {Xi | i ∈ I} is a
family of sets indexed by I. The union of the family is denoted

⋃
i∈I Xi and is defined to be

the set of all elements x such that x ∈ Xi for some i ∈ I. The intersection of the family is
denoted

⋂
i∈I Xi and is defined to be the set of all elements x such that x ∈ Xi for all i ∈ I.

The set of integers is Z = {. . . ,−2,−1,0,1,2, . . .}. The set of natural numbers is
N = {1,2,3, . . .}. The set of nonnegative integers is Z≥0 = {0,1,2,3,4, . . .}. The set of
rational numbers is Q = {n/d | n ∈ Z,d ∈ N} where it is understood that n/d = x/y if
ny = dx. The set of real numbers is denoted R, the set of complex numbers is denoted C.

9
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If n ∈ N and {X1, . . . ,Xn} is a family of sets indexed by {1,2, . . . ,n}, then we some-
times write X1∪·· ·∪Xn instead of

⋃n
i=1 Xi, and X1∩·· ·∩Xn instead of

⋂n
i=1 Xi. The product

of the family, written X1×·· ·×Xn or ∏
n
i=1 Xi, is the set {(x1, . . . ,xn) | xi ∈ Xi}.

1.2. Relations and functions. Let X and Y be nonempty sets. A relation between X
and Y is a nonempty subset R of the product X ×Y . Two relations are equal if they are
equal as sets. The domain of R is the set of all first coordinates of the pairs in R. The range
of R is the set of all second coordinates of the pairs in R.

A function (or map) from X to Y is a relation f ⊆ X×Y such that for each x ∈ X there
is a unique y ∈ Y such that (x,y) ∈ f . In this case, we say y is the image of x under f , and
write y = f (x). The range of a function f is also called the image of f . The image of f
is denoted f (X), or im( f ). The notation f : X → Y means f is a function from X to Y . If
T ⊆Y , the preimage of T under f , denoted f−1(T ), is the set of all elements x∈X such that
f (x) ∈ T . If y ∈ Y , we usually write f−1(y) instead of f−1({y}). If S ⊆ X , the restriction
of f to S is the function f |S : S→ Y defined by f |S(x) = f (x) for all x ∈ S. The identity
map from X to X , 1X : X→ X , is defined by 1X (x) = x for all x ∈ X . If S⊆ X , the inclusion
map from S to X is the restriction of the identity map 1X to the subset S. If f : X → Y
and g : Y → Z, the product or composition map is g f : X → Z defined by g f (x) = g( f (x)).
If h : Z →W , the reader should verify that h(g f ) = (hg) f so the product of functions is
associative. We say that f : X→Y is one-to-one (or injective) in case f−1(y) is a singleton
set for each y ∈ f (X). We say that f : X → Y is onto or (surjective) in case the image of
f is equal to Y . If f : X → Y is one-to-one and onto, then we say that f is a one-to-one
correspondence (or f is bijective). The reader should verify that the identity map 1X is
a one-to-one correspondence. If S ⊆ X , the reader should verify that the inclusion map
S→ X is one-to-one.

PROPOSITION 1.1.1. Let f : X → Y .

(1) f is one-to-one if and only if there exists g : Y → X such that g f = 1X . In this
case g is called a left inverse of f .

(2) If f is a one-to-one correspondence, then the function g of Part (1) is unique and
satisfies f g = 1Y . In this case g is called the inverse of f and is denoted f−1.

(3) If there exists a function g : Y → X such that g f = 1X and f g = 1Y , then f is a
one-to-one correspondence and g is equal to f−1.

PROOF. (1): View f as a subset of X×Y and define g as a subset of Y ×X . Because f
is not onto, our definition of g on Y − f (X) is ad hoc. For this reason, let x0 be any element
of X . Define g = {( f (x),x) | x ∈ X}∪ {(y,x0) | y ∈ Y − f (X)}. Then g has the desired
properties. The rest is Exercise 1.1.8. �

A commutative diagram is a finite family of sets DV = {X1, . . . ,Xv} together with a
finite collection of functions DE = { f1, . . . , fe} satisfying the following properties.

(1) Each f in DE is a function from one set in DV to another set in DV .
(2) Given two sets X , Y in DV and any two paths

X = A0
fa1−−→ A1

fa2−−→ ·· · → Ar−1
far−−→ Ar = Y

X = B0
gb1−−→ B1

gb2−−→ ·· · → Bs−1
gbs−−→ Bs = Y

from X to Y consisting of functions fa1 , . . . , far , gb1 , . . . ,gbs in DE , the composite
functions far · · · fa1 and gbs · · ·gb1 are equal.
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1.3. Binary relations. A binary relation on X is a subset of X ×X . Suppose ∼ is a
binary relation on X . If (x,y) is an element of the relation, then we say x is related to y and
write x∼ y. Otherwise we write x 6∼ y. If x∼ x for every x ∈ X , then we say ∼ is reflexive.
We say ∼ is symmetric in case x ∼ y whenever y ∼ x. We say ∼ is antisymmetric in case
x ∼ y and y ∼ x implies x = y. We say ∼ is transitive if x ∼ z whenever x ∼ y and y ∼ z.
If ∼ is reflexive, symmetric and transitive, then we say ∼ is an equivalence relation on X .
If ∼ is an equivalence relation on X , and x ∈ X , then the equivalence class containing x is
[x] = {y ∈ X | x∼ y}. By X/∼ we denote the set of all equivalence classes. The function
η : X → X/∼ defined by η(x) = [x] is called the natural map.

PROPOSITION 1.1.2. Let X be a nonempty set and ∼ an equivalence relation on X.
(1) If x ∈ X, then [x] 6= /0.
(2)

⋃
x∈X

[x] = X =
⋃

[x]∈X/∼
[x]

(3) If x,y ∈ X, then [x] = [y] or [x]∩ [y] = /0.

PROOF. Is left to the reader. �

Let X be a nonempty set. A partition of X is a family P of nonempty subsets of X such
that X =

⋃
P∈P P and if P,Q ∈P , then either P = Q, or P∩Q = /0. If ∼ is an equivalence

relation on X , then Proposition 1.1.2 shows that X/ ∼ is a partition of X . Conversely,
suppose P is a partition of X . There is an equivalence relation ∼ on X corresponding to
P defined by x∼ y if and only if x and y belong to the same element of P .

PROPOSITION 1.1.3. Let X be a nonempty set. There is a one-to-one correspondence
between the set of all equivalence relations on X and the the set of all partitions of X. The
assignment maps an equivalence relation ∼ to the partition X/∼.

PROOF. Is left to the reader. �

Let U be any set, which we assume contains N as a subset. Define a binary relation
on the power set 2U by the following rule. If X and Y are subsets of U , then we say X and
Y are equivalent if there exists a one-to-one correspondence α : X →Y . The reader should
verify that this is an equivalence relation on 2U . If X and Y are equivalent sets, then we say
X and Y have the same cardinal number. Define I0 = /0. For n ≥ 1 define In = {1, . . . ,n}.
If a set X is equivalent to In, then we say X has cardinal number n and write |X | = n. We
say a set X is finite if X is equivalent to In for some n. Otherwise, we say X is infinite.

Let X be a set and ≤ a binary relation on X which is reflexive, antisymmetric and
transitive. Then we say ≤ is a partial order on X . We also say X is partially ordered by
≤. If x,y ∈ X , then we say x and y are comparable if x≤ y or y≤ x. A chain is a partially
ordered set with the property that any two elements are comparable. If S⊆X is a nonempty
subset, then S is partially ordered by the restriction of ≤ to S×S. If the restriction of ≤ to
S is a chain, then we say S is a chain in X .

Let X be partially ordered by ≤ and suppose S is a nonempty subset of X . Let a ∈ S.
We say a is the least element of S if a≤ x for all x ∈ S. If it exists, clearly the least element
is unique. We say a is a minimal element of S in case x≤ a implies x = a for all x ∈ S. We
say a is a maximal element of S in case a ≤ x implies x = a for all x ∈ S. A well ordered
set is a partially ordered set X such that every nonempty subset S has a least element. The
reader should verify that a well ordered set is a chain. An element u ∈ X is called an upper
bound for S in case x ≤ u for all x ∈ S. An element l ∈ X is called a lower bound for S
in case l ≤ x for all x ∈ S. An element U ∈ X is a supremum, or least upper bound for
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S, denoted U = sup(S), in case U is an upper bound for S and U is a lower bound for the
set of all upper bounds for S. The reader should verify that the supremum is unique, if it
exists. An element L ∈ X is an infimum, or greatest lower bound for S, denoted L = inf(S),
in case L is a lower bound for S and L is an upper bound for the set of all lower bounds for
S. The reader should verify that the infimum is unique, if it exists.

Let X be partially ordered by≤. We say that X satisfies the minimum condition if every
nonempty subset of X contains a minimal element. We say that X satisfies the maximum
condition if every nonempty subset of X contains a maximal element. We say that X
satisfies the descending chain condition (DCC) if every chain in X of the form {. . . ,x3 ≤
x2 ≤ x1 ≤ x0} is eventually constant. That is, there is a subscript n such that xn = xi for all
i ≥ n. We say that X satisfies the ascending chain condition (ACC) if every chain in X of
the form {x0 ≤ x1 ≤ x2 ≤ x3, . . .} is eventually constant.

1.4. Permutations and combinations. Let n≥ 1 and Nn = {1,2, . . . ,n}. A bijection
σ : Nn→ Nn is also called a permutation. Let Sn denote the set of all permutations of Nn.
In Example 2.1.14 we will call Sn the symmetric group on n letters. If σ ∈ Sn, then we can
view σ = (x1, . . . ,xn) as an n-tuple in the product ∏

n
i=1Nn. The fact that σ is a bijection

is equivalent to the statement that the n-tuple (x1, . . . ,xn) contains no repeated elements.
Therefore,

Sn =

{
(x1, . . . ,xn) ∈

n

∏
i=1

Nn | if i 6= j, then xi 6= x j

}
.

Because there are n ways to pick x1, n−1 ways to pick x2, and so forth, a straightforward
induction proof shows that the number of elements in Sn is equal to n!. If 1 ≤ k ≤ n, then
a k-permutation of Nn is a one-to-one function σ : Nk → Nn. The k-permutations of Nn
correspond to k-tuples (x1, . . . ,xk) where each xi ∈ Nn and if i 6= j, then xi 6= x j. Again, a
straightforward induction proof shows that the number of k-permutations of Nn is equal to
n(n−1) · · ·(n− k+1) = n!/(n− k)!.

If X is a finite set with cardinality |X | = n, then we say X is an n-set. If S ⊆ X and
|S|= k, then we say S is a k-subset of X . The number of k-subsets of an n-set X is denoted(n

k

)
. The symbol

(n
k

)
is called the binomial coefficient and is pronounced n choose k because

it is the number of different ways to choose k objects from a set of n objects.
As we saw above, the number of different k-permutations of Nn is equal to n!/(n−k)!.

But a k-permutation of Nn can be viewed as a two step process. The first step is choosing
a k-subset, which can be done in

(n
k

)
different ways. Then the elements of the k-set are

permuted, which can be done in k! ways. Viewing the number of k-permutations of Nn in
these two different ways, we see that n!/(n− k)! is equal to

(n
k

)
(k!). This leads to Part (3)

of the next lemma.

LEMMA 1.1.4. The following are true.

(1) If n < 0 or k > n, then
(n

k

)
= 0.

(2) If n≥ 0, then
(n

0

)
=
(n

n

)
= 1.

(3) If 0≤ k ≤ n, then
(

n
k

)
=

n!
k!(n− k)!

.

(4) (Pascal’s Identity) If 0 < k < n, then
(n

k

)
=
(n−1

k−1

)
+
(n−1

k

)
.

PROOF. Parts (1) and (2) follow straight from the definition of binomial coefficient.
Part (3) follows from the paragraph above. Part (4) follows directly from the formula in
(3) and is left as an exercise for the reader. �
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1.5. Binary operations. Let X be a nonempty set. A binary operation on X is a
function X ×X → X . If ∗ is a binary operation on X , the image of an ordered pair (x,y) is
denoted x∗ y. The binary operation is said to be associative if (x∗ y)∗ z = x∗ (y∗ z) for all
x,y,z ∈ X . If e is a special element in X such that x∗e = e∗x = x for all x ∈ X , then we say
e is an identity element for ∗. If x∗ y = y∗ x for all x,y ∈ X , then we say ∗ is commutative.
If (x,y) 7→ x · y is another binary operation on X such that x · (y ∗ z) = (x · y) ∗ (x · z) and
(x∗ y) · z = (x · z)∗ (y · z) for all x,y,z ∈ X , then we say · distributes over ∗.

EXAMPLE 1.1.5. Here are some common examples of binary operations on sets.
(1) Addition of numbers is a binary operation on the set of real numbers R. Addi-

tion is associative, commutative, and 0 is the identity element. Multiplication of
numbers is a binary operation on the set of real numbers R. Multiplication is as-
sociative, commutative, and 1 is the identity element. Multiplication distributes
over addition.

(2) Let U be a nonempty set and X = 2U . If A and B are in X , then so are A∪B, A∩B,
and A−B. In other words, union, intersection, and set difference all define binary
operations on X . Union and intersection are both associative and commutative.
The distributive laws for union and intersection are in Exercise 1.1.6.

(3) Let X be a nonempty set and Map(X) the set of all functions mapping X to X . If
f ,g∈Map(X), then so is the composite function f g. Composition of functions is
a binary operation on Map(X) which is associative. If |X |> 1, then composition
of functions in Map(X) is noncommutative. The identity map 1X is the identity
element.

(4) Let R3 = {(x1,x2,x3) | x1,x2,x3 ∈ R} be the set of all ordered 3-tuples over R.
The cross product of the vector x = (x1,x2,x3) and the vector y = (y1,y2,y3)
is the vector x× y = (x2y3 − x3y2,x3y1 − x1y3,x1y2 − x2y1). Therefore, cross
product is a binary operation on R3. This binary operation is not associative and
not commutative.

1.6. Exercises.

EXERCISE 1.1.6. (Distributive Laws for Intersection and Union) Let {Xi | i ∈ I} be a
family of sets indexed by I and let Y be any set. Prove:

(1) Y ∩
(⋃

i∈I Xi
)
=
⋃

i∈I(Y ∩Xi)

(2) Y ∪
(⋂

i∈I Xi
)
=
⋂

i∈I(Y ∪Xi)

EXERCISE 1.1.7. (DeMorgan’s Laws) Let {Xi | i ∈ I} be a family of sets indexed by I
and suppose U is an arbitrary set. Prove:

(1) U−
(⋃

i∈I Xi
)
=
⋂

i∈I(U−Xi)

(2) U−
(⋂

i∈I Xi
)
=
⋃

i∈I(U−Xi)

EXERCISE 1.1.8. Finish the proof of Proposition 1.1.1.

EXERCISE 1.1.9. Let f : X → Y and g : Y → Z. Prove:
(1) If g f is onto, then g is onto.
(2) If g f is one-to-one, then f is one-to-one.
(3) If f is onto and g is onto, then g f is onto.
(4) If f is one-to-one and g is one-to-one, then g f is one-to-one.

EXERCISE 1.1.10. Recall that the set of natural numbers is N = {1,2, . . .} and if
n ∈ N, then Nn = {1,2, . . . ,n}. Prove:
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(1) If f : Nn→ Nn is one-to-one, then f is onto.
(2) If f : Nn→ Nn is onto, then f is one-to-one.

EXERCISE 1.1.11. (The Pigeonhole Principle) Let f : Nm→ Nn. Prove:
(1) If m > n, then f is not one-to-one.
(2) If m < n, then f is not onto.

EXERCISE 1.1.12. Let X and Y be finite sets. Show that |X×Y |= |X ||Y |.

EXERCISE 1.1.13. (Universal Mapping Property) Let f : X −→ Y be a function. Let
∼ be an equivalence relation on X , and η : X → X/∼ the natural map. Show that if f has
the property that a ∼ b implies f (a) = f (b) for all a,b ∈ X , then there exists a function
f̄ : X/∼→ Y such that f = f̄ η . Hence the diagram

X
f //

η

��

Y

X/∼
∃ f̄

==

commutes. This shows that if f is constant on equivalence classes, then f factors through
the natural map η .

EXERCISE 1.1.14. Let f : X −→ Y be a function. Define a relation ≈ on X by the
rule: x≈ y if and only if f (x) = f (y). Prove:

(1) ≈ is an equivalence relation on X .
(2) There exists a function f̄ : X/≈→Y such that f factors through the natural map

η : X → X/≈. That is, f = f̄ η .
(3) f̄ is one-to-one.
(4) f̄ is a one-to-one correspondence if and only if f is onto.

EXERCISE 1.1.15. Let X be an infinite set. Prove that X contains a subset that is
equivalent to N.

EXERCISE 1.1.16. Let X be a set. Prove that X is infinite if and only if there exists a
one-to-one function f : X → X which is not onto.

EXERCISE 1.1.17. If x ∈ R, the floor of x, written bxc, is the maximum of the set
{k ∈ Z | k ≤ x}. The ceiling of x, written dxe, is the minimum of the set {k ∈ Z | k ≥ x}.
Let f : Nm→ Nn. Prove:

(1) There exists a ∈ Nn such that the cardinality of the set f−1(a) is greater than or
equal to dm/ne.

(2) There exists b ∈ Nn such that the cardinality of the set f−1(b) is less than or
equal to bm/nc.

EXERCISE 1.1.18. Prove the Binomial Theorem:

(x+ y)n =
n

∑
i=0

(
n
i

)
xiyn−i

where x and y are indeterminates and n≥ 0.

EXERCISE 1.1.19. Let X be a finite set. Use the Binomial Theorem to prove that
|2X |= 2|X |.
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2. Background Material from Number Theory

The basic results from Elementary Number Theory that will be required later in the
text are included here. The set of integers is Z = {. . . ,−2,−1,0,1,2, . . .}. We assume
the reader is familiar with its partial ordering, and the binary operations of addition and
multiplication. No attempt is made to construct the integers from from first principles. The
set of natural numbers is N= {1,2,3, . . .}. The Well Ordering Principle is assumed as an
axiom.

AXIOM 1.2.1. (The Well Ordering Principle) If S is a nonempty subset of Z and S has
a lower bound, then S contains a least element.

PROPOSITION 1.2.2. (Mathematical Induction) Let S be a subset of N such that 1∈ S.
Assume S satisfies one of the following.

(1) For each n ∈ N, if n ∈ S, then n+1 ∈ S.
(2) For each n ∈ N, if {1, . . . ,n} ⊆ S, then n+1 ∈ S.

Then S = N.

PROOF. Assume S ⊆ N, 1 ∈ S, and S satisfies (1) or (2). Let C = N− S. For contra-
diction’s sake assume C 6= /0. By Axiom 1.2.1, C has a least element, say `. Since 1 ∈ S,
we know ` > 1. Therefore, `−1 ∈ S and ` 6∈ S, which contradicts (1). Since ` is the least
element of C, {1, . . . , `−1} ⊆ S and ` 6∈ S, which contradicts (2). We conclude that C = /0,
hence S = N. �

PROPOSITION 1.2.3. (The Division Algorithm) If a,b ∈ Z and a 6= 0, then there exist
unique integers q,r ∈ Z such that 0≤ r < |a| and b = aq+ r.

PROOF. First we prove the existence claim. Let S = {b−ax | x ∈ Z and b−ax≥ 0}.
If x > |b|, then it follows that b+ |a|x ≥ 0. Therefore, either b+ ax or b− ax is in S. By
Axiom 1.2.1, S has a least element, say r = b− aq, for some q ∈ Z. For contradiction’s
sake, assume r≥ |a|. Then 0≤ r−|a|= b−aq−|a|= b−a(q±1). This implies r−|a| ∈ S,
contradicting the minimal choice of r.

To prove the uniqueness claim, suppose b = aq+ r = aq1 + r1 and 0 ≤ r ≤ r1 < |a|.
Then |r1− r|= |a||q−q1|. Since 0≤ r1− r < |a|, this implies q−q1 = 0. Hence r1− r =
0. �

Let a,b ∈ Z. We say a divides b, and write a | b, in case there exists q ∈ Z such that
b = aq. In this case, a is called a divisor of b, and b is called a multiple of a.

PROPOSITION 1.2.4. Let {a1, . . . ,an} be a set of integers and assume at least one of
the ai is nonzero. There exists a unique positive integer d such that

(1) d | ai for all 1≤ i≤ n, and
(2) if e | ai for all 1≤ i≤ n, then e | d.

We call d the greatest common divisor of the set, and write d = gcd(a1, . . . ,an).

PROOF. Let S be the set of all positive linear combinations of the ai

S = {x1a1 + · · ·+ xnan | x1, . . . ,xn ∈ Z, x1a1 + · · ·+ xnan > 0}.
The reader should verify that S 6= /0. By Axiom 1.2.1, there exists a least element of S which
we can write as d = k1a1 + · · ·+ knan for some integers k1, . . . ,kn. Fix one i and apply the
Division Algorithm to write ai = dq+r where 0≤ r < d. Solve ai =(k1a1+ · · ·+knan)q+r
for r to see that

r = ai− (k1a1 + · · ·+ knan)q
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is a linear combination of a1, . . . ,an. Because r < d, we conclude that r is not in S. There-
fore r = 0. This proves Part (1). The reader should verify Part (2) and the claim that d is
unique. �

We say the set of integers {a1, . . . ,an} is relatively prime in case gcd(a1, . . . ,an) = 1.
An integer π ∈Z is called a prime in case π > 1 and the only divisors of π are−π,−1,1,π .

LEMMA 1.2.5. Let a, b and c be integers. Assume a 6= 0 or b 6= 0.

(1) (Bézout’s Identity) If d = gcd(a,b), then there exist integers u and v such that
d = au+bv.

(2) (Euclid’s Lemma) If gcd(a,b) = 1 and a | bc, then a | c.
(3) If there exist integers u and v such that 1 = au+bv, then gcd(a,b) = 1.

PROOF. (1): This is immediate from the proof of Proposition 1.2.4.
(2): Assume gcd(a,b) = 1. By Part (1) there exist integers u and v such that 1 =

au+bv. Then c = acu+bcv. Since a divides the right hand side, a divides c.
(3): This is immediate from the proof of Proposition 1.2.4. �

LEMMA 1.2.6. Let π be a prime number. Let a and a1, . . . ,an be integers.

(1) If π | a, then gcd(π,a) = π , otherwise gcd(π,a) = 1.
(2) If π | a1a2 · · ·an, then π | ai for some i.

PROOF. (1): The proof is an exercise for the reader.
(2): For sake of contradiction, assume the statement is false. Let π and a1, . . . ,an be

a counterexample such that n is minimal. Then π divides the product a1 · · ·an and by (1)
gcd(π,ai) = 1 for each i. Again by (1), n > 1. By Lemma 1.2.5 applied to a1(a2 · · ·an),
π | a2 · · ·an. By the minimal choice of n, π divides one of a2, . . . ,an. This is a contradiction.

�

PROPOSITION 1.2.7. (The Fundamental Theorem of Arithmetic) Let n be a positive
integer which is greater than 1. There exist unique positive integers k, e1, . . . ,ek and unique
prime numbers p1, . . . , pk such that n = pe1

1 · · · p
ek
k .

PROOF. First we prove the existence claim. If n is a prime, then set k = 1, p1 = n,
e1 = 1, and we are done. In particular, the result is true for n = 2. The proof is by induction
on n. Assume that every number in the set {2,3, . . . ,n−1} has a representation as a product
of primes. Assume n = xy is composite and that 2 ≤ x ≤ y ≤ n− 1. By the induction
hypothesis, both x and y have representations as products of primes. Then n = xy also has
such a representation. By Proposition 1.2.2, we are done.

For the uniqueness claim, assume

(2.1) n = pe1
1 · · · p

ek
k = q f1

1 · · ·q
f`
`

are two representations of n as products of primes. Let M = ∑
k
i=1 ei and N = ∑

`
i=1 fi.

Without loss of generality, assume M ≤ N. The proof is by induction on M. If M = 1,
then n = p1 is prime. This implies ` = 1 = f1 and q1 = p1. Assume inductively that
M > 1 and that the uniqueness claim is true for any product involving M−1 factors. Using
Lemma 1.2.6 we see that p1 divides one of the qi. Since qi is prime, this implies p1 is
equal to qi. Canceling p1 and qi from both sides of Eq.(2.1) results in a product of primes
with M− 1 factors. By the induction hypothesis, we conclude that k = ` and the sets
{pe1

1 , . . . , pek
k } and {q f1

1 , . . . ,q fk
k } are equal. �
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DEFINITION 1.2.8. Let m be a positive integer. Define a binary relation on Z by the
following rule. Given x,y ∈ Z, we say x is congruent to y modulo m, and write x ≡ y
(mod m), in case m | (x− y). By Proposition 1.2.9 this defines an equivalence relation on
Z. The set of all equivalence classes of integers modulo m is denoted Z/(m).

PROPOSITION 1.2.9. Let m be a positive integer.
(1) Congruence modulo m is an equivalence relation on Z.
(2) {0,1, . . . ,m− 1} is a full set of representatives for the equivalence classes. In

other words, every integer is congruent to one of 0,1, . . . ,m−1 and no two dis-
tinct elements of {0,1, . . . ,m−1} are congruent to each other.

(3) If u≡ v (mod m) and x≡ y (mod m), then u+ x≡ v+ y (mod m) and ux≡ vy
(mod m).

(4) If gcd(a,m) = 1 and ax≡ ay (mod m), then x≡ y (mod m).

PROOF. (1): Since m | 0, x≡ x (mod m) for every x ∈ Z. If x− y = mq, then y− x =
m(−q). Therefore, x≡ y (mod m) implies y≡ x (mod m). If x− y = mq and y− z = mr,
then adding yields x−z = m(q+r). Therefore, x≡ y (mod m) and y≡ z (mod m) implies
x≡ z (mod m).

(2): By Proposition 1.2.3, if x ∈ Z, then there exist unique integers q and r such that
x = mq+ r and 0 ≤ r < m. This implies x ≡ r (mod m), and Z/(m) ⊆ {0,1, . . . ,m− 1}.
Equality of the two sets follows from the uniqueness of q and r.

(3): Write u− v = mq and x− y = mr for integers q,r. Adding, we get u− v+ x− y =
(u+ x)− (v+ y) = m(q+ r), hence u+ x≡ v+ y (mod m). Multiplying the first equation
by x and the second by v we have ux− vx = mxq and xv− yv = mvr. Adding, we get
ux− vx+ xv− yv = ux− yv = m(xq+ vr), hence ux≡ vy (mod m).

(4): By Lemma 1.2.5 we write 1 = au+mv for integers u,v. We are given that a(x−
y) = mq for some integer q. Multiply by u to get au(x− y) = muq. Substitute au = 1−mv
and rearrange to get x− y = mv(x− y)+muq. Hence x≡ y (mod m). �

If a,b ∈ Z−{0}, then |ab| ∈ S is a common multiple of both a and b. Therefore, the
set S = {x ∈ Z | a | x, b | x and x > 0} is nonempty. By Axiom 1.2.1, S has a least element,
which is called the least common multiple of a and b, and is denoted lcm(a,b).

PROPOSITION 1.2.10. Suppose a > 0 and b > 0. Then the following are true.
(1) If c ∈ Z and a | c and b | c, then lcm(a,b) | c.
(2) gcd(a,b) lcm(a,b) = ab.

PROOF. (1): Let lcm(a,b) = L. By Proposition 1.2.3, c = Lq+ r where 0 ≤ r < L.
Since a | c and a | L, we see that a divides r = c−Lq. Likewise, b | c and b | L implies that
b divides r. So r is a common multiple of a and b and r < L. By the definition of L, we
conclude that r = 0.

(2): Write d = gcd(a,b). Then (ab)/d = a(b/d) = (a/d)b is a common multiple of a
and b. By (1), L | (ab)/d, or equivalently, dL | ab. By Lemma 1.2.5, d = ax+by for some
integers x,y. Multiply by L to get dL = aLx+bLy. Since L is a common multiple of a and
b we see that ab divides aLx+ bLy = dL. We have shown that dL | ab and ab | dL. Both
numbers are positive, so we have equality. �

THEOREM 1.2.11. (Chinese Remainder Theorem) Let m and n be relatively prime
positive integers. Then the function

Z/mn
ψ−→ Z/m×Z/n

defined by ψ([x]) = ([x], [x]) is a one-to-one correspondence.
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PROOF. We know that ψ is well defined, by Exercise 1.2.19. By Exercise 1.1.12 and
Proposition 1.2.9, |Z/m×Z/n|= |Z/mn|= mn. By Exercise 1.1.10, it is enough to show
ψ is one-to-one. Suppose ψ([x]) =ψ([y]). Then x≡ y (mod m) and x∼= y (mod n), which
implies x−y is a common multiple of m and n. By Proposition 1.2.10, x−y is divisible by
lcm(m,n). But lcm(m,n) = mn since gcd(a,b) = 1. This implies x≡ y (mod mn), and we
have shown that ψ is one-to-one. �

Let n≥ 1. By Exercise 1.2.20, if x≡ y (mod n), then gcd(x,n) = gcd(y,n). This says
the function Z→ Z defined by x 7→ gcd(x,n) is constant on congruence classes. The set
Un = {[k] ∈ Z/n | gcd(k,n) = 1} is called the set of units modulo n. The Euler φ -function
is defined to be the number of units modulo n. That is, φ(n) = |Un|. In the terminology of
Definition 2.1.1, Lemma 1.2.12 shows that Un is an abelian group of order φ(n).

LEMMA 1.2.12. Let n≥ 1.
(1) If [a] ∈Un, then there exists [b] ∈Un such that [a][b] = [1].
(2) If a,b ∈ Z and ab≡ 1 (mod n), then [a] ∈Un and [b] ∈Un.

PROOF. (1): If [a] ∈Un, then gcd(a,n) = 1. By Lemma 1.2.5, there exist integers b,c
such that ab+nv = 1. Therefore, ab≡ 1 (mod n).

(2): If ab ≡ 1 (mod n), then ab = nq + 1 for some integer q. By Lemma 1.2.5,
gcd(a,n) = 1 and gcd(b,n) = 1. �

PROPOSITION 1.2.13. If p is a prime and k ≥ 1, then φ(pk) = pk− pk−1 = pk(1−
1/p).

PROOF. The multiples of p in the set {1,2, . . . , pk} are p,2p, . . . , pk−1 p. Since there
are pk−1 multiples of p, there are pk− pk−1 numbers that are relatively prime to p. �

PROPOSITION 1.2.14. Let m and n be relatively prime positive integers. Then φ(mn)=
φ(m)φ(n).

PROOF. By Theorem 1.2.11, the function ψ :Z/mn→Z/m×Z/n defined by ψ([x])=
([x], [x]) is a one-to-one correspondence. We show that the restriction of ψ to Umn induces
a one-to-one correspondence ρ : Umn→Um×Un.

If gcd(x,mn) = 1, then by Lemma 1.2.5 there exist integers u,v such that 1= xu+mnv,
hence gcd(x,m) = 1 and gcd(x,n) = 1. This proves that ρ is well defined. Since ψ is one-
to-one, so is ρ . To finish the proof we show that ρ is onto. Let ([a], [b]) ∈ Um ×Un.
By Lemma 1.2.12 there exists ([x], [y]) ∈Um×Un such that ax ≡ 1 (mod m) and by ≡ 1
(mod n). Since ψ is onto, there exists [k] ∈ Z/mn such that k ≡ a (mod m) and k ≡ b
(mod n). Likewise, there exists [`] ∈ Z/mn such that ` ≡ x (mod m) and ` ≡ y (mod n).
By Proposition 1.2.9, k` ≡ ax ≡ 1 (mod m) and k` ≡ by ≡ 1 (mod n). Since ψ is one-
to-one, k` ≡ 1 (mod mn). By Lemma 1.2.12 this implies [k] ∈ Umn, which proves ρ is
onto. �

DEFINITION 1.2.15. Let n ≥ 1 be an integer. The notation ∑d|n or ∏d|n denotes the
sum or product over the set of all positive numbers d such that d | n. An integer n is said
to be square free if for every prime p, n is not a multiple of p2. The Möbius function is
defined by

µ(n) =


1 if n = 1,
0 if n is not square free,
(−1)r if n factors into r distinct primes.
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THEOREM 1.2.16. (Möbius Inversion Formula) Let f be a function defined on N and
define another function on N by

F(n) = ∑
d|n

f (d).

Then
f (n) = ∑

d|n
µ(d)F

(n
d

)
.

PROOF. The proof can be found in any elementary number theory book, and is left to
the reader. �

2.1. Exercises.

EXERCISE 1.2.17. Let a and b be integers that are not both zero and let d be the
greatest common divisor of a and b. Consider the linear diophantine equation: d = ax+by.
Bézout’s Identity says that there exist integers u and v such that d = au+bv.

(1) Show that the matrix
(

u v
u−b/d v+a/d

)
is invertible. Find its inverse.

(2) If c is an integer, show that the linear diophantine equation c = ax+ by has a
solution if and only if d | c.

(3) Assume d | c. Prove that the general solution to the linear diophantine equation
c = ax + by is x = x0 − tb/d, y = y0 + ta/d, where t ∈ Z and (x0,y0) is any
particular solution.

EXERCISE 1.2.18. This exercise is based on Problem 1.3 of Adrian Wadsworth’s book
[15]. Let a and b be relatively prime positive integers and consider the set

L = {ax+by | x and y are nonnegative integers}.
The problem is to find the integer ` satisfying these two properties: (1) `−1 6∈ L and (2) if
n is an integer and n≥ `, then n ∈ L.

You are encouraged to solve this interesting problem yourself. Alternatively, you may
follow the six steps below which outline a solution.

(1) Prove that if a = 1 or b = 1, then L contains the set of all nonnegative integers.
(2) Prove that the integers a, b, ab, (a−1)(b−1) are in L.
(3) Prove that ab− a− b = (a− 1)(b− 1)− 1 is not in L. Hint: Show that the line

ab−a−b = ax+by contains the two lattice points (−1,a−1) and (b−1,−a).
(4) Prove that if n≥ ab, then n is in L.
(5) Assume a> 1, b> 1, and let n be an integer satisfying ab−a−b< n< ab. Prove

that n is in L. Hints: For sake of contradiction assume ab−a−b < n < ab and n
is not in L. Show that there exists an ordered pair (x1,y1) such that n = ax1+by1,
(x1,y1) is in Quadrant IV and (x1−b,y1+a) is in Quadrant II. Show that (x1,y1)
is not in the parallelogram with vertices (b,0), (0,a), (−1,a− 1), (b− 1,−1).
Show that this is impossible.

(6) Let `= (a−1)(b−1). Prove that `−1 6∈ L and if `≤ n, then n is in L.

EXERCISE 1.2.19. Let m,n ∈ N. Consider the diagram

Z
ηn

""
ηm

��
Z/m

∃θ
// Z/n
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where ηm and ηn are the natural maps. Show that there exists a function θ making the
diagram commute if and only if n divides m.

EXERCISE 1.2.20. Let n≥ 1. Show that the function Z→ Z defined by x 7→ gcd(x,n)
is constant on congruence classes. In other words, show that x ≡ y (mod n) implies
gcd(x,n) = gcd(y,n).

EXERCISE 1.2.21. Let p be a prime.
(1) If 1≤ k ≤ p−1, show that p divides

(p
k

)
.

(2) Show that (a+ b)p ≡ ap + bp (mod p) for any integers a and b. (Hint: Exer-
cise 1.1.18.)

(3) Use (2) and Proposition 1.2.2 to prove that (a+ b)pn ≡ apn
+ bpn

(mod p) for
any integers a and b and for all n≥ 0.

See Exercise 3.6.31 for a generalization of this result.

EXERCISE 1.2.22. Show that the Möbius function µ is multiplicative in the sense that
if gcd(m,n) = 1, then µ(mn) = µ(m)µ(n).

EXERCISE 1.2.23. Let n ≥ 0 and X = ∏
n
i=1Z≥0 = {(x1, . . . ,xn) | xi ∈ Z≥0}, where

Z≥0 = {x∈Z | x≥ 0} is the set of nonnegative integers. The lexicographical ordering (also
called alphabetical or dictionary ordering) on X is defined recursively on n. For n = 1, the
usual ordering on Z is applied. If n > 1, then (v1,v2, . . . ,vn) < (w1,w2, . . . ,wn) if and
only if: (v1,v2, . . . ,vn−1) < (w1,w2, . . . ,wn−1) or (v1,v2, . . . ,vn−1) = (w1,w2, . . . ,wn−1)
and vn < wn. If α,β ∈ X , then we write α ≤ β in case α < β or α = β .

(1) Show that ≤ is a partial order on X . Show that X is a chain.
(2) If α ∈ X , the segment of X determined by α , written (−∞,α), is {x ∈ X | x < α}.

For which α ∈ X is
(a) (−∞,α) = /0?
(b) (−∞,α) finite?
(c) (−∞,α) infinite?

(3) Show that X with the lexicographical ordering ≤ is a well ordered set. That is,
show that if S⊆ X and S 6= /0, then S has a least element.

EXERCISE 1.2.24. Let X = {x0,x1, . . . ,xn−1} be a finite set and Z≥0 the set of nonneg-
ative integers. If U ⊆ X , the so-called indicator function on U , denoted χU : U → {0,1},
is defined by

χU (x) =

{
1 if x ∈U
0 if x 6∈U .

Define f : 2X → Z≥0 by f (U) = ∑
n−1
i=0 χU (xi)2i. Prove:

(1) f is a one-to-one correspondence between 2X and {0,1, . . . ,2n−1}.
(2) |2X |= 2|X |.
(3) The ordering on 2X induced by the function f makes 2X into a well ordered set.

3. The Well Ordering Principle and Some of Its Equivalents

Most readers will prefer to make a quick scan of this section on first reading. It is
included for completeness’ sake as well as a tribute to the influence of [9, Chapter 0, Theo-
rem 25] on the author’s fondness for the subject. In this book, the only direct application of
Zorn’s Lemma, Proposition 1.3.3, is in the proof that a commutative ring contains a maxi-
mal ideal (see Proposition 3.2.26). As a historical note, Zorn’s Lemma, which is equivalent
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to the Well Ordering Principle, has been called Zorn’s Lemma since M. Zorn first used it
to prove that a commutative ring contains a maximal ideal [17]. The Axiom of Choice,
Proposition 1.3.5, guarantees that a product of nonempty sets is nonempty, but throughout
this book we limit our applications to products of at most a countably infinite number of
sets. Aside from the application to show the existence of maximal ideals, the other appli-
cations of the Well Ordering Principle or one of its equivalents appear in several exercises
that are inserted to challenge the reader.

Although we do not prove it here, the Well Ordering Principle, the Principle of Trans-
finite Induction, Zorn’s Lemma, and the Axiom of Choice are logically equivalent to each
other.

AXIOM 1.3.1. (The Well Ordering Principle) If X is a nonempty set, then there exists
a partial order ≤ on X such that X is a well ordered set. That is, every nonempty subset of
X has a least element.

Let X be a set and ≤ a partial order on X . If x,y ∈ X , then we write x < y in case x≤ y
and x 6= y. Suppose C ⊆ X is a chain in X and α ∈C. The segment of C determined by α ,
written (−∞,α), is the set of all elements x ∈C such that x < α . A subset W ⊆C is called
an inductive subset of C provided that for any α ∈C, if (−∞,α)⊆W , then α ∈W .

PROPOSITION 1.3.2. (The Transfinite Induction Principle) Suppose X is a well or-
dered set and W is an inductive subset of X. Then W = X.

PROOF. Suppose X −W is nonempty. Let α be the least element of X −W . Then
W contains the segment (−∞,α). Since W is inductive, it follows that α ∈W , which is a
contradiction. �

PROPOSITION 1.3.3. (Zorn’s Lemma) Let X be a partially ordered set. If every chain
in X has an upper bound, then X contains a maximal element.

PROOF. By Axiom 1.3.1, there exists a well ordered set W and a one-to-one corre-
spondence ω : W → X . Using Proposition 1.3.2, define a sequence {C(w) |w∈W} of well
ordered subsets of X . If w0 is the least element of W , define C(w0) = {ω(w0)}. Induc-
tively assume α ∈W −{w0} and that for all w < α , C(w) is defined and the following are
satisfied

(1) if w0 ≤ w1 ≤ w2 < α , then C(w1)⊆C(w2),
(2) C(w) is a well ordered chain in X , and
(3) C(w)⊆ {ω(i) | w0 ≤ i≤ w}.

Let x = ω(α) and
F =

⋃
w<α

C(w).

The reader should verify that F is a well ordered chain in X and F ⊆ {ω(i) | w0 ≤ i < α}.
Define C(α) by the rule

C(α) =

{
F ∪{x} if x is an upper bound for F
F otherwise.

The reader should verify that C(α) satisfies
(4) if w0 ≤ w1 ≤ w2 ≤ α , then C(w1)⊆C(w2),
(5) C(α) is a well ordered chain in X , and
(6) C(α)⊆ {ω(i) | w0 ≤ i≤ α}.
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By Proposition 1.3.2, the sequence {C(w) | w ∈W} is defined and the properties (4), (5)
and (6) are satisfied for all α ∈W . Now set

G =
⋃

w<α

C(w).

The reader should verify that G is a well ordered chain in X . By hypothesis, G has an upper
bound, say u. We show that u is a maximal element of X . For contradiction’s sake, assume
X has no maximal element. Then we can choose the upper bound u to be an element of
X −G. For some w1 ∈W we have u = ω(w1). For all w < w1, u is an upper bound for
C(w). By the definition of C(w1), we have u ∈ C(w1). This is a contradiction, because
C(w1)⊆ G. �

DEFINITION 1.3.4. Let I be a set and {Xi | i ∈ I} a family of sets indexed by I. The
product is

∏
i∈I

Xi =
{

f : I→
⋃

Xi | f (i) ∈ Xi
}
.

An element f of the product is called a choice function, because f chooses one element
from each member of the family of sets.

PROPOSITION 1.3.5. (The Axiom of Choice) Let I be a set and {Xi | i ∈ I} a family of
nonempty sets indexed by I. Then the product ∏i∈I Xi is nonempty. That is, there exists a
function f on I such that f (i) ∈ Xi for each i ∈ I.

PROOF. By Axiom 1.3.1, we can assume
⋃

i∈I Xi is well ordered. We can view Xi as a
subset of

⋃
i∈I Xi. For each i ∈ I, let xi be the least element of Xi. The set of ordered pairs

(i,xi) defines the choice function. �

3.1. Exercises.

EXERCISE 1.3.6. Let I be a set and {Xi | i ∈ I} a family of nonempty sets indexed
by I. For each k ∈ I define πk : ∏i∈I Xi → Xk by the rule πk( f ) = f (k). We call πk the
projection onto coordinate k. Show that πk is onto.

EXERCISE 1.3.7. Let X be a set that is partially ordered by ≤.
(1) Prove that X satisfies the descending chain condition (DCC) if and only if X

satisfies the minimum condition.
(2) Prove that X satisfies the ascending chain condition (ACC) if and only if X sat-

isfies the maximum condition.

EXERCISE 1.3.8. Use the Axiom of Choice to prove: A function f : X → Y is onto if
and only if there exists a function g : Y → X such that f g = 1Y . In this case g is called a
right inverse of f .

4. Background Material from Calculus

As in Section 1.1.1, the set of real numbers is denoted R.

THEOREM 1.4.1. If a is a positive real number, then there exists a real number x such
that x2 = a. In other words, a positive real number has a square root.

PROOF. See, for instance, [13, Theorem 7.8, p. 124]. �

THEOREM 1.4.2. If n is a positive odd integer and a0,a1, . . . ,an−1 are real numbers,
then there exists a real number x such that xn + an−1xn−1 + · · ·+ a1x+ a0 = 0. In other
words, a polynomial over R of odd degree has a root.
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PROOF. See, for instance, [13, Theorem 7.9, p. 125]. �

For properties of the complex numbers, the reader is referred, for example, to [13,
Chapter 25]. The set of complex numbers, denoted C, is identified with R2 and is a two-
dimensional real vector space. A complex number is an ordered pair (a,b). A basis for
C is (1,0), also denoted 1, and (0,1), also denoted i. In terms of this basis, the complex
number (a,b) has representation a+bi. Addition of complex numbers is coordinate-wise:
(a+bi)+(c+di) = (a+ c)+(b+d)i. The additive identity is 0 = (0,0) and the additive
inverse of a+ bi is −a− bi. Multiplication distributes over addition, and i2 = −1, hence
(a+ bi)(c+ di) = ac+ (ad + bc)i+ bdi2 = (ac− bd) + (ad + bc)i. The multiplicative
identity is 1 = (1,0) = 1+0i. If z = a+bi, then the absolute value of z is |z|=

√
a2 +b2,

which is equal to the length of the vector (a,b). Let r = |a+bi|. If θ is the angle determined
by the vectors z = a+ bi and 1 = (1,0), then the representation of z in polar coordinates
is z = a+ bi = r cosθ + ir sinθ . The complex conjugate of z = a+ bi is χ(z) = a− bi.
Then zχ(z) = a2 +b2 = |z|2 is a nonnegative real number. This implies if z 6= 0, then z is
invertible and

z−1 =
a−bi

a2 +b2 .

The power series for the functions ex, cosx, and sinx are

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+

x8

8!
+ . . .

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
+ . . .

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . .

These power series converge for every real number x. We define eix to be the substitution
of ix into the power series. Using the identities i2 = −1, i3 = −i, i4 = 1, and i5 = i, we
have

eix = 1+ ix+
i2x2

2!
+

i3x3

3!
+

i4x4

4!
+

i5x5

5!
+

i6x6

6!
+

i7x7

7!
+

i8x8

8!
+ . . .

= 1+ ix− x2

2!
− ix3

3!
+

x4

4!
+

ix5

5!
− x6

6!
− ix7

7!
+

x8

8!
+ . . .

=

(
1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
+ . . .

)
+ i
(

x− x3

3!
+

x5

5!
− x7

7!
+ . . .

)
= cosx+ isinx.

Therefore, if z = a+ bi has polar representation r cosθ + ir sinθ , then the representation
for z in exponential form is a+bi = reiθ .

PROPOSITION 1.4.3. In exponential notation, arithmetic in C satisfies the following
formulas.

(1) (Additive inverse) −reiθ = rei(θ+π).
(2) (Multiplication) reiθ seiφ = (rs)ei(θ+φ).
(3) (Complex conjugation) χ

(
reiθ
)
= re−iθ .

(4) (Multiplicative inverse)
(
reiθ
)−1

= r−1e−iθ .
(5) (Square root) If r ≥ 0, then z1/2 =

√
reiθ =

√
reiθ/2.

(6) (nth root) If r ≥ 0, then z1/n =
(
reiθ
)1/n

= r1/neiθ/n.
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PROOF. The proof is left to the reader. �



CHAPTER 2

Groups

Groups arise in all areas of Mathematics. All of the other algebraic structures that
arise are also based on groups. A module is an abelian group, a ring is an additive abelian
group and the set of invertible elements of a ring is a group. For this reason the theorems
of this chapter are fundamental.

In a concrete sense, a group is a set of permutations of a set. Galois first emphasized
the importance of studying permutations of the roots of polynomials. Group Theory can
be viewed as an axiomatic abstraction of permutation groups.

1. First properties of groups

The notion of a binary operation on a set was introduced in Section 1.1.5. The main
ideas remain the same, but we recast them in light of the present context. Let G be a
nonempty set with a binary operation G×G→G. Usually the binary operation on a group
will be written multiplicatively or additively. In the multiplicative notation, an identity
element will usually be denoted e or 1 and the inverse of an element a will be written a−1.
If additive notation is used, an identity is usually denoted 0 and −a denotes the inverse of
a.

1.1. Definitions and Terminology.
DEFINITION 2.1.1. Let G be a nonempty set with a multiplicative binary operation. If

a(bc) = (ab)c for all a,b,c ∈ G, then the binary operation is said to be associative. In this
case, G is called a semigroup. If G is a semigroup and G contains an element e satisfying
ae = ea = a for all a ∈G, then e is said to be an identity element and G is called a monoid.
Let G be a monoid with identity element e. An element a ∈ G is said to be invertible if
there exists a−1 ∈ G such that aa−1 = a−1a = e. The element a−1 is called the inverse of
a. A monoid in which every element is invertible is called a group. In other words, a group
is a nonempty set G together with an associative binary operation such that an identity
element e exists in G, and every element of G is invertible. If xy = yx for all x,y ∈ G, then
the binary operation is said to be commutative. A commutative group is called an abelian
group.

If G has an additive binary operation, then the associative law is (a+b)+c = a+(b+
c) for all a,b,c ∈ G. The element 0 ∈ G is an identity element if a+ 0 = 0+ a = a for
all a ∈ G. The element a is invertible if there exists an inverse element −a ∈ G such that
a+(−a) = (−a)+a = 0. The commutative law is a+b = b+a for all a,b ∈G. As a rule,
additive notation is not used for nonabelian groups.

EXAMPLE 2.1.2. Let X be a nonempty set. A one-to-one correspondence σ : X → X
is also called a permutation of X . The set of all permutations of X is denoted Perm(X). If
σ and τ are permutations of X , then so is the composite function στ , by Proposition 1.1.1.
Therefore, Perm(X) is a group with identity element 1X . If |X | > 1, then Perm(X) is
nonabelian.

25
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EXAMPLE 2.1.3. Here are some examples of abelian groups.
(1) Under addition, Z is an abelian group with identity 0. The inverse of x is written
−x.

(2) Let n∈N. Proposition 1.2.9 shows that under addition, Z/(n) is an abelian group
with identity [0]. The inverse of [x] is [−x]. We have |Z/(n)|= n.

(3) Let n ∈ N. Lemma 1.2.12 shows that the set of units modulo n, Un, is a multi-
plicative abelian group. The identity element is [1] and |Un|= φ(n).

Let G be a multiplicative semigroup. The associative law on G says that (ab)c= a(bc).
In other words, a product of length three has a unique value regardless of how we associate
the multiplications into binary operations using parentheses. When writing a product abc
it is not necessary to use parentheses. The next lemma extends this result to products of
arbitrary finite length.

LEMMA 2.1.4. (General Associative Law) Let G be a semigroup, n≥ 1, and x1x2 · · ·xn
a product involving n elements of G. Then the product has a unique value regardless of
how we associate the multiplications into binary operations using parentheses.

PROOF. First we define a standard value for x1x2 · · ·xn by the recursive formula:

x1x2 · · ·xn =

{
x1 if n = 1
(x1x2 · · ·xn−1)xn if n > 1.

Now we show that any association of x1x2 · · ·xn will result in the value defined above.
The proof is by induction on n. If n ≤ 3, then this is true by the associative law on G.
Inductively assume n > 3 and that the result holds for any product of length less than n.
Let x1x2 · · ·xn be a product involving n elements. Assume the product is associated into
binary operations using parentheses. Then the last binary operation can be written as

(x1x2 · · ·xm)(xm+1 · · ·xn)

and by the induction hypothesis, the two products x1x2 · · ·xm and xm+1 · · ·xm have unique
values regardless of how they are associated. If m = n− 1, then we are done, by the
induction hypothesis. Assume 1 ≤ m < n− 1. Using the associative law on G and the
induction hypothesis, we get

(x1x2 · · ·xm)(xm+1 · · ·xn) = (x1x2 · · ·xm)((xm+1 · · ·xn−1)xn)

= ((x1x2 · · ·xm)(xm+1 · · ·xn−1)xn)

= (x1x2 · · ·xn−1)xn)

= x1x2 · · ·xn

which completes the proof. �

DEFINITION 2.1.5. Let G be a group, a ∈ G, and n a nonnegative integer.
(1) If G is a multiplicative group, then the nth power of a is defined recursively by

the formula:

an =

{
e if n = 0
aan−1 if n > 0.

We define a−n to be (a−1)n, which is equal to (an)−1.
(2) If A and B are nonempty subsets of G, then

AB = {xy | x ∈ A,y ∈ B}.
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(3) For an additive group G, the counterpart of the nth power is left multiplication of
a by n, which is defined recursively by:

na =

{
0 if n = 0
a+(n−1)a if n > 0.

and (−n)a is defined to be n(−a), which is equal to −(na).
(4) If A and B are nonempty subsets of the additive group G, then we define

A+B = {x+ y | x ∈ A,y ∈ B}.

PROPOSITION 2.1.6. Let G be a group and a,b,c elements of G.
(1) There exists a unique x in G such that ax = b.
(2) There exists a unique y in G such that ya = b.
(3) We have ab = ac if and only if b = c.
(4) We have ab = cb if and only if a = c.

Parts (1) and (2) are called the solvability properties, Parts (3) and (4) are called the
cancellation properties.

PROOF. (3): Assume we have ab = ac. Multiply both sides on the left by a−1 to get
a−1ab = a−1ac. Since a−1ab = eb = b and a−1ac = ec = c, we get b = c. Conversely,
multiplying both sides of b = c from the left with a yields ab = ac.

(1): Let x = a−1b. Multiply by a on the left to get ax = aa−1b= eb= b. If x′ is another
solution, then ax = ax′ and by Part (3) we have x = x′.

Parts (4) and (2) are proved in a similar manner. �

EXAMPLE 2.1.7. Let G be a group. Let a ∈G be a fixed element. Then “left multipli-
cation by a” defines a function λa : G→G, where λa(x) = ax. Part (1) of Proposition 2.1.6
says that λa is onto and Part (3) says that λa is one-to-one. Therefore, λa is a one-to-one
correspondence. Likewise, “right multiplication by a” defines a one-to-one correspon-
dence ρa : G→ G where ρa(x) = xa.

DEFINITION 2.1.8. If G is a group, then the order of G is the cardinality of the under-
lying set. The order of G is denoted [G : e] or |G| or o(G).

DEFINITION 2.1.9. Let G be a group and a∈G. The order of a, written |a|, is the least
positive integer m such that am = e. If no such integer exists, then we say a has infinite
order.

DEFINITION 2.1.10. Let G and G′ be groups. A function θ : G→ G′ is called an
isomorphism of groups, if θ is a one-to-one correspondence and θ(xy) = θ(x)θ(y) for all
x,y ∈ G. In this case, we say G and G′ are isomorphic and write G∼= G′. From an abstract
algebraic point of view, isomorphic groups are indistinguishable.

1.2. Examples of groups.

EXAMPLE 2.1.11. In this example we show that there is up to isomorphism only one
group of order two. By Example 2.1.3, a group of order two exists, namely the additive
group Z/2. Let G = {e,a} be an arbitrary group of order two, where e is the identity
element. By Example 2.1.7, left multiplication by a is a permutation of G. Since ae = a,
this implies aa = e. In other words, there is only one binary operation that makes {e,a}
into a group. If G′ = {e,b} is a group, then the function that maps e 7→ e, a 7→ b is an
isomorphism.
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EXAMPLE 2.1.12. We know from Example 2.1.3 that the additive group Z/3 is an
abelian group of order three. In this example we show that up to isomorphism there is only
one group of order three. Let G = {e,a,b} be an arbitrary group of order three, where e is
the identity element. By Example 2.1.7, λa and ρa are permutations of G. By cancellation,
ab = b leads to the contradiction a = e. Since ae = a, we conclude that ab = e and aa = b.
Similarly, ba = b is impossible, hence we conclude that ba = e. We have shown that
G = {e,a,a2} and a has order 3. Suppose G′ = {e,c,c2} is another group of order 3. Then
the assignments ai 7→ ci for i = 0,1,2 define an isomorphism.

EXAMPLE 2.1.13. If X = {x1, . . . ,xn} is a finite set, then a binary operation on X can
be represented as an n-by-n matrix with entries from X . Sometimes we call the matrix
the “multiplication table” or “addition table”. If the binary operation is ∗, then the entry
in row i and column j of the associated matrix is the product xi ∗ x j. For instance, the
multiplication and addition tables for Z/6 are:

∗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

If the binary operation ∗ on X is commutative, then the matrix is symmetric with respect to
the main diagonal. If X ,∗ is a group, then by Example 2.1.7, each row of the multiplication
table is a permutation of the top row and each column is a permutation of the leftmost
column. See Exercise 2.1.28 for more examples.

EXAMPLE 2.1.14. Let n≥ 1 and Nn = {1,2, . . . ,n}. The set of all permutations of Nn
is called the symmetric group on n letters and is denoted Sn. In Example 2.1.2 we saw that
composition of functions makes Sn = Perm(X) into a group. As in Section 1.1.3, the group
Sn has order n!. A permutation can be specified using an array of two rows. For example,

σ =

[
1 2 3 . . . n
a1 a2 a3 . . . an

]

represents the permutation σ(i) = ai. The so-called cycle notation is a very convenient
way to represent elements of Sn. Let {a1, . . . ,ak} ⊆ Nn. The k-cycle σ = (a1a2 . . .ak) is
the permutation of Nn defined by:

σ(x) =


x if x 6∈ {a1, . . . ,ak}
a1 if x = ak

ai+1 if x = ai and 1≤ i < k.

Notice that a k-cycle has order k in the group Sn. The identity element of Sn is usually de-
noted e. For example, (abc)(ab) = (ac) and (ab)(abc) = (bc). Therefore, Sn is nonabelian
if n > 2. The group table for S3 = {e,(abc),(acb),(ab),(ac),(bc)} is:
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∗ e (abc) (acb) (ab) (ac) (bc)
e e (abc) (acb) (ab) (ac) (bc)

(abc) (abc) (acb) (e) (ac) (bc) (ab)
(acb) (acb) (e) (abc) (bc) (ab) (ac)
(ab) (ab) (bc) (ac) (e) (acb) (abc)
(ac) (ac) (ab) (bc) (abc) (e) (acb)
(bc) (bc) (ac) (ab) (acb) (abc) (e)

EXAMPLE 2.1.15. Let T be a regular triangle with vertices labeled 1,2,3. A symmetry
of T is any transformation σ : T → T that preserves distances. Therefore, σ is a permu-
tation of the three vertices. Conversely, a permutation of {1,2,3} uniquely determines a
symmetry of T . The group of symmetries of T is therefore equal to S3.

EXAMPLE 2.1.16. Now let n > 2 and let Tn be a regular n-gon with vertices labeled
1,2, . . . ,n consecutively. A symmetry of Tn is any transformation σ : Tn→ Tn that preserves
distances. Therefore, σ is a permutation of the n vertices. If n > 3, a permutation of
{1,2, . . . ,n} does not necessarily determine a symmetry of Tn. When n > 3, the group of
symmetries of Tn is therefore a proper subgroup of Sn. The group of all symmetries of Tn
is called the dihedral group Dn. A rotation of Tn through an angle of 2π/n corresponds to
the permutation

R =

[
1 2 3 . . . n−1 n
2 3 4 . . . n 1

]
which in cycle notation is the n-cycle R = (12 . . .n). Therefore, Rk is a rotation of Tn
through an angle of 2πk/n, hence R has order n. A top to bottom flip of Tn across the line
of symmetry containing vertex 1 corresponds to the permutation defined by

H =



[
1 2 3 . . . k k+1 . . . n−1 n
1 n n−1 . . . k+2 k+1 . . . 3 2

]
if n = 2k is even,

[
1 2 3 . . . k k+1 . . . n−1 n
1 n n−1 . . . k+1 k . . . 3 2

]
if n = 2k−1 is odd.

In cycle notation, H can be represented as

H =

{
(2,n)(3,n−1) · · ·(k,k+2) if n = 2k is even,
(2,n)(3,n−1) · · ·(k,k+1) if n = 2k−1 is odd.

Then HH = e, hence H has order 2. The reader should verify that HRH = R−1. Any
symmetry of Tn is either a rotation or a flip followed by a rotation. Therefore we see that
Dn = {H iR j | 0≤ i≤ 1,0≤ j < n} is a nonabelian group of order 2n.

EXAMPLE 2.1.17. Let R4 be a nonsquare rectangle with vertices labeled consecu-
tively 1,2,3,4. The group of symmetries of R3 can be viewed as a subgroup of S4 as well
as a subgroup of D4. In the notation of Example 2.1.16, the group of symmetries of R4 is
{H iR j | 0≤ i≤ 1,0≤ j ≤ 1}, which is a group of order four. In cycle notation, this group
is {e,(14)(23),(12)(34),(13)(24)}. Note that the group is abelian and every element sat-
isfies the identity x2 = e.

EXAMPLE 2.1.18. The quaternion 8-group is Q8 = {1,−1, i,−i, j,− j,k,−k} with
identity element 1. The multiplication rules are: (−1)2 = 1, i2 = j2 = k2 =−1, i j =− ji =
k. This is an example of a nonabelian group of order eight. For a continuation of this
example, see Exercise 2.4.19.
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EXAMPLE 2.1.19. Let F be a field. If α is a nonzero element of F , then α has a
multiplicative inverse, denoted α−1. The set of all nonzero elements of F is a multiplicative
group. This group is denoted F∗ and is called the group of units of F .

EXAMPLE 2.1.20. Let F be a field. The set of all n-by-n matrices over F is denoted
Mn(F). In this example, we assume the reader is familiar with the basic properties for
multiplication of matrices. In particular, multiplication of matrices is associative. That is,
if α,β ,γ ∈Mn(F), then (αβ )γ = α(βγ). We will not include the tedious but elementary
proof of this fact here. Instead, we mention that in Corollary 4.5.7 below a general proof
will be given that matrix multiplication is associative and distributes over matrix addition.
In this example our goal is to show that the set of 2-by-2 matrices over F with nonzero
determinant is a group. For n = 2, the determinant function det : M2(F)→ F is defined by

det
(

a b
c d

)
= ad−bc.

To show that the determinant function is multiplicative, start with the product of two arbi-
trary 2-by-2 matrices: (

a b
c d

)(
e f
g h

)
=

(
ae+bg a f +bh
ce+dg c f +dh

)
.

The determinant formula applied on the left hand side yields: (ad−bc)(eh− f g) = adeh−
ad f g− bceh+ bc f g. The reader should verify that this is equal to the determinant of the
right hand side: (ae + bg)(c f + dh)− (ce + dg)(a f + bh). A matrix α is invertible if

there is a matrix β such that αβ = βα =

(
1 0
0 1

)
. Taking determinants, this implies

detα detβ = 1. In other words, if α is invertible, then detα 6= 0. Notice that(
a b
c d

)(
d −b
−c a

)
=

(
ad−bc 0

0 ad−bc

)
= (ad−bc)

(
1 0
0 1

)
.

If det
(

a b
c d

)
= ad−bc 6= 0, then the matrix is invertible and the inverse is given by the

formula (
a b
c d

)−1

= (ad−bc)−1
(

d −b
−c a

)
.

The set

GL2(F) =

{(
a b
c d

)
∈M2(F) | ad−bc 6= 0

}
is the set of all invertible 2-by-2 matrices over F and is called the general linear group of
2-by-2 matrices over F . For a continuation of this example when F = Z/2 is the field of
order 2, see Exercise 2.1.26.

EXAMPLE 2.1.21. The Klein Viergruppe, or 4-group, is V = {e,a,b,c} with multipli-
cation rules: a2 = b2 = c2 = e, ab = ba = c. Notice that V is isomorphic to the group
of symmetries of a nonsquare rectangle presented in Example 2.1.17 by the mapping:
a 7→ (14)(23), b 7→ (12)(34), c 7→ (13)(24).

1.3. Exercises.

EXERCISE 2.1.22. Let G be a monoid with identity element e.
(1) Show that G has exactly one identity element. In other words, show that if e′ ∈G

has the property that ae′ = e′a = a, then e = e′.
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(2) Show that an invertible element of G has a unique inverse. In other words, if
aa−1 = a−1a = e and aa′ = a′a = e, then a−1 = a′.

(3) Suppose a,r, ` ∈ G satisfy the identities: ar = e and `a = e. Show that r = ` and
a is invertible.

(4) Suppose every element of G has a left inverse. In other words, assume for every
a ∈ G there exists al ∈ G such that ala = e. Show that G is a group.

(5) If a ∈ G is invertible, then a−1 is invertible and (a−1)−1 = a.
(6) If a and b are invertible elements of G, then ab is invertible and (ab)−1 = b−1a−1.

EXERCISE 2.1.23. Let G be a group and x,y ∈ G. Prove the following:
(1) If x2 = x, then x = e. We say that a group has exactly one idempotent.
(2) If xy = e, then y = x−1.
(3) (x−1)−1 = x.
(4) (xy)−1 = y−1x−1.

EXERCISE 2.1.24. Let G be a group. The opposite group of G is denoted Go. As a
set, Go is equal to G. The binary operation on Go is reversed from that of R. Writing the
multiplication of R by juxtaposition and multiplication of Ro with the asterisk symbol, we
have x ∗ y = yx. Show that Go is a group. Show that G is isomorphic to Go. (Hint: Show
that the function defined by x 7→ x−1 is an isomorphism from G to Go.)

EXERCISE 2.1.25. Let G be a group. Prove the following:
(1) If x2 = e for all x ∈ G, then G is abelian.
(2) If |G|= 2n for some n ∈ N, then there exists x ∈ G such that a 6= e and a2 = e.

EXERCISE 2.1.26. In this example, we assume the reader is familiar with the basic
properties for multiplication of matrices. In particular, multiplication of matrices is asso-
ciative and the product of a two-by-two matrix times a two-by-one column vector is defined
by: (

a b
c d

)(
u
v

)
=

(
au+bv
cu+dv

)
.

Let G = GL2(Z/2) be the group of two-by-two invertible matrices over the field Z/2
(see Example 2.1.20). List the elements of G and construct the group table (see Exam-
ple 2.1.13). Show that G has two elements of order three and three elements of order two.
Let

a =

(
1
0

)
,b =

(
0
1

)
,c =

(
1
1

)
and consider the set of column vectors {a,b,c} over F2. For every matrix α in G, show that
left multiplication by the matrix α defines a permutation of the set {a,b,c}. Comparing
the group table for G with the group table given in Example 2.1.14 for S3, the symmetric
group on 3 letters, show that GL2(Z/2) is isomorphic to S3.

EXERCISE 2.1.27. Let K and H be groups. Define a binary operation on K ×H
by (x1,y1)(x2,y2) = (x1x2,y1y2). Show that this makes K×H into a group with identity
element (e,e), and the inverse of (x,y) is (x−1,y−1). Show that K×H is abelian if and
only if K and H are both abelian.

EXERCISE 2.1.28. For various values of n, each of the following matrices is an n-by-n
multiplication table representing a binary operation ∗ on the set In = {0,1, . . . ,n− 1}. In
each case, determine whether the binary operation (a) is commutative, (b) is associative,
(c) has an identity element, and (d) is a group.
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(1)

∗ 0 1 2 3
0 0 0 0 0
1 0 1 1 3
2 0 2 3 0
3 0 3 1 2

(2)

∗ 0 1 2 3 4 5 6 7
0 4 2 6 0 7 1 5 3
1 5 4 0 1 6 7 3 2
2 1 7 4 2 5 3 0 6
3 0 1 2 3 4 5 6 7
4 7 6 5 4 3 2 1 0
5 6 0 3 5 2 4 7 1
6 2 3 7 6 1 0 4 5
7 3 5 1 7 0 6 2 4

(3)

∗ 0 1 2 3 4 5 6 7
0 4 5 3 2 0 1 7 6
1 7 4 5 6 1 2 3 0
2 3 7 4 0 2 6 5 1
3 2 6 0 4 3 7 1 5
4 0 1 2 3 4 5 6 7
5 6 0 1 7 5 3 2 4
6 5 3 7 1 6 0 4 2
7 1 2 6 5 7 4 0 3

(4)

∗ 0 1 2 3 4 5 6 7
0 7 2 1 4 3 6 5 0
1 2 7 0 5 6 3 4 1
2 1 0 7 6 5 4 3 2
3 4 5 6 7 0 1 2 3
4 3 6 5 0 7 2 1 4
5 6 3 4 1 2 7 0 5
6 5 4 3 2 1 0 7 6
7 0 1 2 3 4 5 6 7

(5)

∗ 0 1 2
0 2 0 1
1 0 1 2
2 1 2 0

(6)

∗ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 0 2 1
4 4 3 5 1 0 2
5 5 4 3 2 1 0

2. Subgroups and cosets

2.1. First properties of subgroups.

DEFINITION 2.2.1. If G is a group and H is a nonempty subset of G that is a group
under the binary operation on G, then we say H is a subgroup of G and write H ≤ G.

LEMMA 2.2.2. Let G be a group and H a nonempty subset of G. The following are
equivalent.

(1) H is a subgroup of G.
(2) For all a,b in H we have ab ∈ H and a−1 ∈ H.
(3) For all a,b in H we have ab−1 ∈ H.

PROOF. (2) implies (1): Let a ∈ H. Then e = aa−1 ∈ H. The associative law applies
on G, hence on H. The other group properties are included in (2).

(1) implies (3): Let a and b be elements of H. If H is a group, then b−1 ∈ H and
ab−1 ∈ H.

(3) implies (2): Let a and b be elements of H. By (3) we have aa−1 = e ∈ H, ea−1 =
a−1 ∈ H, and a(b−1)−1 = ab ∈ H. �

EXAMPLE 2.2.3. Let G be a group. Then {e} and G are both subgroups of G. We call
these the trivial subgroups of G. A nontrivial subgroup is also called a proper subgroup.

PROPOSITION 2.2.4. Let G be a group and H a finite subset of G. If for all a,b ∈ H
we have ab ∈ H, then H is a subgroup of G.
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PROOF. Assume a,b ∈ H implies ab ∈ H. By Lemma 2.2.2, to show H is a subgroup
it suffices to show that a ∈ H implies a−1 ∈ H. Let |H| = n. Define f : Nn+1 → H be
defined by f (i) = ai. Since a ∈H, we see from Definition 2.1.5 that f is well defined. The
Pigeonhole Principle (Exercise 1.1.11) implies that there exists a pair 0< i< j≤ n+1 such
that ai = a j. Then j− i > 0, so e = a j−i is in H. If j− i = 1, then a = e, which implies
a−1 = e ∈ H. If j− i > 1, then e = a j−i = aa j−i−1, which implies a−1 = a j−i−1 ∈ H. �

LEMMA 2.2.5. Let G be a group and X ⊆ G. Let S = {H ≤ G | X ⊆ H}, and let

〈X〉=
⋂

H∈S
H

be the intersection of all subgroups of G containing X. Then the following are true.
(1) 〈X〉 is the smallest subgroup of G containing X.
(2) 〈X〉 is the trivial subgroup {e} if X = /0, otherwise

〈X〉=
{

xe1
1 · · ·x

en
n | n≥ 1,ei ∈ Z,xi ∈ X

}
.

PROOF. (1): We know S is nonempty because G∈S . Therefore, (1) follows straight
from Exercise 2.2.21.

(2): If X = /0, then {e} ∈ S , so 〈X〉 = {e}. Assume X 6= /0. By Lemma 2.2.2 (1),
the set S =

{
xe1

1 · · ·xen
n | n≥ 1,ei ∈ Z,xi ∈ X

}
is a subgroup of G. Since X ⊆ S, we have

〈X〉 ⊆ S. Let xe1
1 · · ·xen

n be a typical element of S. For each i, xi ∈ X implies xi is in the
group 〈X〉. By Definition 2.1.5, the power xei

i is in 〈X〉. Therefore, the product xe1
1 · · ·xen

n is
in 〈X〉. This proves S⊆ X . �

DEFINITION 2.2.6. In the context of Lemma 2.2.5, the set 〈X〉 is called the subgroup
of G generated by X . If X = {x1, . . . ,xn} is a finite subset of G, then we sometimes write
〈X〉 in the form 〈x1, . . . ,xn〉. A subgroup H ≤ G is said to be finitely generated if there
exists a finite subset {x1, . . . ,xn} ⊆ H such that H = 〈x1, . . . ,xn〉. We say H is cyclic if
H = 〈x〉 for some x ∈ H.

DEFINITION 2.2.7. Let G be a group and H a subgroup of G. If x and y are elements
of G, then we say x is congruent to y modulo H if x−1y ∈ H. In this case we write x ≡ y
(mod H).

LEMMA 2.2.8. Let G be a group and H a subgroup. Then congruence modulo H is
an equivalence relation on G.

PROOF. If x ∈ G, then x−1x = e ∈ H, so x ≡ x (mod H). Assume x ≡ y (mod H).
Then x−1y ∈ H, which implies y−1x = (x−1y)−1 ∈ H, hence y ≡ x (mod H). Assume
x ≡ y (mod H) and y ≡ z (mod H). Then x−1yy−1z = x−1z ∈ H, which implies x ≡ z
(mod H). �

LEMMA 2.2.9. Let G be a group, H a subgroup, and x,y ∈ G. The following are
equivalent.

(1) x≡ y (mod H).
(2) y = xh for some h ∈ H.
(3) xH = yH.

PROOF. (1) is equivalent to (2): We have x ≡ y (mod H) if and only if x−1y ∈ H
which is true if and only if x−1y = h for some h ∈H which is equivalent to y = xh for some
h ∈ H.

(3) implies (2): We have y = ye ∈ yH = xH. Therefore, y = xh for some h ∈ H.
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(2) implies (3): Suppose y = xh, for some h ∈ H. For every z ∈ H, yz = x(hz) ∈ xH.
Hence yH ⊆ xH. Also, x = yh−1 implies xz = y(h−1z) ∈ yH, which implies xH ⊆ yH. �

2.2. Cosets and Lagrange’s Theorem. Let G be a group and H a subgroup. By
Lemma 2.2.8, congruence modulo H is an equivalence relation on G. Therefore G is
partitioned into equivalence classes. If x ∈ G, then by Lemma 2.2.9, the equivalence class
of x is xH = {y∈G | y = xh for some h ∈ H}. The set xH is called the left coset of x modulo
H. The set of all left cosets of G modulo H is G/H = {xH | x ∈ G}. By Proposition 1.1.2
two cosets are either disjoint or equal as sets. The index of H in G is the cardinality of the
set G/H and is denoted [G : H].

There is a right hand version of the above, which we will briefly describe here. We
say x is right congruent to y modulo H if yx−1 ∈ H. This defines an equivalence relation
on G. The equivalence class of x is the set Hx which is called the right coset of x modulo
H. The set of all right cosets is denoted H\G. In general, the partitions G/H and H\G
are not equal. That is, a left coset is not necessarily a right coset (see Lemma 2.3.4).
In Exercise 2.2.23 the reader is asked to show that there is a one-to-one correspondence
between G/H and H\G.

LEMMA 2.2.10. Let G be a group and H ≤ G. Given x,y ∈ G there is a one-to-one
correspondence φ : xH→ yH defined by φ(z) = (yx−1)z. If |H| is finite, then all left cosets
of H have the same number of elements.

PROOF. For any h ∈ H, yx−1xh = yh ∈ yH. We see that φ is a well defined function.
The function ψ(w) = xy−1w is the inverse to φ . �

If H is a subgroup of G, then a complete set of left coset representatives for H in G is a
subset {ai | i ∈ I} of G where we have exactly one element from each left coset. The index
set I can be taken to be G/H. If {ai | i ∈ I} is a complete set of left coset representatives,
then G = ∪i∈IaiH is a partition of G. For example, if m ≥ 1, then Proposition 1.2.9 (2)
shows that {0,1, . . . ,m−1} is a complete set of left coset representatives for 〈m〉 in Z.

THEOREM 2.2.11. If K ≤ H ≤ G, then [G : K] = [G : H][H : K]. If two of the three
indices are finite, then so is the third.

PROOF. Let {ai | i ∈ I} be a complete set of left coset representatives for H in G and
Let {b j | j∈ J} be a complete set of left coset representatives for K in H. Then G=∪i∈IaiH
is a partition of G and H = ∪ j∈Jb jK is a partition of H. So

G =
⋃
i∈I

aiH

=
⋃
i∈I

ai

(⋃
j∈J

b jK

)

=
⋃
i∈I

(⋃
j∈J

aib jK

)
.

To finish the proof, we show that aib j | (i, j) ∈ I× J} is a complete set of left coset repre-
sentatives for K in G. It suffices to show the cosets aib jK are pairwise disjoint. Assume
aib jK = asbtK. Then aib j = asbtk for some k ∈ K. Recall that b j,bt ,k are in H. Then we
have ai = ash, for some h ∈ H. Hence aiH = asH, which implies i = s. Canceling, we get
b j = btk, or b jK = btK, which implies j = t. This proves [G : K] = [G : H][H : K]. The
index [G : K] is infinite if and only if [G : H] is infinite or [H : K] is infinite. This proves
the theorem. �
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COROLLARY 2.2.12. (Lagrange’s Theorem) If G is a group and H ≤ G, then |G| =
[G : H]|H|.

PROOF. Apply Theorem 2.2.11 with K = 〈e〉. �

2.3. A counting theorem.

LEMMA 2.2.13. Let G be a group containing subgroups H and K. Then HK is a
subgroup of G if and only if HK = KH.

PROOF. See Definition 2.1.5 (2) for the definition of the set HK. First assume HK =
KH. To show HK is a subgroup we show that the criteria of Lemma 2.2.2 (1) are satisfied.
In the following, h,h1,h2,h3 denote elements of H and k,k1,k2,k3 denote elements of K.
Let h1k1 and h2k2 be arbitrary elements of HK. Since HK =KH, there exist h3,k3 such that
k1h2 = h3k3. Now (h1k1)(h2k2) = h1(k1h2)k2 = h1(h3k3)k2 = (h1h3)(k3k2) is an element
of HK. By Exercise 2.1.23, (hk)−1 = k−1h−1 is is an element of KH = HK. This proves
HK is a subgroup.

Conversely, suppose HK is a subgroup. Consider the function i : G→ G defined by
i(x) = x−1. By Exercise 2.1.23, i2 is the identity function. Thus i is a one-to-one corre-
spondence. Since HK is a group, the restriction of i to HK is a one-to-one correspondence.
That is, i(HK) = HK. If hk ∈ HK, then i(hk) = (hk)−1 = k−1h−1 is in KH, which shows
HK = i(HK)⊆ KH. Consider kh ∈ KH. Then i(kh) = (kh)−1 = h−1k−1 is in HK. There-
fore, kh is the inverse of an element in the subgroup HK. By Lemma 2.2.2, kh ∈ HK,
which implies KH ⊆ HK. �

THEOREM 2.2.14. Let G be a group. If H and K are finite subgroups of G, then

|HK|= |H||K|
|H ∩K|

.

PROOF. We do not assume HK is a group. Let C = H ∩K. Then C is a subgroup of
H. Let {h1, . . . ,hn} be a full set of left coset representatives of C in H, where n = [H : C].
Then H = ∪n

i=1hiC is a disjoint union. Since C ⊆ K we have CK = K, hence

HK =
n⋃

i=1

hiCK =
n⋃

i=1

hiK.

The last union is a disjoint union. To see this, suppose hiK = h jK. Then h−1
j hi ∈H∩K =C,

which implies i = j. By Lemma 2.2.10 we can now count the cardinality of HK:

|HK|=
n

∑
i=1
|K|= n|K|= [H : H ∩K]|K|.

By Corollary 2.2.12, we are done. �

2.4. Cyclic subgroups. In the next theorem we show that the additive group Z is
cyclic and every subgroup is of the form 〈n〉 for some n ≥ 0. Moreover, the equivalence
relation of Definition 2.2.7 defined in terms of the subgroup 〈n〉 is equal to the equivalence
relation of Definition 1.2.8 defined in terms of divisibility by n.

THEOREM 2.2.15. Let Z be the additive group of integers.
(1) Every subgroup of Z is cyclic. The trivial subgroups of Z are: 〈0〉 and Z= 〈1〉.

If H is a nontrivial subgroup, then there is a unique n > 1 such that H = 〈n〉 =
nZ= {nk | k ∈ Z}.
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(2) If n≥ 1 and H = 〈n〉, then x≡ y (mod H) if and only if x≡ y (mod n). That is,
the coset x+ 〈n〉 in Z/〈n〉 is equal to the congruence class [x] in Z/n.

PROOF. Let H ≤ Z and assume H 6= 〈0〉. If x ∈ H−〈0〉, then so is −x. By the Well
Ordering Principle (Axiom 1.2.1) there is a least positive integer in H, say n. We prove that
H = nZ. Let x ∈H. By the Division Algorithm (Proposition 1.2.3) we can write x = nq+r
where 0≤ r < n. By Definition 2.1.5, nq ∈H. Therefore, r = x−nq is in H. By the choice
of n, this implies r = 0. Hence x ∈ nZ. �

Let G be a group and a an element of finite order in G. Recall (Definition 2.1.9) that
the order of a, written |a|, is the least positive integer m such that am = e.

LEMMA 2.2.16. Let G be a group, a ∈ G, and assume |a| = m is finite. Then the
following are true.

(1) |a|= |〈a〉|.
(2) 〈a〉= {e,a,a2, . . . ,am−1}.
(3) For each n ∈ Z, an = e if and only if m divides n.
(4) For each n ∈ Z, |an|= m/gcd(m,n).
(5) Let b ∈ G. Assume |b| = n is finite, ab = ba, and 〈a〉∩ 〈b〉 = 〈e〉. Then |ab| =

lcm(m,n).

PROOF. (1) and (2): Let m= |a|. Then m> 0, am = e, and if m> 1, then am−1 6= e. Let
n ∈ Z. Applying Proposition 1.2.3, there exist unique integers q and r such that n = mq+ r
and 0 ≤ r < m. Then an = (am)qar = ar. Therefore, 〈a〉 = {e,a,a2, . . . ,am−1}. It follows
that |〈a〉|= m.

(3): First assume n = mq. Then we have amq = (am)q = eq = e. Conversely assume
an = e. By Parts (1) and (2), if n = mq+r and 0≤ r < m, then ar = e, which implies r = 0.

(4) and (5): This part of the proof is Exercise 2.2.27. �

COROLLARY 2.2.17. If |G| is finite, and a ∈ G, then the following are true.
(1) |a| is finite.
(2) |a| divides |G|.
(3) a|G| = e.

PROOF. (1): Proposition 2.2.4 shows that |a| is finite.
(2) and (3): These follow immediately from Lemma 2.2.16 and Corollary 2.2.12. �

COROLLARY 2.2.18. Let a ∈ Z. Then the following are true.
(1) (Euler) If m ∈ N and gcd(a,m) = 1, then aφ(m) ≡ 1 (mod m).
(2) (Fermat) If p is prime and gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).

PROOF. As noted in Example 2.1.3, Un, the group of units modulo n, has order φ(n).
If p is prime, then φ(p) = p−1. �

COROLLARY 2.2.19. Let G be a group satisfying |G| > 1. If G has no proper sub-
group, then |G| is finite, |G| is prime, and G is cyclic.

PROOF. Let a ∈G−〈e〉. Since G has no proper subgroup and 〈e〉 6= 〈a〉 is a subgroup
of G, we have 〈a〉 = G. Look at the set S = {e,a,a2, . . .}. If there is a relation of the
form ak = am, where k < m, then |a| is finite, hence G is finite. Conversely, if G is finite,
then Proposition 2.2.4 shows that there is a relation ak = am, where k < m. Assume for
contradiction’s sake that G is infinite. Then a 6= an, for all n > 1. Thus, 〈a2〉 is a proper
subgroup of G, a contradiction. We conclude that G = 〈a〉 = {e,a, . . . ,an−1} is a finite
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cyclic group of order n, for some n. Assume for contradiction’s sake that n = xy where
1 < x ≤ y < n. By Lemma 2.2.16 (4), 〈ax〉 = {e,ax,a2x, . . . ,a(y−1)x} has order y, hence G
has a proper subgroup, which is a contradiction. This proves n is prime. �

COROLLARY 2.2.20. Let G be a group. If G has only a finite number of subgroups,
then G is finite.

PROOF. Suppose G is an infinite group. We prove that G has infinitely many sub-
groups. Let x1 ∈ G and set X1 = 〈x1〉. By Theorem 2.2.15, the additive group of integers
Z has infinitely many distinct subgroups, namely {〈n〉 | n ≥ 0}. If X1 is infinite, then the
same proof shows that X1 has infinitely many distinct subgroups, namely {〈xn

1〉 | n ≥ 0}.
From now on assume every element of G has finite order. Then G−〈x1〉 is infinite. Pick
x2 ∈ G−〈x1〉. Then 〈x1〉 6= 〈x2〉. Assume inductively that n ≥ 1 and x1,x2, . . . ,xn are in
G such that X1 = 〈x1〉, . . . ,Xn = 〈xn〉 are n distinct subgroups. Then ∪n

i=1Xi is finite. Pick
xn+1 ∈ G−X1−X2− ·· ·−Xn and set Xn+1 = 〈xn+1〉. Then by induction there exists an
infinite collection {Xi | i≥ 1} of distinct subgroups of G. �

2.5. Exercises.

EXERCISE 2.2.21. (An intersection of subgroups is a subgroup.) Let G be a group, I
a nonempty set, and {Hi | i ∈ I} a family of subgroups of G indexed by I. Show that⋂

i∈I

Hi

is a subgroup of G.

EXERCISE 2.2.22. Let G be a group and X ,Y,Z subgroups of G. Prove that if Y ⊆ X ,
then X ∩Y Z = Y (X ∩Z).

EXERCISE 2.2.23. Let G be a group and H a subgroup of G. We denote by G/H the
set of all left cosets of H in G, and by H\G the set of all right cosets of H in G. Show that
the assignment xH 7→Hx−1 defines a one-to-one correspondence between G/H and H\G.

EXERCISE 2.2.24. Let G be a group containing finite subgroups H and K. If |H| and
|K| are relatively prime, show that H ∩K = 〈e〉.

EXERCISE 2.2.25. This exercise is a continuation of Exercise 2.1.27. Let K and H be
groups and K×H the product group. Show that {(x,e) | x ∈ K} and {(e,y) | y ∈ H} are
subgroups of K×H.

EXERCISE 2.2.26. Consider the symmetric group S3 of order 6. Show that S3 has 4
proper subgroups. Let H be the subgroup of order 2 generated by the transposition (12).
Compute the three left cosets of H and the three right cosets of H.

EXERCISE 2.2.27. Prove Parts (4) and (5) of Lemma 2.2.16.

EXERCISE 2.2.28. Let p be a prime number and G a finite group of order p. Prove:
(1) G has no proper subgroup.
(2) There exists a ∈ G such that G = 〈a〉.

EXERCISE 2.2.29. Let (R,+) denote the additive group on R. Then (Q,+) is a sub-
group of (R,+) and (Z,+) is a cyclic subgroup of both (Q,+) and (R,+). Show that the
set {x ∈R | 0≤ x < 1} is a complete set of left coset representatives for Z in R. Show that
the set {x ∈ Q | 0 ≤ x < 1} is a complete set of left coset representatives for Z in Q. See
Exercise 2.3.21 for a continuation of this exercise.
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3. Homomorphisms and normal subgroups

3.1. Definition and first properties of normal subgroups. A function from one
group to another that preserves the binary operations is called a homomorphism. If H
is a subgroup of G, then H is a normal subgroup if and only if the binary operation on G
turns the set of left cosets G/H into a group and in this case the natural map G→ G/H is
a homomorphism of groups (Lemma 2.3.4).

DEFINITION 2.3.1. A homomorphism of groups is a function φ : G→G′ from a group
G to a group G′ such that φ(xy) = φ(x)φ(y) for all x,y ∈ G. If φ is onto, we say φ is an
epimorphism. If φ is one-to-one, we say φ is a monomorphism. If φ is one-to-one and onto,
then as in Definition 2.1.10 we say φ is an isomorphism. A homomorphism from G to G
is called an endomorphism of G. An isomorphism from G to G is called an automorphism
of G.

DEFINITION 2.3.2. Let φ : G→G′ be a homomorphism of groups. The kernel of φ is
ker(φ) = {x ∈ G | φ(x) = e}.

DEFINITION 2.3.3. Let G be a group. For every a ∈ G, let αa : G→ G be defined
by αa(x) = a−1xa. If X is a nonempty subset of G, then αa(X) = a−1Xa is called the
conjugate of X by a.

The next lemma lists the fundamental properties of normal subgroups. The definition
follows the lemma.

LEMMA 2.3.4. Let G be a group and H a subgroup of G. The following are equivalent.
(1) For each x ∈ G, x−1Hx⊆ H.
(2) For each x ∈ G, x−1Hx = H.
(3) For each x ∈ G there exists y ∈ G such that xH = Hy.
(4) For each x ∈ G, xH = Hx.
(5) For each x ∈ G and y ∈ G, xHyH = xyH.
(6) There is a well defined binary operation G/H×G/H → G/H on G/H defined

by the rule (xH,yH) 7→ xyH.
(7) There is a binary operation on G/H such that the natural map η : G→ G/H is

a homomorphism of groups.
(8) There exists a group G′ and a homomorphism of groups θ : G→ G′ such that

H = kerθ .

PROOF. (1) implies (2): Let x ∈ G. First apply (1) to x, yielding x−1Hx ⊆ H. Now
conjugate by x−1 and apply (1) with x−1 to get H = (xx−1)H(xx−1)⊆ xHx−1 ⊆ H.

(2) implies (3): Let x ∈G. Apply (2) to x−1 to get xHx−1 = H. This implies xH = Hx.
(3) implies (4): Given x ∈ G, there exists y ∈ G such that xH = Hy. Since x is in

xH = Hy, this implies x = hy for some h ∈H. Therefore y = h−1x and Hy = Hh−1x = Hx.
(4) implies (5): Let x ∈ G and y ∈ G. By (4) applied to y, yH = Hy. Therefore,

xHyH = x(Hy)H = x(yH)H = xyH.
(5) implies (6): This is immediate.
(6) implies (7): By (6), (xH,yH) 7→ xyH defines a binary operation on G/H. The

associative law on G implies the associative law also holds on G/H. The identity element
is the coset eH and (xH)−1 = x−1H. Therefore G/H is a group and it is now clear that the
natural map η : G→ G/H is a homomorphism.

(7) implies (8): The kernel of η : G→ G/H is η−1(eH) = H.
(8) implies (1): Let θ : G→G′ be a homomorphism of groups and assume H = kerθ .

By Exercise 2.3.15, the preimage of a subgroup of G′ is a subgroup of G. Therefore,
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ker(θ) = θ−1(〈e〉) is a subgroup of G. Given x ∈ G and h ∈ H we have θ(h) = e. Hence
θ(x−1hx) = θ(x)−1θ(h)θ(x) = θ(x)−1θ(x) = e. Therefore, x−1Hx⊆ kerθ = H. �

DEFINITION 2.3.5. If G is a group and H is a subgroup of G satisfying any of the
equivalent conditions of Lemma 2.3.4, then we say H is a normal subgroup of G. The
group G/H is called the quotient group, or factor group. If N is a normal subgroup of G,
we sometimes write NEG.

EXAMPLE 2.3.6. Let G be a group.
(1) The trivial subgroups 〈e〉 and G are normal in G.
(2) If G is abelian and H is a subgroup of G, then for every x ∈ G, xH = Hx, hence

H is normal. The quotient group G/H is abelian because G is abelian.

3.2. The Isomorphism Theorems. The Fundamental Theorem of Group Homomor-
phisms, Theorem 2.3.11, says that any homomorphism of groups θ : A→ B factors in a
natural way into a surjection A→ A/ker(θ) followed by an injection A/ker(θ)→ B. This
proves us with a valuable tool for defining a homomorphism on a quotient group A/N. As
applications, we prove the Isomorphism Theorems (Theorem 2.3.12) and the Correspon-
dence Theorem (Theorem 2.3.13).

LEMMA 2.3.7. Let φ : G→G′ and φ1 : G′→G′′ be homomorphisms of groups. Then
the following are true.

(1) The composite φ1φ : G→ G′′ is a homomorphism of groups.
(2) The kernel of φ , ker(φ), is a normal subgroup of G.
(3) The function φ is one-to-one if and only if ker(φ) = 〈e〉.

PROOF. (1): This follows straight from: φ1φ(xy) = φ1(φ(x)φ(y)) = φ1φ(x)φ1φ(y).
(2): By Lemma 2.3.4 (8), ker(φ) is a normal subgroup of G.
(3): If φ is one-to-one, then ker(φ) = φ−1(〈e〉) = 〈e〉. If ker(φ) = 〈e〉 and φ(x) = φ(y),

then φ(xy−1) = φ(x)φ(y)−1 = e, so xy−1 ∈ ker(φ). Therefore, x = y and φ is one-to-
one. �

EXAMPLE 2.3.8. If φ : G → G′ is an isomorphism of groups, then as in Defini-
tion 2.1.10 we say G is isomorphic to G′, and write G ∼= G′. If φ1 : G′ → G′′ is another
isomorphism of groups, then by Lemma 2.3.7 and Exercise 1.1.9, the composite φ1φ is an
isomorphism. The reader should verify that isomorphism defines an equivalence relation
on the set of all groups.

EXAMPLE 2.3.9. Let G be a group. The set of all automorphisms of G is denoted
Aut(G). By Lemma 2.3.7 the composition of automorphisms is an automorphism. In the
notation of Example 2.1.2, Aut(G) is a subgroup of Perm(G).

EXAMPLE 2.3.10. Let G be a group and a ∈ G. Then conjugation by a defines the
function αa : G→G, where αa(x) = a−1xa. In Exercise 2.3.19 the reader is asked to prove
that αa is an automorphism of G. We call αa the inner automorphism of G defined by a.
The set of all inner automorphisms is a subgroup of Aut(G).

THEOREM 2.3.11. (Fundamental Theorem of Group Homomorphisms) Let θ : A→ B
be a homomorphism of groups. Let N be a normal subgroup of A contained in kerθ . There
exists a homomorphism ϕ : A/N→ B satisfying the following.
(a) ϕ(aN) = θ(a), or in other words θ = ϕη .
(b) ϕ is the unique homomorphism from A/N→ B such that θ = ϕη .
(c) imθ = imϕ .
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(d) kerϕ = η(kerθ) = ker(θ)/N.
(e) ϕ is one-to-one if and only if N = kerθ .
(f) ϕ is onto if and only if θ is onto.
(g) There is a unique epimorphism φ : A/N→ A/kerθ such that the diagram

A θ //

##
η

��

B

A/kerθ

;;

A/N

φ

OO ϕ

EE

commutes.

PROOF. The map ϕ exists by Exercise 1.1.13. The proofs of (a) – (f) are left as an
exercise for the reader. Part (g) results from an application of Parts (a) – (f) to the natural
map A→ A/kerθ . �

THEOREM 2.3.12. (The Isomorphism Theorems) Let G be a group.

(a) If θ : G→G′ is a homomorphism of groups, then the map ϕ : G/kerθ → imθ sending
the coset xkerθ to θ(x) is an isomorphism of groups.

(b) If A and B are subgroups of G and B is normal, then natural map

A
A∩B

→ AB
B

sending the coset x(A∩B) to the coset xB is an isomorphism of groups.
(c) If A and B are normal subgroups of G and A ⊆ B, then B/A is a normal subgroup of

G/A and the natural map
G/A
B/A

→ G/B

sending the coset containing xA to the coset xB is an isomorphism of groups.

PROOF. (a): By Exercise 2.3.15, the image of G is a subgroup of G′. This is Parts (e)
and (f) of Theorem 2.3.11.

(b): By Exercise 2.3.18, AB is a group, B is normal in AB, and A∩B is normal in
A. Let f : A→ (AB)/B be the set containment map A→ AB followed by the natural map
AB→ (AB)/B. If a ∈ A and b ∈ B, then abB = aB, hence f is onto. Let a ∈ A. Then
aB = B if and only if a ∈ B. Therefore the kernel of f is A∩B. Part (b) follows from
Part (a) applied to the homomorphism f .

(c): By Theorem 2.3.11 (g) applied to the natural map G→ G/B, there is a natural
epimorphism φ : G/A→ G/B defined by φ(xA) = xB. The kernel of φ consists of those
cosets xA such that x ∈ B. That is, kerφ = B/A. Part (c) follows from Part (a) applied to
the homomorphism φ . �

THEOREM 2.3.13. (The Correspondence Theorem) Let G be a group and A a normal
subgroup of G. There is a one-to-one order-preserving correspondence between the sub-
groups B such that A⊆ B⊆ G and the subgroups of G/A given by B 7→ B/A. Moreover, B
is a normal subgroup of G if and only if B/A is a normal subgroup of G/A.
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PROOF. Let η : G→ G/A be the natural homomorphism. By Exercise 2.3.15, if B is
a subgroup of G, then η(B) is a subgroup of G/A, and if H is a subgroup of G/A, then
η−1(H) is a subgroup of G containing A. If B1 ⊆ B2, then η(B1) ⊆ η(B2). Likewise, if
H1 ⊆ H2, then η−1(H1)⊆ η−1(H2). Since η is onto, ηη−1(H) = H. By Exercise 2.3.15,
if B is a subgroup of G containing A, then B = η−1η(B). This proves the first claim.

For the last claim, let B be a subgroup of G containing A. If B is normal, then by
Theorem 2.3.12 (c), η(B) is normal in G/A. Conversely assume η(B) is normal in G/A.
Then B is equal to the kernel of the composite map G→ G/A→ (G/A)/η(B), hence is
normal in G. �

EXAMPLE 2.3.14. Let (R,+) be the additive abelian group of real numbers and
(R>0, ·) the multiplicative abelian group of positive real numbers. Define φ : (R,+)→
(R>0, ·) by φ(x) = ex. Then φ(x + y) = ex+y = exey = φ(x)φ(y), so φ is a homomor-
phism. Define ψ : (R>0, ·)→ (R,+) by ψ(x) = lnx. Then ψ(xy) = lnxy = lnx+ lny =
ψ(x)+ψ(y), so ψ is a homomorphism. Since φ and ψ are inverses of each other, they are
isomorphisms. Hence (R,+) and (R>0, ·) are isomorphic groups.

3.3. Exercises.

EXERCISE 2.3.15. Let f : G→ G′ be a homomorphism of groups. Prove:
(1) f (e) = e.
(2) f (x−1) = f (x)−1.
(3) If H is a subgroup of G, then f (H) is a subgroup of G′. If there is a containment

relation H1 ⊆ H2, then f (H1)⊆ f (H2).
(4) If H ′ is a subgroup of G′, then f−1(H ′) is a subgroup of G and ker f is a subgroup

of f−1(H ′). If there is a containment relation H ′1⊆H ′2, then f−1(H ′1)⊆ f−1(H ′2).
(5) If H is a subgroup of G and ker f ⊆ H, then f−1 f (H) = H.
(6) If G is abelian, then im( f ) is abelian.

EXERCISE 2.3.16. Let G,+ be an additive abelian group. Let n ∈ Z and x ∈ G. If
n > 0, then nx = ∑

n
i=1 x = x+ · · ·+ x is the sum of n copies of x. If n < 0, then nx =

|n|(−x) = ∑
|n|
i=1(−x), and 0x = 0.

(1) Show that “left multiplication by n” defines a function λn : G→ G by the rule
λn(x) = nx. Show that λn is an endomorphism of G.

(2) Show that the kernel of λn is G(n) = {x ∈ G | |x| | n}, hence G(n) is a subgroup
of G.

(3) Show that the image of λn is nG = {nx | x ∈ G}, hence nG is a subgroup of G.
When the group operation is written multiplicatively, the counterpart of λn is the “nth
power map” which is denoted πn : G→ G and is defined by πn(x) = xn. In this case,
im(πn) is denoted Gn.

EXERCISE 2.3.17. Let G be a group and H a subgroup. Prove that if [G : H] = 2, then
H is a normal subgroup.

EXERCISE 2.3.18. Let G be a group containing subgroups H, K, and N. Prove the
following:

(1) If N is a normal subgroup of G, then NK is a subgroup of G. Moreover, K is a
subgroup of NK, and N is a normal subgroup of NK.

(2) If N is normal, then N∩H is a normal subgroup of H.
(3) If H and K are both normal, then HK is a normal subgroup of G.
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EXERCISE 2.3.19. Let G be a group. For every a ∈ G, let αa : G→ G be defined by
αa(x) = a−1xa. In the terminology of Definition 2.3.3, αa(x) is the conjugate of x by a.
Prove that αa is an automorphism of G.

EXERCISE 2.3.20. (The conjugate of a subgroup is a subgroup.) Let G be a group, S
a nonempty subset of G, and a ∈ G. The conjugate of S by a is defined to be Sa = a−1Sa.
Prove that S is a subgroup of G if and only if Sa is a subgroup of G.

EXERCISE 2.3.21. Let S1 = {z ∈ C | |z| = 1}. Then S1 = {e2πiθ | 0 ≤ θ < 1} is the
unit circle in the complex plane (see Section 1.4).

(1) Show that multiplication in C makes S1 into a group.
(2) Let (R,+) denote the additive group on R. Show that the function f : (R,+)→

S1 defined by f (θ) = e2πiθ is an onto homomorphism. Compute the kernel of f .
Show that f induces an isomorphism R/Z∼= S1 (see Exercise 2.2.29).

(3) If n ∈ N, then the nth power map z 7→ zn is an endomorphism of S1 (see Ex-
ercise 2.3.16). Let µn denote the kernel of the nth power map. Show that
µn = {e2πik/n | k ∈ Z} is the set of all nth roots of unity in C.

(4) Show that the function φ : Z→ µn defined by φ(k) = e2πik/n is an epimorphism.
Compute the kernel of φ . Show that φ induces an isomorphism Z/n∼= µn.

(5) Let µ = ∪n≥1µn. Show that µ is a group. Define h : Q→ µ by h(r) = e2πir.
Show that h is an epimorphism. Compute the kernel of h. Show that h induces
an isomorphism Q/Z∼= µ (see Exercise 2.2.29).

EXERCISE 2.3.22. Let G be a finite group of order n = [G : e]. Let p be a prime
number such that p | n and p2 > n. Assume G contains a subgroup H of order p. (This is
always true, by Cauchy’s Theorem, Theorem 2.7.3.) Prove:

(1) H is the unique subgroup of G of order p.
(2) H is a normal subgroup of G.

EXERCISE 2.3.23. A group G is said to be simple if the only normal subgroups of G
are 〈e〉 and G. Prove that a group G is simple if and only if for every nontrivial homomor-
phism of groups f : G→ G′, f is a monomorphism.

EXERCISE 2.3.24. This exercise is a continuation of Exercise 2.2.25. Let K and H be
groups and K×H the product group. Define four functions

(1) ι1 : K→ K×H, ι1(x) = (x,e)
(2) ι2 : H→ K×H, ι2(y) = (e,y)
(3) π1 : K×H→ K, π1(x,y) = x
(4) π2 : K×H→ H, π2(x,y) = y

Show that ι1 and ι2 are monomorphisms. Show that π1 and π2 are epimorphisms. Show
that im ι1 = kerπ1 = K×{e} and im ι2 = kerπ2 = {e}×H.

3.4. More on Cyclic groups. A cyclic group A = 〈a〉 is generated by a single ele-
ment. Theorem 2.3.25 shows that if A is infinite, then A is isomorphic to the additive group
Z. In this case A has two generators, namely a, and a−1. If A is finite of order n, then A is
isomorphic to Z/n and A has φ(n) generators, namely {ai | 1≤ i≤ n−1, gcd(i,n) = 1}.
Lemma 2.3.26 shows that any homomorphism A→G of groups defined on A is completely
determined by the image of a generator. Necessary and sufficient conditions for the exis-
tence of a homomorphism A→ G are derived. In Theorem 2.3.27 we show that the group
of all automorphisms of a cyclic group of order n is isomorphic to the group of units mod-
ulo n. The group of automorphisms of an infinite cyclic group is a group of order two. As
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an application of these theorems on cyclic groups, we exhibit the classic proof by mathe-
matical induction that a finite abelian group of order n contains an element of order p if p
is a prime divisor of n (Theorem 2.3.28).

THEOREM 2.3.25. (Fundamental Theorem on Cyclic Groups) Let A = 〈a〉 be a cyclic
group. Then the following are true.

(1) A is abelian.
(2) Every subgroup of A is cyclic.
(3) Every homomorphic image of A is cyclic.
(4) There is a unique n≥ 0 such that A is isomorphic to Z/〈n〉.
(5) If n = 0, then

(a) A is infinite and
(b) A is isomorphic to Z.

(6) If n > 0, then
(a) A isomorphic to Z/n, hence A is finite of order n,
(b) if H is a subgroup of A, then |H| divides n,
(c) for every positive divisor d of n, A has a unique subgroup of order d, namely
〈an/d〉,

(d) if d is a positive divisor of n, then A has φ(d) elements of order d, where φ

is the Euler function.

PROOF. (4): Let θ : Z→ A be the function defined by θ(i) = ai. Since A is gen-
erated by a, θ is onto, by Lemma 2.2.5. Since θ(i+ j) = ai+ j = aia j = θ(i)θ( j), θ is
an epimorphism. By Theorem 2.2.15 there is a unique n ≥ 0 such that ker(θ) = 〈n〉. By
Theorem 2.3.12 (1), θ induces an isomorphism θ̄ : Z/〈n〉 → A.

(1): This follows from (4) and Exercise 2.3.15 (6).
(2) and (3) and (5): These follow from (4) and Theorems 2.2.15 and 2.3.13.
(6): Assume n> 0 and d is a positive divisor of n. By Lemma 2.2.16, |an/d |= d. Thus,

〈an/d〉, is a subgroup of order d. Now suppose |ax|= d. By Lemma 2.2.16, gcd(x,n)= n/d.
By Bézout’s Identity, Lemma 1.2.5, we can write n/d = xu+nv, for some u,v ∈ Z. Since
an/d = (ax)u(an)v = (ax)u we see that 〈an/d〉 ⊆ |ax|= d. Both groups have order d, hence
they are equal. By Lemma 2.2.16, the number of elements of order n in A is equal to
the cardinality of the set {x ∈ Z | 1≤ x≤ n and gcd(x,n) = 1}, which is equal to φ(n).
Therefore, the number of elements of order d in a cyclic group of order d is φ(d). �

LEMMA 2.3.26. Let A = 〈a〉 be a cyclic group and G any group.

(1) Let φ : A→ G be a homomorphism of groups. Then φ is completely determined
by the value φ(a).

(2) Let x ∈ G.
(a) If the order of A is infinite, then there is a homomorphism θ : A→G defined

by θ(a) = x.
(b) If A has finite order |A|= n, then there is a homomorphism θ : A→G defined

by θ(a) = x if and only if x has finite order |x|= d and d | n.

PROOF. (1): We have φ(ai) = φ(a)i.
(2): Part (a) was proved in the proof of Part (4) of Theorem 2.3.25. We prove Part (b).

Assume A is finite and |A| = n. If there is a homomorphism θ : A→ G, then by Exer-
cise 2.3.40 the order of θ(a) is a divisor of n. Conversely, assume |x| = d < ∞ and d | n.
By Theorem 2.3.25 there is an isomorphism A∼=Z/n defined by ai 7→ [i] and a commutative
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diagram
Z

β

!!

ηn

||
ηd
��

A
∼= // Z/n α // Z/d

∼= // 〈x〉 ⊆ // G

where β (1) = x, ηn and ηd are the natural maps, and α exists by Exercise 1.2.19. The
homomorphism θ is the composition of the four homomorphisms in the bottom row. �

THEOREM 2.3.27. Let n∈N be a positive integer. The group of automorphisms of the
cyclic group of order n is isomorphic to the group of units modulo n. That is,

Aut(Z/n)∼=Un

which is a group of order φ(n). The group of automorphisms of the infinite cyclic group Z
is isomorphic to the group of order two. That is,

Aut(Z)∼= {1,−1}.

PROOF. We utilize Theorem 2.3.25, Lemma 2.3.26, and Exercise 2.3.16. Let A = 〈a〉.
Given r ∈ Z, the rth power map on A is denoted πr : A→ A and is defined by πr(a) = ar.
If α : A→ A is an endomorphism of A, then α(a) = as for some integer s. Since

(3.1) α(at) = α(a)t = (as)t = ast

we see that α = πs. That is, every endomorphism of A is πr for some r ∈ Z. This also
shows πsπ t = πst . The image of πr is the subgroup 〈ar〉.

Case 1: Assume A is finite of order n. Then ar = as if and only if r≡ s (mod n). This
proves there are n distinct endomorphisms of A, namely {π0,π1, . . . ,πn−1}. The generators
of A are {ar | gcd(r,n) = 1}, which is a set of order φ(n). Since πr is one-to-one and onto
if and only if ar is a generator of A, this proves that there are φ(n) automorphisms of A,
namely {πr | 1≤ r ≤ n−1, gcd(r,n) = 1}. By Example 2.1.3, the group of units modulo
n is an abelian group of of order φ(n). Define θ : Aut(Z/n)→Un by θ(πr) = r. Then we
have shown that θ is an isomorphism of groups.

Case 2: Assume A is infinite. Then ar = as if and only if r = s. By Theorem 2.2.15,
the two generators of A are {a,a−1}. Therefore, the two automorphisms of A are π1 and
π−1. �

In general, if G is a finite group and p is a prime divisor of |G|, then G has an el-
ement of order p. This is known as Cauchy’s Theorem and we will eventually present
two proofs in Corollary 2.4.14 and Theorem 2.7.3. As an application of Theorem 2.3.25,
an abelian version of Cauchy’s Theorem is stated and proved in Theorem 2.3.28 below.
The proof is by induction on the order of G. The induction step uses Lagrange’s Theorem
(Corollary 2.2.12) and the fact that if N is a subgroup of G, then G/N is an abelian group
(Example 2.3.6). The key step in the induction argument is that an element of order p in
the quotient group G/N “lifts” to an element in G whose order is a multiple of p.

THEOREM 2.3.28. (Cauchy’s Theorem for Abelian Groups) Let G be a finite abelian
group and p a prime number. If p divides |G|, then G contains an element of order p.

PROOF. The proof is by induction on the order of G. Let n = |G|. Since p divides n,
we know n > 1. If p = |G|, then by Exercise 2.2.28, there exists a ∈ G such that G = 〈a〉,
hence |a| = p. Inductively assume n is composite and that the result holds for all abelian
groups of order less than n. By Corollary 2.2.19, we know G has a proper subgroup, call
it N. If p divides |N|, then by our induction hypothesis, N has an element of order p.



3. HOMOMORPHISMS AND NORMAL SUBGROUPS 45

Therefore, assume p does not divide |N|. Since G is abelian, by Example 2.3.6, N is a
normal subgroup and G/N is abelian. By Corollary 2.2.12, p divides |N|[G : N]. Since p
does not divide |N|, we have p divides [G : N]. By our induction hypothesis, G/N has an
element of order p. Suppose b ∈ G and bN has order p in G/N. Since G is finite, b has
finite order. By Exercise 2.3.40, p divides the order of b. By Theorem 2.3.25, 〈b〉 contains
an element of order p. �

EXAMPLE 2.3.29. In this example we show that up to isomorphism there are exactly
two groups of order six. By Example 2.1.3, we know that Z/6 is an abelian group of
order six. We know from Example 2.1.14 that the symmetric group on 3 letters, S3, is a
nonabelian group of order 6. Let G be a group of order six. Let a ∈ G and set A = 〈a〉. By
Corollary 2.2.17, |a| ∈ {1,2,3,6}. If G has an element of order 6, then by Theorem 2.3.25,
G is isomorphic to Z/6. Assume from now on that G has no element of order 6. For
contradiction’s sake, suppose G has no element of order 3. Then every element of G
satisfies x2 = e. By Exercise 2.1.25, G is abelian and there exists a ∈ G such that |a| = 2.
Then A = 〈a〉 is normal and G/A has order three. By Exercise 2.3.40, if the generator of
G/A is bA, then b has order 3 or 6, a contradiction. We have shown that G has an element
a of order 3. If A = 〈a〉, then by Exercise 2.3.22, A is the unique subgroup of order 3. Then
G−A consists of elements of order 2. Let b ∈ G−A. The coset decomposition of G is
A∪ bA = {e,a,a2}∪{b,ba,ba2}. Since [G : A] = 2, by Exercise 2.3.17 A is normal. By
Lemma 2.3.4, bA = Ab. Therefore, ab ∈ {b,ab,a2b}. We know ab 6= b since a 6= e. If
ba = ab, then by Lemma 2.2.16, |ab|= 6, a contradiction. Therefore, ab = a2b. We have
proved that G = {e,a,a2,b,ab,a2b} where a3 = b2 = e and ab = a2b. The reader should
verify that the assignments a 7→ (123), a2 7→ (132), b 7→ (12), ab 7→ (13), and a2b 7→ (23)
define an isomorphism G∼= S3.

3.5. The center of a group. The center of a group is defined and as an exercise the
reader is asked to prove that the center is a normal subgroup. As examples, we compute
the center of the quaternion 8-group, the dihedral groups, the symmetric groups, and the
general linear group of 2-by-2 matrices over a field.

DEFINITION 2.3.30. Let G be a group. The center of G, denoted Z(G), is defined
to be {x ∈ G | xa = ax for all a ∈ G}. In Exercise 2.3.38 the reader is asked to prove that
Z(G) is a normal subgroup of G.

EXAMPLE 2.3.31. Let Q8 be the quaternion 8-group of Example 2.1.18. In Exer-
cise 2.4.19 the reader is asked to prove that the center of Q8 is the unique subgroup of
order two.

EXAMPLE 2.3.32. Let n ≥ 3 and let Dn be the dihedral group (see Example 2.1.16).
Then Dn is the group of symmetries of a regular n-gon. If H is the horizontal flip and R
the rotation, then Dn = {H iR j | 0 ≤ i ≤ 1,0 ≤ j < n} is a nonabelian group of order 2n.
The relations H2 = Rn = e and HRH = R−1 hold. Hence the conjugate of R by H is R−1.
We show that if n = 2k is even, then Z(Dn) is the subgroup of order two generated by Rk.
Conjugation by H is an automorphism, so if 0 < i < n, then HRiH = R−i. We see that Ri

is in Z(Dn) if and only if Ri = R−i, which is true if and only if i = 0 or n = 2k is even and
i = k. It follows that the center of Dn = 〈e〉 if n is odd. In summary, we have shown that

Z(Dn) =

{
〈Rn/2〉 if n is even
〈e〉 if n is odd.
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EXAMPLE 2.3.33. Let n ≥ 3 and let Sn be the symmetric group on n letters (see
Example 2.1.14). We show that Z(Sn) = 〈e〉. Let π ∈ Sn and assume π 6= e. First assume
π(a) = b and π(b) = c, where a,b,c are distinct. Let τ be the 2-cycle (ab). Then πτ(a) =
π(b) = c and τπ(a) = τ(b) = a, which shows π is not central. Now suppose π(a) = b and
π(b) = a. Let σ be the 2-cycle (bc), where a,b,c are distinct. Then πσ(a) = π(a) = b and
σπ(a) = σ(b) = c, which shows π is not central. If π 6= e, then π falls into one of these
two cases. This shows Z(Sn) = 〈e〉.

EXAMPLE 2.3.34. Let F be a field and GLn(F) the general linear group of invertible
n-by-n matrices over F . For instance, if n = 1, then GL1(F) is simply the set F −{0} of
invertible elements in F , which we denote F∗. If n = 2, then

GL2(F) =

{(
a b
c d

)
| ad−bc 6= 0

}
.

To compute the center, assume
(

a b
c d

)
is a central matrix. Then(

0 1
1 0

)(
a b
c d

)(
0 1
1 0

)
=

(
d c
b a

)
shows that a = d and b = c. Now(

1 −1
0 1

)(
a b
b a

)(
1 1
0 1

)
=

(
a−b 0

b a+b

)
shows that b = 0. Therefore, a central matrix is diagonal. It is routine to show that a

diagonal matrix
(

a 0
0 a

)
is central. This computation shows that Z(GL2(F)) is equal

to
{(

a 0
0 a

)
| a ∈ F∗

}
. If we define δ : F∗ → GL2(F) to be the diagonal map, δ (x) =(

x 0
0 x

)
, then δ is a monomorphism and im(δ ) = Z(GL2(F)). The quotient, GL2(F)/F∗,

is denoted PGL2(F) and is called the projective general linear group of 2-by-2 matrices
over F .

EXAMPLE 2.3.35. Let F be a field. Let det : GL2(F)→ F∗ be the determinant func-

tion, where det
(

a b
c d

)
= ad− bc. In Example 2.1.20 we showed that det is an epimor-

phism on multiplicative groups. This is proved in Lemma 4.6.5 below for all n. The kernel,
ker(det), which is the set of all matrices with determinant equal to 1, is denoted SL2(F)
and is called the special linear group of 2-by-2 matrices over F . By Theorem 2.3.12 (a)
there is an isomorphism of groups

GL2(F)/SL2(F)∼= F∗.

See Exercise 2.5.15 for a computation of SL2(Z/3).

EXAMPLE 2.3.36. As in Example 2.1.14, the group of permutations of the set {1,2,3}
is

S3 = {e,(123),(132),(12),(13),(23)}
and is called the symmetric group on 3 elements. The group S3 is isomorphic to D3, the
group of symmetries of an equilateral triangle (see Example 2.1.15). Also, S3 is isomor-
phic to GL2(Z/2), the group of invertible 2-by-2 matrices over the field of order 2 (see
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Exercise 2.1.26). The group table for S3 is listed in Example 2.1.14. The cyclic subgroups
of S3 are:

〈e〉= {e}
〈(123)〉= 〈(132)〉= {e,(123),(132)}

〈(12)〉= {e,(12)}
〈(13)〉= {e,(13)}
〈(23)〉= {e,(23)}

Since S3 is a subgroup of itself, there are exactly 6 subgroups. The center of S3 is the trivial
subgroup 〈e〉, by Example 2.3.33. The commutator subgroup (see Exercise 2.3.42) of S3
is the cyclic subgroup 〈(123)〉, by Exercise 2.3.43. There is one subgroup of order 6, one
subgroup of order 3, three subgroups of order 2, and one subgroup of order 1. The three
elements of order 2 are not central, hence the subgroups of order 2 are not normal. The
commutator subgroup and the trivial subgroups are normal. The subgroup lattice of S3 is

S3

〈(123)〉

〈(12)〉 〈(13)〉 〈(23)〉

〈e〉

EXAMPLE 2.3.37. In Example 2.1.16 we defined the dihedral group Dn as the group
of symmetries of a regular n-gon. For instance, if n = 4, the dihedral group

D4 = {e,(1234),(13)(24),(1432),(13),(24),(12)(34),(14)(23)}

is a group of order 8 and is the group of symmetries of a square. In this example we use
cycle notation, so R = (1234) represents a rotatation of the square through an angle of 90
degrees. The horizontal flip that fixes vertex 1 is H = (24). The multiplicative powers of
each element of D4 are given in the rows of the following table. The order of the element
is listed in the last column.

x x2 x3 x4 |x|
e 1

(1234) (13)(24) (1432) e 4
(13)(24) e 2
(1432) (13)(24) (1234) e 4
(13) e 2
(24) e 2

(12)(34) e 2
(14)(23) e 2

There are 2 elements of order 4, 5 elements of order 2, and 1 element of order 1. Each
element of order 2 generates a cyclic subgroup of order 2. The elements of order 4 are
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inverses of each other and generate the only cyclic subgroup of order 4 in D4. There are
two more subgroups of order 4 that are not cyclic:

〈(13),(24)〉= {e,(13),(13)(24),(24)}
〈(12)(34),(14)(23)〉= {e,(12)(34),(13)(24),(14)(23)}.

The trivial subgroups 〈e〉 and D4 are normal. The three subgroups of order 4 are normal,
by Exercise 2.3.17. The center of D4 is the cyclic subgroup 〈(13)(24)〉 and is normal,
by Exercise 2.3.38. The commutator subgroup of D4 is the cyclic subgroup 〈(13)(24)〉,
by Exercise 2.3.43. The only subgroups of D4 that are not normal are the four cyclic
subgroups of order 2 that are not central. The subgroup lattice of D4 is

D4

〈(13),(24)〉 〈(1234)〉 〈(12)(34),(14)(23)〉

〈(13)〉 〈(24)〉 〈(13)(24)〉 〈(12)(34)〉 〈(14)(23)〉

〈e〉

where a line indicates set containment.

3.6. Exercises.

EXERCISE 2.3.38. Let G be a group. As in Definition 2.3.30, the center of G is the
set Z(G) = {x ∈ G | xy = yx for every y ∈ G}. Prove the following:

(1) Z(G) is an abelian group.
(2) Z(G) is a normal subgroup of G.
(3) If H and K are groups, then Z(H×K) = Z(H)×Z(K).
(4) If G/Z(G) is a cyclic group, then G is abelian.

EXERCISE 2.3.39. Let G be a group and Aut(G) the group of all automorphisms of
G. As in Exercise 2.3.19, for every a ∈ G, let αa : G→ G be defined by αa(x) = a−1xa.
Define θ : G→ Aut(G) by θ(a) = αa−1 . Show that θ is a homomorphism of groups. The
image of θ is called the group of inner automorphisms of G. Show that ker(θ) is equal to
Z(G), the center of G. Conclude that the group of inner automorphisms of G is isomorphic
to G/Z(G).

EXERCISE 2.3.40. Let θ : G→ G′ be a homomorphism of groups and x ∈ G an ele-
ment of finite order. Show that |θ(x)| divides |x|.

EXERCISE 2.3.41. Let n be a positive integer. Prove that ∑d|n φ(d) = n. See Defini-
tion 1.2.15 for the notation ∑d|n. (Hint: Apply Theorem 2.3.25.)

EXERCISE 2.3.42. Let G be a group. The commutator subgroup of G is the subgroup
of G generated by the set {xyx−1y−1 | x,y ∈ G} and is denoted G′. Prove:

(1) G′ is a normal subgroup of G.
(2) G/G′ is abelian.
(3) If N is a normal subgroup of G such that G/N is abelian, then G′ ⊆ N.
(4) If H is a subgroup of G and G′ ⊆ H, then H is normal in G.
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EXERCISE 2.3.43. Let G = Dn be the dihedral group of order 2n. Compute the com-
mutator subgroup G′ (see Exercise 2.3.42). (Hint: If σ = (123 · · ·n), show that G′ is the
cyclic group generated by σ2.)

EXERCISE 2.3.44. Let

σ =

[
1 2 3 4 5 6 7
4 6 1 5 3 7 2

]
, τ =

[
1 2 3 4 5 6 7
5 2 4 3 6 1 7

]
be permutations in S7. Compute τστ−1. Write σ , τ , τστ−1 using cycle notation. Show
that σ factors into a 4-cycle times a 3-cycle. Show that τστ−1 factors into a 4-cycle times
a 3-cycle. This is a special case of Lemma 2.6.6.

EXERCISE 2.3.45. Let G be a group and X ⊆ G. Let S be the set of all normal
subgroups H in G such that X ⊆H. Prove that N =

⋂
H∈S H is a subgroup of G satisfying:

(1) N is a the smallest normal subgroup of G containing X .
(2) N is equal to the subgroup of G generated by the set

⋃
g∈G gXg−1.

We call N the normal subgroup of G generated by X .

EXERCISE 2.3.46. Let F be a field and G = GL2(F) the general linear group of 2-
by-2 matrices over F . Show that the commutator subgroup G′ (see Exercise 2.3.42) is a
subgroup of the special linear group SL2(F) (see Example 2.3.35). For a continuation of
this example, see Exercise 2.3.50.

EXERCISE 2.3.47. Let GL2(F) be the general linear group of invertible 2-by-2 matri-
ces over the field F and det : GL2(F)→ F∗ the determinant function (see Example 2.1.20).
Consider the following sets consisting of upper triangular matrices in GL2(F):

U =

{(
a b
0 d

)
∈M2(F) | ad 6= 0

}
,

D =

{(
1 b
0 1

)
∈M2(F) | b ∈ F

}
.

(1) Show that U is a subgroup of GL2(F).
(2) Show that det : U → F∗ is an epimorphism of groups and describe the kernel as

a set of matrices.
(3) Show that D is isomorphic to (F,+), the additive group of the field F .
(4) Show that D is a normal subgroup of U and U/D∼= F∗×F∗.
(5) Show that D is equal to the commutator subgroup of U (see Exercise 2.3.42).

For a continuation of this example, see Exercise 2.3.48.

EXERCISE 2.3.48. As in Exercise 2.3.47, let F be a field, GL2(F) the general linear
group of 2-by-2 matrices over F , and U the subgroup of GL2(F) consisting of all upper
triangular invertible matrices.

(1) Define θ : U → F∗ by θ

(
a b
0 d

)
= d. Show that θ is a group epimorphism. Let

T = kerθ . Describe T as a set of matrices.
(2) Show that

W =

{(
a 0
0 1

)
∈M2(F) | a ∈ F∗

}
is a subgroup of U . Assume F 6=Z/2. In other words, assume F contains at least
three elements. Show:
(a) W is not a normal subgroup of U .
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(b) The normal subgroup of U generated by W (for this terminology, see Exer-
cise 2.3.45) is the group T of Part (1).

For a continuation of this example, see Exercise 2.5.21.

EXERCISE 2.3.49. Let C∗ be the group of all nonzero complex numbers under multi-
plication and S1 = {z ∈C | |z|= 1} the subgroup of all complex numbers of absolute value
1 (see Exercise 2.3.21). Show that the quotient group C∗/S1 is isomorphic to (R>0, ·), the
multiplicative abelian group of positive real numbers.

EXERCISE 2.3.50. This exercise is a continuation of Exercise 2.3.46. Let F be a field
and assume F 6= Z/2. In other words, assume F is a field that has at least three elements.
Show that the commutator subgroup of GL2(F), the general linear group of 2-by-2 matrices
over F , is equal to SL2(F), the special linear group. (Although the proof is relatively long
and tedious, it is elementary and involves only material already covered in this book.)

EXERCISE 2.3.51. Let Q8 be the quaternion 8-group of Example 2.1.18 and D4 the
dihedral group of Example 2.1.16. Let C4 be a cyclic group of order 4. For each of the
following statements, either exhibit an example to substantiate the claim, or prove that the
claim is false.

(1) There exists a monomorphism of groups C4→ Q8.
(2) There exists an epimorphism of groups Q8→C4.
(3) There exists a monomorphism of groups C4→ D4.
(4) There exists an epimorphism of groups D4→C4.

4. Group actions

4.1. Group actions, orbits and stabilizers.

LEMMA 2.4.1. Let G be a group and S a nonempty set. The following are equivalent.

(1) There is a homomorphism of groups θ : G→ Perm(S).
(2) There is a function G× S → S, where the image of the ordered pair (g,x) is

denoted g∗ x, and the properties
(a) (associative law) (g1g2)∗ x = g1 ∗ (g2 ∗ x) for all g1,g2 ∈ G, x ∈ S and
(b) (e ∈ G acts as the identity function) e∗ x = x, for all x ∈ S

are satisfied.

PROOF. (1) implies (2): Instead of θ(g)(x) we will write g ∗ x. The assignment
(g,x) 7→ g∗ x defines a function G×S→ S. Then

(g1g2)∗ x = θ(g1g2)(x)

= θ(g1)(θ(g2)(x))

= g1 ∗ (g2 ∗ x)

and e∗ x = θ(e)(x) = 1S(x) = x.
(2) implies (1): For each g ∈ G, define λg : S→ S to be the “left multiplication by g”

function defined by λg(x) = g ∗ x. Since g ∗ g−1 = g−1 ∗ g = e, λg is a permutation of S.
Define θ : G→ Perm(S) by θ(g) = λg. The associative law implies θ(g1g2) = θ(g1)θ(g2),
so θ is a homomorphism. �

In light of Lemma 2.4.1 we make the following definition.
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DEFINITION 2.4.2. Let G be a group and S a nonempty set. We say G acts on S as a
group of permutations, if there is a homomorphism of groups θ : G→ Perm(S). If g ∈ G
and x ∈ S, instead of θ(g)(x) we usually write g ∗ x. If θ is one-to-one, then the group
action is said to be faithful.

EXAMPLE 2.4.3. Let G be a group. As in Example 2.1.7, if a ∈ G, then λa : G→ G
is the “left multiplication by a” function and λa is a permutation of the set G. Since
λab = λaλb, the assignment a 7→ λa defines a homomorphism of groups λ : G→ Perm(G).
Proposition 2.1.6 shows that λ is one-to-one.

THEOREM 2.4.4. (Cayley’s Theorem) A finite group of order n is isomorphic to a
subgroup of the symmetric group Sn.

PROOF. Let G = {g1, . . . ,gn} be a fixed enumeration of the elements of G. Then we
can identify Perm(G) with the symmetric group Sn. By Example 2.4.3, G is isomorphic to
a subgroup of Sn. �

EXAMPLE 2.4.5. Let G be a group and H a subgroup. If xH = yH, then axH = ayH
because (ax)−1ay = x−1y ∈ H. So a ∈ G and xH ∈ G/H, then a∗ xH = (ax)H defines an
action by G on the set G/H by left multiplication. The reader should verify that the criteria
of Lemma 2.4.1 (2) are satisfied.

LEMMA 2.4.6. Let H and K be groups. The following are equivalent.
(1) There is a homomorphism of groups θ : K→ Aut(H).
(2) There is a function K×H → H, where the image of the ordered pair (k,x) is

denoted k ∗ x, and the properties
(a) (associative law) (k1k2)∗ x = k1 ∗ (k2 ∗ x) for all k1,k2 ∈ k, x ∈ H and
(b) (e ∈ K acts as the identity function) e∗ x = x, for all x ∈ H
(c) (distributive law) k ∗ (xy) = (k ∗ x)(k ∗ y) for all k ∈ K, x,y ∈ H.

are satisfied.

PROOF. (1) implies (2): We identify Aut(H) with a subgroup of Perm(H). Then by
Lemma 2.4.1, K acts on H as a group of permutations. The action by K on H is defined by
k ∗ x = θ(k)(x) and properties (a) and (b) are satisfied. The distributive law follows from
the fact that θ(k) is a homomorphism if k ∈ K.

(2) implies (1): By Lemma 2.4.1, K→ Perm(H) is a homomorphism of groups, where
k 7→ λk. For k ∈ K, λk is a permutation of H. The distributive law implies λk is a homo-
morphism. �

In light of Lemma 2.4.6 we make the following definition.

DEFINITION 2.4.7. Let H and K be groups. We say K acts on H as a group of
automorphisms, if there is a homomorphism of groups θ : K→ Aut(H).

EXAMPLE 2.4.8. Let G be a group. If g ∈ G, then αg is the inner automorphism of
G defined by conjugation by g. That is, αg(x) = g−1xg. By Exercise 2.3.39, there is a
homomorphism of groups G→ Aut(G) defined by a 7→ αa−1 . More generally, if N is a
normal subgroup of G, and g ∈ G, then αg restricts to an automorphism of N. Therefore
there is a homomorphism G→ Aut(N) defined by a 7→ αa−1 . See Exercise 2.4.16 for a
continuation of this example.

DEFINITION 2.4.9. Let G be a group acting as a group of permutations of a nonempty
set X . Define a relation∼ on X by the rule x∼ y if y = g∗x for some g ∈G. Then x = e∗x
implies x∼ x, and if y = g∗ x, then x = g−1 ∗ y. Moreover, if y = g1 ∗ x and z = g2 ∗ y, then
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z = g2g1 ∗ x. This proves that ∼ is an equivalence relation on X . The equivalence class
of x is called the orbit of x. The orbit of x is equal to G ∗ x = {g ∗ x | g ∈ G}. The set of
orbits is denoted X/G. If x ∈ X , then the stabilizer of x in G is Gx = {g ∈ G | g ∗ x = x}.
By Theorem 2.4.10, Gx is a subgroup of G, therefore, Gx is sometimes called the subgroup
fixing x. If Gx =G, then we say x is fixed by G. The set X0 = {x∈X | g∗ x = x for all g ∈ G}
is the set of all x in X that are fixed by G.

THEOREM 2.4.10. Let G be a group acting on a nonempty set X. If x ∈ X, then Gx,
the stabilizer of x in G satisfies the following properties.

(1) Gx is a subgroup of G.
(2) The length of the orbit G∗ x is equal to the index [G : Gx].

PROOF. (1): Since e ∈ Gx, we have Gx 6= /0. If a,b ∈ Gx, then ab ∗ x = a ∗ (b ∗ x) =
a∗ x = x, hence ab ∈ Gx. If a∗ x = x, then x = a−1 ∗ x. This proves Gx is a subgroup of G.

(2): We show that there is a one-to-one correspondence between the set of left cosets
of Gx in G and the set G∗x. Define a function f : G→G∗x by f (g) = g∗x. Then f is onto.
Define a relation on G by the rule: g≈ h if and only if f (g) = f (h). By Exercise 1.1.14, ≈
is an equivalence relation. Notice that g≈ h if and only if g−1h ∈ Gx, which is equivalent
to g≡ h (mod Gx). Therefore, f̄ : G/Gx→ G∗ x is a one-to-one correspondence. �

4.2. Conjugates and the Class Equation.

EXAMPLE 2.4.11. Let G be a group and X = 2G the power set of G. If S is a subset
of G, and a ∈ G, then a ∗ S = aSa−1 defines an action by G on X . The associative law is
ab∗S = abS(ab)−1 = a(bSb−1)a−1 = a∗ (b∗S). The stabilizer of S in G is usually called
the normalizer of S in G and is denoted NG(S) = {a∈G | aSa−1 = S}. The orbit of S under
this action is the set {a−1Sa | a ∈ G} of all distinct conjugates of S by elements of G.

PROPOSITION 2.4.12. Let G be a group and S a subset of G. The normalizer of S in
G satisfies the following properties.

(1) NG(S) is a subgroup of G.
(2) If H is a subgroup of G, then NG(H) is the largest subgroup of G containing H

as a normal subgroup.
(3) The number of distinct conjugates of S by elements in G is [G : NG(S)].

PROOF. (1) and (3): These follow from Theorem 2.4.10.
(2): Since H is a subgroup, a−1Ha = H for all a ∈ H. Therefore, H ⊆ NG(H). If

x ∈ NG(H), then x−1Hx = H. Therefore, H is normal in NG(H). Suppose H ≤ K ≤ G and
H is a normal subgroup of K. For all x ∈ K, x−1Hx = H, hence K ⊆ NG(H). �

Let G be a group acting on itself by conjugation. If x ∈ G, the orbit of x is Cx =
{a−1xa | a ∈ G} and is called the conjugacy class of x. The number of conjugates of x
is the length of the orbit Cx. By Theorem 2.4.10, |Cx| = [G : NG(x)]. If x is in Z(G), the
center of G, then NG(x) = G and Cx = {x}. Since |G| is finite, there are a finite number
of conjugacy classes. If x1, . . . ,xn is a full set of representatives for the conjugacy classes
that are not in Z(G), then G = Z(G)∪ (G−Z(G)) = Z(G)∪

(
∪n

i=1Cxi

)
is a disjoint union.

Taking cardinalities of both sides of this equation yields the next corollary.

COROLLARY 2.4.13. (The Class Equation) Let G be a finite group and x1, . . . ,xn a
full set of representatives for the conjugacy classes that are not in Z(G). Then

|G|= |Z(G)|+
n

∑
i=1

[G : NG(xi)].
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As an application of Corollary 2.4.13, we prove Cauchy’s Theorem. Recall that we
already proved Theorem 2.3.28, which is the abelian version of this result. A second more
concise proof of Cauchy’s Theorem is given below in Theorem 2.7.3.

COROLLARY 2.4.14. (Cauchy’s Theorem) Let G be a finite group of order n and p a
prime divisor of n. Then G contains an element of order p.

PROOF. The proof is by induction on n. If G is abelian, then G has an element of
order p, by Theorem 2.3.28. Inductively assume n≥ 6, G is nonabelian, and that the result
holds for any group of order less than n. Let x1, . . . ,xm be a full set of representatives for
the conjugacy classes that are not in Z(G). By our induction hypothesis, m ≥ 1. Solving
the Class Equation of Corollary 2.4.13 for |Z(G)|, we have

(4.1) |Z(G)|= |G|−
m

∑
i=1

[G : NG(xi)].

For each xi, NG(xi) is a proper subgroup of G. If p divides |NG(xi)| for some i, then by
our induction hypothesis, there is an element of order p in NG(xi). Therefore, assume for
every i that p does not divide |NG(xi)|. By Corollary 2.2.12, |G| = |NG(xi)|[G : NG(xi)].
Since p divides |G| and p does not divide |NG(xi)|, we have p divides [G : NG(xi)], for
every i. Therefore, p divides the right hand side of (4.1). Hence p divides |Z(G)|. By
Theorem 2.3.28, we know that Z(G) has an element of order p. �

4.3. Exercises.

EXERCISE 2.4.15. Let H and K be groups. Recall (Definition 2.4.7) that we say K acts
as a group of automorphisms of H if there is a homomorphism of groups θ : K→Aut(H).
In this case, write k ∗ x instead of θ(k)(x). Prove the following:

(1) k ∗ e = e for all k ∈ K.
(2) (k ∗ x)−1 = k ∗ x−1 for all k ∈ K, x ∈ H.

EXERCISE 2.4.16. Let G be a group containing a normal subgroup N. Let K be an
arbitrary subgroup of G. Generalize Example 2.4.8 by showing that K acts on N as a group
of automorphisms. Specifically, show that if k ∈ K and x ∈ N, then k ∗ x = kxk−1 defines
an action by K on N as a group of automorphisms.

EXERCISE 2.4.17. (Semidirect product) As in Definition 2.4.7, let H and K be groups
and assume K acts on H as a group of automorphisms. Define a binary operation on H×K
by the rule:

(x1,k1)(x2,k2) = (x1(k1 ∗ x2),k1k2).

(1) Show that the binary operation defined above makes H×K into a group where
the identity element is (e,e) and the inverse of (x,k) is (k−1 ∗ x−1,k−1). This
group is denoted H oK and is called the semidirect product of H and K.

(2) Show that N = {(x,e) | x ∈ H} is a normal subgroup of H oK and the quotient
(H oK)/N is isomorphic to K. Show that H is isomorphic to N.

(3) Show that C = {(e,k) | k ∈ K} is a subgroup of H oK and K is isomorphic to C.

EXERCISE 2.4.18. Let G be a group containing subgroups N and K satisfying:
(1) G = NK,
(2) N is normal in G, and
(3) N∩K = 〈e〉.

As in Exercise 2.4.16, let K act on N by conjugation. Prove that the semidirect product
N oK (see Exercise 2.4.17) is isomorphic to G.
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EXERCISE 2.4.19. Let Q8 = {±1,±i,± j,±k} be the quaternion 8-group of Exam-
ple 2.1.18. Show that every subgroup of Q8 is normal. Let Z denote the center of Q8.
Show that Z is a group of order two and is contained in every nontrivial subgroup of Q8.
Show that Q8 is not a semidirect product of two subgroups.

EXERCISE 2.4.20. Let m,n ∈ N be positive integers. Show that there are gcd(m,n)
distinct homomorphisms from Z/m to Z/n. See Exercises 3.1.17 and 2.8.12 for a contin-
uation of this exercise.

EXERCISE 2.4.21. If n ≥ 3, show that the dihedral group Dn is isomorphic to the
semidirect product of a cyclic subgroup of order n and a cyclic subgroup of order two.

EXERCISE 2.4.22. Let p be an odd prime. Let G be a group of order 2p. Show that
G has a unique subgroup of order p. Denote by P the subgroup of G of order p. Show
that G is isomorphic to the semidirect product of P and a cyclic subgroup of order two that
acts on P by conjugation. Show that G is isomorphic to either the cyclic group Z/2p or the
dihedral group Dp.

EXERCISE 2.4.23. Show how to construct a nonabelian group of order 9 · 37 that
contains a cyclic subgroup of order 9 and a cyclic subgroup of order 37.

EXERCISE 2.4.24. Let G be a group acting on a set X (see Definition 2.4.2). Let
G0 = {g ∈ G | g∗ x = x for all x ∈ X}. Show that G0 is a normal subgroup of G.

EXERCISE 2.4.25. Let G be a group and H a subgroup of G. As in Example 2.4.5,
G acts on G/H by left multiplications. By Lemma 2.4.1, there is a a homomorphism of
groups θ : G→ Perm(G/H). As in Exercise 2.4.24, denote the kernel of θ by G0. Show
that G0 is a normal subgroup of G contained in H.

EXERCISE 2.4.26. Let p be a prime and G be a group of order p2. Apply Exer-
cise 2.4.25 to show that every subgroup of G is normal. If G has order pr, r > 1, show that
every subgroup of order pr−1 is normal in G.

EXERCISE 2.4.27. Let p and q be primes such that q ≡ 1 (mod p). Show how to
construct a nonabelian group of order pq.

EXERCISE 2.4.28. Let Q8 = {±1,±i,± j,±k} be the quaternion 8-group of Exam-
ple 2.1.18. Show that Q8 = {1}∪{−1}∪{±i}∪{± j}∪{±k} is the decomposition of Q8
into conjugacy classes.

EXERCISE 2.4.29. The group of symmetries of a square is

D4 = {e,(1234),(13)(24),(1432),(12)(34),(14)(23),(13),(24)}.
Show that D4 = {e}∪{(13)(24)}∪{(1234),(1432)}∪{(24),(13)}∪{(12)(34),(14)(23)}
is the decomposition of D4 into conjugacy classes.

EXERCISE 2.4.30. The group of symmetries of a regular pentagon is
D5 = {e,(12345),(13524),(14253),(15432),

(25)(34),(15)(24),(13)(45),(12)(35),(14)(23)}.
Show that

D5 = {e}∪{(12345),(15432)}∪{(13524),(14253)}
∪{(25)(34),(15)(24),(13)(45),(12)(35),(14)(23)}

is the decomposition of D5 into conjugacy classes.
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EXERCISE 2.4.31. Show how to construct two nonisomorphic nonabelian groups of
order 40 each of which is a semidirect product of two cyclic groups.

EXERCISE 2.4.32. Let G be a finite group and H a subgroup of G. Suppose the only
normal subgroup of G contained in H is 〈e〉. Show that G is isomorphic to a subgroup of
Sn, where n = [G : H]. (Hint: Exercise 2.4.25.)

EXERCISE 2.4.33. For the following choices of p and q, show how to construct a
nonabelian group of order pq which is a semidirect product of two cyclic groups.

(1) p = 5, q = 11.
(2) p = 7, q = 29.

EXERCISE 2.4.34. Let p be a prime number and n an integer such that 0 < n < p. If
G is a finite group of order pn and P is a subgroup of order p, then P is normal. (Hint:
Exercise 2.4.25.)

5. Direct products

5.1. External direct product.

DEFINITION 2.5.1. Let I be an index set and {Gi | i ∈ I} a family of multiplicative
groups indexed by I. Although the groups Gi in general are not equal as sets and have no
common elements, we abuse notation and use the same symbol e to denote the identity
element of each group Gi. The cartesian product is ∏i∈I Gi = { f : I→∪i∈I | f (i) ∈ Gi}.
The cartesian product is a group if the binary operation is defined to be coordinate-wise
multiplication: ( f g)(i) = f (i)g(i). The identity element is the constant function e(i) = e
and the inverse of f is defined by f−1(i) = ( f (i))−1, the coordinate-wise inverse. The
group ∏i∈I Gi is called the direct product. Sometimes ∏i∈I Gi is called the external direct
product to distinguish it from the construction in Definition 2.5.3 below. For every k ∈ I
there is a canonical injection map ιk : Gk→∏i∈I Gi which maps x ∈ Gk to ιk(x), where

ιk(x)(i) =

{
x if i = k
e otherwise.

The canonical projection map is πk : ∏i∈I Gi→Gk where πk( f ) = f (k). The reader should
verify that ιk is a monomorphism, πk is an epimorphism and πkιk = 1Gk .

When I = {1, . . . ,n} is a finite set, the direct product is identified with the set of n-
tuples {(x1, . . . ,xn) | xi ∈ Gi} and it is written G1× ·· · ×Gn or ∏

n
i=1 Gi. Multiplication

is defined coordinate-wise, hence (x1, . . . ,xn)(y1, . . . ,yn) = (x1y1, . . . ,xnyn). The identity
element is (e, . . . ,e), and (x1, . . . ,xn)

−1 is (x−1
1 , . . . ,x−1

n ).

THEOREM 2.5.2. (Chinese Remainder Theorem) Let m and n be positive integers and
let

ψ : Z→ Z/m×Z/n

be defined by ψ(x) = (ηm(x),ηn(x)), where ηm : Z→ Z/m and ηn : Z→ Z/n are the
natural maps. Then the following are true:

(1) ker(ψ) = 〈M〉, where M = lcm(m,n).
(2) ψ is onto if and only if gcd(m,n) = 1.
(3) Z/m×Z/n is cyclic if and only if gcd(m,n) = 1.

PROOF. (1): Since ηm and ηn are homomorphisms, it is routine to verify that ψ is
a homomorphism. By Theorem 2.2.15, the kernel of ηm is mZ and the kernel of ηn is
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nZ. We see that ker(ψ) = ker(ηm)∩ ker(ηn) is equal to {x ∈ Z | m | x and n | x}. By
Theorem 2.2.15, ker(ψ) is generated by M = lcm(m,n).

(2): Let d = gcd(m,n). By Proposition 1.2.10, Md = mn. By Theorem 2.3.12, im(ψ)
is isomorphic to Z/M, which has order M. We see that ψ is onto if and only if M = mn,
which is true if and only if d = 1.

(3): If d = 1, then the direct product Z/m×Z/n is cyclic by (2). Assume d > 1. To
show the direct product is not cyclic, we show that it contains more than φ(d) elements
of order d and apply Theorem 2.3.25 (6). Let A = {x ∈ Z/m | |x| = d}. Then |A| = φ(d).
If x ∈ A, then by an application of Lemma 2.2.16 (5) we see that (x,0) has order d in the
direct product. Likewise, if B = {y ∈ Z/n | |y| = d}, then |B| = φ(d) and (0,y) has order
d, for each y ∈ B. Therefore, the direct product contains at least 2φ(d) elements of order
d. This proves (3). �

5.2. Internal direct product.

DEFINITION 2.5.3. Let G be a group and N1,N2, . . . ,Nm a collection of subgroups of
G satisfying:

(1) Ni is a normal subgroup of G for each i,
(2) G = N1N2 · · ·Nm, and
(3) if xi ∈ Ni for each i and e = x1x2 · · ·xm, then xi = e for each i.

Then we say G is the internal direct product of N1, . . . ,Nm.

LEMMA 2.5.4. Suppose G is the internal direct product of N1,N2, . . . ,Nm. Then the
following are true.

(1) If i 6= j, then Ni∩N j = 〈e〉.
(2) If i 6= j, xi ∈ Ni, x j ∈ N j, then xix j = x jxi.
(3) For each i let xi,yi ∈ Ni. If x = x1x2 · · ·xm, and y = y1y2 · · ·ym, then

(a) xy = (x1y1)(x2y2) · · ·(xmym), and
(b) x−1 = x−1

1 x−1
2 · · ·x−1

m .
(4) If x ∈ G, then x has a unique representation as a product x = x1x2 · · ·xm, where

xi ∈ Ni for each i.
(5) G is isomorphic to the (external) direct product N1×N2×·· ·×Nm.

PROOF. (1): Let x∈Ni∩N j. Assume 1≤ i< j≤m. In the product N1 · · ·Ni · · ·N j · · ·Nm
we have

e = e · · ·x · · ·x−1 · · ·e
where the ith factor is x, the jth factor is x−1, and all other factors are the group identity e.
By the uniqueness property of Definition 2.5.3, x = e.

(2): Because Ni and N j are normal in G, we have xiy jx−1
i x−1

j is in Ni∩N j = 〈e〉.
(3): The two identities follow immediately from Part (2).
(4): Assume x = x1x2 · · ·xm, where xi ∈ Ni for each i. Assume x = y1y2 · · ·ym, where

yi ∈ Ni for each i is another such representation. Using Part (3), we get

e = xx−1 = (x1y−1
1 ) · · ·(xmy−1

m ).

By the uniqueness property of Definition 2.5.3, xi = yi for each i.
(5): Let ψ : N1 ×N2 × ·· · ×Nm → G be the function defined by multiplication in

the group G: ψ(x1,x2, . . . ,xm) = x1x2 · · ·xm. By Part (3), ψ is a homomorphism. By
Definition 2.5.3, ψ is a one-to-one correspondence. �

PROPOSITION 2.5.5. Let G be a group and N1, . . . ,Nm a collection of normal sub-
groups. Then the following are equivalent.
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(1) G is the internal direct product of N1, . . . ,Nm.
(2) The function φ : N1× ·· · ×Nm → G defined by φ(x1, . . . ,xm) = x1 · · ·xm is an

isomorphism of groups.
(3) G = N1 · · ·Nm and for each k, the intersection Nk∩(N1 · · ·Nk−1Nk+1 · · ·Nm) is the

trivial subgroup 〈e〉.
(4) G = N1 · · ·Nm, and N1∩N2 · · ·Nm = N2∩N3 · · ·Nm = · · ·= Nm−1∩Nm = 〈e〉.

PROOF. (1) implies (2): This is Lemma 2.5.4 (5).
(2) implies (3): Since φ is onto we have G = N1 · · ·Nm. Let x be an arbitrary el-

ement of Nk ∩ (N1 · · ·Nk−1Nk+1 · · ·Nm). We can write x in two ways: x = xk ∈ Nk, and
x = x1 · · ·xk−1xk+1 · · ·xm ∈ N1 · · ·Nk−1Nk+1 · · ·Nm. Therefore x = φ(e, . . . ,e,xk,e, . . . ,e) =
φ(x1, . . . ,xk−1,e,xk+1, . . . ,xm). Since φ is one-to-one, x = xk = e.

(3) implies (4): For each k= 1, . . . ,m−1 we have: Nk+1 · · ·Nm⊆N1 · · ·Nk−1Nk+1 · · ·Nm.
Therefore, Nk ∩ (Nk+1 · · ·Nm)⊆ Nk ∩ (N1 · · ·Nk−1Nk+1 · · ·Nm) = 〈e〉.

(4) implies (1): Let e = x1x2 · · ·xm be a representation of e in N1N2 · · ·Nm. Then x−1
1 =

x2 · · ·xm is in N1∩N2 · · ·Nm = 〈e〉. Therefore, x1 = e and x2 · · ·xm = e. Inductively, assume
1 < k < m and xk · · ·xm = e. Then x−1

k = xk+1 · · ·xm is in Nk∩Nk+1 · · ·Nm = 〈e〉. Therefore,
xk = e and xk+1 · · ·xm = e. By induction, we are done. �

5.3. Free Groups. Let X be a set, which will be called the alphabet. A word on the
alphabet X is a finite string of the form

w = aε1
1 aε2

2 · · ·a
εn
n

where n≥ 0, each ai is an element of X and εi ∈ {−1,1}. The length of the string is n. The
only string of length 0 is called the empty string and is denoted e. A string is reduced if it
contains no substrings of the form xx−1 or x−1x, for x ∈ X . Every word can be reduced in
a unique way by recursively striking out all of the substrings of the form xx−1 or x−1x.

LEMMA 2.5.6. Let v = aε1
1 aε2

2 · · ·aεn
n and w = bφ1

1 bφ2
2 · · ·b

φp
p be reduced words on the

alphabet X. There exist factorizations of v and w into substrings v = v1v2, w = w1w2 such
that v2w1 reduces to the empty word e and the reduction of vw is equal to v1w2. The factors
v1, v2, w1, w2 are unique.

PROOF. If v has length n = 0, then take v1 = v2 = w1 = e and w2 = w. In this case,
vw = v1w2 and we are done. Inductively assume n > 0 and that the result holds for any
reduced word of length n− 1. If aε

n 6= b−φ1
1 , then vw is reduced. In this case, take v =

v1,v2 = w1 = e, and w2 = w. Otherwise, delete aε
n from the end of v and b−φ1

1 from the
front of w, and apply the induction hypothesis to obtain factorizations:

aε1
1 aε2

2 · · ·a
εn−1
n−1 = v1v3

bφ2
2 · · ·b

φp
p = w3w2

Setting v2 = v3aε
n and w1 = bφ1

1 w3, we have v2w1 = v3aε
nbφ1

1 w3 reduces to v3w3 which re-
duces to the empty word e. Also, the reduction of vw is equal to the reduction of v1v3w3w2
which is equal to v1w2. This proves the existence of the factorization. The uniqueness of
v3 and w3 implies the uniqueness of v2 and w1. �

LEMMA 2.5.7. Let F(X) be the set of all reduced words on X. Then F(X) is a group,
where the product of two words is the word defined by juxtaposition followed by reduction.
The identity element for the group F(X) is the empty string e. The inverse of the string
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aε1
1 aε2

2 · · ·aεn
n is the string a−εn

n · · ·a−ε2
2 a−ε1

1 . We call F(X) the free group on the set X.
There is a natural injection ι : X → F(X) defined by ι(x) = x.

PROOF. By Lemma 2.5.6, if v and w are reduced words in F(X), then the reduction of
the word vw is uniquely defined. Since this binary operation does not depend on grouping
by parentheses, it is associative. The rest is left to the reader. �

THEOREM 2.5.8. (Universal Mapping Property) Let X be a set and ι : X → F(X) the
natural injection map. For any group G and any function j : X → G, there is a unique
homomorphism f : F(X)→ G such that the diagram

X ι //

j
!!

F(X)

f
��

G

commutes.

PROOF. Let v = aε1
1 aε2

2 · · ·aεn
n be a reduced word in F(X). Then we define f (v) to

be j(a1)
ε1 j(a2)

ε2 · · · j(an)
εn . Then f is a well defined function and f ι = j. To see that

f is a homomorphism of groups, let w = bφ1
1 bφ2

2 · · ·b
φp
p be another reduced word on the

alphabet X . As in Lemma 2.5.6, factor v = v1v2, w = w1w2 such that the reduction of vw is
equal to v1w2. Since f (v) = f (v1v2) = f (v1) f (v2), f (w) = f (w1w2) = f (w1) f (w2), and
f (v2) f (w1) = e, it follows that

f (vw) = f (v1w2) = f (v1) f (w2) = f (v1) f (v2) f (w1) f (w2) = f (v) f (w).

To prove the uniqueness claim, assume g : F(X)→G is another homomorphism and gι = j.
Then f (x) = g(x) for every x ∈ X . Since X is a generating set for the group F(X), f is
equal to g. �

COROLLARY 2.5.9. Every group G is the homomorphic image of a free group.

PROOF. In Theorem 2.5.8, take X = G and j : G→ G the identity map. Since j is
onto, f is onto. �

DEFINITION 2.5.10. Let X be a set and Y a subset of F(X). As in Exercise 2.3.45,
let N be the normal subgroup of F(X) generated by Y . Consider the quotient group G =
F(X)/N. We say G is defined by the generators X subject to the relations Y . We denote
the group G = F(X)/N by 〈X | Y 〉.

EXAMPLE 2.5.11. In the notation of Theorem 2.3.25, let A = 〈a〉 be a cyclic group. If
A is infinite, then a presentation of A in terms of generators and relations is A = 〈a | /0〉. If A
has order n > 0, then a presentation of A in terms of generators and relations is A = 〈a | an〉.
It is common for the relations to be written as equations. Then A = 〈a | an = e〉.

EXAMPLE 2.5.12. Let n> 2 and Dn the dihedral group of order 2n of Example 2.1.16.
Then Dn is generated by two elements, R and H. The order of R is n and the order of H is
2. The so-called commutator identity is HRH = R−1. Therefore,

Dn = 〈R,H | H2 = e, Rn = e, HRH = R−1〉

is a presentation of Dn in terms of generators and relations.
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EXAMPLE 2.5.13. Let V be the Klein 4-group of Example 2.1.21. Then V is an abelian
group of order 4, generated by two elements of order two. Hence,

V = 〈a,b | a2 = b2 = e, ab = ba〉

is a presentation in terms of generators and relations.

EXAMPLE 2.5.14. Let Q8 = {1,−1, i,−i, j,− j,k,−k} be the quaternion eight group
of Example 2.1.18. The multiplication rules are: (−1)2 = 1, i2 = j2 = k2 =−1, i j =− ji=
k. So we see that Q8 is generated by i and j. Both i and j have order 4 and −1 = i2 = j2.
The commutator relation for i and j is i j =− ji = j3i. If we write a and b instead of i and
j, then a presentation in terms of generators and relations is

Q8 = 〈a,b | a4 = e, b4 = e, a2 = b2, ab = b3a〉.

5.4. Exercises.

EXERCISE 2.5.15. The general linear group of 2-by-2 matrices over the field Z/3,

denoted GL2(Z/3), is the multiplicative group of invertible matrices
(

a b
c d

)
with entries

in the field Z/3. Let A =

(
1 1
1 0

)
, B =

(
0 1
1 1

)
, C =

(
1 2
1 1

)
, P =

(
0 1
2 0

)
, and Q =(

1 1
1 2

)
be matrices with entries in Z/3. For the following computations, access to a

computer algebra system such as [14] is not required, but will be beneficial, especially for
parts (6) and (7).

(1) Show that A, B, C, P, and Q are in GL2(Z/3).
(2) Compute the cyclic subgroups 〈A〉, 〈B〉, 〈C〉, 〈P〉, 〈Q〉.
(3) Show that P is in the normalizer of 〈A〉. Show that P and A generate a subgroup

of order 16.
(4) Show that P is in the normalizer of 〈B〉. Show that P and B generate a subgroup

of order 16.
(5) Show that Q is in the normalizer of 〈C〉. Show that Q and C generate a subgroup

of order 16.
(6) If G = GL2(Z/3), show that G has order 48. Show that G has 3 subgroups of

order 16. Show that G has 4 subgroups of order 3.
(7) The special linear group of 2-by-2 matrices over Z/3, denoted SL2(Z/3), is the

subgroup of GL2(Z/3) consisting of those matrices with determinate equal to 1.
Let S = SL2(Z/3). Show that S has order 24. Show that S has 3 subgroups of
order 8. Show that every subgroup of order 8 is isomorphic to the quaternion 8-
group, Q8 = {±1,±i,± j,±k} of Example 2.1.18. . Show that S has 4 subgroups
of order 3.

EXERCISE 2.5.16. Give an example of a group G and subgroups N1,N2, . . . ,Nm of G
satisfying:

(1) Ni is a normal subgroup of G for each i,
(2) G = N1N2 · · ·Nm, and
(3) if i 6= j, then Ni∩N j = 〈e〉,

such that G is not the internal direct product of N1,N2, . . . ,Nm.

EXERCISE 2.5.17. Let G be a finite abelian group. Assume G is the internal direct
product of cyclic subgroups A = 〈a〉 and B = 〈b〉 where a and b both have order 6.
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(1) Show that |G|= 36.
(2) Show that C = 〈ab2〉 has order 6.
(3) Compute |AC|.
(4) Show that |AC| is the internal direct product of A and 〈b2〉.

EXERCISE 2.5.18. Let A and B be normal subgroups of G such that G = AB. Prove
that G/(A∩B) is isomorphic to G/A×G/B.

EXERCISE 2.5.19. Let G be a group containing subgroups A and B such that

(1) G = AB,
(2) xy = yx for every x ∈ A and y ∈ B, and
(3) A∩B = 〈e〉.

Show that G is the internal direct product of A and B.

EXERCISE 2.5.20. Let A and B be groups. Let A0 be a normal subgroup of A and B0
a normal subgroup of B. Show that there is an isomorphism of groups

A×B
A0×B0

∼=
A
A0
× B

B0
.

EXERCISE 2.5.21. This is a continuation of Exercise 2.3.48. Let F be a field and

U =

{(
a b
0 d

)
∈M2(F) | ad 6= 0

}
the set of all upper triangular matrices in GL2(F). Let T be the kernel of the homomor-

phism U → F∗ defined by
(

a b
0 d

)
7→ d. As in Example 2.3.34, let δ : F∗→ GL2(F) be

the diagonal map. Let Z = imδ . Show that U is the internal direct product of T and Z.

6. Permutation Groups

The group of all permutations of Nn = {1,2,3, . . . ,n} is called the symmetric group
on n letters and is denoted Sn (see Example 2.1.14).

6.1. The cycle decomposition of a permutation. Let α = (a1, . . . ,as) be an s-cycle
and β = (b1, . . . ,bt) a t-cycle. We say α and β are disjoint if {a1, . . . ,as}∩{b1, . . . ,bt}=
/0. If this is the case, then β (ai) = ai for each i, and α(b j) = b j for each j. Therefore,
αβ = βα . This proves Lemma 2.6.1.

LEMMA 2.6.1. If α and β are disjoint cycles in Sn, then α and β commute. That is,
αβ = βα .

EXAMPLE 2.6.2. Here is an example with n = 6. In S6, let

α =

[
1 2 3 4 5 6
3 4 1 2 6 5

]
, β =

[
1 2 3 4 5 6
6 5 4 3 1 2

]
.

Then A = 〈α〉 acts on {1,2,3,4,5,6}. Given x ∈ {1,2,3,4,5,6}, the orbit of x is A ∗ x.
We compute the orbit decomposition under this action. The reader should verify that A ∗
1 = {1,3}, A ∗ 2 = {2,4}, A ∗ 5 = {5,6}. In Theorem 2.6.3 we find that from the orbit
decomposition we can construct the factorization of α into cycles. For instance, α =
(1,3)(2,4)(5,6). Likewise, for B = 〈β 〉, we find the disjoint orbits are B∗1 = {1,6,2,5},
B∗3 = {3,4} and the factorization of β into cycles is β = (1,6,2,5)(3,4).
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THEOREM 2.6.3. If σ ∈ Sn is a permutation on n letters, then σ can be written as
the product of disjoint cycles. This representation is unique in the sense that if σ 6= e and
σ = α1α2 · · ·αk is a product of disjoint cycles all of length two or more and σ = β1β2 · · ·β`

is another such representation, then k = ` and β1,β2, . . . ,βk can be relabeled such that
αi = βi for each i.

PROOF. Let σ ∈ Sn and let S = 〈σ〉. Then S acts on Nn = {1,2, . . . ,n}. Let a be
an arbitrary element of Nn. We associate to the orbit of a under S a cyclic permutation
αa. Let Sa be the subgroup of S fixing a. Then Sa is a cyclic subgroup of S. If [S :
Sa] = w, then by Theorem 2.3.25, Sa is the unique subgroup of S with index w and Sa =
〈σw〉. By Theorem 2.4.10, the length of the orbit of a is equal to w and the orbit of a
is {a,σ(a),σ2(a), . . . ,σw−1(a)}. On this set σ is equal to the cyclic permutation αa =
(a,σ(a),σ2(a), . . . ,σw−1(a)). We see that for every orbit under the S-action there is an
associated cyclic permutation. If {a1,a2, . . . ,ak} is a full set of representatives for the
orbits, then σ is equal to the product of cycles αa1αa1 · · ·αak . The orbits are disjoint,
hence so are the cycles in this factorization. The uniqueness claim follows from the fact
that the cycle decomposition is determined by the orbit decomposition which is uniquely
determined by σ . �

COROLLARY 2.6.4. If α1,α2, . . . ,αm are pairwise disjoint cycles in Sn, then the order
of the product α1α2 . . .αm is equal to lcm(|α1|, |α2|, . . . , |αm|).

PROOF. Let |αi| = ki and let k = lcm(k1,k2, . . . ,km). By Lemma 2.6.1, the pairwise
disjoint cycles commute. Therefore, (α1α2 . . .αm)

k = αk
1αk

2 . . .α
k
m = e. Suppose ` > 0

and e = (α1α2 . . .αm)
` = α`

1α`
2 . . .α

`
m. The permutation α`

2 . . .α
`
m fixes point-wise every

element of the orbit of α1. Therefore, α`
1 = e, hence `≥ k1. By symmetry, `≥ ki for each

i. �

COROLLARY 2.6.5. Every π ∈ Sn is a product of transpositions.

PROOF. Let k ≥ 2. By Theorem 2.6.3, it suffices to show that any k-cycle can be
written as a product of transpositions. Notice that a 2-cycle (a1a2) is already a transposi-
tion, a 3-cycle (a1a2a3) = (a1a3)(a1a2) can be factored as a product of 2 transpositions,
and a 4-cycle (a1a2a3a4) = (a1a4)(a1a3)(a1a2) factors into 3 transpositions. In general, a
k-cycle (a1a2 · · ·ak) = (a1ak) · · ·(a1a3)(a1a2) can be written as a product of k−1 transpo-
sitions. �

6.2. The sign of a permutation. Let n≥ 2 and Sn the symmetric group on n letters.
Let x1, . . . ,xn be indeterminates and Z[x1, . . . ,xn] the ring of polynomials with coefficients
in Z. Given σ ∈ Sn, we define an automorphism σ : Z[x1, . . . ,xn]→ Z[x1, . . . ,xn] by the
rule σ(p(x1, . . . ,xn)) = p(xσ(1), . . . ,xσ(n)). Since σ(τ(xi)) = σ(xτ(i)) = xστ(i) = στ(xi),
it follows that Sn acts as a group of permutations of Z[x1, . . . ,xn]. Because x1, . . . ,xn are
indeterminates, it follows that σ defines an automorphism of the polynomial ring, hence
we have a homomorphism of groups Sn→Aut(Z[x1, . . . ,xn]). Now look at the polynomial

Φ(x1, . . . ,xn) = ∏
1≤i< j≤n

(xi− x j).

Then Φ has degree
(n

2

)
. Fix a transposition θ = (k, `) in Sn where 1 ≤ k < ` ≤ n. We

compute θ(Φ). If {i, j}∩ {k, `} = /0, then θ(xi− x j) = xi− x j. It is enough to consider
terms with xk or x`. All such terms except (xk− x`) can be grouped into pairs. There are
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four cases:

θ((xi− xk)(xi− x`)) = (xi− xk)(xi− x`) if i < k

θ((xk− x`)) =−(xk− x`) if i = k (or i = `)

θ((xk− xi)(xi− x`)) = (x`− xi)(xi− xk) = (xk− xi)(xi− x`) if k < i < `

θ((xk− xi)(x`− xi)) = (x`− xi)(xk− xi) if ` < i

from which it follows that θ(Φ) = −Φ. Therefore, if σ is written as a product of k trans-
positions, then σ(Φ) = (−1)kΦ. The rule

sign(σ) =
σ(Φ)

Φ

defines a function sign : Sn→ {1,−1} which is an epimorphism of multiplicative groups.
The kernel of the homomorphism sign : Sn → {1,−1} is called the alternating group on
n letters and is denoted denoted An. We return to the study of the alternating group in
Section 2.6.4.

6.3. Conjugacy classes of the Symmetric Group. Let n ≥ 2 and Sn the symmetric
group on n letters. We view Sn as the group Perm(Nn). The purpose of this section is
to describe the conjugacy classes of Sn in terms of the partitions of the number n. If
σ ∈ Sn, then we can write σ as a product of disjoint cycles σ = σ1σ2 · · ·σk where we
assume |σi| = si and s1 ≥ s2 ≥ ·· · ≥ sk. Furthermore, by adjoining 1-cycles if necessary,
we assume n = s1 + s2 + · · ·+ sk. In other words, the sequence s1 ≥ s2 ≥ ·· · ≥ sk is a
partition of n. The next lemma shows that the conjugacy classes of Sn correspond to the
partitions of n.

Let σ and θ be arbitrary permutations in Sn. Suppose σ(i) = j, θ(i) = k, and θ( j) = `.
Then θσθ−1(k) = θσ(i) = θ( j) = `. This provides us with an algorithm to compute the
cycle decomposition of the conjugation of σ by θ−1 given the cycle decomposition of σ :
replace each letter by its image under θ . For instance, write σ = σ1σ2 · · ·σk as a product
of disjoint cycles where |σi| = si, s1 ≥ s2 ≥ ·· · ≥ sk, and n = s1 + s2 + · · ·+ sk. Write
σi = (σi1,σi2, . . . ,σisi). Then θσiθ

−1 is the cycle (θ(σi1),θ(σi2), . . . ,θ(σisi)). This shows
that under conjugation the form of the cycle decomposition is preserved.

We illustrate this procedure by an example with n = 10. Let

σ =

[
1 2 3 4 5 6 7 8 9 10
3 8 4 5 1 10 9 7 6 2

]
θ =

[
1 2 3 4 5 6 7 8 9 10
5 4 10 1 7 3 9 8 6 2

]
Then

θσθ
−1 =

[
1 2 3 4 5 6 7 8 9 10
7 4 2 8 10 3 5 9 6 1

]
As a product of disjoint cycles, we have σ = (2,8,7,9,6,10)(1,3,4,5). Now compute the
disjoint cycle form of the conjugate θσθ−1. Because σ1 starts with 2, and σ2 starts with
1, we start the 6-cycle of θσθ−1 with θ(2) = 4, and the 4-cycle with θ(1) = 5:

θσθ
−1 = (4,8,9,6,3,2)(5,10,1,7)

=
(
θ(2),θ(8),θ(7),θ(9),θ(6),θ(10)

)(
θ(1),θ(3),θ(4),θ(5)

)
.

The last equation shows that the cycle decomposition can be obtained by applying θ to
each letter in σ .
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Now we show that every conjugacy class contains a canonical permutation. We con-
tinue to employ the notation established above. Consider the permutation

L =

[
1 2 . . . s1 s1 +1 s1 +2 . . . s1 + s2 . . . n

σ11 σ12 . . . σ1s1 σ21 σ22 . . . σ2s2 . . . σksk

]
where the second row is obtained by removing all of the parentheses from the product of
disjoint cycles σ1σ2 · · ·σk. Hence L is a permutation in Sn. Set τ = L−1σL. Then the
disjoint cycle decomposition of τ is obtained by inserting parentheses into 1,2, . . . ,n and
splitting it into cycles with the lengths s1, . . . ,sk.

We illustrate this algorithm on the example from above. Start with the permutation
σ = (2,8,7,9,6,10)(1,3,4,5) in S10. Then

L =

[
1 2 3 4 5 6 7 8 9 10
2 8 7 9 6 10 1 3 4 5

]
is the permutation whose second row is obtained by removing the parentheses from σ .
Compute:

L−1
σL =

[
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 1 8 9 10 7

]
.

We see that L−1σL = (1,2,3,4,5,6)(7,8,9,10) in disjoint cycle form.
The two algorithms specified above combine to prove Lemma 2.6.6.

LEMMA 2.6.6. Let n≥ 2 and Sn the symmetric group on n letters. Two permutations
σ ,τ in Sn are in the same conjugacy class if and only if they give rise to the same partition
of n. The number of distinct conjugacy classes of Sn is equal to the number of distinct
partitions of n.

6.4. The Alternating Group. Let n≥ 3. The alternating group on n letters is denoted
An and is defined to be the kernel of the homomorphism sign : Sn→ {1,−1}. That is, An
is the subgroup of all even permutations. We have [Sn : An] = 2 and |An| = n!/2. Theo-
rem 2.6.9, the main result of this section, is a proof that if n 6= 4, then An is simple. The
proof we give is completely elementary. In Exercise 2.6.12 the reader is asked to prove
that A4 contains a normal subgroup of order 4, hence A4 is not simple.

LEMMA 2.6.7. If n≥ 3, then An is generated by 3-cycles.

PROOF. By Corollary 2.6.5, a 3-cycle is even, so An contains every 3-cycle. Every
permutation in An is a product of an even number of transpositions. It suffices to show that
a typical product (ab)(cd) factors into 3-cycles. If (ab) and (cd) are disjoint, then we see
that

(ab)(cd) = (ab)(ac)(ac)(cd)

= (acb)(acd)

is a product of 3-cycles. If a = c, then we have (ab)(ad) = (adb). These are the only cases,
so An is generated by 3-cycles. �

LEMMA 2.6.8. Let n≥ 3. If N is a normal subgroup of An and N contains a 3-cycle,
then N = An.

PROOF. Without loss of generality assume (123)∈N. Then (123)(123) = (132)∈N.
We assume n > 3, otherwise we are done. By Corollary 2.6.5, a 3-cycle is even, so An
contains every 3-cycle. Let 3 < a≤ n be arbitrary. We use the fact that σ−1Nσ ⊆ N for all
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σ ∈ An. Then (1a3)(123)(13a) = (1a2) is in N. Also, (1a2)2 = (12a) ∈ N. Similarly, we
see that (13a),(1a3),(23a),(2a3) are in N.

Now let a 6= b, a > 2, and b > 2. Then (1b2)(12a)(12b) = (1ab) is in N. Similarly,
we see that (2ab),(3ab),(a1b),(a2b), etc. are in N.

Now let a 6= b 6= c, a > 1, b > 1, and c > 1. Then (ac1)(a1b)(a1c) = (abc) is in N.
So N contains every 3 cycle. By Lemma 2.6.7, N = An. �

THEOREM 2.6.9. The alternating group An is simple if n 6= 4.

PROOF. If n = 2, then A2 = 〈e〉. If n = 3, then A3 = 〈(123)〉 is a cyclic group of order
3, hence is simple. From now on assume n > 4, N is a normal subgroup of An and N 6= 〈e〉.
We prove that N = An. The proof consists of a case-by-case analysis.

Case 1: If N contains a 3-cycle, then N = An, by Lemma 2.6.8.
Case 2: Assume N contains a permutation σ such that the cycle decomposition of σ

has a cycle of length r≥ 4. Write σ = (a1a2 · · ·ar)τ , where τ fixes each a1, . . . ,ar element-
wise. Let δ = (a1a2a3). Then δ ∈ An and δσδ−1 ∈ N since N is normal. The following
computation

σ
−1

δσδ
−1 = τ

−1(a1ar · · ·a2)(a1a2a3)(a1a2 · · ·ar)τ(a1a3a2)

= (a1a3ar)

shows that Case 2 reduces to Case 1.
Case 3: Assume N has a permutation σ such that the cycle decomposition of σ

has at least two disjoint 3-cycles. Write σ = (a1a2a3)(a4a5a6)τ , where τ fixes each
a1,a2,a3,a4,a5,a6 element-wise. Let δ = (a1a2a4). Then δ ∈ An and δ−1σδ ∈ N since N
is normal. The following computation

δ
−1

σδσ
−1 = (a1a4a2)(a1a2a3)(a4a5a6)τ(a1a2a4)τ

−1(a1a3a2)(a4a6a5)

= (a1a4a2a3a5)

shows that Case 3 reduces to Case 2.
Case 4: Assume N has a permutation σ such that the cycle decomposition of σ consists

of one 3-cycles and one or more 2-cycles. Write σ = (a1a2a3)τ , where τ is the product of
the 2-cycles. Then σ2 = (a1a3a2) ∈ N, hence Case 4 reduces to Case 1.

Case 5: Assume every σ ∈ N has a cycle decomposition that is a product of disjoint
2-cycles. Let σ = (a1a2)(a3a4)τ where τ is a product of 2-cycles and is disjoint from
(a1a2)(a3a4). Let δ = (a1a2a3). Then δ ∈ An and δ−1σδ ∈ N since N is normal. The
following computation

δ
−1

σδσ
−1 = (a1a3a2)(a1a2)(a3a4)τ(a1a2a3)(a1a2)(a3a4)τ

= (a1a4)(a2a3)

shows that β = (a1a4)(a2a3) is in N. Since n > 4 (notice that this is the first time we have
used this hypothesis), there exists a5 6∈ {a1,a2,a3,a4}. Let α = (a1a4a5). The following
computation

α
−1

βαβ = (a1a5a4)(a1a4)(a2a3)(a1a4a5)(a1a4)(a2a3)

= (a1a4a5)

shows that N contains a 3-cycle, hence Case 5 reduces to Case 1. �

COROLLARY 2.6.10. If n > 4, the normal subgroups of Sn are 〈e〉, An, and Sn.
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PROOF. Let N be a normal subgroup of Sn. Then N ∩An is a normal subgroup of An.
By Theorem 2.6.9, N ∩An is equal to either 〈e〉, or An. If N ∩An = An, then [Sn : An] = 2
implies N =An, or N = Sn. Suppose N∩An = 〈e〉 and for contradiction’s sake, suppose N 6=
〈e〉. Then N consists of e and odd permutations. If σ ∈N is an odd permutation, then σ2 is
even, hence σ2 ∈ N∩An = 〈e〉. Therefore, every element of N has order 2 or 1. Let σ ∈ N
and assume σ has order 2. By Corollary 2.6.4, σ decomposes into a product of disjoint
transpositions. If σ = (ab) is a transposition, then (ab)(acb)(ab)(abc) = (acb) is in N,
a contradiction. Assume σ = (ab)(cd)τ , where τ is a product of disjoint transpositions
that do not involve a,b,c,d. Let α = (acb)σ(abc) = (ac)(bd)τ . Then α is in N, and
σα = (ad)(bc) is in N. But (ad)(bc) is even, which is a contradiction. �

COROLLARY 2.6.11. Let n > 4. If H is a subgroup of Sn and [Sn : H]< n, then H = An
or H = Sn.

PROOF. Let H be a subgroup of Sn, m = [Sn : H], and assume m < n. Then Sn acts
on G/H by left multiplication. If we identify Perm(G/H) with Sm, then there is a homo-
morphism of groups φ : Sn → Sm. By the Pigeonhole Principle (Exercise 1.1.11), kerφ

is a nontrivial normal subgroup of G. By Exercise 2.4.25, kerφ is contained in H. By
Corollary 2.6.10, kerφ is either An or Sn. Therefore, H is either An or Sn. �

6.5. Exercises.

EXERCISE 2.6.12. Let G = A4 be the alternating group on 4 letters. The order of G is
twelve.

(1) Viewing G as a group of permutations of {1,2,3,4}, list the twelve elements of
G using disjoint cycle notation. For each x ∈ G, compute the cyclic subgroup
〈x〉. Show that G has eight elements of order three and three elements of order
two.

(2) Show that the subgroup of order 4 is the group of symmetries of a nonsquare
rectangle (see Example 2.1.17).

(3) Show that G has four subgroups of order three. Show that the subgroup of order
four is normal. Show that the center of G has order one. Construct the lattice of
subgroups of G. Show that G has only one proper normal subgroup, namely the
subgroup of order four.

(4) In Exercise 2.6.14 you are asked to compute the partition of G into conjugacy
classes.

EXERCISE 2.6.13. As in Exercise 2.6.12, the alternating group on four letters is de-
noted A4. Let N be the normal subgroup of A4 of order four. Show that G is isomorphic
to the semidirect product of N and a cyclic subgroup of order three that acts on N by
conjugation.

EXERCISE 2.6.14. Let A4 be the alternating group on 4 letters (see Exercise 2.6.12).
Compute the partition of A4 into conjugacy classes.

EXERCISE 2.6.15. Show that the set of transpositions {(12),(23), . . . ,(n−1,n)} gen-
erates Sn.

EXERCISE 2.6.16. Show that Sn is generated by a transposition (1,2) and an n-cycle
(123 · · ·n).

EXERCISE 2.6.17. Compute the number of distinct k-cycles in Sn.
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EXERCISE 2.6.18. Let 1 ≤ k < n. Show that for each k-subset A = {a1, . . . ,ak} of
Nn there is a subgroup of Sn isomorphic to Sk×Sn−k. Show that any two such subgroups
are conjugates of each other. (Hint: Suppose a ∈ A, b 6∈ A, and σ fixes Nn−A. Look at
(ab)σ(ab).)

EXERCISE 2.6.19. Let V = {e,(12)(34),(13)(24),(14)(23)} be the subgroup of order
4 in A4. Show that V is a normal subgroup of S4. Prove that S4/V is a nonabelian group of
order 6.

7. The Sylow Theorems

7.1. p-Groups. Let p be a prime number. A finite group G is called a p-group if
|G|= pr for some r≥ 1. We begin this section with the following fundamental theorem on
p-groups.

THEOREM 2.7.1. (Fundamental Theorem on p-groups) Let p be a prime and G a finite
group of order pn, where n≥ 1. Then the following are true.

(1) Z(G) 6= 〈e〉.
(2) If G has order p2, then G is abelian.
(3) If n > 1, then G has a proper normal subgroup N such that 〈e〉 6= N 6= G.
(4) (A finite p-group is solvable) There is a sequence of subgroups G0 ⊆ G1 ⊆ ·· · ⊆

Gn−1 ⊆ Gn such that
(a) G0 = 〈e〉, Gn = G,
(b) for 0≤ i≤ n, |Gi|= pi,
(c) for 0≤ i≤ n−1, Gi is a normal subgroup of Gi+1 and the quotient Gi+1/Gi

is a cyclic group of order p.
We call G0,G1, . . . ,Gn a solvable series for G.

(5) Let X be a finite set and assume G acts on X as a group of permutations. Let
X0 = {x ∈ X | g∗ x = x for all g ∈ G}. Then |X | ≡ |X0| (mod p).

PROOF. (5): If x ∈ X , then x ∈ X0 if and only if G ∗ x = {x}. If X0 = X , there is
nothing to prove. Let x1, . . . ,xm be a full set of representatives of the orbits with length
two or more. The orbit decomposition of X is X0∪

(
∪m

i=1G∗ xi
)
. Taking cardinalities and

applying Theorem 2.4.10,

|X |= |X0|+
m

∑
i=1
|G∗ xi|

= |X0|+
m

∑
i=1

[G : Gxi ].

Then [G : Gxi ] 6= 1 for each i and by Corollary 2.2.12, [G : Gxi ] divides pn. Reducing both
sides of the equation modulo p, we get |X | ≡ |X0| (mod p).

(1): Let G act on itself by conjugation. Then Z(G) is the set of all elements fixed by
the group action. By Part (5), 0≡ |Z(G)| (mod p).

(2): By Part (1), Z(G) has order p or p2. Then G/Z(G) has order 1 or p, hence is
cyclic. By Exercise 2.3.38, G is abelian.

(3): By Part (1), if Z(G) 6= G, then N = Z(G) works. If Z(G) = G, then G is abelian.
Every subgroup of G is abelian, so it suffices to find a proper subgroup of G. Let z∈G−〈e〉
and set N = 〈z〉. If G 6= N, then we are done. Otherwise, N = G and z has order pn. By
Lemma 2.2.16, |zp|= pn−1. In this case, N = 〈zp〉 works.
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(4): The proof is by induction on n. If n = 1, then G0 = 〈e〉, G1 = G is a solvable
series. If n = 2, then by Part (3) G0 = 〈e〉, G1 = N, G2 = G is a solvable series.

Inductively, assume n ≥ 2 and that a solvable series exists for any p-group of order
less than pn. By Part (3) there exists a proper normal subgroup N. Then |N| = pt , where
1≤ t < n−1. By our induction hypothesis, let G0 = 〈e〉,G1, . . . ,Gt =N be a solvable series
for N. Let H = G/N. By Corollary 2.2.12, |H| = pn−t . By our induction hypothesis, let
H0 = 〈e〉,H1, . . . ,Hn−t−1,Hn−t = H be a solvable series for H = G/N. By Theorem 2.3.13,
we lift each Hi to a subgroup Gi+t of G and get a sequence Gt = N ⊆Gt+1 ⊆ ·· · ⊆Gn−1 ⊆
Gn = G. By Theorem 2.3.12, Gi+1+t/Gi+t ∼= Hi+1/Hi for each 0 ≤ i ≤ t. Combining the
two sequences, G0 ⊆ ·· · ⊆ Gt ⊆ ·· · ⊆ Gn−1 ⊆ Gn = G is a solvable series for G. �

LEMMA 2.7.2. Let G be a finite group and p a prime number that divides |G|. If H is
a subgroup of G and H is a p-group, then the following are true:

(1) [NG(H) : H]≡ [G : H] (mod p).
(2) If p divides [G : H], then [NG(H) : H]> 1 and NG(H) 6= H.

PROOF. (1): As in Example 2.4.5, H acts on G/H by left multiplications: h ∗ xH =
(hx)H. Let X = G/H and X0 = {xH ∈ X | h∗ x = x for all h ∈ H}. Then xH ∈ X0 if and
only if x−1hx ∈ H for all h ∈ H, which is true if and only if x ∈ NG(H). But x ∈ NG(H) if
and only if xH ⊆NG(H), hence X0 consists of those cosets xH such that xH ⊆NG(H). Then
|X0|= [NG(H) : H]. By Theorem 2.7.1 (5), |X | ≡ |X0| (mod p), or [G : H]≡ [NG(H) : H]
(mod p).

(2): By Part (1), 0≡ [G : H]≡ [NG(H) : H] (mod p). Thus, [NG(H) : H] is a multiple
of p. �

7.2. Cauchy’s Theorem. The proof given below of Cauchy’s Theorem is due to J.
McKay [10]. This has been the proof of choice used in [3], [8], and other introductory
texts on this subject.

THEOREM 2.7.3. (Cauchy’s Theorem) Let G be a finite group of order n and p a prime
divisor of n. Then G contains an element of order p.

PROOF. Let X = Gp = ∏
p
i=1 G be the product of p copies of G. Elements of Gp are p-

tuples (x1, . . . ,xp) where each xi is in G and |X |= np. Let ξ be the p-cycle (12 · · · p) ∈ Sp.
Then the cyclic subgroup C = 〈ξ 〉 acts on X by

ξ
i ∗ (x1, . . . ,xp) =


(xp,x1, . . . ,xp−1) if i = 1
(xp−i+1, . . . ,xp,x1, . . . ,xp−i) if 0 < i < p
(x1, . . . ,xp) if i = 0 or i = p.

Now define Z = {(x1, . . . ,xp) ∈ X | x1x2 · · ·xp = e}. Then Z is a subset of X . Given
x ∈ Z, notice that xp = (x1 · · ·xp−1)

−1, so |Z| = np−1. Since xp = (x1 · · ·xp−1)
−1 implies

xpx1x2 · · ·xp−1 = e, it follows that ξ ∗Z = Z. Hence C acts on Z and there is a partition
of Z into orbits. Let Z0 be the set of all z in Z fixed by ξ . A p-tuple z = (x1, . . . ,xp) is
fixed by ξ if and only if x1 = x2 = · · · = xp. Since (e,e, . . . ,e) ∈ Z0, we know Z0 6= /0.
By Theorem 2.7.1 (5), |Z0| ≡ 0 (mod p). Then |Z0| ≥ p, and there are at least p elements
g ∈ G such that gp = e. One solution to gp = e is g = e, any other solution is an element g
of order p. �
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7.3. The Sylow Theorems.

THEOREM 2.7.4. (Sylow’s First Theorem) Let G a finite group and p a prime number.
If pα divides |G|, then G contains a subgroup of order pα .

We give two proofs for Theorem 2.7.4. The first proof is due to H. Wielandt [16]. It
has been the proof of choice used by [3], [7] and other introductory books on this subject.

FIRST PROOF OF THEOREM 2.7.4. Write |G| = pγ r where pγ is the highest power
of p that divides |G|. Then 0 ≤ α ≤ γ , and we write |G| = pα q. If we let β = γ −α ,
then pβ is the highest power of p that divides q. Let X be the set of all subsets of G of
cardinality pα . Then

|X |=
(

pα q
pα

)
=

pα q
pα
· pα q−1

pα −1
· · · pα q− i

pα − i
· · · pα q− pα +2

pα − pα +2
· pα q− pα +1

pα − pα +1

where the factorization on the right hand side results from expanding the binomial co-
efficient using Lemma 1.1.4, Let 0 < i < pα and write i = ptk where 0 ≤ t < α and
gcd(p,k) = 1. Then pα q− i = pt(pα−tq− k) and pα−tq− k ≡ −k (mod p). This im-
plies the highest power of p that divides pα q− i is pt . Therefore, canceling all powers of
p from the numerator and denominator we see that the highest power of p that divides |X |
is the same as the highest power of p that divides q, which is pβ . As in Example 2.4.3,
G acts on itself by left multiplication. If a ∈ G, and S ∈ X , then aS has cardinality pα .
Therefore, a∗S = aS defines an action by G on X . Under this action, X is partitioned into
orbits. Since pβ+1 does not divide |X |, we know there is an orbit, say G ∗ S, such that
pβ+1 does not divide |G ∗ S|, the length of the orbit. Let H = GS be the stabilizer of S.
Then H = {h ∈ G | hS = S}. So hs ∈ S for each h ∈ H and s ∈ S. For a fixed s ∈ S, this
implies the right coset Hs is a subset of S. Hence |H| ≤ |S| = pα . By Corollary 2.2.12,
|G∗S| = |G|/|H| = (pα q)/|H|. Thus pα q = |H||G∗S|. Since pα+β divides the left hand
side, we have pα+β divides |H||G∗S|. Since pβ+1 does not divide |G∗S|, this implies pα

divides |H|. This proves H is a subgroup of G order pα . �

SECOND PROOF OF THEOREM 2.7.4. Write |G|= pγ r where pγ is the highest power
of p that divides |G|. We prove more than is required. In fact, we show that G has a
sequence of subgroups P0EP1E · · ·EPγ such that |Pi|= pi. Thus, this gives us a new proof
of Theorem 2.7.1 (4). Set P0 = 〈e〉, which has order 1. If γ ≥ 1, then by Theorem 2.7.3,
there exists a ∈ G such that P1 = 〈a〉 has order p. The method of proof is to iteratively
apply Cauchy’s Theorem γ−1 times.

Inductively assume 1 ≤ i < γ , and that we have already constructed the sequence
of subgroups P0EP1E · · ·EPi in G, where |Pi| = pi. To finish the proof it suffices to
show that G has a subgroup Pi+1 of order pi+1 containing Pi as a normal subgroup. By
Corollary 2.2.12, [G : Pi] = pγ−ir is a multiple of p. By Lemma 2.7.2, Pi 6= NG(Pi) and p
divides [NG(Pi) : Pi]. Since Pi is normal in NG(Pi), by Theorem 2.7.3, the group NG(Pi)/Pi.
has a subgroup P′i+1 of order p. By Theorem 2.3.13, P′i+1 = Pi+1/Pi for a subgroup Pi+1 of
NG(Pi) such that Pi ⊆ Pi+1 ⊆ NG(Pi). By Corollary 2.2.12, |Pi+1|= |P′i+1||Pi|= pi+1. Since
Pi is normal in NG(Pi), Pi is normal in Pi+1. �

By Theorem 2.7.4, if p is a prime, G is a finite group, α ≥ 1, and pα is the highest
power of p that divides |G|, then G has a subgroup of order pα , call it P. In this case, we
say P is a p-Sylow subgroup of G. Therefore, a p-Sylow subgroup is a maximal member
of the set of all subgroups of G that are p-groups.
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THEOREM 2.7.5. (Sylow’s Second Theorem) Let G be a finite group and p a prime
that divides |G|. Then any two p-Sylow subgroups of G are conjugates of each other.

PROOF. Assume G is not a p-group, otherwise there is nothing to prove. By Theo-
rem 2.7.4, a p-Sylow subgroup exists. Let P and Q be two p-Sylow subgroups of G. We
prove that there exists x ∈ G such that x−1Px = Q. Let X = G/Q be the set of left cosets
of Q in G. Let P act on X by left multiplication (Example 2.4.5). By Theorem 2.7.1 (5),
[G : Q] = |X | ≡ |X0| (mod p). Since p does not divide [G : Q], we know |X0| 6= 0. Let
xQ ∈ X0. Then for each a ∈ P, axQ = xQ. Thus x−1ax ∈ Q for every a ∈ P, hence
x−1Px⊆ Q. Since |P|= |Q|= pα , this implies x−1Px = Q. �

COROLLARY 2.7.6. Let G be a finite group and p a prime that divides |G|. Let P be a
p-Sylow subgroup of G. Then the following are true.

(1) For every a ∈ G, a−1Pa is a p-Sylow subgroup of G.
(2) In G, P is the unique p-Sylow subgroup if and only if P is a normal subgroup.
(3) NG(NG(P)) = NG(P).

PROOF. (1): Conjugation by a is an automorphism, hence |P|= |a−1Pa|.
(2): The subgroup P is normal in G if and only if P = a−1Pa for all a ∈ G, which by

(1) is true if and only if P is the unique p-Sylow subgroup of G.
(3): By Proposition 2.4.12, P is a normal subgroup of NG(P). By (2), P is the unique p-

Sylow subgroup of NG(P). Let z∈NG(NG(P)). Then conjugation by z is an automorphism
of NG(P), hence zPz−1 = P. This implies z ∈ NG(P). �

THEOREM 2.7.7. (Sylow’s Third Theorem) Let G be a finite group and p a prime that
divides |G|. The number of p-Sylow subgroups in G is congruent to 1 modulo p and divides
|G|. More precisely, let |G| = pα r where α ≥ 1 and gcd(p,r) = 1. If n is the number of
p-Sylow subgroups in G, then n divides r and n≡ 1 (mod p).

PROOF. By Theorem 2.7.4, a p-Sylow subgroup exists. Let P be a p-Sylow subgroup.
As in Example 2.4.11, let G act by conjugation on 2G, the power set of all subsets of G.
By Theorem 2.7.5, the orbit of P is the set of all p-Sylow subgroups of G. The length of
the orbit is [G : NG(P)], which divides |G|. But r = [G : P] = [G : NG(P)][NG(P) : P] shows
the number of conjugates of P divides r.

Let X be the set of all p-Sylow subgroups of G. The number of p-Sylow subgroups
in G is equal to |X |. Let P act on X by conjugation. By Theorem 2.7.1 (5), |X | ≡ |X0|
(mod p). First note that P ∈ X0. Suppose Q is another element of X0. Then a−1Qa = Q
for all a ∈ P. Therefore, P⊆ NG(Q). In this case, both P and Q are p-Sylow subgroups of
NG(Q). By Theorem 2.7.5, for some x ∈ NG(Q) we have P = x−1Qx. But Q is normal in
NG(Q), so Q = x−1Qx = P. This proves X0 = {P}. We have shown that |X | ≡ 1 (mod p).

�

PROPOSITION 2.7.8. Let G be a finite group of order n where the unique factorization
of n is pe1

1 · · · pem
m . Assume for each pi that G has a unique pi-Sylow subgroup Pi. Then G

is the internal direct product of P1, . . . ,Pm.

PROOF. By Corollary 2.7.6, each Pi is a normal subgroup of G. We use induction
on m to show that P1, . . . ,Pm satisfy the criteria of Proposition 2.5.5 (4). If m = 1, there is
nothing to prove. Assume m > 1. Then Pm−1Pm is a subgroup of G because Pm−1 is normal.
Also, Pm−1 ∩Pm = 〈e〉 by Lagrange’s Theorem (Corollary 2.2.12), because pm−1 6= pm.
Inductively assume 1 < r < m and that
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(1) Pr+1 · · ·Pm is a subgroup of G, and
(2) for i ∈ {r, . . . ,m−1}, Pi∩ (Pi+1 · · ·Pm) = 〈e〉.

Because Pr−1 is normal in G, by Exercise 2.3.18, Pr−1Pr · · ·Pm is a subgroup of G. The order
of Pr · · ·Pm is per

r · · · pem
m , by Lemma 2.5.4 (5). Because pr−1 is relatively prime to |Pr · · ·Pm|,

by Lagrange’s Theorem (Corollary 2.2.12), we know that Pr−1∩(Pr · · ·Pm)= 〈e〉. By Math-
ematical Induction, this proves P1 · · ·Pm is the internal direct product of P1, . . . ,Pm. Since
|P1 · · ·Pm|= |G|, this proves the proposition. �

EXAMPLE 2.7.9. Let p and q be distinct primes, and assume p < q. By Theo-
rems 2.7.8 and 2.5.2, an abelian group of order pq is cyclic. If q ≡ 1 (mod p), then by
Theorem 2.3.27 there is a subgroup of order p in Aut(Z/q)∼=Uq. By Lemma 2.3.26, there
exists a monomorphism θ : Z/p→Aut(Z/q). Using θ , the semidirect product Z/qoZ/p
is a nonabelian group of order pq. If q is not congruent to 1 modulo p, then by Theo-
rem 2.7.7, we see that in a group of order pq every Sylow subgroup is normal, and a group
of order pq is abelian.

We will prove in Corollary 3.6.10 that the group Uq is cyclic. Therefore, if q ≡ 1
(mod p), then there is a unique subgroup of order p in Aut(Q). Therefore, the monomor-
phism θ is unique up to the choice of a generator for Z/p. Hence there is at most one
nonabelian group of order pq up to isomorphism.

7.4. Exercises.

EXERCISE 2.7.10. Let G be a finite group and N a normal subgroup of G. Show that
if p is a prime and |N|= pr for some r≥ 1, then N is contained in every p-Sylow subgroup
of G. See Exercise 2.7.13 for an application of this exercise.

EXERCISE 2.7.11. Let n≥ 1, A a nonempty set, and X = An the product of n copies of
A. An element x of X is an n-tuple (x1, . . . ,xn) where each xi ∈ A. Alternatively, an n-tuple
x = (x1, . . . ,xn) can be viewed as a function x : Nn→ A (see Section 1.1.3) where x(i) = xi.
Show that the symmetric group Sn acts on X by the rule σ ∗ x = xσ−1 where xσ−1 refers
to the composition of functions:

Nn
σ−1
−−→ Nn

x−→ A.

EXERCISE 2.7.12. Let G be a group containing subgroups A and B such that A⊆ B⊆
G.

(1) Give an example such that B is normal in G, A is normal in B, and A is not normal
in G. We say that normal over normal is not normal.

(2) Suppose G is finite and p is a prime number. Assume B is normal in G and A is
normal in B and that A is a p-Sylow subgroup of B. Prove that A is normal in G.

EXERCISE 2.7.13. Let G be a group of order 2r · 7, where r ≥ 5. Apply Exer-
cises 2.4.25 and 2.7.10 to show G contains a normal subgroup N satisfying: 2r−4≤ |N| ≤ 2r

and N is contained in every 2-Sylow subgroup of G.

EXERCISE 2.7.14. Let G be a finite group of order n.
(1) Show that for each n in the list: 30,36,40,42,44,48,50, 52,54,55, 56,75,32 ·52,

9 ·37, G is not a simple group.
(2) Show that for each n in the list: 45,51,5 ·17,52 ·17,52 ·37, G is abelian.

EXERCISE 2.7.15. Let G be a group of order p2q, where p and q are distinct primes.
Show that G is not simple.
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EXERCISE 2.7.16. Let G be a group of order (p− 1)p2, where p is an odd prime.
Prove the following.

(1) G has a unique p-Sylow subgroup.
(2) There are at least four groups of order (p−1)p2 which are pairwise non-isomorphic.

EXERCISE 2.7.17. Show that a group of order 105 is a semidirect product of two
cyclic groups. Show how to construct an example of a nonabelian group of order 105.

8. Finite Abelian Groups

The purpose of this section is to prove that a finite abelian group can be decomposed
into an internal direct product of cyclic subgroups in an essentially unique way. This is
called the Basis Theorem for finite abelian groups.

8.1. The nth power map. Let A be an abelian group written multiplicatively and
n ∈ Z. The nth power map πn : A→ A is defined by the rule πn(x) = xn.

By Exercise 2.3.16 (where the abelian group was written additively) we see that πn is
an endomorphism of A with kernel {x ∈ A | |x| divides n} and image {xn | x ∈ A}. In the
following, the kernel of πn will be denoted A(n) and the image will be denoted An. Then
A(n) and An are subgroups of A. By the Isomorphism Theorem, Theorem 2.3.12 (a), φ

induces an isomorphism A/A(n)∼= An.

LEMMA 2.8.1. Let φ : A→ B be an isomorphism of abelian groups. Then for any
n ∈ Z, the following are true.

(1) φ : A(n)→ B(n) is an isomorphism.
(2) φ : An→ Bn is an isomorphism.
(3) φ : A/A(n)→ B/B(n) is an isomorphism.
(4) φ : A/An→ B/Bn is an isomorphism.

PROOF. (1): Let x∈ A(n). Then (φ(x))n = φ(xn) = φ(e) = e implies φ(A(n))⊆ B(n).
Given y∈ B(n), y = φ(x) for some x ∈ A. Then e = yn = (φ(x))n = φ(xn). So x ∈ ker(φ) =
〈e〉. This proves φ : A(n)→ B(n) is an isomorphism.

(2): Let x ∈ A. Then φ(xn) = (φ(x))n, so φ(An)⊆ Bn. Let yn ∈ Bn. Then y = φ(x) for
some x ∈ A, so yn = (φ(x))n = φ(xn), which proves φ : An→ Bn is an isomorphism.

(3): Consider the commutative diagram

A
φ //

��

B

η

��
A/ker(ηφ)

∼= // B/B(n)

where all of the maps are onto. By Part (1), the kernel of ηφ is φ−1(B(n)) = A(n). By The-
orem 2.3.12 (a), ηφ factors through A/A(n) giving the isomorphism: A/A(n)∼= B/B(n).

(4): Consider the commutative diagram

A
φ //

��

B

η

��
A/ker(ηφ)

∼= // B/Bn

where all of the maps are onto. By Part (2), the kernel of ηφ is φ−1(Bn) = An. By
Theorem 2.3.12 (a), ηφ factors through A/An giving the isomorphism: A/An ∼= B/Bn. �
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LEMMA 2.8.2. Let A = 〈a〉 be an infinite cyclic group and n ∈ N. Then A(n) = 〈e〉
and A/An is cyclic of order n.

PROOF. We have the isomorphism φ : Z→ A which is defined on generators by the
rule φ(1) = a (Theorem 2.3.25 (5)). The group Z is written additively as in Exercise 2.3.16,
and instead of the nth power map πn, we will use the “left multiplication by n” map λn :
Z→ Z. The kernel of λn is 〈0〉 and the image of λn is 〈n〉 = nZ. Applying Lemma 2.8.1
we have A(n) = 〈e〉 and A/An ∼= Z/nZ is cyclic of order n. �

LEMMA 2.8.3. Let A = 〈a〉 be a finite cyclic group of order m and n ∈ N. If d =
gcd(m,n), then the following are true.

(1) A(n) = 〈am/d〉 is cyclic of order d.
(2) A/A(n)∼= An is cyclic of order m/d.
(3) A/An is cyclic of order d.

PROOF. We have A = {e,a, . . . ,am−1}.
(1): Suppose 0 ≤ i < m and (ai)n = e. Then m divides ni and by Proposition 1.2.10,

lcm(m,n) = mn/d divides ni. This implies m/d divides i. Hence A(n)⊆ 〈am/d〉. But am/d

has order d by Lemma 2.2.16. Since d divides n, A(n)⊇ 〈am/d〉, proving (1).
(2) and (3): By Theorem 2.3.12 (a), A/A(n) ∼= An. From Part (1) and Lagrange’s

Theorem (Corollary 2.2.12), we get (2). From Part (2) and Lagrange’s Theorem, we get
(3). �

LEMMA 2.8.4. Let A and B be abelian groups and n ∈ Z. Then the following are true.
(1) (A×B)(n) = A(n)×B(n).
(2) (A×B)n = An×Bn.

PROOF. Let (a,b) be a typical element in A×B. Part (2) follows immediately from the
identity (a,b)n = (an,bn). Part (1) follows from (A×B)(n) = {(a,b) | (a,b)n = (e,e)} =
{(a,b) | an = e and bn = e}= A(n)×B(n). �

LEMMA 2.8.5. Let A be a finite abelian group, p a prime, r ∈N, and assume pr is the
highest power of p that divides |A|. Then A(pr) is equal to the p-Sylow subgroup of A.

PROOF. Since A is abelian, every subgroup is normal and by Corollary 2.7.6, A has
a unique p-Sylow subgroup. Call it P. Then |P| = pr. If x ∈ P, then |x| divides pr by
Corollary 2.2.17. As a set, A(pr) consists of those elements x ∈ A whose order divides
pr. Therefore, P ⊆ A(pr). If x ∈ A(pr), then by Exercise 2.7.10, x is in P. Therefore,
A(pr)⊆ P. �

8.2. The Basis Theorem.

THEOREM 2.8.6. Every finite abelian group G is isomorphic to an internal direct
product of cyclic groups.

PROOF. Since G is abelian, every subgroup of G is normal. It follows from Propo-
sition 2.7.8 that G is isomorphic to the internal direct product of its Sylow subgroups.
Therefore, it suffices to prove the theorem for a finite p-group. From now on, assume p is
a prime and [G : e] = pn, for some n ∈ N.

The proof is by Mathematical Induction on n. If n= 1, then G∼=Z/p is cyclic. Assume
inductively that n > 1 and that the theorem is true for all abelian groups of order pi where
0 < i < n.
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Let a ∈ G be an element of maximal order. If |a|= pn, then G = 〈a〉 is cyclic and we
are done. Assume |a| = pα , where 1 ≤ α < n. Set A = 〈a〉. Look at the quotient G/A.
We have |G/A| = [G : A] = pn−α . By our induction hypothesis, G/A is an internal direct
product of cyclic groups. That is, there exist b1, . . . ,bm ∈ G such that

(8.1) G/A = 〈[b1]〉× · · ·×〈[bm]〉

where we write [bi] for the left coset biA. Assume the order of [bi] in G/A is pβi . By
Exercise 2.3.40, pβi divides the order of bi in G . Since |a| is maximal, α ≥ βi for each

i. Because (biA)pβi = A, bpβi
i ∈ A. Therefore bpβi

i = aki for some ki. Because the order of
every element of G divides pα , we have(

aki
)pα−βi

=
(

bpβi
i

)pα−βi

= bpα

i = e.

It follows that pα divides ki pα−βi . Hence pβi divides ki. Write ki = `i pβi . Set ai = bia−`i .
Then

apβi
i =

(
bia−`i

)pβi

= bpβi
i a−`i pβi = akia−ki = e

which implies |ai| ≤ pβi . Set Ai = 〈ai〉. To finish the proof, we show that G is the internal
direct product of A,A1, . . . ,Am. Let x ∈ G be an arbitrary element of G. In G/A we can
write the coset xA as a product be1

1 A · · ·bem
m A. Since biA= aiA, we see that x= ae1

1 · · ·aem
m ae0 ,

for some e0 ∈ Z. This proves that G = AA1 · · ·Am.
Suppose e = ae0ae1

1 · · ·aem
m . In G/A we have [e] = [a1]

e1 · · · [am]
em = [b1]

e1 · · · [bm]
em .

As in Eq. (8.1), G/A is a direct product so [bi]
ei = [e] for each i. So pβi divides ei for each

i. Therefore, aei
i = e for each i. It follows that e = ae0 , hence e has a unique representation.

�

THEOREM 2.8.7. (Basis Theorem for Finite Abelian Groups) Let G be an abelian
group of finite order. Then the following are true.

(1) G is the internal direct product of its Sylow subgroups.
(2) If p is a prime factor of |G| and P is the unique p-Sylow subgroup of G, then

there exist a1, . . . ,am in P such that P is the internal direct product of the cyclic
subgroups 〈a1〉, . . . ,〈am〉, the order of ai is equal to pei , and e1 ≥ e2 ≥ ·· · ≥ em.

(3) G is uniquely determined by the prime factors p of |G| and the integers ei that
occur in (2).

The prime powers pei that occur in (3) are called the invariants of G. Notice that if |P|= pn,
then n = e1 + · · ·+ em is a partition of the integer n.

PROOF. Part (1) follows from Proposition 2.7.8. Part (2) follows from Theorem 2.8.6.
(3): Let A and B be finite abelian groups. First we prove that if φ : A→ B is an isomor-

phism, then A and B have the same invariants. Because φ is a one-to-one correspondence,
|A| = |B|. Let p be a prime that divides |A| (and |B|). By Lemmas 2.8.5 and 2.8.1, the p-
Sylow subgroups of A and B are isomorphic. Using Theorem 2.8.6 we can suppose the p-
Sylow subgroup of A is the internal direct product of A1, . . . ,Am where Ai = 〈ai〉, |ai|= pei ,
and e1 ≥ e2 ≥ ·· · ≥ em ≥ 1. Likewise, assume the p-Sylow subgroup of B is the internal
direct product of B1, . . . ,Bn where Bi = 〈bi〉, |bi|= p fi , and f1≥ f2≥ ·· · ≥ fn≥ 1. We have
A1×·· ·×Am ∼= B1×·· ·×Bn. Multiply by p and apply Lemmas 2.8.1, 2.8.3 and 2.8.4 to
get (A1×·· ·×Am)(p)∼= A1(p)×·· ·×Am(p) is a direct product of cyclic groups of order
p, has order pm, and is isomorphic to (B1×·· ·×Bn)(p)∼= B1(p)×·· ·×Bn(p) which has
order pn. Therefore m = n. Inductively, assume the uniqueness claim is true for any finite
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p-group of order less than pe1+···+em . By Lemma 2.8.3, the invariants of (A1×·· ·×Am)
p =

Ap
1×·· ·×Ap

m are e1−1≥ ·· ·≥ em−1 and the invariants of (B1×·· ·×Bm)
p =Bp

1×·· ·×Bp
m

are f1−1≥ ·· · ≥ fm−1. By induction, ei = fi for each i.
For the converse, suppose we are given the cyclic groups A1, . . . ,Am, B1, . . . ,Bn, where

|Ai|= pei for each i, and |B j|= p fi for each j. If m = n and ei = fi for each i, then clearly
Ai ∼= Bi for each i and we have A1×·· ·×Am ∼= B1×·· ·×Bm. �

8.3. Exercises.

EXERCISE 2.8.8. If G is any group, and n ∈ N, the direct product of n copies of G is
Gn = ∏

n
i=1 G. Let G,+ be an abelian group. Using Exercise 2.3.16, show that an n-tuple

A ∈ (a1, . . . ,an) ∈ Zn defines a homomorphism A : Gn → G by the rule A(x1, . . . ,xn) =

∑
n
i=1 aixi.

EXERCISE 2.8.9. Let m,n ∈ N. Show that the direct product Z/m×Z/n is cyclic if
and only if gcd(m,n) = 1.

EXERCISE 2.8.10. Let G be a finite abelian group. Prove that the following are equiv-
alent:

(1) G is cyclic.
(2) For every prime factor p of |G|, the p-Sylow subgroup of G is cyclic.
(3) For every prime factor p of |G|, G(p) (see Exercise 2.3.16 for this notation) is

cyclic.
(4) For every n ∈ N, the order of G(n) is at most n.
(5) For every n ∈ N, the equation xn = e has at most n solutions in G.

EXERCISE 2.8.11. Let A and B be abelian groups written additively. The set of all
homomorphisms from A to B is denoted Hom(A,B).

(1) If f ,g ∈ Hom(A,B), then f +g is the function defined by the rule: ( f +g)(x) =
f (x)+ g(x). Show that this additive binary operation makes Hom(A,B) into an
abelian group.

(2) Now consider the case where A = B. Show that composition of functions defines
a binary operation on Hom(A,A) satisfying the following.
(a) f (gh) = ( f g)h for all f ,g,h in Hom(A,A). In other words, composition of

functions is associative.
(b) f (g+h) = f g+ f h and ( f +g)h = f h+gh for all f ,g,h in Hom(A,A). In

other words, composition distributes over addition.
Together with the two binary operations of addition and composition of endo-
morphisms, we call Hom(A,A) the ring of endomorphism of A.

EXERCISE 2.8.12. Let m,n ∈ N be positive integers. Show that the abelian group
Hom(Z/m,Z/n) is a cyclic group of order gcd(m,n). (Hints: Exercises 2.8.11 and 2.4.20.)

EXERCISE 2.8.13. If p is a prime, and n≥ 1, compute the following:
(1) Let G = ∏

n
i=1Z/2 = Z/2×·· ·×Z/2 be the direct product of n copies of Z/2.

How many subgroups of order 2 are there in G?
(2) Let G = ∏

n
i=1Z/p = Z/p×·· ·×Z/p be the direct product of n copies of Z/p.

How many elements of order p are there in G? How many subgroups of order p
are there in G?

(3) Let G = ∏
n
i=1Z/pei = Z/pe1 ×·· ·×Z/pen where ei ≥ 1 for each i. How many

elements of order p are there in G? How many subgroups of order p are there in
G?
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EXERCISE 2.8.14. Show that if G is a finite group of order at least three, then Aut(G)
has order at least two.

9. Classification of Finite Groups

This section consists of computations and applications of the theorems from the pre-
vious sections. The examples presented here are not only intended to classify all groups of
a given order, but to illustrate the various theorems of Group Theory.

9.1. Groups of order 12. We show in this example that up to isomorphism there
are exactly five groups of order 12. Let G be a finite group of order 12 = 22 · 3. Let P
be a 2-Sylow subgroup. Then P is either 〈a | a4 = e〉, a cyclic group of order 4, or P is
〈a,b | a2 = b2 = e,ab = ba〉, an isomorphic copy of the Klein four group. In both cases P
is abelian. By Theorem 2.7.7, the number of conjugates of P is odd and divides 3, hence
P has either 1 or 3 conjugates. Let Q be a 3-Sylow subgroup. By Theorem 2.7.7, the
number of conjugates of Q divides 4, hence Q has either 1 or 4 conjugates. We know that
Q = 〈c | c3 = e〉 is cyclic, hence abelian. Since P∩Q = 〈e〉, by Theorem 2.2.14 we see that
PQ = G. We consider the following four cases.

Case 1: Assume P and Q are both normal in G. By Theorem 2.7.8, G is the internal
direct product of P and Q, hence G is abelian. By Theorem 2.8.7, G is isomorphic to either

Z/3×Z/4

or
Z/3×Z/2×Z/2.

Case 2: Assume P is normal and Q has 4 conjugates. Then Q acts by conjugation on P
and there is a homomorphism θ : Q→ Aut(P), where θ(c) = αc−1 is conjugation by c−1.
By Exercise 2.4.18, G is isomorphic to PoQ, the semidirect product of P and Q.

There are two subcases to consider. If P= 〈a〉 is cyclic, then Aut(P)∼=U4 is a group of
order two. Since Q has order three, in this case imθ = 〈e〉. Then cac−1 = a, hence G must
be abelian. In this case, G is the first group of Case 1. If P is 〈a,b | a2 = b2 = e,ab = ba〉,
then Aut(P) is isomorphic to GL2(Z/2). We will prove this in Proposition 4.5.8. By
Example 2.1.20, GL2(Z/2) ∼= S3. There are two elements of order 3 in S3. One element
of order three in Aut(P) is the cyclic permutation π defined by a 7→ b 7→ ab 7→ a. The
other element of order three is π−1. Therefore, if θ(c) = π , then θ(c−1) = π−1. Since
Q is generated by either c, or c−1, without loss of generality we assume θ(c) = π . Then
cac−1 = b and cbc−1 = ab. The semidirect product PoQ has presentation in terms of
generators and relations

〈a,b,c | a2 = b2 = c3 = e,ab = ba,cac−1 = b,cbc−1 = ab〉.

This group is isomorphic to A4 by the map defined by a 7→ (12)(34), b 7→ (14)(23), c 7→
(123). The reader should verify that (123)(12)(34)(132)= (14)(23), (123)(14)(23)(132)=
(13)(24), and (123)(13)(24)(132) = (12)(34).

Case 3: Assume P has 3 conjugates and Q is normal. Then P acts on Q by conjugation
and there is a homomorphism θ : P→ Aut(Q). Then G is the semidirect product QoP.
By Theorem 2.3.27, Aut(Q) ∼= U3 is a group of order 2. The automorphism of order two
is defined by c 7→ c−1. There are two subcases to consider. If P = 〈a〉 is cyclic, then
there is one nontrivial possibility for θ . In this case, aca−1 = c−1. The presentation of the
semidirect product in terms of generators and relations is

〈a,c | a4 = c3 = e,aca−1 = c−1〉.
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If P is 〈a,b | a2 = b2 = e,ab = ba〉, then there are three subgroups of order two, hence
three possible homomorphisms from P onto Aut(Q). Therefore, one of a,b,ab commutes
with c. Since P is generated by any two of the three, without loss of generality we assume
aca = c−1 and bcb = c. The semidirect product is described by

〈a,b,c | a2 = b2 = c3 = e,ab = ba,aca = c−1,bc = cb〉.

This group is isomorphic to D6 the element bc has order 6, and a(bc)a = (bc)−1. Another
way to view this group is as the internal direct product 〈b〉×〈a,c〉 which is isomorphic to
Z/2×D3.

Case 4: Assume P has 3 conjugates and Q has 4 conjugates. Counting elements we
find that each subgroup of order 3 has 2 elements of order 3. Therefore, G has 8 elements
of order 3. The subgroup P has 4 elements. Since P is not normal, the group G has more
than 12 elements, which is a contradiction. Case 4 cannot occur.

9.2. Groups of order 30. In this example we show that up to isomorphism there are
exactly 4 groups of order 30. Let G be a group of order 30 = 2 ·3 ·5. Using Theorems 2.7.8
and 2.5.2 we see that if G is abelian, then G is cyclic. Let P be a 2-Sylow subgroup of G, Q
a 3-Sylow subgroup, and R a 5-Sylow subgroup. By Theorem 2.7.7, Q is either normal or
has 10 conjugates. The number of conjugates of R is either 1 or 6. By counting elements,
we see that if G has 6 subgroups of order 5 then there are 24 elements of order 5. If G
has 10 subgroups of order 3, then this includes 20 elements of order 3. Since |G| = 30,
this implies either Q is normal or R is normal. By Exercise 2.3.18, QR is a subgroup of G.
Since Q∩R = 〈e〉, by Theorem 2.2.14, |QR| = 15. Since [G : QR] = 2, Exercise 2.3.17,
implies QR is normal in G. By Theorem 2.5.2, QR is cyclic. Write QR = 〈b〉. Then P acts
by conjugation on QR and there is a homomorphism θ : P→ Aut(QR)∼=U15. The image
of θ has order 1 or 2. The group U15 has order φ(15) = 8. The reader should verify that
there are 4 elements in U15 that satisfy x2 ≡ 1 (mod 15), they are 1,4,−1,−4. Therefore,
if P = 〈a〉, then aba = bs, where s ∈ {1,4,−1,−4}. Thus G is the semidirect product
QRoP. The presentation in terms of generators and relations is

(9.1) G = 〈a,b | a2 = b15 = e,aba = bs〉

where s ∈ {1,4,−1,−4}. If s = 1, then a commutes with b, and G is abelian. If s = −1,
then G is isomorphic to D15. By Example 2.3.32, the center of D15 is 〈e〉.

If s = 4, then because ab5a = b20 = b5 we see that the center of G contains b5, an
element of order 3. Then G/〈b5〉 has presentation 〈a,b | a2 = b5 = e,aba = b4〉 which is
isomorphic to D5. Since the center of D5 is trivial, this proves the center of G is Z = 〈b5〉.
Since ab3a= b12 = b−3 we see that the subgroup D= 〈a,b3〉 has order 10 and is isomorphic
to D5. generated by a and b3. Using Exercise 2.5.19, we see that G is the internal direct
product D×Z, hence G is isomorphic to D5×Z/3.

If s =−4, then because ab3a = b−12 = b3 we see that the center of G contains b3, an
element of order 5. Then G/〈b3〉 has presentation 〈a,b | a2 = b3 = e,aba = b−1〉 which
is isomorphic to D3. Since the center of D3 is trivial, this proves the center of G is Z =
〈b3〉. Since ab5a = b−20 = b−5 we see that the subgroup D = 〈a,b5〉 has order 6 and is
isomorphic to D3. Using Exercise 2.5.19, we see that G is the internal direct product D×Z,
hence G is isomorphic to D3×Z/5.

This proves that in (9.1) the four values of s give rise to four groups that are pairwise
nonisomorphic.
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9.3. Groups of order 63. We show in this example that up to isomorphism there are
exactly four groups of order 63. Let G be a finite group of order 63 = 7 · 32. If G is
abelian, then by Theorem 2.8.7, G is isomorphic to either Z/7×Z/9, or Z/7×Z/3×Z/3.
Assume from now on that G is nonabelian. Let P be a 7-Sylow subgroup. The number of
conjugates of P divides 9 and is of the form 1+7k. Therefore, we conclude that k = 0 and
P is normal. Let Q be a 3-Sylow subgroup. We know that Q is abelian. Since P∩Q = 〈e〉,
by Theorem 2.2.14 we see that PQ = G. By Exercise 2.4.18, G = PoQ and the action by
Q on P is conjugation. By Example 2.4.8, the homomorphism

θ : Q→ Aut(P)∼=U7

is defined by θ(x) = αx−1 , where αx−1 is the inner automorphism of P corresponding to
conjugation by x−1. If the image of θ is 〈1〉, then every element of Q commutes with every
element of P and G is abelian. By our assumption, we can assume θ is not the trivial map.
By Theorem 2.3.27, Aut(P) ∼= U7 which is an abelian group of order φ(7) = 6, hence is
cyclic. Since Q has order 9, this implies ker(θ) has order 3, and im(θ) has order 3. Let
P = 〈a〉. There are two cases.

Case 1: Q = 〈b〉 is cyclic. Then θ maps b to αb−1 , the inner automorphism defined by
b−1, which is an element of order 3 in U7. There are two elements of order 3 in U7, namely
[2] and [4]. Therefore, bab−1 = ai where i = 2 or 4. Notice that |b2|= 9 so Q = 〈b2〉. Since
b2ab−2 = a2i, without loss of generality we can replace b with b2 if necessary and assume
i = 2. Then in this case,

G = 〈a,b | a7 = b9 = e, bab−1 = a2〉

is the presentation of G in terms of generators and relations.
Case 2: Q is a direct sum of two cyclic groups of order 3. Suppose ker(θ) = 〈c〉 and

b ∈ Q−〈c〉. Then Q = 〈b,c〉. As in Case 1, bab−1 = ai where i = 2 or 4. Again, we can
replace b with b−1 if necessary and assume bab−1 = a2. Then in this case,

G = 〈a,b,c | a7 = b3 = c3 = e, bc = cb, bab−1 = a2, cac−1 = a〉

is the presentation of G.
For a continuation of this example, see Exercise 2.9.1.

9.4. Groups of order 171. We show in this example that up to isomorphism there
are exactly five groups of order 171. Let G be a finite group of order 171 = 19 ·32. If G is
abelian, then by Theorem 2.8.7, G is isomorphic to either Z/19×Z/9, or Z/19×Z/3×
Z/3. Assume from now on that G is nonabelian. Let P be a 19-Sylow subgroup. Then
P = 〈a〉 is cyclic. The number of conjugates of P divides 9 and is of the form 1+ 19k.
Therefore, we conclude that k = 0 and P is normal. Let Q be a 3-Sylow subgroup. We
know that Q is abelian. Since P∩Q = 〈e〉, by Theorem 2.2.14 we see that PQ = G. By
Exercise 2.4.18, G = PoQ and the action by Q on P is conjugation. By Example 2.4.8,
the homomorphism

θ : Q→ Aut(P)∼=U19

is defined by θ(x) = αx−1 , where αx−1 is the inner automorphism of P corresponding to
conjugation by x−1. If the image of θ is 〈1〉, then every element of Q commutes with every
element of P and G is abelian. By our assumption, we can assume θ is not the trivial map.
By Theorem 2.3.27, Aut(P) ∼= U19 which is an abelian group of order φ(19) = 18. Since
Q has order 9, this implies ker(θ) has order 1 or 3, and im(θ) has order 3 or 9. A direct
computation shows that U19 is cyclic and has 6 elements of order 9, namely [4], [5], [6], [9],
[16], and [17]. The 2 elements of order 3 are [7] and [11]. There are three cases.
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Case 1: Assume Q= 〈b〉 is cyclic and imθ has order 9. Then θ maps Q isomorphically
onto the subgroup of order 9 in Aut(P). If necessary, we replace b with the generator of Q
that maps to [4] ∈U19. We have bab−1 = a4. The presentation of G in terms of generators
and relations is

G = 〈a,b | a19 = b9 = e, bab−1 = a4〉.
Case 2: Assume Q = 〈b〉 is cyclic and imθ has order 3. Then the kernel of θ is

the cyclic subgroup of order 3. Under θ , an element of order 9 is mapped onto one of the
elements of order 3. If necessary, we replace b with a generator of Q that maps to [7]∈U19.
We have bab−1 = a7. The presentation of G in terms of generators and relations is

G = 〈a,b | a19 = b9 = e, bab−1 = a7〉.
Case 3: Assume Q is a direct sum of two cyclic groups of order 3. Since U19 has a

unique subgroup of order 3, the kernel of θ is a group of order 3. Suppose ker(θ) = 〈c〉.
Because the image of θ contains both [7] and [11], we pick b∈Q−〈c〉 such that θ(b) = [7].
Then Q = 〈b,c〉, cac−1 = a, and bab−1 = a7. Then in this case,

G = 〈a,b,c | a19 = b3 = c3 = e, bc = cb, bab−1 = a7, cac−1 = a〉
is the presentation of G.

9.5. Groups of order 225. In this example we show that there are at least six noniso-
morphic groups of order 225. We show how to construct two nonisomorphic nonabelian
groups of order 225 = 3252. Let G denote a group of order 225. Let P be a 5-Sylow sub-
group of G. By Theorem 2.7.7, the number of conjugates of P divides 9 and is congruent
to 1 modulo 5. We conclude that P is normal in G. Let Q be a 3-Sylow subgroup of G. The
number of conjugates of Q divides 25 and is congruent to 1 modulo 3. Therefore, either Q
is normal in G, or Q has 25 conjugates. By Theorem 2.7.1 (2), both P and Q are abelian.

Case 1: Assume P and Q are both normal in G. By Theorem 2.7.8, G is the internal
direct product of P and Q, hence G is abelian. By Theorem 2.8.7, G is isomorphic to either

Z/9×Z/25

or
Z/9×Z/5×Z/5

or
Z/3×Z/3×Z/25

or
Z/3×Z/3×Z/5×Z/5.

Case 2: Assume P is normal and Q has 25 conjugates. Then Q acts by conjugation
on P and there is a homomorphism of groups θ : Q→ Aut(P). There are two subcases to
consider.

Subcase 2.1: Assume P is cyclic. By Theorem 2.3.27, Aut(P) ∼= U25 is an abelian
group of order φ(25) = 20. Since Aut(P) has no subgroup of order 3, θ is the trivial
homomorphism. Therefore, every element of Q commutes with every element of P. By
Exercise 2.5.19, G is the internal direct product of P and Q, hence this case reduces to
Case 1.

Subcase 2.2: Assume P ∼= Z/5×Z/5. Then Aut(P) is isomorphic to GL2(Z/5). We
will prove this in Proposition 4.5.8. As seen in Exercise 2.9.5, there are subgroups of
order 3 in Aut(P). Without being more specific, we end this example by showing how
to construct two nonisomorphic nonabelian groups of order 225. Let α ∈ Aut(P) be an
automorphism of P of order 3. There are two cases for Q.
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Subcase 2.2.1: Assume Q = 〈a | a9 = e〉 is cyclic of order 9. Then a 7→ α induces
θ : Q→ Aut(P). The kernel of θ has order 3, the image of θ has order 3. Then the
semidirect product PoQ is a nonabelian group of order 225.

Subcase 2.2.2: Assume Q = 〈a,b | a3 = b3 = e〉 is a noncyclic group of order 9. Then
a 7→ α , b 7→ e induces θ : Q→ Aut(P). The kernel of θ is 〈b〉, which has order 3, the
image of θ is 〈α〉, which has order 3. Then the semidirect product PoQ is a nonabelian
group of order 225.

9.6. Groups of order p3. Let p be an odd prime. In this example we show how to
construct a nonabelian group of order p3. Let F be the field Z/p. Let V = F2 = {(x1,x2) |
xi ∈ F} where the binary operation on V is written additively. Then V is isomorphic to

Z/p×Z/p. Let θ ∈ GL2(F) be the matrix
[

1 0
1 1

]
. Then θ 2 =

[
1 0
2 1

]
, θ 3 =

[
1 0
3 1

]
,

. . . , θ p−1 =

[
1 0

p−1 1

]
, θ p =

[
1 0
0 1

]
. This shows that C = 〈θ〉 is a cyclic subgroup of

GL2(F) of order p. Although we have not proved it yet, using matrices and properties of
Hom we will prove in Proposition 4.5.8 that Aut(V )∼= GL2(F). Therefore, the semidirect
product V oC is a nonabelian group of order p3 containing a normal subgroup isomorphic
to V . Before ending this example, we show that every element of the semidirect product
has order 1 or p. Let i ∈ Z. Then

I2 +θ
i +θ

2i + · · ·+θ
(p−1)i =

[
p 0

0+ i+2i+ · · ·+(p−1)i p

]
=

[
0 0

ip(p−1)/2 0

]
=

[
0 0
0 0

]
.

Let z = (x,θ i) be a typical element of the semidirect product V oC. Then

z2 = (x,θ i)(x,θ i) = (x+θ
i(x),θ 2i) =

(
(I2 +θ

i)(x),θ 2i)
z3 =

(
(I2 +θ

i)(x),θ 2i)(x,θ i) =
(
(I2 +θ

i +θ
2i)(x),θ 3i)

...

zp =
(
(I2 +θ

i +θ
2i + · · ·+θ

(p−1)i)(x),θ pi
)
= (0, I2).

This shows z has order 1 or p.

9.7. Exercises.

EXERCISE 2.9.1. This exercise is a continuation of Example 9.3. Let G be a non-
abelian group of order 63. Show that G contains a cyclic subgroup N of order 21 and N is
normal in G. Show that the center of G is a cyclic group of order 3.

EXERCISE 2.9.2. Classify up to isomorphism all groups of order 99.

EXERCISE 2.9.3. Show that up to isomorphism there are 5 groups of order 8, namely
Z/8, Z/4×Z/2, Z/2×Z/2×Z/2, the dihedral group D4, and the quaternion 8-group Q8
of Example 2.1.18.

EXERCISE 2.9.4. (The square roots of unity in GL2(Z/5)) The general linear group
of 2-by-2 matrices over the field Z/5, denoted GL2(Z/5), is the multiplicative group of
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invertible matrices
(

a b
c d

)
with entries in the field Z/5. In this exercise the reader is

asked to find all matrices M in GL2(Z/5), such that M2 = I2, where I2 denotes the identity
matrix. The following is a suggested outline to show that there are 31 elements of order
two in GL2(Z/5).

(1) Let M =

[
a b
c d

]
and assume M2 = I2. Show that a,b,c,d satisfy the equations:

a2−d2 = 0, bc = 1−a2.

(2) If a = 0, then M is of the form
[

0 b
b−1 0

]
, where b = 1,2,3,4, so there are 4 such

matrices.

(3) If a = ±1, then M has one of the forms ±
[

1 0
0 1

]
, ±
[

1 b
0 −1

]
, ±
[

1 0
c −1

]
,

where b = 0,1,2,3,4, c = 1,2,3,4. There are 20 such matrices, one of them has
order 1, the rest order 2.

(4) If a = ±2, then M has one of the forms ±
[

2 b
c −2

]
, where bc = 2. There are 8

such matrices.

EXERCISE 2.9.5. (The cube roots of unity in GL2(Z/5)) The general linear group
of 2-by-2 matrices over the field Z/5, denoted GL2(Z/5), is the multiplicative group of

invertible matrices
(

a b
c d

)
with entries in the field Z/5. In this exercise the reader is

asked to find all matrices M in GL2(Z/5), such that M3 = I2, where I2 denotes the identity
matrix. The following is a three-step outline to show that there are 20 elements of order
three in GL2(Z/5).

(1) Let M =

[
a b
c d

]
. Show that if M2 +M+ I2 = 0, then M3 = I2.

(2) Show that a,b,c,d satisfy the equations: bc =−(a2 +a+1), d = 4−a.
(3) Show that there are 5 choices for a and for each a there are 4 choices for the

ordered triple (b,c,d).
(4) This part assumes the reader has basic familiarity with field extensions. Show

that every element of order three in the ring of 2-by-2 matrices over the field Z/5
is a root of the polynomial equation x2 + x+1 = 0. Prove that every element of
order 3 in GL2(Z/5) is in the list of Part (3).

10. Chain Conditions

10.1. Nilpotent Groups and Solvable Groups.

DEFINITION 2.10.1. Let G be a group. Set Z0 = 〈e〉 and Z1 = Z(G), the center of
G. Then Z1 = {x ∈ G | xyx−1y−1 ∈ Z0 for all y ∈ G}. By Exercise 2.3.38, Z1 is an abelian
normal subgroup of G. Inductively assume that n ≥ 1 and we have the chain of normal
subgroups Z0 ⊆ Z1 ⊆ ·· · ⊆ Zn in G. Let ηn : G→ G/Zn be the natural map. Then Zn+1 is
defined by the rules

Zn+1 = η
−1
n (Z(G/Zn))

= {x ∈ G | xyx−1y−1 ∈ Zn for all y ∈ G}.
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By Theorem 2.3.13, Zn+1 is a normal subgroup of G, Zn ⊆ Zn+1, and the quotient group
Zn+1/Zn is isomorphic to Z(G/Zn), hence is abelian. The ascending chain of subgroups
Z0 ⊆ Z1 ⊆ Z2 ⊆ ·· · ⊆ Zn ⊆ Zn+1 ⊆ ·· · is called the ascending central series of G.

DEFINITION 2.10.2. Let G be a group. We say G is nilpotent, if the ascending central
series of G converges to G. That is, if Zn = G for some n≥ 1.

LEMMA 2.10.3. Let p be a prime and G a finite p-group. Then G is nilpotent.

PROOF. By Theorem 2.7.1, G has a nontrivial center. If G is abelian, then Z1 = G.
Otherwise, Z1 ( G, and the quotient G/Z1 is a p-group of order less than |G|. Since G is
finite, Zn = G for some n≥ 1. �

LEMMA 2.10.4. If A and B are groups, then Zn(A×B) = Zn(A)×Zn(B).

PROOF. The proof is by induction on n. By Exercise 2.3.38, Z(A×B) = Z(A)×Z(B),
so the result is true for n = 1. Assume inductively that j ≥ 1 and Z j(A×B) = Z j(A)×
Z j(B). By Exercise 2.5.20,

A×B
Z j(A×B)

=
A×B

Z j(A)×Z j(B)
=

A
Z j(A)

× B
Z j(B)

.

By Exercises 2.3.38 and 2.5.20,

Z
(

A×B
Z j(A×B)

)
= Z

(
A

Z j(A)
× B

Z j(B)

)
= Z

(
A

Z j(A)

)
×Z

(
B

Z j(B)

)
=

Z j+1(A)
Z j(A)

× Z j+1(B)
Z j(B)

=
Z j+1(A)×Z j+1(B)

Z j(A)×Z j(B)

=
Z j+1(A)×Z j+1(B)

Z j(A×B)
.

This proves Z j+1(A×B)/Z j(A×B) =
(
Z j+1(A)×Z j+1(B)

)
/Z j(A×B). It follows from

Theorem 2.3.13 that Z j+1(A×B) = Z j+1(A)×Z j+1(B). This completes the proof. �

PROPOSITION 2.10.5. The direct product of a finite number of nilpotent groups is
nilpotent.

PROOF. Let A and B be nilpotent groups. We show that A×B is nilpotent. A finite in-
duction argument proves the result for a general finite product. By hypothesis, there exists
n ≥ 1 such that A = Zm(A) and B = Zm(B). By Lemma Zm(A×B) = Zm(A)×Zm(B) =
A×B. �

LEMMA 2.10.6. Let G be a nilpotent group and H a proper subgroup of G. Then H
is a proper subgroup of NG(H), the normalizer of H in G.

PROOF. For some n ≥ 1, we are given that Zn = G. Let k be the largest integer such
that Zk ⊆H. Let a∈ Zk+1−H. Then aha−1 ≡ h (mod Zk) implies there exists z∈ Zk such
that aha−1 = zh. But zh ∈ H, hence a ∈ NG(H)−H. �

THEOREM 2.10.7. Let G be a finite group. Then G is nilpotent if and only if G is the
internal direct product of its Sylow subgroups.
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PROOF. Assume G is a finite nilpotent group. Let p be a prime divisor of |G| and
P a Sylow p-subgroup of G. First we show that P is a normal subgroup of G. By Corol-
lary 2.7.6 (3), NG(NG(P)) =NG(P). By Lemma 2.10.6, NG(P) =G. By Proposition 2.4.12,
P is a normal subgroup of NG(P) = G. By Proposition 2.7.8, G is the internal direct
product of its Sylow subgroups. The converse follows from Lemma 2.10.3 and Proposi-
tion 2.10.5. �

DEFINITION 2.10.8. Let G be a group. By Exercise 2.3.42, the commutator subgroup
of G, denoted G′, is the subgroup of G generated by the set {xyx−1y−1 | x,y ∈ G}. More-
over, G′ is a normal subgroup of G and the quotient group G/G′ is abelian. Set G(0) = G
and G(1) = G′. Recursively, for n≥ 1, define Gn+1 to be the commutator subgroup of G(n).
Then Gn+1 is a normal subgroup of G(n) and the quotient group G(n)/G(n+1) is an abelian
group. The descending chain of subgroups G(0) ⊇ G(1) ⊇ G(2) ⊇ ·· · ⊇ G(n) ⊇ G(n+1) ⊇
·· · ⊇ 〈e〉 is called the derived series of G.

DEFINITION 2.10.9. A group G is said to be solvable if there is a descending chain of
subgroups G = G0 ⊇G1 ⊇ ·· · ⊇Gm = 〈e〉 starting with G and ending with 〈e〉 such that for
0 < i≤ m, Gi is a normal subgroup of Gi−1 and the quotient Gi/Gi−1 is an abelian group.
In this case, we say G0,G1, . . . ,Gm is a solvable series for G.

EXAMPLE 2.10.10. It is proved in Theorem 2.7.1 that a finite p-group is solvable.

EXAMPLE 2.10.11. If G is a finite abelian group, then 〈e〉 ⊆G is a solvable series for
G.

LEMMA 2.10.12. Let G be a group. If G is nilpotent, that is, if there exists k ≥ 1 such
that Zk = G, then G is solvable.

PROOF. Assume the ascending central series 〈e〉= Z0⊆ Z1⊆ Z2⊆ ·· · ⊆ Zk−1⊆ Zk =
G begins at 〈e〉 and ends at G. Since each quotient Zn+1/Zn is abelian, this is a solvable
series. �

LEMMA 2.10.13. Let G be a group. Then G has a solvable series if and only if for
some k ≥ 1, the kth derived subgroup G(k) is equal to 〈e〉. In other words, G is solvable if
and only if the derived series converges to 〈e〉.

PROOF. If G(k) = 〈e〉, then the derived series is a solvable series. Conversely, assume
G = G0 ⊇G1 ⊇ ·· · ⊇Gm = 〈e〉. Since G1 is a normal subgroup of G and G/G1 is abelian,
by Exercise 2.3.42 (3), G′ ⊆ G1. Then {aba−1b−1 | a,b ∈ G′} is a subset of {aba−1b−1 |
a,b ∈ G1}. So G(2) = G′′ ⊆ G′1. But G2 is a normal subgroup of G1 and G1/G2 is abelian,
so G′1 ⊆G2. Taken together, we have G(2) ⊆G2. Iterating this argument shows that G(m) ⊆
Gm = 〈e〉. �

COROLLARY 2.10.14. The symmetric group Sn is solvable if and only if n≤ 4.

PROOF. A solvable series for S3 is 〈e〉 ⊆ A3 = 〈e,(123),(132)〉 ⊆ S3. A solvable
series for S4 is 〈e〉 ⊆ 〈e,(12)(34),(13)(24),(14)(23)〉 ⊆ A4 ⊆ S4. Let n≥ 5 and let G = Sn.
Since Sn/An is cyclic of order two, by Exercise 2.3.42 (3), G′ ⊆ An. Since An is nonabelian
and simple, G′ = G(2) = An. Therefore, the derived series for G converges to An. By
Lemma 2.10.13, G is not solvable. �
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10.2. Composition Series.

DEFINITION 2.10.15. Let G be a group and suppose there is a strictly descending
finite chain of subgroups

G = G0 ) G1 ) G2 ) · · ·) Gn = 〈e〉
starting with G=G0 and ending with Gn = 〈e〉. The length of the chain is n. A composition
series for G is a chain such that for i = 1, . . . ,n, Gi is a normal subgroup of Gi−1 and
Gi−1/Gi is simple. If G has no composition series, define `(G) = ∞. Otherwise, let `(G)
be the minimum of the lengths of all composition series of G.

LEMMA 2.10.16. Let G be a finite group. Then G has a composition series.

PROOF. The reader should verify that a strictly descending chain of subgroups of
maximum length such that Gi is a normal subgroup of Gi−1 is a composition series. �

10.3. Exercises.

EXERCISE 2.10.17. Let G be a group. Prove:
(1) For each k ≥ 1, the kth derived subgroup, G(k), is a normal subgroup of G.
(2) If θ : G→ H is an epimorphism, then θ(G(k)) = H(k).

EXERCISE 2.10.18. Let G be a group. Prove:
(1) If G is solvable and H is a subgroup of G, then H is solvable.
(2) If G is solvable and θ : G→ H is an epimorphism, then H is solvable.
(3) Let N be a normal subgroup of G. If N and G/N are solvable, then G is solvable.
(4) If G 6= 〈e〉 and G is solvable, then there exists an abelian normal subgroup A⊆G,

A 6= 〈e〉.

EXERCISE 2.10.19. Let n≥ 3.
(1) Show that there is a homomorphism θ : D2n→ Dn from the dihedral group D2n

onto the dihedral group Dn and the kernel of θ is the center of D2n. (Hint:
Example 2.3.32.)

(2) Let 2m be the highest power of 2 that divides n. Show that the central ascending
series of Dn is Z(0) ⊆ Z(1) ⊆ ·· · ⊆ Z(m), where Z(i) = 〈Rn/2i〉.

(3) Show that if n is odd, then D2n is the internal direct sum of a cyclic subgroup of
order two (the center) and a subgroup isomorphic to Dn.

EXERCISE 2.10.20. Let G be a finite solvable group. Prove:
(1) If G is abelian and G = G0 ) G1 ) · · ·) Gm = 〈e〉 is a composition series, then

Gi−1/Gi is a cyclic group and [Gi−1 : Gi] is a prime number.
(2) G has a composition series G = G0 ) G1 ) · · ·) Gm = 〈e〉 such that Gi−1/Gi is

a cyclic group and [Gi−1 : Gi] is a prime number.





CHAPTER 3

Rings

A ring is an algebraic structure which has two binary operations called addition and
multiplication. We have already seen concrete examples of rings. The prototypical exam-
ple of a ring is the ring of integers, Z. Its close relative is the ring of integers modulo n,
Z/(n). The fields Q, R, and C are rings. The ring of n-by-n matrices Mn(R) is an example
of a ring in which multiplication is not commutative. The set of polynomials, the set of
rational functions, and the set of power series with coefficients over the field R are rings.
The set of all continuous functions, differentiable functions, and integrable functions from
R to R are rings. The set of all functions from R to R that are continuous at a specific point
is a ring. If A is an abelian group, the set of all endomorphisms from A to itself is a ring.
Ring Theory can be viewed as the axiomatic abstraction of these examples.

1. Definitions and Terminology

DEFINITION 3.1.1. A ring is a nonempty set R with two binary operations, addition
written +, and multiplication written · or by juxtaposition. Under addition (R,+) is an
abelian group with identity element 0. Under multiplication (R, ·) is associative and con-
tains an identity element, denoted by 1. Multiplication distributes over addition from both
the left and the right. If (R, ·) is commutative, then we say R is a commutative ring. The
trivial ring is {0}, in which 0 = 1. If R is not the trivial ring, the reader is asked to prove
in Proposition 3.1.2 that 0 6= 1.

PROPOSITION 3.1.2. Let R be a ring. Let a,b∈ R, n,m∈N, a1, . . . ,an,b1, . . . ,bm ∈ R.

(1) 0a = a0 = 0.
(2) (−a)b = a(−b) =−(ab).
(3) (−a)(−b) = ab.
(4) (na)b = a(nb) = n(ab).
(5)

(
∑

n
i=1 ai

)(
∑

m
j=1 b j

)
= ∑

n
i=1 ∑

m
j=1 aib j

(6) If R contains more than one element, then 0 6= 1.

PROOF. Is left to the reader. �

DEFINITION 3.1.3. Let R be a ring and a ∈ R. We say a is a left zero divisor if a 6= 0
and there exists b 6= 0 such that ab= 0. We say a is left invertible in case there is b∈ R such
that ba = 1. The reader should define the terms right zero divisor and right invertible. If a
is both a left zero divisor and right zero divisor, then we say a is a zero divisor. If a is both
left invertible and right invertible, then we say a is invertible. In this case, the left inverse
and right inverse of a are equal and unique (Exercise 2.1.22 (2)). An invertible element
in a ring R is also called a unit of R. If R 6= (0) and R has no zero divisors, then we say
R is a domain. A commutative domain is called an integral domain. A domain in which
every nonzero element is invertible is called a division ring. A commutative division ring
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is called a field. The set of all invertible elements in a ring R is a group which is denoted
Units(R) or R∗ and is called the group of units in R.

REMARK 3.1.4. Notice that in Definition 3.1.3, we have explicitly required a domain
to have at least two elements. The only ring with order one is the trivial ring (0). In
Example 3.2.4 (4) we see that (0) plays the role of a terminal object in the category of
rings. Besides this, there is no significant result that can be proved about the ring (0). It
has no proper ideals, is not a subring of any larger ring, and there is no nontrivial module
or algebra over (0).

EXAMPLE 3.1.5. Standard examples of rings and fields are listed here.

(1) The ring of integers Z is an integral domain. The ring of integers modulo n,
denoted Z/(n), is a commutative ring containing n elements.

(2) Denote by Q the field of rational numbers, by R the field of real numbers and by
C the field of complex numbers (see Section 1.4).

(3) If k is a field and n ≥ 1, the ring of n-by-n matrices over k is denoted by Mn(k).
If n > 1, then Mn(k) is noncommutative.

(4) If R is any ring, the ring of n-by-n matrices over R is denoted by Mn(R).

EXAMPLE 3.1.6. Let R be a commutative ring and G a finite multiplicative group.
Assume the order of G is n and enumerate the elements G = {g1, . . . ,gn}, starting with the
group identity g1 = e. Let R(G) be the set of all formal sums

R(G) = {r1g1 + · · ·+ rngn | ri ∈ R}.

Define addition and multiplication rules on R(G) by
n

∑
i=1

rigi +
n

∑
i=1

sigi =
n

∑
i=1

(ri + si)gi( n

∑
i=1

rigi

)( n

∑
i=1

sigi

)
=

n

∑
i=1

n

∑
j=1

(ris j)(gig j)

The additive identity is 0 = 0g1 +0g2 + · · ·+0gn. The multiplicative identity is 1 = 1g1 +
0g2 + · · ·+0gn. Then R(G) is a ring. We call R(G) a group ring.

If R is a commutative ring and G is a group which is not necessarily finite, we can still
define the group ring R(G). In this case, take R(G) to be the set of all finite formal sums

R(G) =

{
∑

g∈G
rgg | rg ∈ R and rg = 0 for all but finitely many g

}
.

If g ∈ G, then in R(G) we have the identity gg−1 = g−1g = 1. Therefore, we can view G
as a subgroup of the group of units in the group ring R(G).

EXAMPLE 3.1.7. If A is an abelian group, let Hom(A,A) be the set of all homomor-
phisms from A to A. Turn Hom(A,A) into a ring by coordinate-wise addition and compo-
sition of functions:

( f +g)(x) = f (x)+g(x)

( f g)(x) = f (g(x))

See Exercise 2.8.11. For computations of Hom(Z,Z)∼= Z and Hom(Z/n,Z/n)∼= Z/n, see
Exercises 3.1.16 and 3.1.17.
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DEFINITION 3.1.8. If R is any ring, the opposite ring of R is denoted Ro. As an
additive abelian group, the opposite ring of R is equal to R. However, the multiplication
of Ro is reversed from that of R. Writing the multiplication of R by juxtaposition and
multiplication of Ro with the asterisk symbol, we have x∗ y = yx.

DEFINITION 3.1.9. If A is a ring and B ⊆ A, then we say B is a subring of A if B
contains both 0 and 1 and B is a ring under the addition and multiplication rules of A. Let
A be a ring. The center of A is the set

Z(A) = {x ∈ A | xy = yx(∀y ∈ A)}.

The reader should verify that Z(A) is a subring of A and Z(A) is a commutative ring. If
x ∈ Z(R), then we say x is central.

EXAMPLE 3.1.10. Let R = Z/6 = {0,1,2,3,4,5} be the ring of integers modulo 6.
Let B = {0,2,4} and C = {0,3}. The reader should verify that B is a ring of order 3. In
fact, B is isomorphic to the field Z/3. Since B does not contain 1, B is not a subring of R.
Likewise, C is a ring, isomorphic to the field Z/2, but C is not a subring of R. The sets B
and C are examples of ideals (see Example 3.2.2).

EXAMPLE 3.1.11. If n> 1, then the additive group (Z/n,+) is generated by 1. There-
fore, the ring Z/n has no proper subring.

EXAMPLE 3.1.12. Let R be any ring and Mn(R) the ring of n-by-n matrices over R,
where n≥ 2. The set

L =
{
(ri j) | ri j = 0 if i < j

}
of all lower triangular matrices is a noncommutative subring of Mn(R). Likewise, the set of
all upper triangular matrices is a noncommutative subring of Mn(R). See Example 3.3.10
for a continuation of this example when R is a field and n = 2.

EXAMPLE 3.1.13. Let R be a commutative ring and M2(R) the ring of two-by-two
matrices over R. The proof given in Example 2.3.34 can be readily adapted to show that

the center of the ring M2(R) is equal to the set of scalar matrices
{(

a 0
0 a

)
| a ∈ R

}
. Let

n ≥ 2. Using a different proof, we show that the center of the ring Mn(R) is equal to the
set of scalar matrices over R. Let A = (ai j) be a central matrix. For each ordered pair
(i, j), where 1 ≤ i, j ≤ n, let ei j be the elementary matrix with 1 in position (i, j) and 0
elsewhere. In the following, we use the following notation: Ci(A) denotes column i of A,
R j(A) denotes row j of A, and Mrs(0) denotes the r-by-s matrix with 0 in every position.
Then

ei jA =

Mi−1,n(0)
R j(A)

Mn−i,n(0)

 .

In words, row i of ei jA is equal to row j of A and all other entries of ei jA are equal to 0.
Also,

Aei j =
(
Mn, j−1(0) Ci(A) Mn,n− j(0)

)
.

In words, column j of Aei j is equal to column i of A and all other entries of ei jA are equal
to 0. Since A commutes with ei j, we conclude that all elements of A that are not on the
diagonal are equal to 0. If we assume i 6= j, this also means a j j = aii. Therefore, A is a
scalar matrix. It is routine to check that a scalar matrix is central.
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EXAMPLE 3.1.14. If F is a field the ring of quaternions over F is the four-dimensional
vector space over F with basis {1, i, j,k} with multiplication defined by extending these
relations:

i2 = j2 = k2 =−1
i j =− ji = k

ik =−ki =− j

by associativity and distributivity. We denote the ring of quaternions by H(F), or HF .
Notice that under multiplication the set {1,−1, i,−i, j,− j,k,−k} is Q8, the quaternion
8-group of Example 2.1.18. The ring of quaternions HF is a division ring if F is equal
to either Q or R (Exercise 3.1.18). The ring of quaternions HC is isomorphic to M2(C)
(Exercise 3.1.20). The ring of quaternions H(Z/(2)) is commutative (Exercise 3.1.19).
The product formula for multiplying two quaternions x = a+bi+c j+dk and y = e+ f i+
g j+hk is

xy = (a+bi+ c j+dk)(e+ f i+g j+hk)

= (ae−b f − cg−dh)+(a f +be+ ch−dg)i

+(ag−bh+ ce+d f ) j+(ah+bg− c f +de)k

and is derived from the relations above. We identify F with F ·1. Thus, F is a subring of
HF . If x ∈ F , then xy = yx. That is, F is a subring of the center of HF . For a quaternion
x = a+bi+ c j+dk define χ(x) = a−bi− c j−dk. Using the product formula above, we
find

χ(y)χ(x) = (e− f i−g j−hk)(a−bi− c j−dk)

= (ae−b f − cg−dh)− (a f +be+ ch−dg)i

− (ag−bh+ ce+d f ) j− (ah+bg− c f +de)k

= χ(xy).

Define the norm of x by

N(x) = xχ(x) = (a+bi+ c j+dk)(a−bi− c j−dk)

= (a2 +b2 + c2 +d2)+(−ab+ab+ cd− cd)i

+(ac+bd−ac−bd) j+(−ad−bc+bc+ad)k

= a2 +b2 + c2 +d2

which is an element of F . Using the formulas from above, we see that

N(xy) = xyχ(xy) = xyχ(y)χ(x) = xN(y)χ(x) = xχ(x)N(y) = N(x)N(y)

hence N : HF → F is multiplicative. The function χ is an example of an involution.

DEFINITION 3.1.15. Let R and S be rings. A function θ : R→ S is called an isomor-
phism of rings, if θ is a one-to-one correspondence, θ(1) = 1, θ(x+y) = θ(x)+θ(y), and
θ(xy) = θ(x)θ(y) for all x,y ∈ R. In this case, we say R and S are isomorphic and write
R∼= S. From an abstract algebraic point of view, isomorphic rings are indistinguishable.

1.1. Exercises.

EXERCISE 3.1.16. The point to this exercise is to compute the ring Hom(Z,Z) of all
endomorphisms of the infinite cyclic group (Z,+) (see Exercise 2.8.11). In the following,
f and g always denote endomorphisms of Z.



1. DEFINITIONS AND TERMINOLOGY 89

(1) Define φ : Hom((Z,+),(Z,+))→ Z by φ( f ) = f (1). Show that φ is an isomor-
phism of rings. (Hint: Theorem 2.3.27.)

(2) Show that Aut((Z,+)) has order two.

EXERCISE 3.1.17. Let n ∈ N. The object of this exercise is to compute the ring of all
endomorphisms of the finite cyclic group (Z/n,+). As in Exercise 2.8.11, this ring is de-
noted Hom((Z/n,+),(Z/n,+)). In the following, f and g always denote endomorphisms
of (Z/n,+).

(1) Define φ : Hom((Z/n,+),(Z/n,+))→ Z/n by φ( f ) = f (1). Prove that φ is an
isomorphism of rings. (Hint: Theorem 2.3.27.)

(2) Show that Aut((Z/n,+))∼=Un, where Un is the group of units modulo n.

EXERCISE 3.1.18. Prove that the ring of quaternions (see Example 3.1.14) over Q (or
R) is a division ring.

EXERCISE 3.1.19. Let G = 〈a,b | a2 = b2 = e, ab = ba〉 be an elementary 2-group
of order 4. Let R = Z/(2) be the field with 2 elements. For the definition of the ring of
quaternions, see Example 3.1.14. For the definition of a group ring, see Example 3.1.6.

(1) Prove that the ring of quaternions over R is isomorphic to the group ring R(G).
(2) Determine the group of units in R(G).
(3) Determine the set of zero divisors in R(G).
(4) Determine all elements in R(G) that satisfy the equation e2 = e. These elements

are the so-called idempotents.

EXERCISE 3.1.20. Prove that the ring of quaternions over C is isomorphic to M2(C).
(Hint: Find matrices that play the roles of i and j.)

EXERCISE 3.1.21. Let R be the ring M2(Z/(2)) of two-by-two matrices over Z/(2).
(1) Determine the group of units in R.
(2) Determine the set of zero divisors in R.
(3) Determine all elements in R that satisfy the equation e2 = e. These elements are

the so-called idempotents in R.
(4) Show that R contains exactly two subrings that are fields. One is the image of the

canonical homomorphism χ : Z→ R which has order 2, and the other is a field
of order 4.

EXERCISE 3.1.22. Let R be any ring. Let x and y be elements of R such that xy = yx.
Prove the Binomial Theorem:

(x+ y)n =
n

∑
i=0

(
n
i

)
xiyn−i

for any n≥ 0.

EXERCISE 3.1.23. Let i ∈ C be the square root of −1.
(1) Show that Q[i] = {a+bi | a,b ∈Q} is a subfield of C.
(2) Show that Z[i] = {a+ bi | a,b ∈ Q} is a subring of Q[i]. The ring Z[i] is called

the ring of gaussian integers.

EXERCISE 3.1.24. Consider the set

Z/4[i] = {a+bi | a,b ∈ Z/4}
where i2 = −1 ≡ 3 (mod 4). Addition and multiplication are defined as in the gaussian
integers, where a and b are added and multiplied in the ring Z/4. Show that Z/4[i] is a
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commutative ring of order 16. Show that the group of units in Z/4[i] is isomorphic to U16,
the group of units modulo 16. Show that the rings Z/4[i] and Z/16 are not isomorphic.

2. Homomorphisms and Ideals

DEFINITION 3.2.1. Let A be a ring. A left ideal of A is a nonempty subset I ⊆ A such
that (I,+) is a subgroup of (A,+) and ax ∈ I for all a ∈ A and all x ∈ I. The reader should
define the term right ideal. If I is both a left ideal and right ideal, we say I is an ideal.

EXAMPLE 3.2.2. Some important examples of ideals are listed here.
(1) If R is a commutative ring, then a left ideal is a two-sided ideal.
(2) In a ring R the trivial ideals are {0} and R.
(3) If F is a field, the only ideals are {0} and F . This is Exercise 3.2.32.
(4) Let R be a commutative ring and Mn(R) the ring of n-by-n matrices over R, where

n≥ 2. The set
L =

{
(ri j) | ri j = 0 if i < j

}
of all lower triangular matrices is a subring of Mn(R) (Example 3.1.12). It is not
an ideal, because the identity matrix I is in L.

(5) Let F be a field and M2(F) the ring of 2-by-2 matrices over F . Then

I =
{(

a 0
b 0

)
| a,b ∈ F

}
is a left ideal in M2(F), but not a right ideal.

(6) The subgroups of Z,+ are the cyclic subgroups Zm, where m ∈ Z. Any such
subgroup is an ideal. So the ideals of Z are of the form Zm.

DEFINITION 3.2.3. If R and S are rings, a homomorphism from R to S is a function
f : R→ S satisfying

(1) f (x+ y) = f (x)+ f (y) for all x,y ∈ R,
(2) f (xy) = f (x) f (y) for all x,y ∈ R, and
(3) f (1) = 1.

Notice that (1) implies f : (R,+)→ (S,+) is a homomorphism of additive groups. The
kernel of f is ker( f ) = {x ∈ R | f (x) = 0} which is equal to the kernel of the homo-
morphism on additive groups. By Exercise 3.2.27, the kernel of f is an ideal in R. By
Lemma 2.3.7, f is one-to-one if and only if ker f = (0). The image of the homomorphism
f is im( f ) = { f (x) ∈ S | x ∈ R}. By Exercise 3.2.27, the image of f is a subring of S. As
in Definition 3.1.15, an isomorphism is a homomorphism f : R→ S that is one-to-one and
onto. An automorphism of R is a homomorphism f : R→ R that is one-to-one and onto.

EXAMPLE 3.2.4. Some important examples of homomorphisms are listed here.
(1) The natural projection Z→ Z/(n) maps an integer to its congruence class mod-

ulo n. It is a homomorphism of rings which is onto. The kernel is the subgroup
generated by n.

(2) If u is an invertible element of R, the inner automorphism of R defined by u is
σu : R→ R where σu(x) = uxu−1. The reader should verify that σu is a homo-
morphism of rings and is a one-to-one correspondence.

(3) Suppose R is a commutative ring, H and G are groups and θ : H→G is a homo-
morphism of groups. The action rh 7→ rθ(h) induces a homomorphism of group
rings R(H)→ R(G) (see Example 3.1.6).
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(a) The homomorphism 〈e〉 →G induces a homomorphism θ : R→ R(G). No-
tice that θ is one-to-one and the image of θ is contained in the center of
R(G).

(b) The homomorphism G→ 〈e〉 induces ε : R(G)→ R. Notice that η is onto,
and the kernel of η contains the set of elements D = {1− g | g ∈ G}. The
reader should verify that the kernel of η is the ideal generated by D in R(G)
(see Definition 3.2.6). Sometimes ε is called the augmentation map.

(4) If R is a ring, then the zero mapping R→ (0) is a homomorphism of rings. (In
the category of rings, (0) is a terminal object.)

(5) If R is a ring, there is a unique homomorphism χ : Z→ R. In fact, by definition
χ(1) = 1 so χ(n) = nχ(1) = n1 for an arbitrary integer n. (In the category of
rings, Z is an initial object.) The image of χ is the smallest subring of R. If R
is a domain, the image of χ is called the prime ring of R. The kernel of χ is a
subgroup of Z, hence is equal to (n) for some nonnegative integer n. We call n
the characteristic of R and write n = char(R).

PROPOSITION 3.2.5. Let φ : R→ S be a homomorphism of rings. Let J be an ideal in
S. Then the following are true:

(1) φ−1(J) is an ideal in R.
(2) If φ is onto and A is an ideal of R, then φ(A) is an ideal of S.

PROOF. (1): We know from group theory that φ−1(J),+ is a subgroup of R,+ (see
Exercise 2.3.15). Let x ∈ φ−1(J), r ∈ R. Then φ(rx) = φ(r)φ(x) ∈ J since φ(x) ∈ J.
Therefore, rx ∈ φ−1(J). Likewise, xr ∈ φ−1(J).

(2): We know from group theory that φ(A),+ is a subgroup of S,+ (see Exercise 2.3.15).
Let y ∈ φ(A) and s ∈ S = φ(R). Then there exist r ∈ R and x ∈ A such that s = φ(r) and
y = φ(x). Because rx ∈ A, we have sy = φ(r)φ(x) = φ(rx) ∈ φ(A). Likewise, ys ∈ φ(A).
So φ(A) is an ideal in S. �

DEFINITION 3.2.6. Let R be any ring and X ⊆ R. The left ideal generated by X is{
n

∑
i=1

rixi | n≥ 1, ri ∈ R, xi ∈ X

}
.

The reader should verify that the left ideal generated by X is equal to the intersection of
the left ideals containing X . The ideal generated by X is{

n

∑
i=1

rixisi | n≥ 1, ri,si ∈ R, xi ∈ X

}
.

The reader should verify that the ideal generated by X is equal to the intersection of the
ideals containing X . If A and B are left ideals of R, then A+B is the set {a+b | a ∈ A, b ∈
B}. The left ideal generated by the set {ab | a ∈ A, b ∈ B} is denoted AB. A left ideal (or
ideal) is principal if it is generated by a single element. If I is generated by X , we write
I = (X). A commutative ring R is called a principal ideal ring if every ideal is a principal
ideal. A principal ideal domain is an integral domain in which every ideal is principal.
Sometimes we say R is a PID.

PROPOSITION 3.2.7. Let R be any ring. If A and B are left ideals in R, then the
following are true.

(1) A+B is a left ideal of R. If A and B are ideals, then A+B is an ideal.
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(2) A+B is the left ideal of R generated by the set A∪B.
(3) AB = {∑n

i=1 xiyi | n ≥ 1, xi ∈ A, yi ∈ B}. If A and B are ideals, then AB is an
ideal.

(4) If X = {a1, . . . ,an} is a finite subset of R, then (X), the ideal generated by X, is
equal to (a1)+ · · ·+(an).

PROOF. The proof is left to the reader. �

EXAMPLE 3.2.8. Additional examples of ideals are listed here.
(1) In any ring, the set (0) is an ideal.
(2) In any ring R, if u is invertible, then for any r ∈ R we see that r = (ru−1)u is in

the left ideal generated by u. That is, (u) = R. We call R the unit ideal of R. In
R, the trivial ideals are (0) and R. If R is a division ring, the only left ideals in R
are the trivial ideals.

(3) The ideals in Z are precisely the subgroups of (Z,+). That is, I is an ideal of Z
if and only if I = (n) for some n. The ring Z is a principal ideal domain.

EXAMPLE 3.2.9. Let k be a field and R = k[w,x,y,z] the polynomial ring in four vari-
ables over k. Let A = (w,x) and B = (y,z). Then wy+ xz ∈ AB, but wy+ xz cannot be
factored as uv, where u∈ A and v∈ B. This shows that in general the set {uv | u∈ A, v∈ B}
is not an ideal.

EXAMPLE 3.2.10. Let k be a field. The only ideals in k are the trivial ideals, by
Example 3.2.8. In this example we prove that R = M2(k), the ring of 2-by-2 matrices over
k has no proper two-sided ideal. The same proof can be modified to show Mn(k) has no
proper ideal for any n ≥ 1 (see Exercise 3.2.33). Let I 6= (0) be an ideal in R. Let A =[

a b
c d

]
be a nonzero element of I. After multiplying A by suitable permutation matrices

if necessary, we can assume a 6= 0. Let ei j denote the elementary matrix with 1 in row i

column j, and 0 elsewhere. Then e11Ae11 =

[
a 0
0 0

]
∈ I. Multiplying by a−1 shows e11 ∈ I.

Let P12 =

[
0 1
1 0

]
be the permutation matrix. Then P12e11 = e21 ∈ I, e11P12 = e12 ∈ I, and

P12e12 = e22 ∈ I. This proves I contains {e11,e12,e21,e22} which is a k-vector space basis
for R. Hence, I = R.

EXAMPLE 3.2.11. Let F be a field and M2(F) the ring of 2-by-2 matrices over F .

The reader should verify that
{(

a 0
c 0

)
| a,c ∈ F

}
is the principal left ideal in M2(F)

generated by the elementary matrix e21 =

(
0 0
1 0

)
. The principal right ideal generated by

e21 is
{(

0 0
c d

)
| c,d ∈ F

}
.

LEMMA 3.2.12. Let R be any ring and a ∈ R. The following are equivalent.
(1) a has a left inverse in R.
(2) 1 ∈ Ra.
(3) Ra = R.

PROOF. (1) implies (2): We have a−1 ∈ R such that 1 = a−1a.
(2) implies (3): We have 1= ra for some r∈R. For each x∈R, (xr)a= x(ra)= x∈Ra.
(3) implies (1): 1 ∈ R = Ra implies 1 = ra for some r ∈ R. �
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In Lemma 3.2.13 we list the fundamental properties of two-sided ideals in a ring R. It
is the counterpart for ideals of Lemma 2.3.4. By R/I we denote the set of all left cosets of
I,+ in R,+. Then the factor group R/I is an abelian group under addition and the natural
map η : R→ R/I is a homomorphism of additive groups.

LEMMA 3.2.13. Let R be a ring and I a left ideal in R. The following are equivalent.

(1) I is a two-sided ideal of R. That is, for each r ∈ G and x ∈ I, we have rx ∈ I and
xr ∈ I.

(2) There is a well defined multiplicative binary operation R/I×R/I→ R/I on R/I
defined by the rule (x+ I,y+ I) 7→ xy+ I.

(3) There is a multiplicative binary operation on R/I such that the natural map η :
R→ R/I is a homomorphism of rings.

(4) There exists a ring S and a homomorphism of rings θ : R→ S such that I = kerθ .

PROOF. (1) implies (2): We verify that multiplication of cosets is well defined. Say
x ≡ x′ (mod I) and y ≡ y′ (mod I). Then x− x′ ∈ I implies that xy− x′y = (x− x′)y ∈ I.
Likewise y− y′ ∈ I implies that x′y− x′y′ = x′(y− y′) ∈ I. Taken together, we have xy ≡
x′y≡ x′y′ (mod I).

(2) implies (3): On R/I, the associative law for multiplication, the distributive laws
and the fact that 1+ I is the multiplicative identity are routine to check. Therefore, R/I is a
ring. Let η : R→R/I be the natural map defined by x 7→ x+I. Then η is a homomorphism,
imη = R/I, and kerη = I.

(3) implies (4): Take S to be R/I and for θ take the natural map η .
(4) implies (1): Let x ∈ kerθ = I and r ∈ R. Then θ(rx) = θ(r)θ(x) = θ(r)0 = 0, by

Proposition 3.1.2. Likewise, θ(xr) = θ(x)θ(r) = 0θ(r) = 0. This prove that xr and rx are
in kerθ = I. �

DEFINITION 3.2.14. Let R be a ring and I an ideal in R. The residue class ring is the
set R/I = {a+ I | a ∈ R} of all left cosets of I in R. We sometimes call R/I the factor ring,
or quotient ring of R modulo I. We define addition and multiplication of cosets by the rules

(a+ I)+(b+ I) = (a+b)+ I

(a+ I)(b+ I) = ab+ I.

By Lemma 3.2.13, R/I is a ring, the natural map η : R→ R/I is a homomorphism of rings,
η is onto, and I = kerη .

Theorem 3.2.15 and Corollaries 3.2.16 and 3.2.17 are the counterparts for rings of
Theorems 2.3.11, 2.3.12 and 2.3.13.

THEOREM 3.2.15. (The Fundamental Theorem on Ring Homomorphisms) Let θ : R→
S be a homomorphism of rings. Let I be an ideal of R contained in kerθ . There exists a
homomorphism ϕ : R/I→ S satisfying the following.

(1) ϕ(a+ I) = θ(a), or in other words θ = ϕη .
(2) ϕ is the unique homomorphism from R/I→ S such that θ = ϕη .
(3) imθ = imϕ .
(4) kerϕ = η(kerθ) = ker(θ)/I.
(5) ϕ is one-to-one if and only if I = kerθ .
(6) ϕ is onto if and only if θ is onto.
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(7) There is a unique homomorphism φ : R/I→ R/kerθ such that the diagram

R θ //

##
η

��

S

R/kerθ

<<

R/I

φ

OO ϕ

EE

commutes.

PROOF. On the additive groups, this follows straight from Theorem 2.3.11. The map
ϕ is multiplicative since θ is a homomorphism of rings. �

COROLLARY 3.2.16. Let R be a ring and I ⊆ J ⊆ R a chain of ideals in R. Then J/I
is an ideal in R/I and

R/J ∼=
R/I
J/I

.

PROOF. This follows from Theorem 3.2.15 and Theorem 2.3.12 (c). �

COROLLARY 3.2.17. (Correspondence Theorem) Let R be a ring and I an ideal in
R. There is a one-to-one order-preserving correspondence between the ideals J such that
I ⊆ J ⊆ R and the ideals of R/I given by J 7→ J/I.

PROOF. This follows from Theorem 3.2.15 and Theorem 2.3.13. �

2.1. Integral Domains. The next lemma and its proof are written using symbolic
expressions.

LEMMA 3.2.18. Let R be a ring in which 0 6= 1. The following are equivalent, where
a,b,c represent elements of R.

(1) (ab = 0)→ ((a = 0)∨ (b = 0))
(2) (a 6= 0)→ (((ab = ac)→ (b = c))∧ ((ba = ca)→ (b = c)))
(3) ((a 6= 0)∧ (b 6= 0))→ (ab 6= 0)

PROOF. (1) is equivalent to (3) by contraposition.
(1) implies (2):

((a 6= 0)∧ (ab = ac))→ ((a 6= 0)∧ (ab−ac = 0))

→ ((a 6= 0)∧ (a(b− c) = 0))

→ ((a 6= 0)∧ ((a = 0)∨ (b = c)))

→ (b = c)

(2) implies (1): ((a 6= 0)∧ (ab = 0))→ (a(b−0) = 0)→ (ab = a0)→ b = 0. �

As in Definition 3.1.3, a ring that satisfies the three equivalent statements of Lemma 3.2.18
is a domain. A commutative domain is called an integral domain.

EXAMPLE 3.2.19. If F is a field, then F is an integral domain.
(1) If R is a subring of F , then R is an integral domain.
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(2) The ring of 2-by-2 matrices M2(F) is a noncommutative F-algebra. Since M2(F)
contains zero divisors, it is not a domain. For example:(

1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
.

THEOREM 3.2.20. Let R be a finite integral domain. Then R is a field.

PROOF. Let a ∈ R−{0}. Consider the “left multiplication by a” function `a : R→ R.
The distributive law on R implies `a(x+y) = a(x+y) = ax+ay= `a(x)+`a(y). Therefore,
`a is a homomorphism on the additive group (R,+). Since R is an integral domain, by `a is
one-to-one, by Lemma 3.2.18. Since R is finite, the Pigeonhole Principle (Exercise 1.1.11)
implies `a is onto. So there exists x ∈ R such that ax = 1. This proves a is invertible. By
Definition 3.1.3, R is a field. �

The proof of Theorem 3.2.20 shows that a finite domain is a division ring. By a
theorem of Wedderburn ([5, Theorem 7.5.4]), a finite division ring is always commutative.

DEFINITION 3.2.21. Let R be a commutative ring. An ideal I in R is prime in case R/I
is an integral domain. An ideal I in R is maximal in case R/I is a field. A field is an integral
domain, so a maximal ideal is a prime ideal. By Definition 3.1.3, an integral domain has at
least two elements, so the unit ideal is never prime.

EXAMPLE 3.2.22. In an integral domain, the zero ideal (0) is a prime ideal. In a
commutative ring R, the zero ideal (0) is a maximal ideal if and only if R is a field (Ex-
ercise 3.2.32). Let P be a nonzero prime ideal in Z. Then Z/P is a finite integral domain
which is a field, by Theorem 3.2.20. The maximal ideals in Z are the nonzero prime ideals.

PROPOSITION 3.2.23. Let R be a commutative ring and P an ideal of R. Assume
P 6= R. The following are equivalent.

(1) P is a prime ideal. That is, R/P is an integral domain.
(2) For all x,y ∈ R, if xy ∈ P, then x ∈ P or y ∈ P.
(3) For any ideals I,J in R, if IJ ⊆ P, then I ⊆ P or J ⊆ P.

PROOF. Is left to the reader. �

PROPOSITION 3.2.24. Let φ : R→ S be a homomorphism of commutative rings. Let
J be an ideal in S. Then the following are true:

(1) If J is a prime ideal, then φ−1(J) is a prime ideal.
(2) If φ is onto, and J is a maximal ideal, then φ−1(J) is a maximal ideal.

PROOF. (1): This is Exercise 3.2.47.
(2): Let J be a maximal ideal of S. By (2) we know φ−1(J) 6= R. Assume A is an ideal

of R such that φ−1(J)⊆ A⊆ R. Because φ is onto, we have J = φφ−1(J)⊆ φ(A)⊆ φ(R) =
S. By (4), φ(A) is an ideal of S. Since J is maximal, φ(A) = J or φ(A) = S. First suppose
φ(A) = J. Then A ⊆ φ−1φ(A) = φ−1(J). So φ−1(J) = A. Now suppose φ(A) = S. Then
1∈ φ(A). Say u∈ A and φ(u) = 1. Since φ(1) = 1, we have φ(1−u) = 0. So 1−u∈ kerφ .
But kerφ = φ−1(0) ⊆ φ−1(J) ⊆ A. So 1 = u− (u− 1) ∈ A, which implies A = R. This
proves φ−1(J) is a maximal ideal. �

COROLLARY 3.2.25. (Correspondence Theorem for Prime Ideals) Let R be a com-
mutative ring and I an ideal in R. There is a one-to-one order-preserving correspondence
between the ideals J such that I ⊆ J ⊆ R and the ideals of R/I given by J 7→ J/I. Under
this correspondence prime ideals of R/I correspond to prime ideals of R that contain I.
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PROOF. The first part is Corollary 3.2.17. The preimage of a prime ideal is a prime
ideal, by Proposition 3.2.24 (1). Corollary 3.2.16 shows that the image of a prime ideal
that contains I is a prime ideal in R/I. �

PROPOSITION 3.2.26. Let R be a commutative ring.

(1) An ideal M is a maximal ideal in R if and only if M is not contained in a larger
proper ideal of R.

(2) R contains a maximal ideal.
(3) If I is a proper ideal of R, then R contains a maximal ideal M such that I ⊆M.

PROOF. (1): By Exercise 3.2.32 and Corollary 3.2.17 R/M is a field if and only if
there is no proper ideal J such that M ( J.

(2): Let S be the set of all ideals I in R such that I 6= R. Then (0) ∈ S . Order
S by set inclusion. Let {Aα} be a chain in S . The union J =

⋃
Aα is an ideal in R, by

Exercise 3.2.34. Since 1 is not in any element of S , it is clear that 1 6∈ J. Therefore, J ∈S
is an upper bound for the chain {Aα}. By Zorn’s Lemma, Proposition 1.3.3, S contains a
maximal member. By Part (1), this ideal is a maximal ideal. �

2.2. Exercises.

EXERCISE 3.2.27. Prove that if θ : R→ S is a homomorphism of rings, then the image
of θ is a subring of S and the kernel of θ is a two-sided ideal of R.

EXERCISE 3.2.28. Let θ : R→ S be a homomorphism of rings. Prove:

(1) θ is one-to-one if and only if kerθ = (0).
(2) If R is a division ring, then θ is one-to-one.

EXERCISE 3.2.29. Let R be any ring.

(1) If n = charR, then nx = 0 for any x ∈ R.
(2) If R is a domain, then the characteristic of R is either 0 or a prime number.

EXERCISE 3.2.30. Let R be any ring and suppose p = charR is a prime number. Let
x and y be elements of R such that xy = yx. Prove:

(1) (x+ y)p = xp + yp.
(2) (x− y)p = xp− yp.
(3) (x− y)p−1 = ∑

p−1
i=0 xiyp−1−i.

(4) If n≥ 0, then (x+ y)pn
= xpn

+ ypn
.

(Hint: Exercise 1.2.21.) See Exercise 3.6.31 for an application of this exercise.

EXERCISE 3.2.31. Let R be a commutative ring and assume charR = p is a prime
number. Define θ : R→ R by x 7→ xp. Show that θ is a homomorphism of rings. We call θ

the Frobenius homomorphism. For any a≥ 1, show that θ a(x) = xpa
. If R is a field, show

that θ is one-to-one.

EXERCISE 3.2.32. Prove:

(1) If R is a ring with no proper left ideal, then every nonzero element has a left
inverse. (Hint: Exercise 2.1.22.)

(2) If R is a ring with no proper left ideal, then R is a division ring. (Hint: R− (0) is
a monoid.)

(3) A commutative ring R is a field if and only if R has no proper ideal.
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EXERCISE 3.2.33. This exercise is a continuation of Example 3.2.10. Let R be a ring
and Mn(R) the ring of n-by-n matrices over R where addition and multiplication are defined
in the usual way.

(1) Let ei j be the elementary matrix which has 0 in every position except in position
(i, j) where there is 1. Determine the left ideal in Mn(R) generated by ei j.

(2) If n≥ 2, show that Mn(R) has proper left ideals.
(3) If I is an ideal in Mn(R), show that I = Mn(J) for some ideal J in R. (Hint: Use

multiplication by the various Ei j.)
(4) If D is a division ring, show that Mn(D) has no proper ideal. We say that Mn(D)

is a simple ring.

EXERCISE 3.2.34. Let R be a ring, I an index set, and {Ai | i ∈ I} a family of left
ideals in R.

(1) Show that
⋂

i∈I Ai is a left ideal in R.
(2) Suppose {Ai | i ∈ I} is an ascending chain of left ideals in R. That is, I is a

partially ordered set that is a chain, and if α ≤ β in I, then Aα ⊆ Aβ . Show that⋃
i∈I Ai is a left ideal in R.

EXERCISE 3.2.35. Let U and V be ideals in the commutative ring R. As in Defini-
tion 3.2.6, UV is the ideal generated by the set {uv | u ∈U,v ∈V}. Prove the following.

(1) UV ⊆U ∩V .
(2) If U +V = R, then UV =U ∩V .
(3) Show by counterexample that UV =U ∩V is false in general.

EXERCISE 3.2.36. Let n > 1.
(1) Show that every prime ideal in Z/(n) is a maximal ideal.
(2) Let n= π

e1
1 · · ·π

ek
k be the unique factorization of n (Proposition 1.2.7). Determine

the maximal ideals in Z/(n).

EXERCISE 3.2.37. An element x of a ring is said to be nilpotent if xn = 0 for some
n > 0. If R is a commutative ring, let RadR(0) denote the set of all nilpotent elements of R.
We call RadR(0) the nil radical of R.

(1) Show that RadR(0) is an ideal.
(2) Let I be an ideal of R contained in RadR(0). Show that the nil radical of R/I is

RadR(0)/I, hence the nil radical of R/RadR(0) is the trivial ideal (0+RadR(0)).

EXERCISE 3.2.38. Let θ : R→ S be a homomorphism of rings. Prove that θ induces
a homomorphism θ : Units(R)→ Units(S) on the groups of units.

EXERCISE 3.2.39. Let R be a commutative ring, RadR(0) the nil radical of R, and
η : R→ R/RadR(0) the natural map. Prove:

(1) If x is a nilpotent element of R, then 1+ x is a unit in R.
(2) If η(r) is a unit in R/RadR(0), then r is a unit in R.
(3) If I is an ideal of R contained in RadR(0), then the natural map η : Units(R)→

Units(R/I) is onto and the kernel of η is equal to the coset 1+ I.

EXERCISE 3.2.40. Let I and J be ideals in the commutative ring R. The ideal quotient
is I : J = {x ∈ R | xJ ⊆ I}. Prove that I : J is an ideal in R.

EXERCISE 3.2.41. For the following, let I, J and K be ideals in the commutative ring
R. Prove that the ideal quotient satisfies the following properties.

(1) I ⊆ I : J
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(2) (I : J)J ⊆ I
(3) (I : J) : K = I : JK = (I : K) : J
(4) If {Iα | α ∈ S} is a collection of ideals in R, then(⋂

α∈S

Iα

)
: J =

⋂
α∈S

(Iα : J)

(5) If {Jα | α ∈ S} is a collection of ideals in R, then

I : ∑
α∈S

Jα =
⋂

α∈S

(I : Jα)

EXERCISE 3.2.42. A local ring is a commutative ring R such that R has exactly one
maximal ideal. If R is a local ring with maximal ideal m, then R/m is called the residue
field of R. If (R,m) and (S,n) are local rings and f : R→ S is a homomorphism of rings,
then we say f is a local homomorphism of local rings in case f (m)⊆ n. Prove:

(1) A field is a local ring.
(2) If (R,m) is a local ring, then the group of units of R is equal to the set R−m.
(3) If f : R→ S is a local homomorphism of local rings, then f induces a homomor-

phism of residue fields R/m→ S/n.

EXERCISE 3.2.43. Let R be a ring. If A and B are left ideals in R, then the product
ideal AB is defined in Definition 3.2.6. The powers of A are defined recursively by the rule:

An =


R if n = 0,
A if n = 1,
AAn−1 if n > 1.

The left ideal A is nilpotent if for some n > 0, An = 0. Let A and B be nilpotent left ideals
of R. Prove:

(1) Assume An = 0. If x1, . . . ,xn are elements of A, then x1 · · ·xn = 0.
(2) Every element x of A is nilpotent.
(3) A+B is a nilpotent left ideal. (Hint: For all p sufficiently large, if x1, . . . ,xp are

elements of A∪B, show that x1 · · ·xp = 0.)

EXERCISE 3.2.44. Let R be a commutative ring and {x1, . . . ,xn} a finite set of nilpo-
tent elements of R. Show that Rx1 + · · ·+Rxn is a nilpotent ideal.

EXERCISE 3.2.45. Let R be a ring. We say that a left ideal M of R is maximal if M is
not equal to R and if I is a left ideal such that M ⊆ I ( R, then M = I. Let I be a left ideal of
R which is not the unit ideal. Apply Zorn’s Lemma, Proposition 1.3.3, to show that there
exists a maximal left ideal M such that I ⊆M ( R.

EXERCISE 3.2.46. Prove Proposition 3.2.23.

EXERCISE 3.2.47. Prove Proposition 3.2.24 (1).

EXERCISE 3.2.48. If R is a commutative ring, let Aut(R) denote the group of all ring
automorphisms of R. Prove the following.

(1) Aut(Z) = (1).
(2) Aut(Z/(n)) = (1) for any n.

EXERCISE 3.2.49. Let R be a commutative ring and G a group. Show that the group
ring R(G) (see Example 3.1.6) is isomorphic to the opposite ring R(G)o (see Defini-
tion 3.1.8). (Hints: Exercise 2.1.24 and Example 3.2.4 (3).)
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3. Direct Product and Direct Sum of Rings

In the definitions and theorems of this section the direct product and direct sum of
rings are limited to two factors and two summands. This restriction is for the sake of
simplicity. All of the following results can be generalized to products and sums involving
an arbitrary finite number of terms.

DEFINITION 3.3.1. Let R and S be rings. The direct product of R and S is the ring
with underlying set R×S where addition and multiplication are defined coordinate-wise:

(a,b)+(c,d) = (a+ c,b+d)

(a,b)(c,d) = (ac,bd).

Since R and S each contain an additive identity denoted 0, the additive identity in the
product R×S is the ordered pair (0,0). Since R and S both contain a multiplicative identity
denoted 1, the multiplicative identity in the product is the ordered pair (1,1). The reader
should verify that the associative laws and distributive laws are satisfied.

DEFINITION 3.3.2. Let R be a ring. An idempotent of R is an element e ∈ R that
satisfies the equation e2 = e. The elements 0 and 1 are called the trivial idempotents.

LEMMA 3.3.3. Let R and S be rings.
(1) Let e1 = (1,0) and e2 = (0,1) in R× S. Then e2

1 = e1, e2
2 = e2, e1e2 = 0,

e1 ∈ Z(R× S), e2 ∈ Z(R× S), and (1,1) = e1 + e2. We say {e1,e2} is a set
of orthogonal idempotents for R×S.

(2) The canonical projection maps define homomorphisms of rings: π1 : R×S→ R,
where π1(a,b) = a, and π2 : R×S→ S, where π2(a,b) = b. Both π1 and π2 are
onto. The kernel of π1 is (0)× S, which is the principal ideal generated by e2.
The kernel of π2 is R× (0), which is the principal ideal generated by e1.

(3) The canonical injection maps are ι1 : R→ R× S, where ι1(a) = (a,0), ι2 : S→
R× S, where ι2(b) = (0,b). Then each ιi is a one-to-one homomorphism of
additive groups. Moreover, ιi is multiplicative and π1ι1 = 1R, π2ι2 = 1S.

PROOF. The proof is left as an exercise for the reader. �

DEFINITION 3.3.4. Let I and J be proper ideals in a ring R. We say that R is the
internal direct sum of I and J in case

(1) R = I + J, and
(2) for each x ∈ R, x has a unique representation as a sum x = a+b where a ∈ I and

b ∈ J.
We denote the internal direct sum by R = I⊕ J. Notice that in this case the additive group
R,+ is the internal direct product of the subgroups I,+ and J,+, but it is customary to say
direct sum instead of direct product when the group is written additively.

DEFINITION 3.3.5. If R is a ring and I and J are ideals in R, then we say I and J are
comaximal if I + J = R.

THEOREM 3.3.6. (Fundamental Theorem on Internal Direct Sums of Ideals) If I and
J are ideals in the ring R and R = I⊕ J, then the following are true.

(1) I∩ J = (0).
(2) If x ∈ I and y ∈ J, then xy = yx = 0.
(3) I is a ring and J is a ring. Let e1 denote the identity element of I and e2 the

identity for J. Then {e1,e2} is a set of orthogonal idempotents in R. Each ei is in
the center of R. I = Re1 and J = Re2 are principal ideals in R.
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(4) R is isomorphic to the (external) direct product I× J.
(5) Suppose L is a left ideal in the ring I and K is a left ideal in J. Then L+K is a

left ideal in R, and the sum L+K is a direct sum.
(6) If U is a left ideal of R, then U = L⊕K where L is a left ideal in the ring I and

K is a left ideal in the ring J.

PROOF. (1): Since R,+ is an additive group with subgroups I,+ and J,+, Part (1)
follows from the corresponding statement about an internal direct product of a group.

(2): Notice that xy and yx are both in I∩ J since the ideals are two-sided.
(3): Because I is an ideal, it is enough to show that I has a multiplicative identity.

Write 1 = e1 + e2. If x ∈ I, then multiply by x from the left and use Part (2) to get x =
x1 = xe1 + xe2 = xe1. Now multiply by x from the right and use Part (2) to get x = 1x =
e1x+ e2x = e1x. This shows e1 is the multiplicative identity for I. Likewise, e2 is the
multiplicative identity for J. Orthogonality of {e1,e2} is by Part (2). The rest is left to the
reader.

(4): Define a function f : I× J→ R from the external ring direct product to R by the
rule (x,y) 7→ x+ y. By the corresponding statement about an internal direct product of a
group, f is an isomorphism on additive groups. The reader should verify using Part (2)
that f is multiplicative.

(5): Since each element r in R = I + J has a unique representation in the form r =
r1 + r2, so does any element x in I = L+K. So the sum is a direct sum and we can write
x = x1 + x2 where x1 ∈ L and x2 ∈ K are unique. Then rx = r1x1 + r2x2 is in L+K, which
shows L+K is a left ideal in R.

(6): By Part (3), there are central idempotents e1 and e2 in R such that I = Re1 and
J = Re2. Let L = e1U and K = e2U . Since e1 and e2 are central, L =Ue1 and K =Ue2 are
left ideals in R. Since U ⊆ R we have L =Ue1 ⊆ Re1 = I, so L is a left ideal in I. Likewise,
K = Ue2 ⊆ Re2 = J, so K is a left ideal in J. Since 1 = e1 + e2, we see that U = L+K.
The sum is a direct sum by Part (5). �

THEOREM 3.3.7. (The Chinese Remainder Theorem) Let R be a ring and I, J comax-
imal ideals of R. Then

R
I∩ J

∼=
R
I
× R

J
where the isomorphism is induced by the natural projections η1 : R→ R/I and η2 : R→
R/J.

PROOF. Step 1: Let φ : R→ R/I×R/J be defined by φ(x) = (x+ I,x+ J). Since φ

is defined in terms of the natural projections η1, η2, φ is a well defined homomorphism of
rings.

Step 2: We prove that φ is onto. Let a,b ∈ R. We need to find x ∈ R such that
φ(x) = (a+ I,b+ J). Since I and J are comaximal, there exist u ∈ I, v ∈ J such that
1 = u+v. Then u = 1−v≡ 1 (mod J) and v = 1−u≡ 1 (mod I). Set x = bu+av. Then

x≡ bu+av (mod I)

≡ av (mod I)

≡ a (mod I).

Likewise, x≡ b (mod J). Therefore, φ(x) = (a+ I,b+ J).
Step 3: Consider the kernel of φ , kerφ = {x ∈ R | x ∈ I and x ∈ J}= I∩ J. By Theo-

rem 3.2.15, this proves the theorem. �
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PROPOSITION 3.3.8. Let R be a commutative ring. If I and J are comaximal ideals,
then IJ = I∩ J.

PROOF. If x ∈ I and y ∈ J, then xy ∈ I and xy ∈ J. Since IJ is generated by elements
of the form xy, we have IJ ⊆ I∩ J. Let z be an arbitrary element of I∩ J. We show z ∈ IJ.
Since R = I + J, there exist u ∈ I and v ∈ J such that 1 = u+ v. Now zu ∈ IJ since z ∈ J
and u ∈ I. Also zv ∈ IJ since z ∈ I and v ∈ J. Then z = zu+ zv ∈ IJ. �

COROLLARY 3.3.9. Let R be a commutative ring. If I and J are comaximal ideals,
then R/IJ ∼= R/I×R/J.

EXAMPLE 3.3.10. Let F be a field and

R =

{(
a b
0 d

)
| a,b,d ∈ F

}
the set of all upper triangular matrices in M2(F). As in Example 3.1.12, R is a noncommu-
tative subring of M2(F). The proof given in Example 3.1.13 can be used to show that the
center of R is the set of scalar matrices, which is isomorphic to F by the homomorphism

δ : F → R defined by δ (a) =
(

a 0
0 a

)
. Define λ : R→ F by λ

(
a b
0 d

)
= a. The reader

should verify that λ is a homomorphism and λδ (a) = a for all a ∈ F . We say F is a sub-

field of R and λ is a section to δ . The homomorphism ρ : R→ F defined by ρ

(
a b
0 d

)
= d

also satisfies ρδ (a) = a, hence a section to δ is not unique. The kernels of λ and ρ are

kerλ =

{(
0 b
0 d

)
| b,d ∈ F

}
, kerρ =

{(
a b
0 0

)
| a,b ∈ F

}
,

which are proper ideals in R. We say R is not a simple ring. Since F has no proper ideals,
by Corollary 3.2.17, there is no proper ideal of R that contains kerλ or kerρ . The ideals

kerλ and kerρ are maximal proper ideals in R. Let D=

{(
a 0
0 d

)
| a,d ∈ F

}
. The reader

should verify that D is a subring of R. Define τ : R→ D by τ

(
a b
0 d

)
=

(
a 0
0 d

)
. The

reader should verify that τ is a homomorphism and for any matrix A ∈ D, τ(A) = A. In
other words, τ is a section to the inclusion map D→ R. The kernel of τ is the ideal

kerτ =

{(
0 b
0 0

)
| b ∈ F

}
.

If
(

a b
0 d

)
is an idempotent matrix, then a and d are idempotents in F . After looking at

the possible cases, the reader should verify that the set of all idempotents in R is{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 1
0 0

)
,

(
0 1
0 1

)}
.

Only the two trivial idempotents, namely 0 and 1, are central. Therefore, R is not an
internal direct sum of proper ideals. Let R∗ be the group of units of R. By Exercise 3.2.38,
there are homomorphisms of groups δ ∗ : F∗→ R∗ and ρ∗ : R∗→ F∗. Let

T = kerρ
∗ =

{(
a b
0 1

)
| a ∈ F∗,b ∈ F

}
,
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and

Z = δ (F∗) =
{(

a 0
0 a

)
| a ∈ F∗

}
.

By Exercise 2.5.21, the group of units of R is the internal direct product R∗ = T × Z of
the two proper normal subgroups T and Z. The ring R is an example of an extension of a
ring by a module. Specifically, R is the extension of D by the module kerτ . The interested
reader is referred to [5, Exercise 8.1.14] for the general construction.

3.1. Exercises.

EXERCISE 3.3.11. Suppose R is a ring and e ∈ R is a central idempotent. Assume
e 6= 0 and e 6= 1. Let I be the ideal generated by e. Prove that R is equal to the internal
direct sum I⊕ J for some ideal J.

EXERCISE 3.3.12. Let k be a field of characteristic different from 2. Let f = x2−1.
Show that k[x]/( f ) is isomorphic to a direct sum of fields.

EXERCISE 3.3.13. Consider the ring R = Z/(n).
(1) Suppose n = 1105.

(a) Prove that R is isomorphic to a direct sum of fields.
(b) Determine all maximal ideals in R.
(c) Determine all idempotents in R.

(2) Suppose n = 1800.
(a) Determine all maximal ideals in R.
(b) Determine all idempotents in R.

EXERCISE 3.3.14. Assume the ring R is the direct sum R = R1 ⊕ R2. Let e1,e2
be the central idempotents corresponding to the direct summands (guaranteed by Theo-
rem 3.3.6 (3)). Let D be a ring which has exactly two idempotents, namely 0 and 1. Let
θ : R→ D be a homomorphism of rings. Prove that exactly one of the following is true:

(1) θ(e1) = 1 and θ(e2) = 0, or
(2) θ(e1) = 0 and θ(e2) = 1.

EXERCISE 3.3.15. Let R be any ring. Let I and J be ideals in R and φ : R→ R/I⊕R/J
the natural homomorphism of Theorem 3.3.7. Show that the image of φ is the subring
of R/I⊕R/J defined by {(x+ I,y+ J) | x− y ∈ I + J}. See [4, Exercise 4.1.45] for an
interpretation of this result in terms of modules.

EXERCISE 3.3.16. If n > 1, then we say n is square free if n is not divisible by the
square of a prime number. Prove that the nil radical of Z/n is (0) if and only if n is square
free. For the definition of nil radical, see Exercise 3.2.37.

EXERCISE 3.3.17. Let n > 1 and R a finite ring of order n. Suppose n is square free
and the factorization of n into primes is n = p1 · · · pm. Prove the following:

(1) R∼= Z/n.
(2) R is commutative.
(3) R is a field, or a direct sum of fields.
(4) In terms of the prime factors of n, describe the maximal ideals of R.

4. Factorization in Commutative Rings

DEFINITION 3.4.1. Let R be a commutative ring. Suppose a and b are elements of R.
We say a divides b, and write a | b, in case there exists c ∈ R such that b = ac. We also say
that a is a factor of b, or b is a multiple of a.
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DEFINITION 3.4.2. Let R be a commutative ring and suppose a and b are elements of
R. If a | b and b | a, then we say a and b are associates. In this case we write a ∼ b. The
reader should verify that the relation “a is an associate of b” is an equivalence relation on
R.

LEMMA 3.4.3. Let R be a commutative ring. Let a,b,r,u ∈ R.

(1) The following are equivalent:
(a) a | b.
(b) b ∈ Ra = (a).
(c) (a)⊇ (b).

(2) a and b are associates if and only if (a) = (b).
(3) If a = bu and u is a unit, then a and b are associates.
(4) If R is an integral domain and a and b are associates, then a = bu for some unit

u.
(5) Let R be an integral domain. If a 6= 0 and a | b, then there exists a unique c such

that b = ac. We write c = ba−1, or c = b/a.

PROOF. (1): This follows straight from Definitions 3.2.6 and 3.4.1.
(5): Suppose b = ac = ac′. Subtract and distribute to get a(c− c′) = 0. Since a 6= 0

and R is an integral domain, this means c− c′ = 0, hence c = c′.
The rest of the proof is left to the reader. �

DEFINITION 3.4.4. Let R be a commutative ring and a an element of R which is not a
unit and not a zero divisor. Then a is irreducible in case whenever a = bc, then either b is
a unit or c is a unit. We say that a is prime in case whenever a | bc, then either a | b or a | c.

LEMMA 3.4.5. Let R be an integral domain.

(1) p ∈ R is prime if and only if (p) is a prime ideal.
(2) If p is prime, then p is irreducible.
(3) If p is irreducible and q is an associate of p, then q is irreducible.
(4) If p is prime and q is an associate of p, then q is prime.
(5) If p is irreducible, then the only divisors of p are units and associates of p.

PROOF. In the following, let a,b, p,q,u ∈ R.
(1): We have ab ∈ (p) if and only if p | ab. Likewise, a ∈ (p) if and only if p | a, and

b ∈ (p) if and only if p | b.
(2): Suppose p is prime and p = ab. Since p is prime we assume p | a. Therefore a

and p are associates. By Lemma 3.4.3 (4), b is a unit in R.
(3): Is a homework exercise.
(4): Assume p is prime, u is a unit, q = pu, and q | ab. For some c∈ R, ab = qc = puc.

Since p is prime we assume p | a. For some d ∈ R, a = pd = (pu)(u−1d), which shows
q | a.

(5): The proof is left to the reader. �

4.1. Greatest Common Divisors.

DEFINITION 3.4.6. Let R be a commutative ring and X a nonempty subset of R. An
element d ∈ R is a greatest common divisor of X if the following are satisfied:

(1) d | x for all x ∈ X , and
(2) if c | x for all x ∈ X , then c | d.
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We sometimes write d = gcd(X) if d is a greatest common divisor of X . When X =
{x1, . . . ,xn} is finite, we write d = gcd(x1, . . . ,xn) for gcd(X). Notice that if d is a greatest
common divisor, so is any associate of d. If gcd(X) exists, it is not unique.

LEMMA 3.4.7. Let X be a nonempty subset of an integral domain R. If d = gcd(X) ex-
ists, then d is unique up to associates. That is, if d and d′ are two greatest common divisors
of X, then there exists a unit u ∈ R∗ such that d′ = du, hence d and d′ are associates.

PROOF. By Definition 3.4.6, we have d | d′ and d′ | d. Thus d and d′ are associates.
By Lemma 3.4.3 (4), d′ = du for some u ∈ R∗. �

PROPOSITION 3.4.8. Let R be a commutative ring and X a nonempty subset of R.
(1) If the ideal generated by X is principal and d is a generator for (X), then d =

gcd(X).
(2) If d = gcd(X) exists and d is in the ideal (X), then (d) = (X).

PROOF. (1): If (d) = (X), then d | x, for all x∈X . Also, d = a1x1+ · · ·+anxn for some
a1, . . . ,an ∈ R and x1, . . . ,xn ∈ X . Suppose c | x for each x ∈ X . Then c | a1x1+ · · ·+anxn =
d.

(2): This follows from Definition 3.4.6 and Exercise 3.4.28. �

COROLLARY 3.4.9. (A PID is a Bézout domain) If R is a PID, and X is a nonempty
subset of R, then d = gcd(X), the greatest common divisor of X, exists and is unique up to
associates. Any generator d of the ideal (X) is a greatest common divisor of a and b. In
this case, d = a1x1 + · · ·+anxn for some a1, . . . ,an ∈ R and x1, . . . ,xn ∈ X.

PROOF. Since (X) is principal, there exists d ∈ R such that (d) = (X). Proposi-
tion 3.4.8 (1) implies d = gcd(X) exists and can be written in the form d = a1x1+ · · ·+anxn
for some a1, . . . ,an ∈ R and x1, . . . ,xn ∈ X . By Lemma 3.4.7, d is unique up to asso-
ciates. �

COROLLARY 3.4.10. Let R be a PID and p ∈ R an irreducible element. Then the
following are true.

(1) p is prime. That is, if p | ab, then p | a or p | b.
(2) If x1,x2, . . . ,xn in R and p | x1x2 · · ·xn, then p | xi for some i.

PROOF. (1): Assume p | ab and p does not divide b. We prove p | a. The ideal
(p,b) is principal, hence is equal to (d), for some d ∈ R. Then d | p and d | b. Since p is
irreducible, d is a unit, or d is an associate of p (Lemma 3.4.5 (5)). We are assuming p
does not divide b, hence d is not an associate of p, hence d is a unit. Therefore (d) = (1).
By Corollary 3.4.9, we can write 1 = px+by. Multiply by a to get a = pax+aby. Since
p | ab, this shows p | a.

(2) If n= 1, then take i= 1 and stop. Assume inductively that n> 1 and the result holds
for a product of n−1 factors. Then p | (x1 · · ·xn−1)xn. By Part (1), p | xn, or p | (x1 · · ·xn−1).
By the induction hypothesis, p | xi for some i. �

DEFINITION 3.4.11. Let R be an integral domain. Then R is a unique factorization
domain if for every nonzero nonunit x in R, the following are satisfied:

(1) x has a representation as a product of irreducibles. That is, there exist irreducible
elements x1,x2, . . . ,xn in R such that x = x1x2 · · ·xn.

(2) In any factorization of x as in (1), the number of factors is unique.
(3) In any factorization of x as in (1), the irreducible factors are unique up to order

and associates.



4. FACTORIZATION IN COMMUTATIVE RINGS 105

Sometimes we say R is a UFD.

EXAMPLE 3.4.12. The ring Z is a UFD, by the Fundamental Theorem of Arithmetic.
We will prove in Theorem 3.4.26 that any PID is a UFD.

COROLLARY 3.4.13. Let R be a UFD. If X = {r1, . . . ,rn} is a finite nonempty subset
of R, then d = gcd(X) exists and is unique up to associates.

PROOF. If n = 1, then by Proposition 3.4.8 (1), r1 = gcd(X) exists. By Mathematical
Induction and Exercise 3.4.29, it suffices to prove the n = 2 case. Assume X = {a,b}. If
a = 0, then (a,b) = (b) and by Proposition 3.4.8 (1), b = gcd(a,b) exists. If (a,b) = (1),
then by Proposition 3.4.8 (1), 1 = gcd(a,b) exists. Assume a and b are both nonzero and
nonunits. Then by Exercise 3.4.30, gcd(a,b) exists and we are done. �

COROLLARY 3.4.14. Let R be a UFD and p ∈ R− (0). Then the following are equiv-
alent.

(1) p is irreducible.
(2) p is prime.
(3) The principal ideal (p) is a prime ideal.

PROOF. By Lemma 3.4.5 (1), (2) is equivalent to (3). By Lemma 3.4.5 (2), (2) implies
(1). We prove that (1) implies (2). Suppose p is irreducible and p | ab. If a = 0, then p | a.
If b = 0, then p | b. Since p is not invertible, ab is not invertible. Write ab = pc for some
c ∈ R. Assume ab is nonzero and not invertible. Factor ab and pc into irreducibles. By
uniqueness of factorization, p is an associate of one of the irreducible factors of a or b. �

4.2. Euclidean Domains.

DEFINITION 3.4.15. Let R be an integral domain. Then R is called a euclidean domain
if there is a function (called the norm) δ : R− (0)→ N such that

(1) δ (ab) = δ (a)δ (b) for all a,b ∈ R− (0), and
(2) for all a,b ∈ R− (0) there exist q,r ∈ R such that a = bq+ r and either r = 0 or

δ (r)< δ (b).

EXAMPLE 3.4.16. The ring of integers Z is a euclidean domain with the norm function
δ (x) = |x|. The absolute value function is multiplicative, and property (2) is satisfied by
the Division Algorithm on Z.

EXAMPLE 3.4.17. We will prove above in Corollary 3.6.5 that if F is a field, then the
polynomial ring F [x] is a euclidean domain.

EXAMPLE 3.4.18. Let n≥ 1 and ζn = e2πi/n a primitive nth root of unity in C. Then
Q[ζn] is the splitting field for xn−1 over Q (see Example 5.2.9). Let Z[ζn] be the subring
of Q[ζn] generated by adjoining ζn to Z. So Z[ζn] is the image of the evaluation homomor-
phism Z[x]→ C defined by x 7→ ζn. When n = 4 we usually write i instead of ζ4. In this
case, the ring Z[i] is called the ring of gaussian integers.

EXAMPLE 3.4.19. In this example we prove that the ring of gaussian integers Z[i]
(see Example 3.4.18) is a euclidean domain. Let χ : C→ C be complex conjugation:
χ(a+bi) = a−bi. The norm function δ : C−(0)→R is defined by δ (a+bi) = a2+b2 =
(a + bi)χ(a + bi). Since δ = 1Cχ is defined by multiplying two automorphisms, δ is
multiplicative. Since min.poly(i) = x2 +1, Z[i] = {a+bi | a,b ∈ Z}. Now we prove that
Property (2) of Definition 3.4.15 holds. Let α,β ∈ Z[i]− (0). Since Q[i] is a field, we can
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write αβ−1 = u+vi where u,v∈Q. Let p,q∈Z such that |u− p| ≤ 1/2 and |v−q| ≤ 1/2.
Then γ = p+qi ∈ Z[i]. Define ρ = α−βγ = β ((u− p)+(v−q)i). Then

δ (ρ) = δ (β ((u− p)+(v−q)i))

= δ (β )
(
(u− p)2 +(v−q)2)

≤ δ (β )

(
1
22 +(

1
22

)
≤ 1

2
δ (β )< δ (β )

and α = βγ +ρ .

PROPOSITION 3.4.20. If R is a euclidean domain, then R is a principal ideal domain.

PROOF. Let I be a nonzero ideal in R. Consider the nonempty set S = {δ (a) | a ∈
I− (0)}. By the Well Ordering Principle for N, S has a least element, say δ (b), for some
b∈ I. Let a∈ I. Since R is a euclidean domain, there exist q and r in R such that a = bq+r
and either r = 0 or δ (r) < δ (b). Since a,b ∈ I, we have r ∈ I. By the minimal choice of
δ (b), we conclude that r = 0. Thus, a ∈ Rb. This shows I = Rb is principal. �

EXAMPLE 3.4.21. By Proposition 3.4.20, we have the following examples of principal
ideal domains.

(1) We have not proved it yet, but if F is a field, then F [x] is a principal ideal domain.
(2) By Example 3.4.19, the ring of gaussian integers Z[i] is a principal ideal domain.

PROPOSITION 3.4.22. Let R be a euclidean domain with norm function δ : R− (0)→
N. Then the following are true:

(1) δ (1) = 1.
(2) If u ∈ R∗ is a unit in R, then δ (u) = 1.
(3) If δ (u) = 1, then u ∈ R∗ is a unit in R.
(4) The group of units of R is R∗ = δ−1{1}.
(5) Let R be a euclidean domain with norm δ : R− (0)→ N. If x ∈ R− (0) and

δ (x) = 2, then x is irreducible.

PROOF. (1) and (2): For any u ∈ R− (0) we have δ (u) = δ (u ·1) = δ (u)δ (1). There-
fore, δ (1) = 1. Let u∈ R∗. Then 1 = δ (uu−1) = δ (u)δ (u−1). Since the group of invertible
elements of the ring Z is {1,−1}, we conclude that δ (u) = 1.

(3): Assume δ (u) = 1. Divide u into 1. There exist q,r ∈ R such that 1 = uq+r. Since
1 is the least element of N, we conclude that r = 0. Thus, u is invertible.

(4): This part follows from (1), (2), and (3).
(5): Assume x = ab. Then 2 = δ (x) = δ (a)δ (b). Thus δ (a) = 1 or δ (b) = 1. By (4),

R∗ = {u ∈ R− (0) | δ (u) = 1}. Hence a is a unit or b is a unit. �

THEOREM 3.4.23. If R is a euclidean domain with norm δ : R− (0)→ N, then R is a
unique factorization domain.

PROOF. The proof is in two parts. Part 1 proves the existence of the factorization, and
Part 2 proves the uniqueness of the factorization.

(Existence.) Let x ∈ R and assume x 6= 0 and x is not in R∗. Then δ (x)≥ 2. The proof
is by induction on δ (x). By Proposition 3.4.22, if δ (x) = 2, then x is irreducible. This is the
basis step. Inductively, assume δ (x)> 2 and that if y ∈ R− (0) and 1 < δ (y)< δ (x), then
y has a factorization into irreducibles. If x is irreducible, then stop. Otherwise x = x1x2
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where x1 and x2 are both nonunits. Then δ (x) = δ (x1)δ (x2). We have 1 < δ (xi) < δ (x)
for i = 1,2. By our induction hypothesis, x1 and x2 can be represented as products of
irreducibles. Therefore, x has such a factorization.

(Uniqueness.) Say x = x1 · · ·xs = y1 · · ·yt are two representations of x as products
of irreducibles. Since xs is irreducible, by Corollary 3.4.10, there is some i such that
xs | yi. Rearrange the factors if necessary, and assume xs | yt . Since yt is irreducible, by
Lemma 3.4.5 (5), xs and yt are associates. Cancel xs and yt . Then x1 · · ·xs−1 and y1 · · ·yt−1
are associates. By an inductive argument on the minimum of s and t, we see that s = t and
after rearranging if necessary, xi and yi are associates for each i. �

We end this section with a proof that in a euclidean domain R the greatest common
divisor of two elements a and b can be computed by the Euclidean Algorithm (Proposi-
tion 3.4.24). In Corollary 3.4.25 we show that the same recursive algorithm also yields a
solution (x,y) to the Bézout Identity gcd(a,b) = ax+by.

PROPOSITION 3.4.24. (The Euclidean Algorithm) Let R be a euclidean domain with
with norm δ : R− (0)→ N. Let a and b be elements of R. The greatest common divisor of
a and b exists and satisfies the following recursive formula:

(1) (Basis) If b = 0, then gcd(a,b) = a.
(2) (Recurrence) If b 6= 0, then gcd(a,b) = gcd(b,r), where a = bq+ r and either

r = 0 or δ (r)< δ (b).

PROOF. If b = 0, then the ideals (a,b) and (a) are equal in R, and Corollary 3.4.9
implies gcd(a,b) = a. If b 6= 0, then by Definition 3.4.15, a = bq+ r, for elements q and
r in R such that either r = 0 or δ (r) < δ (b). Then the ideals (a,b) and (b,r) are equal
in R. By Corollary 3.4.9, gcd(a,b) = gcd(b,r). To see that the recursive algorithm con-
verges, set r0 = b and successively apply Definition 3.4.15 to find a sequence of quotients
q1,q2, . . . ,qn+1 and a sequence of remainders r0,r1,r2, . . . ,rn satisfying:

a = r0q1 + r1, 0 < δ (r1)< δ (r0)

r0 = r1q2 + r2, 0 < δ (r2)< δ (r1)

r1 = r2q3 + r3, 0 < δ (r3)< δ (r2)

...

rn−3 = rn−2qn−1 + rn−1, 0 < δ (rn−1)< δ (rn−2)

rn−2 = rn−1qn + rn, 0 < δ (rn)< δ (rn−1)

rn−1 = rnqn+1 +0

where rn is the last nonzero remainder. The algorithm converges for some n such that
0≤ n≤ δ (b) because δ (r0)> δ (r1)> δ (r2)> · · ·> δ (rn)> 0. As mentioned above,

rn = gcd(rn,rn−1) = gcd(rn,rn−1) = gcd(rn−1,rn−2)

= · · ·= gcd(r3,r2) = gcd(r2,r1) = gcd(r1,r0) = gcd(a,b).

�

COROLLARY 3.4.25. (Bézout’s Identity) Let R be a euclidean domain with norm
function δ : R− (0)→ N. Let a and b be elements of R. There exist x,y in R such that
gcd(a,b) = ax+by.

PROOF. If a= 0, then b= gcd(a,b). Take x= 0 and y= 1. If b= 0, then a= gcd(a,b).
Take x = 1 and y = 0. If b 6= 0, then by Definition 3.4.15, a = bq+ r, for elements q and r
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in R such that either r = 0 or δ (r)< δ (b). Then gcd(a,b) = gcd(b,r) and by induction on
δ (b) we can write gcd(b,r) = bu+ rv for some u,v in R. Then

gcd(a,b) = bu+ rv

= bu+(a−bq)v

= av+b(u−qv).

Take x = v and y = u−qv. �

4.3. Principal Ideal Domains. The fundamental properties of a principal ideal do-
main are derived in Theorem 3.4.26. In particular, every principal ideal domain is a unique
factorization domain. Part (2) shows that a PID satisfies the ascending chain condition on
ideals. An integral domain with this property is said to be noetherian.

THEOREM 3.4.26. (Fundamental Theorem on Principal Ideal Domains) Let R be a
principal ideal domain (a PID, for short).

(1) If p is an irreducible element, then p is a prime element.
(2) R satisfies the ascending chain condition on ideals. That is, given a chain of

ideals I1 ⊆ I2 ⊆ I3 ⊆ ·· · ⊆ In ⊆ ·· · , there exists N ≥ 1 such that IN = IN+1 = · · · .
(3) If a ∈ R is a nonunit, nonzero element of R, then the set

S = {p ∈ R | p is irreducible and p | a}

contains only a finite number of associate classes. In other words, up to asso-
ciates, a has only a finite number of irreducible factors.

(4) If I is an ideal in R which is not the unit ideal, then
⋂

n≥1 In = (0).
(5) Suppose a is a nonzero element in R, p is irreducible and p is a factor of a. Then

for some n≥ 1 we have a ∈ (pn) and a 6∈ (pn+1).
(6) If a ∈ R is a nonunit and a nonzero element, then there exists an irreducible

element p such that p | a.
(7) R is a unique factorization domain.

PROOF. (1): This is Corollary 3.4.10.
(2): Let I =

⋃
∞
k=1 Ik. By Exercise 3.2.34, I is an ideal in R. Since R is a PID, there

exists a ∈ R such that I = (a). Given a ∈ I, we know a ∈ IN for some N. Then I = (a) ⊆
IN ⊆ IN+1 ⊆ ·· · and we are done.

(3): The proof is by contradiction. Assume {p1, p2, . . .} is a sequence in S such that
for each n > 1, pn does not divide p1 p2 · · · pn−1. Write a = p1a1. Then p2 | p1a1. By
assumption, p2 does not divide p1. By Part (1), p2 | a1 and we write a1 = p2a2. Iteratively
we arrive at the factorizations

a = p1a1 = p1 p2a2 = · · ·= p1 p2 · · · pnan.

Applying one more step, we know pn+1 | a. Since pn+1 does not divide p1 p2 · · · pn, and
pn+1 is prime, it follows that pn+1 | an. Write an = pn+1an+1. Therefore (an) ⊆ (an+1)
with equality if and only if an and an+1 are associates. But pn+1 is not a unit, so by
Lemma 3.4.3 (4), the chain of ideals

(a1)⊆ (a2)⊆ ·· · ⊆ (an)⊆ (an+1)⊆ ·· ·

is strictly increasing. This contradicts Part (2).
(4): Because R is a PID, I = (b) for some b ∈ R. If I = 0, then Part (4) is trivial,

so we assume b 6= 0. Let M =
⋂

∞
n=1 In. Then M is an ideal in R, so M = (r) for some

r ∈ R. Since M is an ideal, bM ⊆ M. To show that bM = M, assume x ∈ M. Then



5. THE QUOTIENT FIELD OF AN INTEGRAL DOMAIN 109

x ∈M ⊆ I implies x = by for some y ∈ R. Let n≥ 1. Then x ∈M ⊆ In+1 = (bn+1) implies
x = bn+1z for some z ∈ R. Since R is an integral domain and b 6= 0, x = by = bn+1z implies
y = bnz ∈ In = (bn). This proves y ∈

⋂
n≥1 In = M. Therefore x ∈ bM, and bM = M. Since

bM = (br), Lemma 3.4.3 says br and r are associates. But b is not a unit, so r = 0, which
proves (4).

(5): Set I = (p). By assumption, a ∈ (p) and a 6= 0. By Part (4), for some n ≥ 1 we
have a 6∈ (pn+1) and a ∈ (pn).

(6): The proof is by contradiction. Suppose a ∈ R is not a unit, and not divisible by an
irreducible. Then a is not irreducible. There are nonunits a1, b1 in R such that a = a1b1.
By our assumption, a1 and b1 are not irreducible. By Lemma 3.4.3, (a) ( (a1). Since a1
is not irreducible, there are nonunits a2, b2 in R such that a1 = a2b2. Since a2 and b2 are
divisors of a, both are not irreducible. By Lemma 3.4.3, (a) ( (a1) ( (a2). Recursively
we construct a strictly increasing sequence of ideals (ai)( (ai+1), contradicting Part (2).

(7): This proof is left to the reader. �

4.4. Exercises.

EXERCISE 3.4.27. Let a and b be elements of a commutative ring R. If (a,b) = (1)
and a | bc, then a | c.

EXERCISE 3.4.28. Let X be a nonempty subset of a commutative ring R. If d ∈ (X)
and d | x for all x ∈ X , then (d) = (X).

EXERCISE 3.4.29. Let X = {x1, . . . ,xn} be a nonempty finite subset of a commutative
ring R, with n≥ 2. If e = gcd(x1, . . . ,xn−1) and d = gcd(e,xn), then d = gcd(x1, . . . ,xn).

EXERCISE 3.4.30. (Exponential Notation in a UFD) Let a and b be elements of a
unique factorization domain R. Assume a and b are both nonzero and nonunits.

(1) Show that there exist irreducible elements x1, . . . ,xm in R such that xi and x j are
associates of each other if and only if i = j and nonnegative integers e1, . . . ,em,
f1, . . . , fm such that a = xe1

1 · · ·xem
m and b = x f1

1 · · ·x
fm
m .

(2) Show that in the notation from (1) that a | b if and only if ei ≤ fi for each i.
(3) In the notation from (1), for j = 1, . . . ,m, let ` j be the least element in the set
{e j, f j}. Prove that d = x`1

1 x`2
2 · · ·x`m

m = gcd(a,b).

EXERCISE 3.4.31. Let R be an integral domain and X a nonempty subset of R. Assume
d = gcd(X) exists and d 6= 0. Let Y = {xd−1 | x ∈ X} (see Lemma 3.4.3 (5) for this
notation). Prove that 1 = gcd(Y ).

5. The Quotient Field of an Integral Domain

Let R be an integral domain. Define a relation on R× (R− (0)) by the rule: (r,v) ∼
(s,w) if and only if rw = sv. We show that ∼ is an equivalence relation. Clearly ∼ is
reflexive and symmetric. Let us show that it is transitive. Suppose (r,u) ∼ (s,v) and
(s,v) ∼ (t,w). Then rv = su sw = tv. Multiply the first by w and the second by u to get
rvw = suw = tvu. Then rvw = tvu. Canceling v, rw = tu, which implies (r,u)∼ (t,w). We
have shown that ∼ is an equivalence relation on R×W . The set of equivalence classes,
(R× (R− (0)))/ ∼, is called the quotient field, or field of fractions of R. The equivalence
class containing (r,w) is denoted by the fraction r/w.



110 3. RINGS

LEMMA 3.5.1. Let R be an integral domain and K = (R× (R− (0)))/∼ the quotient
field of R. Then K is a field with the binary operations

r
v
+

s
w

=
rw+ sv

vw
,

r
v

s
w

=
rs
vw

.

The additive identity is 0/1, the multiplicative identity is 1/1. There is a natural map
θ : R→K defined by r 7→ r/1 which is a one-to-one homomorphism of rings. If R is a field,
then θ is an isomorphism.

PROOF. Assume r
v =

r1
v1

and s
w = s1

w1
. Then

rv1 = r1v(5.1)
sw1 = s1w.(5.2)

Multiply (5.1) by ww1 and (5.2) by vv1 to get the identities rv1ww1 = r1vww1 and sw1vv1 =
s1wvv1. From these we derive

(rw+ sv)v1w1 = rv1ww1 + sw1vv1

= r1vww1 + s1wvv1

= (r1w1 + s1v1)vw.

This is the center equation in:
r
v
+

s
w

=
rw+ sv

vw
=

r1w1 + s1v1

v1w1
=

r1

v1
+

s1

w1
.

Hence, addition of fractions is well defined. Multiply (5.1) by sw1 and (5.2) by r1v to get
the identities rsv1w1 = r1vsw1 and sw1r1v = s1wr1v. Taken together, we have rsv1w1 =
r1vsw1 = s1wr1v. This is the center equation in:

r
v

s
w

=
rs
vw

=
r1s1

v1w1
=

r1

v1

s1

w1
.

Hence, multiplication of fractions is well defined. It is routine to check that the associative
and distributive laws hold, that K is a field, and that θ is a one-to-one homomorphism of
rings. The details are left to the reader. �

5.1. Exercises.

EXERCISE 3.5.2. (Universal Mapping Property) Let R be an integral domain with
field of fractions K. Let F be a field and φ : R→ F a one-to-one homomorphism of rings.
Prove that there is a unique homomorphism of fields ϕ : K→ F such that the diagram

R
φ //

θ ��

F

K
∃ϕ

??

commutes where θ is the natural map of Lemma 3.5.1.

EXERCISE 3.5.3. Let R be a commutative ring. A subset W of R is called a multi-
plicative subset of R, if the following three properties hold:

(a) 1 ∈W .
(b) W contains no zero divisor of R.
(c) If x and y are in W , then xy ∈W .

If W is a multiplicative subset of R, do the following:
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(1) Define a relation on R×W by the rule: (r,v) ∼ (s,w) if and only if rw = sv.
Show that ∼ is an equivalence relation. Denote the set of equivalence classes by
RW .

(2) Show how to make RW into a commutative ring by imitating the construction of
the quotient field of an integral domain in Lemma 3.5.1. The ring RW is called
the localization of R at W .

(3) Show that there is a one-to-one homomorphism of rings θ : R→ RW .
(4) (Universal Mapping Property) Let S be a commutative ring and f : R → S a

homomorphism such that f (W ) ⊆ Units(S). Show that there exists a unique
homomorphism f̄ : RW → S

R
f //

θ   

S

RW

∃ f̄

>>

such that f = f̄ θ .

EXERCISE 3.5.4. Let R be a commutative ring and W the set of all elements of R that
are not zero divisors.

(1) Show that W is a multiplicative subset. In this case, the localization RW is called
the total ring of quotients of R.

(2) Let S be the total ring of quotients of R. Show that S is a commutative ring with
the property that every element of S is either a unit or a zero divisor.

EXERCISE 3.5.5. Let R be a finite ring in which 0 6= 1, and x ∈ R. Show that if x is
not a zero divisor, then x is invertible. (Hint: Theorem 3.2.20.)

EXERCISE 3.5.6. Recall that Z[
√
−5] is the subring of Q[

√
−5] generated by Z and√

−5. Show that the field of fractions of Z[
√
−5] is Q[

√
−5].

6. Polynomial Rings

Let R be a commutative ring. The polynomial ring in one variable x with coefficients
in R,

R[x] =

{
n

∑
i=0

aixi | n≥ 0,ai ∈ R

}
is constructed in the usual way. It is assumed that the indeterminate x commutes with
elements of R. The ring R[x] is commutative. If a ∈ R− (0), the degree of the monomial
axn is n. For convenience, the degree of 0 is taken to be −∞. The degree of a polynomial
f = ∑

n
i=0 aixi in R[x] is the maximum of the degrees of the terms a0x0, . . . ,anxn. If f is

nonzero of degree n, the leading coefficient of f is an. We say that f is monic if the leading
coefficient of f is 1. If f = ∑

m
i=0 aixi has degree m and g = ∑

n
i=0 bixi has degree n, then

f g =

(
m

∑
i=0

aixi

)(
n

∑
i=0

bixi

)

= a0b0 +(a0b1 +a1b0)x+ · · ·+

(
k

∑
j=0

a jbk− j

)
xk + · · ·+ambnxm+n.



112 3. RINGS

It follows that deg( f g) = deg( f )+deg(g) in case one of the leading coefficients am or bn is
not a zero divisor in R. The degree of a sum is no larger than the degree of either summand:
deg( f +g)≤max(deg( f ),deg(g)). We view R as the subring of all polynomials in R[x] of
degree less than or equal to 0. The natural mapping R→ R[x] which maps a ∈ R− (0) to
the polynomial of degree zero is a monomorphism. The polynomial ring over R in several
variables is defined by iterating the one-variable construction. If t > 1 and x1, . . . ,xt are
indeterminates, then R[x1, . . . ,xt ] = R[x1, . . . ,xt−1][xt ]. See Section 3.6.1.

PROPOSITION 3.6.1. If R is an integral domain if and only if R[x] is an integral do-
main. In general, R is an integral domain if and only if R[x1, . . . ,xt ] is an integral domain.

PROOF. Since R is a subring of R[x], if R has a nonzero zero divisor, so does R[x]. Sup-
pose R is an integral domain. Let f and g be nonzero polynomials in R[x]. Say f =∑

m
i=0 aixi

has degree m and g = ∑
n
i=0 bixi has degree n. Then the leading term of f g is ambn 6= 0.

This proves R[x] is an integral domain. If t > 1, the proof follows by Mathematical Induc-
tion. �

THEOREM 3.6.2. Let R be a commutative ring and σ : R→ S a homomorphism of
rings.

(1) If S is a commutative ring, the definition σ̄(∑rixi) = ∑σ(ri)xi extends σ to a
homomorphism on the polynomial rings σ̄ : R[x]→ S[x]. If K = ker(σ), then
the kernel of σ̄ is the set K[x] consisting of those polynomials f ∈ R[x] such that
every coefficient of f is in K.

(2) (Universal Mapping Property) Let s be an element of S such that sσ(r) = σ(r)s
for every r ∈ R. Then there is a unique homomorphism σ̄ such that σ̄(x) = s and
the diagram

R σ //

  

S

R[x]
σ̄

>>

commutes. We say σ̄ is the evaluation homomorphism defined by x 7→ s.

PROOF. The proof is left to the reader. �

THEOREM 3.6.3. (The Division Algorithm) Let R be a commutative ring. Let f ,g ∈
R[x] and assume the leading coefficient of g is a unit of R. There exist unique polynomials
q,r ∈ R[x] such that f = qg+ r and degr < degg.

PROOF. (Existence.) If deg f < degg, then set q = 0 and r = f . Otherwise assume
f = ∑

m
i=0 aixi where am 6= 0 and g = ∑

n
i=0 bixi where bn 6= 0 and bn is a unit in R. If m = 0,

then n = 0 so q = a0b−1
0 and r = 0. Proceed by induction on m. The leading coefficient

of
(
amb−1

n xm−n
)

g is am. Set h = f −
(
amb−1

n xm−n
)

g. Then degh < deg f . By induction,
h = q1g+ r where degr < degg. Now

f =
(
amb−1

n xm−n)g+q1g+ r

=
(
amb−1

n xm−n +q1
)

g+ r

so take q = amb−1
n xm−n +q1.

(Uniqueness.) Assume f = gq+ r = gq1 + r1 where degr < degg and degr1 < degg.
Subtracting, we have g(q−q1) = r1− r. The degree of the right hand side is deg(r1− r)≤
max(degr1,degr) < degg. The degree of the left hand side is degg+ deg(q−q1). If
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q−q1 6= 0, this is impossible. So q1 = q and r = r1. Hence the quotient and remainder are
unique. �

COROLLARY 3.6.4. (Synthetic Division) If R is a commutative ring, f = ∑
m
i=0 rixi ∈

R[x] and a∈ R, then there exists a unique polynomial q∈ R[x] such that f = q(x−a)+ f (a)
where f (a) = ∑

m
i=0 riai ∈ R.

PROOF. Upon dividing x−a into f , this follows straight from Theorem 3.6.3. �

COROLLARY 3.6.5. If k is a field, then k[x] is a euclidean domain. It follows that k[x]
is a PID and a UFD.

PROOF. Define the norm function by the exponential formula: δ ( f ) = 2deg f for all
f ∈ F [x]− (0). Then δ ( f g) = 2deg f g = 2deg f+degg = 2deg f 2degg = δ ( f )δ (g), hence δ is
multiplicative. In Definition 3.4.15, property (2) is the division algorithm on F [x]. �

If k is a field, and R = k[x], then the quotient field of k[x], denoted k(x), is called the
field of rational functions over k. If S is a ring and R a subring, then by Theorem 3.6.2 we
can view R[x] as a subring of S[x].

DEFINITION 3.6.6. Let R be a commutative ring, u ∈ R, and f = ∑
m
i=0 rixi ∈ R[x]. We

say that u is a root of f in case f (u) = ∑
m
i=0 riui = 0.

LEMMA 3.6.7. Let R be a commutative ring, u ∈ R, and f ∈ R[x]. The following are
equivalent.

(1) u is a root of f .
(2) f is in the kernel of the evaluation homomorphism R[x]→ R defined by x 7→ u.
(3) There exists q ∈ R[x] such that f = (x−u)q.

PROOF. The proof is left to the reader. �

COROLLARY 3.6.8. If R is an integral domain, and f ∈ R[x] has degree d ≥ 0, then
the following are true:

(1) If u is a root of f in R, then there exists m ≥ 1 such that f = (x− u)mq and
q(u) 6= 0.

(2) f has at most d roots in R.
(3) (Lagrange Interpolation) Let n≥ 1. Given n+1 distinct elements of R: α0, . . . ,αn,

and n+ 1 arbitrary elements of R: β0, . . . ,βn, there exists a unique polynomial
f ∈ R[x] such that deg f ≤ n and f (αi) = βi for each i.

PROOF. (1): Apply Lemma 3.6.7 and induction on the degree.
(2): If d = 0, then f has no root. Inductively assume d ≥ 1 and that the result holds

for any polynomial of degree in the range 0, . . . ,d−1. If f has no root, then we are done.
Suppose u is a root of f . By Part (1) we can write f = (x−u)mq, where degq = d−m. If
v 6= u is another root of f , then 0 = f (u) = (v− u)mq(u). Since R is an integral domain,
this means u is a root of q. By induction, there are at most d−m choices for v.
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(3): (Existence.) The Lagrange basis polynomials with respect to the set {α0, . . . ,αn}
are

L0(x) =
(x−α1) · · ·(x−αn)

(α0−α1) · · ·(α0−αn)

...

L j(x) =
(x−α0) · · ·(x−α j−1)(x−α j+1) · · ·(x−αn)

(α j−α0) · · ·(α j−α j−1)(α j−α j+1) · · ·(α j−αn)

...

Ln(x) =
(x−α0) · · ·(x−αn−1)

(αn−α0) · · ·(αn−αn−1)
.

Notice that L j(x) has degree n and

L j(αk) =

{
0 if k 6= j
1 if k = j.

Set

f (x) =
n

∑
j=0

β jL j(x).

Then f (αk) = βk for each k = 0, . . . ,n and deg f ≤ n.
(Uniqueness.) Suppose f and g are two polynomials in R[x] such that deg f ≤ n,

degg ≤ n and f (αk) = βk = g(αk) for each k = 0, . . . ,n. Then deg( f −g) ≤ n and f − g
has n+1 roots, namely α0, . . . ,αn. By Part (2), f −g = 0. �

COROLLARY 3.6.9. Let R be an integral domain. Let n > 1 be an integer. The group
of nth roots of unity in R, µn = {u ∈ R | un = 1}, is a cyclic group of order at most n.

PROOF. The set µn is clearly a subgroup of R∗. The order of µn is at most n, by
Corollary 3.6.8 (2). For every divisor d of n, the equation xd = 1 has at most d solutions in
R∗. By Exercise 2.8.10, µn is a cyclic group. �

COROLLARY 3.6.10. Let F be a finite field of order q. Then F∗ is a cyclic abelian
group of order q−1.

PROOF. In a field the nonzero elements make up an abelian group. The group F∗

has order q− 1. By Corollary 2.2.17, every u ∈ F∗ satisfies the equation uq−1 = 1. By
Corollary 3.6.9, F∗ is a cyclic group of order q−1. �

EXAMPLE 3.6.11. If F is a field, the ring F [x,y] is not a PID. The ideal (x,y) =
{ux+ vy | u,v ∈ F [x,y]} is not a principal ideal.

DEFINITION 3.6.12. If R is an integral domain, f ∈ R[x], and u is a root of f , then the
multiplicity of u as a root of f is the positive number m given by Corollary 3.6.8 (1). We
say that u is a simple root if m = 1. If m > 1, then u is called a multiple root.

DEFINITION 3.6.13. If R is any ring and f = ∑
n
i=0 aixi ∈ R[x], then the formal deriva-

tive of f is defined to be

f ′ =
n

∑
i=1

iaixi−1
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which is also in R[x]. The reader should verify the usual identities satisfied by the derivative
operator. In particular, (a f +bg)′ = a f ′+bg′ and ( f g)′ = f ′g+ f g′. If R is commutative,
then ( f n)′ = n f n−1 f ′.

PROPOSITION 3.6.14. Suppose S is an integral domain and R is a subring of S. Let f
be a nonconstant polynomial in R[x] and u ∈ S. Then u is a multiple root of f if and only if
f ′(u) = f (u) = 0.

PROOF. Suppose u is a multiple root of f . Write f = (x−u)2q for some q ∈ S[x] and
compute f ′ = 2(x− u)q+(x− u)2q′. It is immediate that f ′(u) = 0. Conversely, assume
f (u) = f ′(u) = 0. Write f = (x−u)q for some q ∈ S[x] and compute f ′ = q+(x−u)q′. It
is immediate that q(u) = 0, so f = (x−u)2q2 for some q2 ∈ S[x]. �

THEOREM 3.6.15. Let k be a subfield of the integral domain S and f a nonconstant
polynomial in k[x].

(1) Assume
(a) gcd( f , f ′) = 1, or
(b) f is irreducible in k[x] and f ′ 6= 0 in k[x], or
(c) f is irreducible in k[x] and k has characteristic zero (see Example 3.2.4 (5)).

Then f has no multiple root in S.
(2) Suppose p denotes the characteristic of k. Assume u is a root of f in S.

(a) If f is irreducible in k[x] and u is a multiple root of f , then p > 0 and
f ∈ k[xp].

(b) If p > 0 and f ∈ k[xp], then u is a multiple root of f .

PROOF. (1): Assuming gcd( f , f ′) = 1, by Corollary 3.4.9 there exist s, t ∈ k[x] such
that 1 = f s+ f ′t. It is clear that f and f ′ do not have a common root in S. By Proposi-
tion 3.6.14, f has no multiple root in S. Case (b) reduces immediately to case (a). Case (c)
reduces immediately to case (b).

(2) (a): If u ∈ S is a multiple root of f , then because f is irreducible in k[x], Part (1)
implies p > 0 and f ′ = 0. The reader should verify that under these conditions f ∈ k[xp].

(2) (b): If k has characteristic p > 0 and f ∈ k[xp], then clearly f ′ = 0. If u ∈ S is a
root of f , then by Proposition 3.6.14, u is a multiple root of f . �

6.1. Polynomials in Several Variables. The polynomial ring over R in several vari-
ables is defined by iterating the one-variable construction. If m > 1 and x1, . . . ,xm are
indeterminates, then R[x1, . . . ,xm] = R[x1, . . . ,xm−1][xm]. A monomial in S = R[x1, . . . ,xm]
is a polynomial of the form M = rxe1

1 · · ·xem
m , where r ∈ R is the coefficient and each expo-

nent ei is a nonnegative integer. The degree of a monomial is −∞ if r = 0, otherwise it is
the sum of the exponents. If M 6= 0, then degM = e1+ · · ·+em. If M1 and M2 are monomi-
als with coefficients r1, r2, then M1M2 is a monomial with coefficient r1r2. So M1M2 = 0
if and only if r1r2 = 0. If M1M2 6= 0, then degM1M2 = degM1 +degM2. A polynomial f
in S is a sum f = ∑

d
j=1 M j where each M j is a monomial. A polynomial f ∈ S is said to be

homogeneous if f can be written as a sum of monomials all of the same degree. Let S0 = R
be the set of all polynomials in S of degree less than or equal to 0. For all n ≥ 1, let Sn
be the R-submodule generated by the set of all homogeneous polynomials in S of degree
n. If f is homogeneous of degree d and g is homogeneous of degree e, then we see f g is
homogeneous of degree d + e. A polynomial f ∈ S can be written f = f0 + f1 + · · ·+ fd
where each fi is homogeneous of degree i. We call fi the homogeneous component of f of
degree i. This representation of f as a sum of homogeneous polynomials is unique. The
degree of a polynomial is the maximum of the degrees of the homogeneous components.
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If k is a field, then k[x1, . . . ,xm] is an integral domain. The quotient field of k[x1, . . . ,xm],
denoted k(x1, . . . ,xm), is called the field of rational functions over k in m variables.

In Exercise 1.2.23 the lexicographical order ≤ is defined on the set of all m-tuples
of nonnegative integers ∏

m
i=1Z≥0 = {(e1, . . . ,em) | xi ∈ Z≥0}. Under this partial ordering

∏
m
i=1Z≥0 is a chain. This notion induces the lexicographical order on the set of nonzero

monomials in R[x1, . . . ,xm]. If M1 = r1xa1
1 · · ·xam

m , and M2 = r2xb1
1 · · ·xbm

m are two nonzero
monomials, then M1 < M2 if and only if (a1, . . . ,am) < (b1, . . . ,bm). We see that M1 and
M2 are comparable if (a1, . . . ,am) 6= (b1, . . . ,bm).

LEMMA 3.6.16. Let R be a ring and S = R[x1, . . . ,xm].
(1) A nonzero polynomial f in S can be written as a sum f = ∑

d
j=1 M j where each

M j is a nonzero monomial such that M1 < M2 < · · · < Md . This representation
as a sum of strictly increasing monomials is unique. The monomial Md is called
the leading term of f .

(2) Let f and g be nonzero polynomials in S. Let L( f ) be the leading term of f and
L(g) the leading term of g. Then the leading term of f g is equal to L( f )L(g).

(3) If U is a nonempty set of nonzero monomials in S, then there exists an element
α ∈U with the property that if β ∈U and β is comparable to α , then α < β .
If U has the property that any two distinct elements are comparable, then there
exists α ∈U such that if β ∈U−{α}, then α < β .

PROOF. (1): Given a nonzero polynomial f , write f = ∑
d
j=1 M j where each M j is a

nonzero monomial. By adding coefficients, all monomials that are incomparable can be
combined. Hence we can assume the monomials appearing in the sum are comparable.
After rearranging if necessary, we can assume M1 < M2 < · · ·< Md . Conversely, if M1 <
M2 < · · ·< Md is a strictly increasing sequence of monomials, then the sum f = ∑

d
j=1 M j

is nonzero. The uniqueness claim follows from this fact.
(2): The proof of this part is left to the reader.
(3): This follows from Exercise 1.2.23 (3). �

6.2. Exercises.

EXERCISE 3.6.17. Let k be a field. Let R = k[x2,x3] be the subring of k[x] consisting
of all polynomials such that the coefficient of x is zero. Prove:

(1) R is an integral domain.
(2) R is not a UFD. (Hint: x2 and x3 are both irreducible.)
(3) R is not a PID. (Hint: Neither x2 nor x3 is prime.)
(4) The converse of Lemma 3.4.5 (2) is false.

EXERCISE 3.6.18. Let R be a commutative ring and I = (a) a principal ideal in R.
Show that for any n≥ 1, In = (an).

EXERCISE 3.6.19. Prove that if R is an integral domain, then the homomorphism
R→ R[x] induces an isomorphism on the groups of units Units(R)→ Units(R[x]).

EXERCISE 3.6.20. Let R be a commutative ring. Prove:
(1) The nil radical of R[x] is equal to RadR(0)[x]. That is, a polynomial is nilpotent

if and only if every coefficient is nilpotent.
(2) The kernel of R[x]→ (R/RadR(0))[x] is equal to the nil radical of R[x].
(3) The group of units of R[x] consists of those polynomials of the form f = a0 +

a1x+ · · ·+anxn, where a0 is a unit in R and f −a0 ∈ RadR(0)[x].
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(4) If RadR(0) = (0), then the homomorphism R→ R[x] induces an isomorphism on
the groups of units Units(R)→ Units(R[x]).

EXERCISE 3.6.21. Let R be an integral domain and a ∈ R. Prove that the linear poly-
nomial x−a is a prime element in R[x].

EXERCISE 3.6.22. Let R be a commutative ring and a ∈ R. Show that there is an
automorphism θ : R[x]→ R[x] such that θ(x) = x+a and for all r ∈ R, θ(r) = r.

EXERCISE 3.6.23. Let R be an integral domain and a an irreducible element of R.
Prove that a is an irreducible element in R[x].

EXERCISE 3.6.24. Let k be a field and A = k[x]. Prove:

(1) If I = (x) is the ideal in A generated by x, then In = (xn).
(2) Let n ≥ 1. The nil radical of k[x]/(xn) consists of those cosets represented by

polynomials of the form α1x+ · · ·+αn−1xn−1.
(3) The group of units of k[x]/(xn) consists of those cosets represented by polyno-

mials of the form α0 +α1x+ · · ·+αn−1xn−1, where α0 is a unit in k.

EXERCISE 3.6.25. Let R be an integral domain.

(1) A polynomial f in R[x] defines a function f : R→ R. If R is infinite, show that
f is the zero function (that is, f (a) = 0 for all a ∈ R) if and only if f is the zero
polynomial.

(2) A polynomial f in R[x1, . . . ,xr] defines a function f : Rr → R. If R is infinite,
use induction on r to show f is the zero function if and only if f is the zero
polynomial.

EXERCISE 3.6.26. Let R be a commutative ring and S = R[x] the polynomial ring in
one variable over R. If W = {1,x,x2, . . .}, then the localization SW is called the Laurent
polynomial ring over R (see Exercise 3.5.3). Usually, the ring of Laurent polynomials over
R is denoted R[x,x−1].

(1) Show that every element of R[x,x−1] has a unique representation in the form
f (x)/xn where f (x) ∈ R[x] and n≥ 0.

(2) If R is an integral domain, prove that the group of units in R[x,x−1] is equal to
the set {uxe | u ∈ R∗ and e ∈ Z}.

(3) If R is an integral domain, prove that the group of units in R[x,x−1] is the internal
direct product R∗×〈x〉.

(4) Let k be a field. Prove that k[x,x−1] is a PID.
(5) Let R be a UFD. Prove that R[x,x−1] is a UFD.

EXERCISE 3.6.27. Let R be a UFD and P a nonzero prime ideal of R. Prove that P
contains a prime element π of R. (Hint: Let x ∈ P− (0). Show that P contains at least one
prime divisor of x.)

EXERCISE 3.6.28. (GCD is invariant under a change of base field) Let k ⊆ F be a
tower of fields such that k is a subfield of F . In this case we view k[x] as a subring of F [x].
Let f ,g ∈ k[x]. Prove that if d is the greatest common divisor of f and g in k[x], then d is
the greatest common divisor of f and g in F [x].

EXERCISE 3.6.29. Let F be a field of positive characteristic p. Let θ : F [y]→ F [y] be
the evaluation mapping given by y 7→ yp. Let F [yp] denote the image of θ . Prove that θ
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extends to a homomorphism χ : F(y)→ F(y) and let F(yp) be the image of χ . Prove that
F(yp) is the quotient field of F [yp] and that the diagram

F [y] // F(y)

F [yp]

OO

// F(yp)

OO

commutes where each of the four maps is the set inclusion homomorphism.

EXERCISE 3.6.30. Let K = F(yp) be the subfield of L = F(y) defined as in Exer-
cise 3.6.29. We say that L/K is an extension of fields. Show that the polynomial f = xp−yp

is irreducible in K[x], but that f = (x− y)p in L[x].

EXERCISE 3.6.31. Let p be a prime number and R a commutative ring of characteristic
p. Let R[x,y] be the ring of polynomials in two variables with coefficients in R. Prove:

(1) If n≥ 0, then (x+ y)pn
= xpn

+ ypn
in R[x,y]. (Hint: Exercise 3.2.30.)

(2) If n > 0 and 0 < k < pn, then
(pn

k

)
is divisible by p.

EXERCISE 3.6.32. Let k be a field. In Algebraic Geometry, the ring k[x2,x3] of Exer-
cise 3.6.17 corresponds to a cuspidal cubic curve and is not a UFD. The ring k[x2,x+ x3]
corresponds to a nodal cubic curve.

(1) Show that the quotient field of k[x2,x+ x3] is k(x). In other words, k[x2,x+ x3]
and k[x] are birational.

(2) Prove that k[x2,x+ x3] is not a UFD.

EXERCISE 3.6.33. Assume R is a commutative ring and θ : R→A is a homomorphism
of rings such that the image of θ is a subring of the center of A. Let a ∈ A and σ : R[x]→ A
the evaluation map defined by x 7→ a. Let R[a] denote the image of σ . Show that R[a] is
the smallest subring of A containing θ(R) and a. Show that R[a] is commutative.

EXERCISE 3.6.34. Let R be a commutative ring and a ∈ R. Prove that R[x]/(x−a)∼=
R.

EXERCISE 3.6.35. Let k be an infinite field and assume there exists a monic irre-
ducible polynomial of degree d in k[x]. Show that there are infinitely many monic irre-
ducible polynomials of degree d in k[x].

7. Polynomials over a Unique Factorization Domain

PROPOSITION 3.7.1. (The Rational Root Theorem) Suppose R is a UFD with quotient
field K and u= b/c is an element of K such that gcd(b,c)= 1. If f = a0+a1x+ · · ·+adxd ∈
R[x] and u is a root of f , then b | a0 and c | ad .

PROOF. If f (b/c) = 0, then

a0 +
a1b
c

+
a2b2

c2 + · · ·+ adbd

cd = 0.

Multiply by cd

a0cd +a1bcd−1 +a2b2cd−2 + · · ·+adbd = 0.
Since b divides the last d terms, it follows that b | a0cd . Since c divides the first d terms,
it follows that c | adbd . Since gcd(b,c) = 1 and R is a UFD, it follows that b | a0 and
c | ad . �
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Let R be a unique factorization domain, or UFD for short. Suppose f is a nonzero
polynomial in R[x]. If we write f = a0 + a1x+ · · ·+ anxn, then the content of f , written
C( f ), is defined to be gcd(a0,a1, . . . ,an). By Corollary 3.4.13, C( f ) is unique up to asso-
ciates, which means C( f ) is unique up to multiplication by a unit of R. If C( f ) = 1, then
we say f is primitive.

LEMMA 3.7.2. Let R be a UFD and f a nonzero polynomial in R[x]. If c1 = C( f ),
then f factors as f = c1 f1 where f1 ∈ R[x] is primitive. The factors c1 and f1 of f are
unique up to associates in R[x].

PROOF. By Exercise 3.4.31, if we factor out the content, then f = C( f ) f1 where
C( f1) = 1. Both C( f ) and C( f1) are unique up to multiplication by units of R. But units
of R[x] correspond to the units of R by Exercise 3.6.19. So f1 is unique up to associates in
R[x]. �

LEMMA 3.7.3. Let R be a UFD with quotient field K. Let f and g be nonzero polyno-
mials in R[x].

(1) If f and g are primitive, then f g is primitive.
(2) C( f g) =C( f )C(g).
(3) Suppose f and g are primitive. Then f and g are associates in R[x] if and only if

they are associates in K[x].

PROOF. (1): Assume f and g are nonzero elements of R[x] and f g is not primitive.
Then C( f g) is not a unit in R. Let p be an irreducible factor of C( f g) in R. Under the
natural map η : R[x]→ R/(p)[x] of Theorem 3.6.2 (1), we have η( f g) = η( f )η(g) = 0.
By Corollary 3.4.14, (p) is a prime ideal, so R/(p) is an integral domain. Thus R/(p)[x]
is an integral domain, which implies one of η( f ) or η(g) is zero. That is, p divides the
content of f or the content of g. That is, either f or g is not primitive.

(2): As in Lemma 3.7.2, we factor f = C( f ) f1, g = C(g)g1, where f1 and g1 are
primitive. Then f g = C( f )C(g) f1g1. By Part (1), f1g1 is primitive. By Lemma 3.7.2,
C( f g) =C( f )C(g).

(3): We are given that 1 = C( f ) = C(g). Assume f and g are associates in K[x]. By
Exercise 3.6.19, a unit in K[x] is a nonzero constant polynomial. Suppose f = ug where
u= r/s is a unit in K and gcd(r,s) = 1. Then s f = rg implies sC( f ) = rC(g), which implies
r and s are associates. Therefore u is a unit in R. The converse is trivial, since R⊆ K. �

THEOREM 3.7.4. (Gauss’ Lemma) Let R be a UFD with quotient field K. Suppose
f ∈ R[x] is primitive. Then f is irreducible in R[x] if and only if f is irreducible in K[x].

PROOF. If f has a nontrivial factorization in R[x], then this factorization still holds
in K[x]. Assume f = pq is a factorization in K[x], where we assume m = deg p ≥ 1, and
n = degq≥ 1. Write

p =
m

∑
i=0

ai

bi
xi, q =

n

∑
i=0

ci

di
xi

and set b = b0b1 · · ·bm, d = d0d1 . . .dm. Then b(ai/bi) = αi ∈ R and d(ci/di) = γi ∈ R for
each i, so we get

bp =
m

∑
i=0

αixi, dq =
n

∑
i=0

γixi

are both in R[x]. Let α =C(bp) and factor bp=α p1, where p1 is primitive (Lemma 3.7.2).
Set γ = C(dq) and factor dq = γq1 where q1 is primitive (Lemma 3.7.2). Combining all
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of this, we have (bd) f = (αγ)(p1q1). By Lemma 3.7.3, it follows that bd and αγ are
associates in R. Up to a unit in R, f = p1q1. �

THEOREM 3.7.5. Let R be a UFD. Then R[x1, . . . ,xn] is a UFD.

PROOF. By finite induction, it is enough to show R[x] is a UFD.
(Existence.) Let f ∈ R[x] be a nonunit nonzero. If f has degree zero, then we can

view f as an element of R and factor f into irreducibles in R. This is a factorization into
irreducibles in R[x].

Assume deg f ≥ 1 and factor f = C( f ) f1 where f1 is primitive and C( f ) ∈ R. Since
C( f ) can be factored into irreducibles, we can reduce to the case where f is primitive.
Let K be the quotient field of R. We know that K[x] is a UFD, by Corollary 3.6.5. Let
f = p1 · · · pn be the unique factorization of f into a product of irreducibles in K[x]. By
Theorem 3.7.4, for each i we can write

pi =
ai

bi
qi

where ai,bi ∈ R, and qi ∈ R[x] is primitive and irreducible. Set α = a1 · · ·an and β =
b1 · · ·bn. Multiplying,

f =
α

β
q1q2 · · ·qn.

By Lemma 3.7.3 (3) we conclude that α and β are associates in R. Up to associates, we
have factored f = q1q2 · · ·qn into irreducibles in R[x].

(Uniqueness.) Let f be a nonzero nonunit element of R[x]. Then f can be factored
into a product of irreducibles f = (c1 · · ·cm)(p1 p2 · · · pn) where each pi is a primitive
irreducible polynomial in R[x] and each ci is an irreducible element of R. Up to asso-
ciates, C( f ) = c1c2 · · ·cm is uniquely determined by f . Since R is a UFD, the factorization
C( f ) = c1c2 · · ·cm is unique in R. In K[x] the factorization p1 p2 · · · pn is uniquely deter-
mined up to associates. By Lemma 3.7.3 (3), the factorization is unique in R[x]. �

THEOREM 3.7.6. (Eisenstein’s Irreducibility Criterion) Let R be UFD and f = a0 +
a1x+ · · ·+anxn a primitive polynomial of degree n≥ 1 in R[x]. Let p be a prime in R such
that p - an, p | ai for i = 0,1, . . . ,an−1, and p2 - a0. Then f is irreducible.

PROOF. Let P= (p). Then P is a prime ideal in R by Corollary 3.4.14. The proof is by
contraposition. Assume an 6∈P, (a0, . . . ,an−1)⊆P and f is reducible. We prove that p2 | a0.
By assumption, there is a factorization f = gh, where degg = s ≥ 1, degh = t ≥ 1, and
s+ t = n. By Theorem 3.6.2 (1) the natural map η : R→ R/P induces η̄ : R[x]→ R/P[x].
Under this homomorphism, η̄( f ) = η̄(g)η̄(h). By hypothesis, η̄( f ) = η(an)xn has degree
n. If we write g = b0 +b1x+ · · ·+bsxs and h = c0 + c1x+ · · ·+ ctxt , then

(7.1) η(an)xn = (η(b0)+η(b1)x+ · · ·+η(bs)xs)(η(c0)+η(c1)x+ · · ·+η(ct)xt)

holds in R/P[x]. Since P is prime, R/P is an integral domain. Let K denote the quotient
field of R/P. The factorization of η̄( f ) in (7.1) holds in K[x]. By Corollary 3.6.5, K[x] is
a UFD. We conclude that (b0,b1, . . . ,bs−1) ⊆ P and (c0,c1, . . . ,ct−1) ⊆ P. In particular,
p | b0 and p | c0. The constant term of f is equal to a0 = b0c0 which is divisible by p2. �

EXAMPLE 3.7.7. Let k be a field and f (x) ∈ k[x]. Assume deg f ≥ 2. The set of zeros
of y2− f (x) in k2 is called an affine hyperelliptic curve. Assume f is square-free. In other
words, f is not divisible by the square of an irreducible polynomial. By Theorem 3.7.6,
y2− f (x) is irreducible in k[x,y].
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EXAMPLE 3.7.8. Let Φ(x) = xp−1 ∈ Z[x]. Consider φ(x) = Φ(x)/(x−1) = xp−1 +
xp−2 + · · ·+x+1. By Exercise 3.6.22, the change of variable x = y+1 induces an isomor-
phism Z[x]∼= Z[y]. Applying the Binomial Theorem (Exercise 3.1.22) we see that

φ(y+1) =
Φ(y+1)

y

=
(y+1)p−1

y

= yp−1 +

(
p
1

)
yp−2 + · · ·+

(
p

p−2

)
y+
(

p
p−1

)
.

By Exercise 1.2.21, p divides
(p

i

)
if 1≤ i≤ p−1. By Theorem 3.7.6, φ(y+1) is irreducible

in Z[y]. Therefore, φ(x) is irreducible in Z[x] and by Gauss’ Lemma (Theorem 3.7.4), φ(x)
is irreducible in Q[x].

7.1. Rational Function Fields. Let k be a field and x,y indeterminates. Let K = k(x)
be the field of rational functions over k in the variable x. A rational function φ ∈ K can
be written as a quotient φ = p/q where p,q ∈ k[x] are polynomials and gcd(p,q) = 1.
By unique factorization in k[x], the polynomials p and q are uniquely determined up to
associates. If u ∈ k, and q(u) 6= 0, then φ(u) = p(u)q(u)−1 is an element of k. The pole
set of φ is the set of roots of q and the zero set of φ is the set of roots of p. If u is not a
pole of φ , then f (u) = p(u)q(u)−1 is a well defined element of k. So if the pole set of φ

is not equal to k, φ defines a function on the complement of its pole set. The next theorem
provides an Eisenstein irreducibility criterion for polynomials in K[y]. It first appeared in
[11].

THEOREM 3.7.9. Let k be a field and x,y indeterminates. Let K = k(x) be the field
of rational functions over k in the variable x. Let f (y) = f0 + f1y+ f2y2 + · · ·+ fnyn be a
polynomial in K[y] where n≥ 1 and fn 6= 0. If

(1) each fi is a polynomial in k[x],
(2) x divides each of f0, f1, . . . , fn−1 and x does not divide fn, and
(3) x2 does not divide f0,

then f is irreducible in K[y].

PROOF. For sake of contradiction, suppose

(7.2) f = (a0 +a1y+ · · ·+aryr)(b0 +b1y+ · · ·+bsys)

where r ≥ 1, s≥ 1, and each ai and b j is in K = k(x). We have

f0 = a0b0

f1 = a0b1 +a1b0

f2 = a0b2 +a1b1 +a2b0

...
...

fn = a0bn + · · ·+anb0

By hypothesis (2), 0 = f0(0) = f1(0) = · · · = fn−1(0) and fn(0) 6= 0. We start with 0 =
f0(0) = (a0b0)(0). Write a0 = p/q, b0 = g/h, where p,q,g,h are polynomials in k[x] and
gcd(p,q) = gcd(g,h) = 1. Then pq = f0qh in k[x]. Since x | f0 we have x | p or x | q.
Suppose for contradiction’s sake that x | p and x | q. Then x does not divide q and x does
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not divide h. Thus x2 divides f0, a contradiction. Assume from now on that x | a0 and x
does not divide b0. Equivalently, assume a0(0) = 0 and b0(0) 6= 0. Now we consider

(7.3) 0 = f1(0) = (a0b1)(0)+(a1b0)(0).

From step one, a0(0) = 0, b0(0) 6= 0, hence (7.3) reduces to 0 = a1(0). Now look at

(7.4) 0 = f2(0) = (a0b2)(0)+(a1b1)(0)+(a2b0)(0)

which reduces to a2(0) = 0 by applying the first two steps. Iterating this argument, we see
that 0 = a0(0) = a1(0) = a2(0) = · · ·= ar(0). This implies fn(0) = 0, a contradiction. �

7.2. Exercises.

EXERCISE 3.7.10. Let n ∈ Z and consider the polynomial f (x) = x3 +nx−2. Show
that f (x) is reducible over Q if and only if n is in the set {1,−3,−5}.

EXERCISE 3.7.11. Let f (x) = 20x5 + 35x4 − 42x3 + 21x2 + 70 and g(x) = 80x5 +
18x3−24x−15. Let F =Q[x]/( f ) and G =Q[x]/(g). Show that F and G are fields.

EXERCISE 3.7.12. Modify the method of Example 3.7.8 to show that the following
polynomials are irreducible over Q.

(1) x4 +1
(2) x4 +a2, where a ∈ Z is odd.
(3) x8 +1
(4) x9 +2
(5) x2n

+a2, where a ∈ Z is odd and n≥ 1.
(6) xpn

+ p−1, where p is prime and n≥ 1.
(Hint: For (5) and (6), apply Exercise 3.6.31.)

EXERCISE 3.7.13. Let k be a field. If f (x) = a0 + a1x+ · · ·+ anxn and an 6= 0, then
the reverse of f is the polynomial f r(x) = a0xn +a1xn−1 + · · ·+an−1x+an.

(1) Show that f r(x) = xn f (x−1).
(2) If a0 6= 0, show that f is irreducible over k if and only if f r is irreducible over k.

EXERCISE 3.7.14. Let f = a0 + a1x+ a2x2 + · · ·+ an−1xn−1 + anxn be a polynomial
of degree n≥ 1 in Z[x]. Let p be a prime and [ f ] = [a0]+[a1]x+[a2]x2+ · · ·+[an−1]xn−1+
[an]xn be the polynomial over the prime field Z/(p) achieved by reducing the coefficients
of f modulo p.

(1) If [ f ] has degree n and is irreducible over Z/(p), then f is irreducible over Q.
Proof:

(2) Show by counterexample that (a) is false if the degree of [ f ] is less than n.
(3) Show by counterexample that the converse of (a) is false.

EXERCISE 3.7.15. Let f = x3+1. Prove that there is an isomorphism θ : Q[x]/( f )→
F1⊕F2 where F1 and F2 are fields. Carefully describe the fields F1 and F2, and the map θ .

EXERCISE 3.7.16. Let k be a field, a,b,c some elements of k and assume a 6= b. Let
f = (x−a)(x−b) and g = (x− c)2. Prove:

(1) The ring k[x]/(x−a) is isomorphic to k.
(2) There is an isomorphism of rings k[x]/( f )∼= k⊕ k.
(3) There is an isomorphism of rings k[x]/(g)∼= k[x]/(x2).
(4) If h is a monic irreducible quadratic polynomial in k[x], then the rings k[x]/( f ),

k[x]/(g), and k[x]/(h) are pairwise nonisomorphic.
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EXERCISE 3.7.17. Let k be a field. In this exercise we outline a proof that a rational
function in one variable over k has a partial fraction decomposition. Prove:

(1) If f and g are two nonzero polynomials in k[x] and d = gcd( f ,g), then there exist
polynomials u, v in k[x] such that d = f u+gv, degu < degg, and degv < deg f .

(2) If 1 = gcd( f ,g) and degh < deg( f g), then there exist unique polynomials u and
v satisfying:

h
f g

=
u
f
+

v
g
,

degu < deg f , and degv < degg.
(3) Let g be a polynomial of degree at least one. Let

g = pe1
1 · · · p

en
n

be the unique factorization of g where p1, . . . , pn are distinct irreducibles, n≥ 2,
and ei ≥ 1 for each i. If f is a polynomial and deg f < degg, then there exist
unique polynomials q1, . . . ,qn satisfying:

f
g
=

q1

pe1
1
+ · · ·+ qn

pen
n
,

and for each i, degqi < deg pei
i .

(4) Let g be a polynomial of degree at least one, n≥ 1, and f a polynomial satisfying
deg f < deggn. Then there exist unique polynomials f0, . . . , fn−1 satisfying:

f = f0 + f1g+ · · ·+ fn−1gn−1

and for each i, deg fi < degg.
(5) Let g be a polynomial of degree at least one, n≥ 1, and f a polynomial satisfying

deg f < deggn. Then there exist unique polynomials f0, . . . , fn−1 satisfying:
f

gn =
f0

gn +
f1

gn−1 + · · ·+ fn−1

g
,

and for each i, deg fi < degg.





CHAPTER 4

Linear Algebra

“What makes Linear Algebra linear?” is an important question that every student of
this subject should be prepared to answer. I have not forgotten the first time I was asked this
question. It was the beginning of the semester when I was taking my first undergraduate
course on Linear Algebra. I was living on campus, and at the dining hall one evening one
of the people at our table asked the above question. The event has stuck with me because I
did not have an answer for my friend. Here is the answer to the question, and the response
you should give when you are asked. Algebra is the study of polynomial equations and in
this light, Linear Algebra is the study of linear equations.

As much as possible, we study linear algebra over a general ring. Nevertheless, be-
cause of the introductory nature of this book, most of the results assume the ground ring is
commutative. We hope that a reasonable balance has been achieved between accessibility
and generality of results. We define a module over an arbitrary ring and a vector space
over a division ring. Algebras are defined over commutative rings. The basis theorem for
finitely generated modules is proved for modules over a euclidean domain. The isomor-
phism between the ring of endomorphisms of a finitely generated free module and the ring
of matrices is constructed for an arbitrary commutative ring.

1. Modules

1.1. Definitions and First Properties. In this section we introduce the notion of a
module over an arbitrary ring R. An abelian group M is an R-module if multiplication by
elements of R turns R into a ring of endomorphisms of M.

DEFINITION 4.1.1. If R is a ring, a left R-module is a nonempty set M with an addition
operation making M an abelian group together with a left multiplication action by R such
that for all r,s ∈ R and x,y ∈M the rules

(1) r(x+ y) = rx+ ry
(2) r(sx) = (rs)x
(3) (r+ s)x = rx+ sx
(4) 1x = x

are satisfied. If R is a field, then M is called a vector space.

By default, an R-module is assumed to be a left R-module. This is in agreement with
our convention that functions act from the left (Section 1.1.2). There will be times when
for sake of convenience we will utilize right R-modules. The statement of the counter-
part of Definition 4.1.1 for a right R-module is left to the reader. In Lemma 2.4.1 we
saw that a group G acts on a set X if and only if there is a homomorphism of G into
Perm(X). Lemma 4.1.2 is the counterpart of this notion in the context of modules. By Exer-
cise 2.8.11, if M is an abelian group, then the set of all endomorphisms of M, Hom(M,M),
is a ring. Endomorphisms are added point-wise and multiplication is composition of func-
tions.

125
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LEMMA 4.1.2. Let R be a ring an M an additive abelian group. The following are
equivalent.

(1) M is an R-module.
(2) There is a homomorphism of rings θ : R→ Hom(M,M).

PROOF. (2) implies (1): Instead of θ(r)(x) we will write r ∗ x. This defines a left
multiplication action by R on M. Then

r ∗ (x+ y) = θ(r)(x+ y) = θ(r)(x)+θ(r)(y)) = r ∗ x+ r ∗ y

is Part (1) of Definition 4.1.1,

r ∗ (s∗ x) = θ(r)(θ(s)(x) = (θ(r)θ(s))(x) = θ(rs)(x)) = (rs)∗ x

is Part (2),

(r+ s)∗ x = θ(r+ s)(x) = (θ(r)+θ(s))(x) = θ(r)(x)+θ(s)(x) = r ∗ x+ s∗ x

is Part (3), and lastly,
1∗ x = θ(1)(x) = 1M(x) = x

is Part (4).
(1) implies (2): For each r ∈ R, define λr : M→ M to be the “left multiplication by

r” function defined by λr(x) = rx. By the first distributive law, λr(x+ y) = r(x+ y) =
rx + ry = λr(x) + λr(y), so λr ∈ Hom(M,M). Define θ : R→ Hom(M,M) by θ(r) =
λr. The associative law implies λrs(x) = (rs)x = r(sx), so θ(rs) = θ(r)θ(s) and θ is
multiplicative. By the second distributive law, λr+s(x) = (r+s)x = rx+sx = λr(x)+λs(x),
so θ(r+ s) = θ(r)+ θ(s) and θ is additive. Lastly, λ1 = 1M , so θ(1) = 1, hence θ is a
homomorphism of rings. �

DEFINITION 4.1.3. Let R be a ring, M an R-module, and θ : R→ Hom(M,M) the
homomorphism of Lemma 4.1.2. The kernel of θ is denoted annihR(M) and is called the
annihilator of M in R. Then annihR(M) is equal to {r ∈ R | rx = 0 for all x ∈M}. Since θ

is a homomorphism of rings, annihR(M) is a two-sided ideal in R. If θ is one-to-one, then
we say M is a faithful R-module.

EXAMPLE 4.1.4. Standard examples of modules are listed here.
(1) If R is any ring, and I is a left ideal in R, then R acts on I from the left. If x ∈ I

and r ∈ R, then rx ∈ I. The associative and distributive laws in R apply. Thus I
is an R-module.

(2) Let M be any additive abelian group. Then Z acts on M. If x∈M and n∈Z, then

nx =


0 if n = 0

∑
n
i=1 x = x+ x+ · · ·+ x if n > 0

−∑
|n|
i=1 x =−(x+ x+ · · ·+ x) if n < 0

Using Exercise 2.3.16, the reader should verify that this action makes M into a
Z-module.

(3) Let A be an abelian group written additively. Let m > 1 be an integer and assume
mx = 0 for all x ∈ A. It follows from Exercise 4.1.32 that A is a Z/m-module by
the action [n]x = nx. In particular, if p is a prime and px = 0 for all x ∈ A, then A
is a vector space over the field Z/p.

(4) Let φ : R→ S be a homomorphism of rings. Then R acts on S by the multiplica-
tion rule rx = φ(r)x, for r ∈ R and x ∈ S. By this action, S is an R-module.
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(5) Let φ : R→ S be a homomorphism of rings. If M is an S-module, then R acts on
M by the multiplication rule rx = φ(r)x, for r ∈ R and x ∈M. By this action, M
is an R-module.

LEMMA 4.1.5. Let M be an R-module, x ∈M, and r ∈ R. Then the following are true:
(1) r0 = 0.
(2) 0x = 0.
(3) −1x =−x.

PROOF. (1): r0 = r(0+ 0) = r0+ r0. Since M,+ is a group, we cancel r0 to get
r0 = 0.

(2): 0x = (0+0)x = 0x+0x. Since M,+ is a group, we cancel 0x to get 0x = 0.
(3): 0 = (1− 1)x = 1x+(−1)x = x+(−1)x. Since M,+ is a group, we get −x =

(−1)x. �

DEFINITION 4.1.6. Let R be a ring and M an R-module. A submodule of M is a
nonempty subset N ⊆ M such that N is an R-module under the operation by R on M. If
X ⊆M, the submodule of M generated by X is{

n

∑
i=1

rixi | n≥ 1,ri ∈ R,xi ∈ X

}
.

The reader should verify that the submodule generated by X is equal to the intersection of
the submodules of M containing X . A submodule is principal, or cyclic, if it is generated
by a single element. The submodule generated by X is denoted (X). If X = {x1,x2, . . . ,xn}
is finite, we sometimes write (X) = Rx1 +Rx2 + · · ·+Rxn. We say M is finitely generated
if there exists a finite subset {x1, . . . ,xn} ⊆M such that M = Rx1 + · · ·+Rxn.

DEFINITION 4.1.7. If I is a left ideal of R and M is an R-module, then IM denotes the
R-submodule of M generated by the set {rx | r ∈ I,x ∈M}. Notice that a typical element
of IM is not a product rx, but a finite sum of the form r1x1 + · · ·+ rnxn.

DEFINITION 4.1.8. Let R be a ring and M an R-module. If A and B are R-submodules
of M, then A+B denotes the R-submodule generated by the set A∪B.

DEFINITION 4.1.9. If M and N are R-modules, an R-module homomorphism from M
to N is a function f : M→ N satisfying

(1) f (x+ y) = f (x)+ f (y) and
(2) f (rx) = r f (x)

for all x,y ∈M and r ∈ R. The kernel of the homomorphism f is ker( f ) = {x ∈M | f (x) =
0}. The image of the homomorphism f is im( f ) = { f (x) ∈ N | x ∈M}. An epimorphism
is a homomorphism that is onto. A monomorphism is a homomorphism that is one-to-one.
An isomorphism is a homomorphism f : M→ N that is one-to-one and onto. In this case
we say M and N are isomorphic. An endomorphism of M is a homomorphism from M to
M.

PROPOSITION 4.1.10. If f : M→ N is an R-module homomorphism, then the follow-
ing are true:

(1) The kernel of f is a submodule of M.
(2) f is one-to-one if and only if ker( f ) = (0).
(3) If A is a submodule of M, then f (A), the image of A under f , is a submodule of

N.



128 4. LINEAR ALGEBRA

(4) If B is a submodule of N, then f−1(B), the preimage of B under f , is a submodule
of M.

PROOF. Let A be a submodule of M and B a submodule of N. Since f is a homo-
morphism of additive groups, ker( f ) is a subgroup of M,+, f (A) is a subgroup of N,+,
and f−1(B) is a subgroup of M,+, by Exercise2.3.15. Part (2) follows from the corre-
sponding result for group homomorphisms, Lemma 2.3.7. Let x ∈ ker( f ) and r ∈ R. Then
f (rx) = r f (x) = r0 = 0 by Lemma 4.1.5. This completes Part (1). If x is an arbitrary
element of A, then f (x) represents a typical element of f (A). Then r f (x) = f (rx) ∈ f (A),
which completes Part (3). Let x ∈ M such that f (x) ∈ B. Then x represents a typical
element of f−1(B). Then f (rx) = r f (x) ∈ B, which completes Part (4). �

DEFINITION 4.1.11. Let R be a ring, M an R-module and S a submodule. The factor
module of M modulo S is the set M/S = {a+ S | a ∈M} of all left cosets of S in M. We
sometimes call M/S the quotient module of M modulo S. We define addition and scalar
multiplication of cosets by the rules

(a+S)+(b+S) = (a+b)+S

r(a+S) = ra+S.

The reader should verify that M/S is an R-module. Let η : M→M/S be the natural map
defined by x 7→ x+S. Then η is a homomorphism, imη = M/S, and kerη = S.

Theorem 4.1.12, Corollary 4.1.13, and Theorem 4.1.14 are the counterparts for mod-
ules of Theorems 2.3.11, 2.3.12 and 2.3.13.

THEOREM 4.1.12. (Fundamental Theorem on Homomorphisms of Modules) Let θ :
M→ N be a homomorphism of R-modules. Let S be a submodule of M contained in kerθ .
There exists a homomorphism ϕ : M/S→ N satisfying the following.
(a) ϕ(a+S) = θ(a), or in other words θ = ϕη .
(b) ϕ is the unique homomorphism from M/S→ N such that θ = ϕη .
(c) imθ = imϕ .
(d) kerϕ = η(kerθ) = ker(θ)/S.
(e) ϕ is one-to-one if and only if S = kerθ .
(f) ϕ is onto if and only if θ is onto.
(g) There is a unique homomorphism φ : M/S→M/kerθ such that the diagram

M θ //

##

η

��

N

M/kerθ

;;

M/S

φ

OO ϕ

EE

commutes.

PROOF. On the additive groups, this follows straight from the Fundamental Theorem
on Group Homomorphisms, Theorem 2.3.11. The rest is left to the reader. �

COROLLARY 4.1.13. (The Isomorphism Theorems) Let M be an R-module with sub-
modules A and B.
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(a) The natural map
A

A∩B
→ A+B

B
sending the coset x+A∩B to the coset x+B is an isomorphism.

(b) If A⊆ B, then B/A is a submodule of M/A and the natural map

M/A
B/A

→M/B

sending the coset containing x+A to the coset x+B is an isomorphism.

PROOF. This follows from Theorem 4.1.12 and Theorem 2.3.12, its counterpart for
groups. �

THEOREM 4.1.14. (The Correspondence Theorem) Let M be an R-module and A a
submodule of M. There is a one-to-one order-preserving correspondence between the sub-
modules B such that A⊆ B⊆M and the submodules of M/A given by B 7→ B/A.

PROOF. This follows from Proposition 4.1.10 and The Correspondence Theorem for
Groups, Theorem 2.3.13. �

DEFINITION 4.1.15. If M and N are R-modules, the set of all R-module homomor-
phisms from M to N is denoted HomR(M,N). Modules are additive abelian groups and
an abelian group has a natural structure as a Z-module (Example 4.1.4 (2)). The set of all
group homomorphisms from M to N is denoted Hom(M,N) or HomZ(M,N). By Ex-
ercise 2.8.11, HomZ(M,N) is an abelian group where addition of functions is defined
point-wise. Since an R-module homomorphism φ : M → N is a homomorphism of ad-
ditive abelian groups, there is a set containment HomR(M,N) ⊆ HomZ(M,N). Hence
HomR(M,N) is an abelian group. The reader should be advised that when R is noncom-
mutative, HomR(M,N) is not an R-module per se. If M = N, then in Exercise 4.1.33 the
reader is asked to prove that HomR(M,M) is a ring. In general, HomR(M,M) is a noncom-
mutative ring.

EXAMPLE 4.1.16. Let R be a commutative ring and M an R-module. If r ∈ R, then
“left multiplication by r” is the function λr : M→M, where λr(x)= rx. As in Lemma 4.1.2,
there is a homomorphism of rings θ : R→ Hom(M,M) defined by θ(r) = λr. Since R is
commutative, if r,s ∈ R, then λr(sx) = r(sx) = (rs)x = (sr)x = s(rx) = sλr(x). Therefore,
λr is an R-module homomorphism from M to M. This shows that the homomorphism
θ factors through a homomorphism λ : R→ HomR(M,M) which we call the left regular
representation of R in HomR(M,M). The diagram of ring homomorphisms

R θ //

λ $$

Hom(M,M)

HomR(M,M)

⊆

77

commutes. For any φ ∈HomR(M,M), r ∈ R, and x ∈M, rφ(x) = φ(rx). Therefore, λrφ =
φλr, which implies the image of R under the homomorphism λ is a subring of the center
of HomR(M,M). By θ , HomR(M,M) is turned into an R-algebra (see Definition 4.4.1).
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1.2. Direct Sums of Modules. We limit our attention to direct products and direct
sums over a finite index set.

DEFINITION 4.1.17. Let R be a ring and M1, . . . ,Mn a finite set of R-modules. The
direct product of M1, . . . ,Mn is the R-module with underlying set M1×·· ·×Mn and with
addition and R-action defined coordinate-wise:

(x1, . . . ,xn)+(y1, . . . ,yn) = (x1 + y1, . . . ,xn + yn)

r(x1, . . . ,xn) = (rx1, . . . ,rxn).

The direct product of a finite set of R-modules is frequently called the (external) direct
sum and is denoted M1⊕M2⊕ ·· ·⊕Mn. As in Definition 2.5.1, for each k there are the
canonical injection and projection maps

Mk
ιk−→M1⊕M2⊕·· ·⊕Mn

πk−→Mk

such that πkιk = 1Mk .

DEFINITION 4.1.18. Let {S1, . . . ,Sn} be a set of submodules in the R-module M. The
submodule of M generated by the set S1∪S2∪·· ·∪Sn is called the sum of the submodules
and is denoted S1+S2+ · · ·+Sn. We say that M is the internal direct sum of the submodules
in case

(1) M = S1 +S2 + · · ·+Sn, and
(2) if xi ∈ Si for each i and 0 = x1 + x2 + · · ·+ xn, then xi = 0 for each i.

We denote the internal direct sum by M = S1⊕ S2⊕·· ·⊕ Sn. If M is an R-module and N
is an R-submodule of M, then N is a direct summand of M if there is a submodule L of M
such that M = N⊕L.

LEMMA 4.1.19. If S1, . . . ,Sn are submodules in the R-module M, and M = S1⊕·· ·⊕
Sn, then the following are true.

(1) For each k, Sk
⋂(

∑ j 6=k S j
)
= (0).

(2) M is isomorphic to the (external) direct sum S1⊕·· ·⊕Sn.

PROOF. The proof of the counterpart of this lemma for groups applies here (see
Lemma 2.5.4). �

PROPOSITION 4.1.20. Suppose S1, . . . ,Sn are submodules in the R-module M satisfy-
ing

(1) M = S1 +S2 + · · ·+Sn and
(2) for each k, Sk ∩

(
∑ j 6=k S j

)
= (0).

Then M = S1⊕S2⊕·· ·⊕Sn.

PROOF. The proof of the counterpart of this lemma for groups, Proposition 2.5.5,
applies here. �

PROPOSITION 4.1.21. Let R be a ring, M an R-module, and N an R-submodule of M.
The following are equivalent.

(1) N is a direct summand of M.
(2) There is an R-module homomorphism π : M→ N such that π(x) = x for every

x ∈ N.

PROOF. (1) implies (2): There is a submodule L of M such that M = N ⊕ L. The
canonical projection map π : M → N is an R-module homomorphism and π(x) = x for
every x ∈ N.
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(2) implies (1): Let L = kerπ . Given z ∈ M, let x = π(z) and y = z− x. Then
π(y) = π(z)− π(x) = x− x = 0 implies y ∈ L. This shows M = N + L. Let z ∈ N ∩ L.
Then z ∈ L implies π(z) = 0 and z ∈ N implies π(z) = z. This shows N ∩ L = (0). By
Proposition 4.1.20, M = N⊕L. �

1.3. Free modules.

DEFINITION 4.1.22. Let R be any ring. As defined in Definition 4.1.6, an R-module
M is finitely generated if there exist elements x1, . . . ,xn in M such that for each m∈M there
exist r1, . . . ,rn in R such that m = r1x1 + · · ·+ rnxn. Equivalently, M is finitely generated if
there is a finite subset {x1, . . . ,xn} of M such that M = Rx1+ · · ·+Rnxn. Thus, M is finitely
generated if and only if M is equal to the sum of a finite number of cyclic submodules. If M
has a finite generating set, then by the Well Ordering Principle, there exists a generating set
with minimal cardinality. We call such a generating set a minimal generating set. The rank
of M, written Rank(M), is defined to be the number of elements in a minimal generating
set.

EXAMPLE 4.1.23. If k is a field and V is a finite dimensional k-vector space, then we
will see in Theorem 4.2.4 below that the rank of V as defined in Definition 4.1.22 is equal
to dimk(V ), the dimension of V over k.

DEFINITION 4.1.24. Let R be any ring. By Example 4.1.4 (1), R is a left R-module.
If n ≥ 1, we will write R(n) for the direct sum R⊕·· ·⊕R of n copies of R. An R module
M is said to be free of finite rank n if M is isomorphic to R(n) for some n. In particular,
Z(n) is a free Z-module of rank n. If X = {x1, . . . ,xn} is a finite subset of M, define ΣX :
R(n) → M by ΣX (r1, . . . ,rn) = r1x1 + . . .rnxn. The reader should verify that ΣX is an R-
module homomorphism. We say X is a linearly independent set in case ΣX is one-to-one.
Otherwise, X is said to be a linearly dependent set. Let ei ∈ R(n) be the n-tuple with 1 in
coordinate i and 0 elsewhere. The set {ei | 1≤ i≤ n} is a linearly independent generating
set for R(n), and is called the standard basis for R(n).

LEMMA 4.1.25. Let R be any ring and M a nonzero finitely generated R-module.
Then M is free if and only if there exists a subset X = {b1, . . . ,bn} ⊆M which is a linearly
independent generating set for M.

PROOF. Given a finite linearly independent spanning set X = {b1, . . . ,bn}, define
ΣX : R(n) → M by ΣX (r1, . . . ,rn) = ∑

n
i=1 ribi. Because X generates M and is linearly in-

dependent, Σ is one-to-one and onto. The converse is left to the reader. �

LEMMA 4.1.26. Let R be any ring, M a nonzero R-module, and X = {x1, . . . ,xn} a
linearly independent subset of M. Every v in the span of X has a unique representation as
a linear combination of the form α1x1 + · · ·+αnxn where α1, . . . ,αn are elements of R.

PROOF. By Definitions 4.1.6 and 4.1.24, the submodule generated by X is equal to
the image of ΣX : R(n) → M. The uniqueness claim is equivalent to the fact that ΣX is
one-to-one. �

DEFINITION 4.1.27. Let R be any ring, M an R-module, and X a subset of M. We
say X is a linearly independent set in case every finite subset of X is linearly independent.
When X is a finite set, this definition agrees with Definition 4.1.24. If X is a linearly
independent generating set for M, then we say X is a free basis for M. By Lemma 4.1.25,
if M is finitely generated, then M has a free basis if and only if M is free. In case M is not
necessarily finitely generated, and M has a free basis X , we say M is free.
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EXAMPLE 4.1.28. We have already seen examples of free modules. Let R be a com-
mutative ring.

(1) The ring of polynomials R[x] is a free R-module and the set {1,x,x2, . . . ,xi, . . .}
is a free basis.

(2) If G is a group, and R(G) the group ring (see Example 3.1.6), then R(G) is a free
R module with free basis {g | g ∈ G}.

1.4. Projective modules.

PROPOSITION 4.1.29. Let R be a ring and M an R-module. The following are equiv-
alent.

(1) There is a free R-module of finite rank and M is a direct summand of F.
(2) M is finitely generated and for every epimorphism β : B→M of R-modules there

exists an R-module homomorphism ψ : M→ B such that βψ = 1M .
(3) M is finitely generated and for any diagram of R-module homomorphisms

M
∃ψ

��
φ

��
A α // B

with α onto, there exists an R-module homomorphism ψ : M→A such that αψ =
φ .

PROOF. (3) implies (2): Consider the diagram

M
∃ψ

��
1M
��

B
β // M

of R-module homomorphisms where 1M : M→M is the identity map. By (3) there exists
ψ : M→ B such that βψ = 1M .

(2) implies (1): Let X = {x1, . . . ,xn} be a generating set for M. Let F = R(n) be
the free R-module of rank n and ΣX : F →M the R-module epimorphism defined in Def-
inition 4.1.24. By (2) there exists an R-module homomorphism ψ : M → F such that
ΣX ψ = 1M . By Proposition 4.1.21, M is a direct summand of F .

(1) implies (3): Let F = R(n) be a free R-module of rank n and assume M is a direct
summand of F . By Proposition 4.1.21, there is an R-module homomorphism π : F →
M such that π(x) = x for all x ∈ M. Suppose φ : M → B and α : A→ B are R-module
homomorphisms and α is onto. Let X = {x1, . . . ,xn} be a basis for F and set Y = {yi =
φ(xi) | 1 ≤ i ≤ n}. Since α is onto, pick Z = {z1, . . . ,zn} ⊆ A such that α(zi) = yi. By
Exercise 4.1.39 there is a unique R-module homomorphism θ : F → A such that θ(xi) =
zi. Since φπ(xi) = yi = αθ(xi) and X = {x1, . . . ,xn} is a generating set for F , we have
αθ(x) = φπ(x) for all x ∈ F . The outer triangle in the diagram

F

θ

��

π

��
Mψ

xx
φ

��
A α // B
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commutes. Define ψ : M→ A to be the restriction of θ to M. If x ∈M, then π(x) = x, so
αψ(x) = φ(x). �

DEFINITION 4.1.30. If R is a ring and M is an R-module satisfying any of the equiv-
alent conditions of Proposition 4.1.29, then we say M is a finitely generated projective
R-module.

EXAMPLE 4.1.31. Here are some examples of modules that are projective and mod-
ules that are not projective.

(1) A free R-module of finite rank satisfies Proposition 4.1.29 (1), hence a finitely
generated free R-module is a projective R-module. In particular, R is a free R-
module of rank 1.

(2) Let R be a ring containing proper two-sided ideals I and J such that R = I⊕ J.
Then I and J are direct summands of the free R-module R, hence are projective
R-modules by Proposition 4.1.29 (1). By Theorem 3.3.6, I = Re1 and J = Re2,
where e1,e2 is a set of orthogonal idempotents. Then e1e2 = 0 is a nontrivial
dependence relation. This implies 0 ∈ J does not have a unique representation in
terms of any generating set for J. Hence I and J are not free R-modules.

(3) Let p and q be distinct prime numbers. By the Chinese Remainder Theorem,
Theorem 1.2.11, Z/(pq) ∼= Z/(p)⊕Z/(q). By Part (2), Z/(p) is a projective
Z/(pq)-module which is not a free Z/(pq)-module.

1.5. Exercises.

EXERCISE 4.1.32. Let R be a commutative ring, I an ideal of R, and M an R-module.
As in Definition 4.1.7, IM denotes the R-submodule of M generated by the set {rx | r ∈
I,x ∈M}. Prove that M/IM is an R/I-module under the action (r+ I)(x+ IM) = rx+ IM.

EXERCISE 4.1.33. This exercise is based on Exercise 2.8.11. Let M be an R-module,
where R is any ring. Follow the outline below to show that the set HomR(M,M) of all
R-module endomorphisms of M is a ring.

(1) If f ,g∈HomR(M,M), then f +g is the function defined by the rule: ( f +g)(x)=
f (x)+ g(x). Show that this additive binary operation makes HomR(M,M) into
an abelian group.

(2) Show that composition of functions defines a binary operation on HomR(M,M)
satisfying the following.
(a) f (gh) = ( f g)h for all f ,g,h in HomR(M,M). In other words, composition

of functions is associative.
(b) f (g+h) = f g+ f h and ( f +g)h = f h+gh for all f ,g,h in HomR(M,M).

In other words, composition distributes over addition.
Together with the two binary operations of addition and composition of endomorphisms,
we call HomR(M,M) the ring of endomorphisms of M.

EXERCISE 4.1.34. This exercise is based on Exercise 4.1.33. Let M be an R-module,
where R is any ring. Let S = HomR(M,M) be the ring of R-module endomorphisms of M.
Show that M is a left S-module under the action φx = φ(x), for all φ ∈ S and x ∈M.

EXERCISE 4.1.35. Let R be a commutative ring and I an ideal in R. The natural ring
homomorphism η : R→ R/I turns R/I into an R-module (Example 4.1.4). Define

φ : HomR(R/I,R/I)→ R/I

by φ( f ) = f (1+ I). Show that φ is an isomorphism of rings.
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EXERCISE 4.1.36. Let R be a ring and M an R-module. Then M is said to be simple
if its only submodules are (0) and M.

(1) Prove that any simple R-module is cyclic.
(2) Let M be a non-zero simple R-module. Prove that any R-module homomorphism

h : M→M is either an automorphism of M, or h(m) = 0 for every m ∈M.
(3) (Schur’s Lemma) Let M be a non-zero simple R-module. Prove that HomR(M,M)

is a division ring.
(4) Say R = F is a field, M = V is a finite dimensional F-vector space. Find nec-

essary and sufficient conditions for V to be simple. Calculate HomF(V,V ) for a
non-zero simple F-vector space V .

(5) Say R = Z and M is a finitely generated Z-module. Find necessary and sufficient
conditions for M to be simple. Calculate HomZ(M,M) for a non-zero simple
Z-module M. (Hint: Corollary 2.2.19.)

EXERCISE 4.1.37. Let R be a ring. The opposite ring of R is defined in Defini-
tion 3.1.8. Show that there exists an isomorphism of rings HomR(R,R) ∼= Ro, where R
is viewed as a left R-module and Ro denotes the opposite ring.

EXERCISE 4.1.38. (Module version of Finitely Generated over Finitely Generated is
Finitely Generated) Let R→ S be a homomorphism of rings such that S is finitely generated
as an R-module. If M is a finitely generated S-module, prove that M is finitely generated
as an R-module.

EXERCISE 4.1.39. (Universal Mapping Property) The purpose of this exercise is to
prove that a homomorphism on a finitely generated free module is completely determined
by its values on a basis. Let R be any ring. Let M and N be R-modules. Assume M is a free
R-module of rank m with basis X = {x1, . . . ,xm}. Let φ : X → N be any function. Show
that there exists a unique homomorphism θ ∈ HomR(M,N) such that the diagram

X

⊆
��

φ

  
M θ // N

commutes.

EXERCISE 4.1.40. Let F be a field and R = M2(F) the ring of two-by-two matrices
over F . Let

e1 =

[
1 0
0 0

]
, e2 =

[
0 0
0 1

]
.

Follow the following outline to prove that the ideals Re1 and Re2 are finitely generated
projective R-modules but not free R-modules.

(1) Show e2
1 = e1, e2

2 = e2, e1e2 = e2e1 = 0. We say e1 and e2 are orthogonal idem-
potents.

(2) Show that Re1 is the set of all matrices with second column consisting of zeros.
(3) Show that Re2 is the set of all matrices with first column consisting of zeros.
(4) Show that R = Re1⊕Re2 as R-modules. Show that Rei is a finitely generated

projective R-module for i = 1,2.
(5) For i = 1,2, show that Rei is not a free R-module.

EXERCISE 4.1.41. Let R be any ring and M a free R-module of rank n with basis X =
{x1, . . . ,xn}. Use Exercise 4.1.39 to show that the group of units in the ring HomR(M,M)
contains a subgroup isomorphic to Sn, the symmetric group on n letters.
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EXERCISE 4.1.42. State and prove a version of Exercise 4.1.39 for a free R-module
M that is not necessarily finitely generated (see Definition 4.1.27).

2. Vector Spaces

A vector space is a module over a division ring. A submodule of a vector space is
called a subspace. Elements of a vector space are called a vectors. If D is a division ring
and V , W are D-vector spaces, then a homomorphism φ ∈ HomD(V,W ) is called a linear
transformation. A generating set for V as a D-module is called a spanning set.

LEMMA 4.2.1. Let V be a vector space over a division ring D. If v is a nonzero vector
in V , then {v} is a linearly independent set. Equivalently, if v∈V−(0), α ∈D and αv= 0,
then α = 0.

PROOF. Assume αv = 0 and α 6= 0. By Lemma 4.1.5, we have 0 = α−10 = α−1αv =
1v = v. �

LEMMA 4.2.2. Let D be a division ring and V a nonzero finitely generated vector
space over D. If B⊆V , then the following are equivalent.

(1) B is a basis for V . That is, B is a linearly independent spanning set for V .
(2) B is a spanning set for V and no proper subset of B is a spanning set for V .

PROOF. (1) implies (2): For sake of contradiction, suppose there is a proper subset
B1 ( B and B1 is also a spanning set for V . Let v ∈ B− B1. Since B1 is a spanning
set, there exist x1, . . . ,xn in B1 and α1, . . . ,αn in D such that v = α1x1 + · · ·+αnxn. Then
v−α1x1−·· ·−αnxn = 0 is a dependency relation in B, which is a contradiction.

(2) implies (1): Assume B = {x1, . . . ,xn} is a spanning set. We prove that if B is
linearly dependent, then there is a proper subset of B that is a spanning set. Since V is
nonzero and B is a spanning set, we know B is nonempty. If 0 ∈ B, then the span of B
is equal to the span of B−{0}. From now on we assume each xi is nonzero. Assume
α1x1 + · · ·+αnxn = 0 where (α1, . . . ,αn) is a nonzero vector in D(n). Let k be the largest
integer satisfying: αk 6= 0 and if i > k, then αi = 0. By Lemma 4.2.1, k > 1. Then

xk =−α
−1
k (α1x1 + · · ·+αk−1xk−1)

is in the subspace spanned by x1, . . . ,xk−1. Therefore, B− xk is a spanning set for V . �

COROLLARY 4.2.3. If V is a finitely generated vector space over a division ring D,
then V has a basis.

PROOF. As in Definition 4.1.22, a minimal generating set exists. By Lemma 4.2.2, a
minimal generating set is a basis. �

THEOREM 4.2.4. Let V be a finitely generated vector space over the division ring D
and B = {b1, . . . ,bn} a basis for V .

(1) If Y = {y1, . . . ,ym} is a linearly independent set in V , then m ≤ n. We can re-
order the elements of B such that {y1, . . . ,ym,bm+1, . . . ,bn} is a basis for V .

(2) Every basis for V has n elements.

PROOF. Step 1: Write y1 = α1b1 + · · ·+αnbn where each αi ∈ D. For some i, αi 6=
0. Re-order the basis elements and assume α1 6= 0. Solve for b1 to get b1 = α

−1
1 y1−
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∑
n
i=2 α

−1
1 αibi. Therefore B ⊆ Dy1 +Db2 + · · ·+Dbn, hence {y1,b2, . . . ,bn} is a spanning

set for V . Suppose 0 = β1y1 +β2b2 + · · ·+βnbn. Then

0 = β1 (α1b1 + · · ·+αnbn)+β2b2 + · · ·+βnbn

= β1α1b1 +(β1α2 +β2)b2 + · · ·+(β1αn +βn)bn,

from which it follows that β1α1 = 0, hence β1 = 0. Now 0 = β2b2 + · · ·+ βnbn implies
0 = β2 = · · ·= βn. We have shown that {y1,b2, . . . ,bn} is a basis for V .

Step j: Inductively, assume j ≥ 2 and that {y1,y2, . . . ,y j−1,b j, . . . ,bn} is a basis for
V . Write y j = α1y1 + · · ·+α j−1y j−1 +α jb j + · · ·+αnbn where each αi ∈ D. Since the set
{y1, . . . ,y j} is linearly independent, for some i ≥ j, αi 6= 0. Re-order the basis elements
and assume α j 6= 0. Solve for b j and by a procedure similar to that used in Step 1, we see
that {y1, . . . ,y j,b j+1, . . . ,bn} is a basis for V .

By finite induction, Part (1) is proved. For Part (2), assume {c1, . . . ,cm} is another
basis for V . By applying Part (1) from both directions, it follows that m≤ n and n≤m. �

DEFINITION 4.2.5. Suppose D is a division ring and V is a vector space over D. If V
is finitely generated and nonzero, then we define the dimension of V , written dimD(V ), to
be the number of elements in a basis for V . If V = (0), set dimD(V ) = 0 and if V is not
finitely generated, set dimD(V ) = ∞.

COROLLARY 4.2.6. Let V be a finitely generated vector space over the division ring
D and X = {x1, . . . ,xn} a spanning set for V . Then the following are true:

(1) There is a subset of X that is a basis for V .
(2) dimD V ≤ n.

PROOF. Assume V is nonzero. Then X contains a nonzero vector. Without loss of
generality assume x1 6= 0. By Lemma 4.2.1, {x1} is a linearly independent set. Let S be the
set of all subsets of X that are linearly independent. Choose B ∈ S such that B has maximal
cardinality. We show B is a spanning set for V . For sake of contradiction, assume (B) 6=V .
Since X is a spanning set for V , this implies X is not a subset of (B). Assume xn 6∈ (B).
Then xn is not a linear combination of the vectors in B. Therefore, B∪{xn} is a linearly
independent set, which contradicts the maximality of B. �

DEFINITION 4.2.7. Let R be a commutative ring and M a free R-module with a finite
basis {b1, . . . ,bn}. By Exercise 4.2.17, any other basis of M has n elements. We call n the
rank of M and write RankR M = n.

PROPOSITION 4.2.8. (Free over Free is Free) Let θ : R→ S be a homomorphism of
rings such that S is a finitely generated free R-module. Let M be a finitely generated free
S-module. As in Example 4.1.4 (4), we view M as an R-module. In this context, M is
a finitely generated free R module. If R and S are both commutative, then RankR(M) =
RankS(M)RankR(S).

PROOF. Let X = {s1, . . . ,sm} be a basis for S over R and Y = {y1, . . . ,yn} a basis for
M over S. Let Z = {siy j | i = 1, . . . ,m and j = 1, . . . ,n}. We show Z is basis for M over R.

Step 1: Z is a spanning set for M as an R-module. Let x be an arbitrary element of M.
There exist b1, . . . ,bn in S such that x = ∑

n
j=1 b jy j. For each j there exist a1 j, . . . ,am j in R

such that b j = ∑
m
i=1 ai jsi. Taken together, we have

x =
n

∑
j=1

b jy j =
n

∑
j=1

(
m

∑
i=1

ai jsi

)
y j =

n

∑
j=1

m

∑
i=1

ai j (siy j)
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which shows Z is a spanning set for M over R.
Step 2: Z is linearly independent over R. Assume there is a dependence relation

0 = ∑
n
j=1 ∑

m
i=1 ai j (siy j) where the elements ai j are in R. Since Y is a basis for M over S,

for each j we have ∑
m
i=1 ai jsi = 0 in S. Since X is a basis for S over R, we have ai j = 0 for

every i and for every j.
The cardinality of Z is equal to |Z|= |X ||Y |, which proves the rank formula. �

2.1. Exercises.

EXERCISE 4.2.9. Suppose D is a division ring, V is a finite dimensional vector space
over D, and W is a subspace of V . Prove:

(1) W is finite dimensional and dimD(W )≤ dimD(V ).
(2) There is a subspace U of V such that V = U ⊕W is an internal direct sum and

dimD(V ) = dimD(U)+dimD(W ).
(3) dimD(V/W ) = dimD(V )−dimD(W ).

EXERCISE 4.2.10. Suppose φ ∈HomD(V,W ), where V and W are vector spaces over
the division ring D. Prove:

(1) If V is finite dimensional, then the kernel of φ is finite dimensional and the image
of φ is finite dimensional.

(2) If the kernel of φ is finite dimensional and the image of φ is finite dimensional,
then V is finite dimensional.

EXERCISE 4.2.11. (The Rank-Nullity Theorem) Suppose φ ∈ Homk(V,W ), where V
and W are vector spaces over the field k. The rank of φ , written Rank(φ), is defined to
be the dimension of the image of φ . The nullity of φ , written Nullity(φ), is defined to be
the dimension of the kernel of φ . Prove that if V is finite dimensional, then dimk(V ) =
Rank(φ)+Nullity(φ).

EXERCISE 4.2.12. Suppose φ ∈ HomD(V,V ), where V is a finite dimensional vector
space over the division ring D. Prove that the following are equivalent:

(1) φ is invertible.
(2) Nullity(φ) = 0.
(3) Rank(φ) = dimD(V ).

EXERCISE 4.2.13. Let R be a UFD with quotient field K. Let a be an element of R
which is not a square in R and let f = x2−a ∈ R[x].

(1) Show that S = R[x]/( f ) is an integral domain and L = K[x]/( f ) is a field.
(2) Show that S is a free R-module, RankR(S) = 2, and dimK(L) = 2.

EXERCISE 4.2.14. Let V be a finite dimensional vector space over a division ring D.
Let φ , ψ be elements of HomD(V,V ). Prove:

(1) Rank(φψ)≤ Rank(φ).
(2) Rank(φψ)≤ Rank(ψ).
(3) Rank(φψ)≤min(Rank(φ),Rank(ψ)).
(4) If φ is invertible, Rank(φψ) = Rank(ψφ) = Rank(ψ).

EXERCISE 4.2.15. Let D be a division ring and V and W finitely generated vector
spaces over D. Suppose U is a subspace of V and φ : U →W an element of HomD(U,W ).
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Show that there exists an element φ̄ of HomD(V,W ) such that the diagram

U

⊆ ��

φ // W

V
φ̄

>>

commutes. That is, φ̄ is an extension of φ .

EXERCISE 4.2.16. Let R be a commutative ring and F a free R-module with basis
{b1, . . . ,bn}. Prove that if J is a proper ideal of R and π : F → F/JF is the natural homo-
morphism, then F/JF is a free R/J-module with basis {π(b1), . . . ,π(bn)}.

EXERCISE 4.2.17. Let R be a commutative ring and F a finitely generated free R-
module. Show that any two bases for F have the same number of elements. (Hint: By
Proposition 3.2.26, R contains a maximal ideal. Let m be a maximal ideal in R and consider
F/mF as a vector space over R/m.)

EXERCISE 4.2.18. Let R be a commutative ring and f ∈ R[x] a monic polynomial of
degree n. Show that S=R[x]/( f ) is a free R-module of rank n and the set {1,x,x2, . . . ,xn−1}
is a free basis.

EXERCISE 4.2.19. Let R1 and R2 be rings and R = R1⊕R2.
(1) If M1 and M2 are left R1 and R2-modules respectively, show how to make M1⊕

M2 into a left R-module.
(2) If M is a left R-module, show that there are R-submodules M1 and M2 of M such

that M = M1⊕M2 and for each i, Mi is a left Ri-module.

EXERCISE 4.2.20. Let G be a group and H a subgroup. For any commutative ring
R, let θ : R(H)→ R(G) be the homomorphism of rings induced by the set inclusion man
H→ G (see Example 3.2.4 (3)). Show that R(G) is a free R(H)-module.

EXERCISE 4.2.21. Let V be a finitely generated vector space over a division ring D.
Let X ⊆ V be a spanning set for V . Show that there is a subset of X that is a basis for V .
Do not assume X is finite.

EXERCISE 4.2.22. Let V be a vector space over a division ring D. Suppose there
exists a positive number n such that every linearly independent subset of V has cardinality
less than or equal to n. Show that V is finitely generated and dimD(V )≤ n.

EXERCISE 4.2.23. Let D be a division ring and V a nonzero vector space over D.
As in Definition 4.1.27, a subset X ⊆ V is said to be linearly independent, if every finite
subset of X is linearly independent. We say X is a basis for V if X is a linearly independent
spanning set for V . Apply Zorn’s Lemma (Proposition 1.3.3) to prove the following.

(1) Every linearly independent subset of V is contained in a basis for V .
(2) If S⊆V is a spanning set for V , then S contains a basis for V .

EXERCISE 4.2.24. Let D be a division ring and V a vector space over D. Let A and B
be finite dimensional subspaces of V . Prove:

(1) A+B is finite dimensional.
(2) dimD(A+B) = dimD(A)+dimD(B)−dimD(A∩B). (Hint: Apply Exercise 4.2.9

and Corollary 4.1.13 (1).)
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3. Finitely Generated Modules over a Euclidean Domain

In Theorem 2.8.6 we proved that a finite abelian group is equal to the internal direct
sum of cyclic subgroups. Every abelian group is a Z-module and cyclic subgroups corre-
spond to cyclic submodules. Therefore, we have already proved that every finite Z-module
is equal to the internal direct sum of cyclic submodules.

The proof given below of Theorem 4.3.1 uses a method that is commonly known as
an “Artin Trick”. For example, it is the proof used by [7, Theorem 4.5.1].

THEOREM 4.3.1. Let M be a finitely generated Z-module. Then there exists a finite
subset {x1, . . . ,xn} of M such that M = Zx1⊕ ·· · ⊕Zxn is the internal direct sum of the
cyclic submodules Zxi.

PROOF. Assume M is a nonzero finitely generated Z-module. If Rank(M) = 1, then
M is cyclic and there is nothing to prove. The proof is by induction on q. Inductively
assume Rank(M) = q > 1 and the theorem is true for all Z-modules of rank less than q.
The rest of the proof consists of a series of seven steps.

Step 0: This step reduces to the case where M is not free. Let X = {x1, . . . ,xq} be a
generating set of M. As in Definition 4.1.24, by Z(q) we denote the direct sum of q copies
of the infinite cyclic group Z. The function ΣX : Z(q) → M defined by ΣX (r1, . . . ,rq) =
r1x1 + · · ·+ rqxq is a Z-module homomorphism. In fact, ΣX is onto because X is a gener-
ating set for M. If there exists a finite generating set X for M such that the map ΣX is an
isomorphism, then we are done, because Z(q) is a direct sum of cyclic submodules. There-
fore, we assume that for every minimal generating set X = {x1, . . . ,xq}, the kernel of ΣX is
nontrivial. That is, there exists (r1, . . . ,rq) ∈ Z(q) such that

(3.1) 0 = r1x1 + · · ·+ rqxq

and ri 6= 0 for some i. Notice that in this case there exists a relation (3.1) such that ri > 0.
Step 1: Out of all minimal generating sets x1, . . . ,xq and all relations of the form (3.1),

there is a least positive integer occurring as a coefficient ri of some xi. Pick one such
generating set, say a1, . . . ,aq, assume

(3.2) 0 = s1a1 + · · ·+ sqaq,

and s1 > 0 is minimal among all such positive coefficients in all such relations.
Step 2: We prove that if

(3.3) 0 = r1a1 + · · ·+ rqaq,

then s1 | r1. By the division algorithm, r1 = s1u+ v, where 0≤ v < s1. Multiply (3.2) by u
and subtract from (3.3) to get

(3.4) 0 = va1 +(r2− s2u)a2 · · ·+(rq− squ)aq.

By minimality of s1 we conclude v = 0.
Step 3: We prove that s1 | s2. Dividing, s2 = s1u+ v, where 0 ≤ v < s1. Set a′ =

a1 +ua2 and consider a′,a2, . . . ,aq = a1 +ua2,a2, . . . ,aq. This set also generates M and

s1a′+ va2 + s3a3 + · · ·+ s1aq = s1a1 +(s1ua2 + va2)+ s3a3 + · · ·+ s1aq

= s1a1 + · · ·+ sqaq

= 0.

By minimality of s1 we conclude that v = 0. The same argument shows that s1 | si for
i = 1,2, . . . ,q.
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Step 4: Set a′′ = a1 +(s2/s1)a2 + · · ·+(sq/s1)aq and consider a′′,a2, . . . ,aq. This set
also generates M and

s1a′′ = s1a1 + s2a2 + · · ·+ sqaq = 0.
Set A = (a′′) and B = (a2, . . . ,aq).

Step 5: We prove that M = A⊕B. We already have M = A+B = (a′′,a2, . . . ,aq). By
Proposition 4.1.20, it is enough to show A∩B = (0). Suppose r1a′′ = r2a2 + · · ·+ rqaq.
Then r1a1 + r1(s2/s1)a2 + · · ·+ r1(sq/s1)aq = r2a2 + · · ·+ rqaq. By Step 2, s1 | r1, and by
Step 4, r1a′′ = 0. This proves A∩B = (0), hence M = A⊕B.

Step 6: Since Rank(B)≤ q−1, by the induction hypothesis B is an internal direct sum
of cyclic submodules. Since A is a cyclic submodule, this proves the theorem. �

THEOREM 4.3.2. Let R be a euclidean domain and M a finitely generated R-module.
Then there exists a finite subset {x1, . . . ,xn} of M such that M = Rx1⊕ ·· · ⊕Rxn is the
internal direct sum of the cyclic submodules Rxi.

PROOF. Let δ : R−(0)→N be the norm function on R. After only a few modifications
the proof of Theorem 4.3.1 applies to R. In Step 1, pick the nonzero coefficient s1 ∈ R such
that δ (s1) is minimal. In Steps 2 and 3, when applying the division algorithm, there exist
u,v ∈ R such that either v = 0, or δ (v)< δ (s1). �

DEFINITION 4.3.3. Let R be an integral domain and M an R-module. If x ∈M, then
we say x is a torsion element of M in case there exists a nonzero r ∈ R such that rx = 0. If
every element of M is torsion, then we say M is torsion. Since R is an integral domain, by
Exercise 4.3.9 the set of all torsion elements in M is a submodule of M, which is denoted
Mt . If Mt = 0, then we say M is torsion free.

DEFINITION 4.3.4. Let R be a PID, M an R-module and x∈M. The cyclic submodule
generated by x is Rx. Define θx : R→M by θ(r) = rx. Then θx is an R-module homomor-
phism. Denote by Ix the kernel of θx. That is,

Ix = {r ∈ R | rx = 0}
which is an ideal in R, hence is principal. So Ix =Ra and up to associates in R, a is uniquely
determined by x. We call a the order of x. The image of θx is Rx and by Theorem 4.1.12,
Rx∼= R/(Ix)∼= R/Ra.

DEFINITION 4.3.5. Let R be a UFD and M a finitely generated R-module. By Ex-
ample 4.1.16, the left regular representation λ : R→ HomR(M,M) is a homomorphism of
rings that maps r ∈ R to `r : M→ M, where `r(x) = rx is “left multiplication by r”. Let
π be a prime element in R and n a positive integer. The kernel of `πn is contained in the
kernel of `πn+1 . Therefore the union

M(π) =
⋃
n>0

ker(`πn)

= {x ∈M | there exists n > 0 such that π
nx = 0}

is a submodule of M.

EXAMPLE 4.3.6. Suppose M is a finitely generated abelian group of rank n. Consider
the cases that can arise when n≤ 3.

(1) If n = 1, then M is cyclic. There are two cases: M ∼= Z, or M ∼= Z/r1, for some
r1 > 1.

(2) If n = 2, then there are three cases:
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(a) M ∼= Z⊕Z, or
(b) M ∼= Z/r1⊕Z, where 1 < r1, or
(c) M ∼= Z/r1⊕Z/r2, where 1 < r1 ≤ r2, and r1 | r2.

(3) If n = 3, then there are four cases:
(a) M ∼= Z⊕Z⊕Z, or
(b) M ∼= Z/r1⊕Z⊕Z, where 1 < r1, or
(c) M ∼= Z/r1⊕Z/r2⊕Z, where 1 < r1 ≤ r2, and r1 | r2, or
(d) M ∼= Z/r1⊕Z/r2⊕Z/r3, where 1 < r1 ≤ r2 ≤ r3, and r1 | r2 | r3.

THEOREM 4.3.7. (Basis Theorem – Invariant Factor Form) Let R be a euclidean do-
main and M a finitely generated R-module. The following are true.

(1) M =F⊕Mt , where F is a free submodule of finite rank. The rank of F is uniquely
determined by M.

(2) There exist x1, . . . ,x` ∈Mt , and r1, . . . ,r` ∈ R satisfying:
(a) Mt = Rx1⊕·· ·⊕Rx` is the internal direct sum of the cyclic submodules Rxi,
(b) r1 | r2 | r3 | · · · | r`, and Rxi ∼= R/(riR),
(c) the integer ` is uniquely determined by M, and up to associates in R, the

elements ri are uniquely determined by M.
The elements r1, . . . ,r` are called the invariant factors of M.

PROOF OF THE EXISTENCE CLAIM IN THEOREM 4.3.7. The proof is a continuation
of the proof of Theorem 4.3.2. If M is free, then by Exercise 4.2.17 M is uniquely de-
termined by Rank(M). Assume M is not free. Then by Step 5, there exists x1 ∈Mt such
that:

(1) The cyclic submodule Rx1 is a direct summand of M. That is, M = Rx1⊕B for
some submodule B.

(2) There exists r1 ∈ R such that Rx1 ∼= R/Rr1.
(3) If B is free, then we are done.
(4) If B is not free, and x ∈ B is torsion, then r1 divides the order of x.

By Mathematical Induction on Rank(M), there exist x2, . . . ,x` ∈ B, r2, . . . ,r` ∈ R, r2 | r3 |
· · · | r`, a free R-submodule F such that B = Rx2⊕·· ·⊕Rx`⊕F , and Rxi ∼= R/Rri for each
i. �

THEOREM 4.3.8. (Basis Theorem – Elementary Divisor Form) Let R be a euclidean
domain and M a finitely generated R-module. In the notation established above, the fol-
lowing are true.

(1) M =F⊕Mt , where F is a free submodule of finite rank. The rank of F is uniquely
determined by M.

(2) Mt =
⊕

π M(π) where π runs through a finite set of primes in R.
(3) For each prime π such that M(π) 6= 0, there exists a basis {a1, . . . ,am} such

that M(π) = Ra1⊕Ra2⊕ ·· · ⊕Ram where the order of ai is equal to πei and
e1 ≥ e2 ≥ ·· · ≥ em.

(4) Mt is uniquely determined by the primes π that occur in (2) and the integers ei
that occur in (3).

The prime powers πei that occur are called the elementary divisors of M.

PROOF. (Existence.) By Theorem 4.3.7, Mt = Rx1⊕·· ·⊕Rx`. and Rxi ∼= R/(riR). By
Exercise 4.3.12, R/(riR) is a direct sum of cyclic modules of the form R/πe where π runs
through the primes that divide ri.
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(Uniqueness.) The details are left to the reader. For example, the proof of the Basis
Theorem for Finite Abelian Groups given in Theorem 2.8.7 is a good starting point. �

PROOF OF THE UNIQUENESS CLAIM IN THEOREM 4.3.7. Use the uniqueness of the
elementary divisors in Theorem 4.3.8 to prove the uniqueness of the invariant factors in
Theorem 4.3.7. �

3.1. Exercises.

EXERCISE 4.3.9. Let R be an integral domain and M an R-module. Let Mt be the set
of all torsion elements in M (see Definition 4.3.3). Show that Mt is a submodule of M.

EXERCISE 4.3.10. Let R be a PID. Show that every nonzero ideal of R is a free
R-module of rank 1.

EXERCISE 4.3.11. Let R be a PID. Let π be an irreducible element of R, e > 0 and
A = R/(πe). Prove:

(1) Every ideal in A is principal.
(2) A is a field if and only if e = 1.
(3) A is a local ring, the unique maximal ideal is generated by π .
(4) A has exactly e+1 ideals, namely: (0)⊆ (πe−1)⊆ ·· · ⊆ (π2)⊆ (π)⊆ A.

EXERCISE 4.3.12. Let R be a PID. Let π1, . . . ,πn be irreducible elements of R that
are pairwise nonassociates. Let e1, . . . ,en be positive integers. If x = π

e1
1 π

e2
2 · · ·πen

n , and
A = R/(x), prove:

(1) The ideals in A correspond to the divisors of x. Including the two trivial ideals
(0) and A, there are exactly (e1 +1)(e2 +1) · · ·(en +1) ideals in A.

(2) A has exactly n maximal ideals, namely (π1), . . . ,(πn).
(3) A is isomorphic to the direct sum of the local rings

⊕
i R/(πei

i ).

EXERCISE 4.3.13. (The abelian group Q/Z) This exercise is a continuation of Exer-
cises 2.2.29 and 2.3.21. For any integer r≥ 1, let `r :Q/Z→Q/Z be the left multiplication
by r map. Prove the following.

(1) Show that `r is onto for all r ≥ 1. We say Q/Z is a divisible abelian group.
(2) Q/Z is a torsion Z-module.
(3) The kernel of `r is a cyclic group of order r.
(4) If H is a finite subgroup of Q/Z, then H is cyclic. (Hint: Exercise 2.8.10.)
(5) If H is a finite subgroup of Q/Z, then (Q/Z)/H is isomorphic to Q/Z.

EXERCISE 4.3.14. (The p-torsion subgroup of Q/Z) Let p be a prime number. As in
Section 4.3, let

Q/Z(p) =
⋃
n>0

ker(`pn)

be the subgroup of Q/Z consisting of all elements annihilated by some power of p. Some
authors denote the group Q/Z(p) by Z(p∞). Prove the following.

(1) Every proper subgroup of Q/Z(p) is a finite cyclic group.
(2) Q/Z(p) is a divisible group (see Exercise 4.3.13 (1)).
(3) Q/Z is equal to the internal direct sum

⊕
p∈PQ/Z(p), where P is the set of all

prime numbers.
(4) If H is a proper subgroup of Q/Z(p), then the quotient Q/Z(p)/H is isomorphic

to Q/Z(p).
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4. Algebras

DEFINITION 4.4.1. Let R be a commutative ring, A a ring and θ : R→ A a homo-
morphism of rings such that θ(R) is a subring of the center of A. Then we say A is an
R-algebra and θ is the structure homomorphism. If A and B are two R-algebras, then an
R-algebra homomorphism from A to B is a function φ : A→ B satisfying:

(1) φ(1) = 1,
(2) φ(x+ y) = φ(x)+φ(y) for all x,y ∈ A,
(3) φ(xy) = θ(x)φ(y) for all x,y ∈ A, and
(4) φ(a) = a for all a ∈ k.

An R-algebra isomorphism from A to B is a homomorphism φ : A→ B that is one-to-one
and onto. An R-algebra automorphism of A is a homomorphism from A to A that is one-to-
one and onto. The set of all R-algebra automorphisms is a group and is denoted AutR(A).

If k is a field and A is a k-algebra, then the structure homomorphism is necessarily
one-to-one, so it is convenient to identify k as a subring of the center of A. In this case, A
is a left k-vector space by virtue of the multiplication and addition operations on A.

EXAMPLE 4.4.2. Important examples of algebras over a field are listed here.

(1) If F and k are fields and k is a subfield of F , then we say F/k is an extension of
fields. In this case F is a k-algebra.

(2) The ring of polynomials k[x] is a k-algebra where we identify k with the constant
polynomials. Because 1,x,x2, . . . are linearly independent over k, dimk(k[x]) =
∞.

(3) Let q ∈ k[x] be a polynomial of degree n > 0. In Lemma 4.4.3 below we prove
that the quotient ring k[x]/(q) is a commutative k-algebra of dimension n.

Let k be a field, x an indeterminate, and q a polynomial in k[x]. The principal ideal
generated by q is (q) = { f q | f ∈ k[x]}, which is equal to the set of all polynomials that are
divisible by q. By 3.2.14, k[x]/(q) is a commutative ring.

LEMMA 4.4.3. In the above context, the following are true.

(1) k[x]/(q) is a commutative k-algebra.
(2) k[x]/(q) is a k-vector space.

(3) dimk (k[x]/(q)) =

{
∞ if q = 0
degq if q 6= 0.

(4) If (q) 6= k[x], then k[x]/(q) is a k-algebra.
(5) k[x]/(q) is a field if and only if q is irreducible.

PROOF. Since k is a subring of k[x], k[x] is a k-algebra. If q = 0, then k[x]/(q) = k[x] is
not finite dimensional (Example 4.4.2 (3)). If q 6= 0 and n = degq, then by Exercise 4.2.18,
k[x]/(q) is a k-vector space and {[1], [x], . . . , [xn−1]} is a k-basis for k[x]/(q). Since k[x] is a
PID, k[x]/(q) is a field if and only if q is irreducible, by Exercise 4.3.12. If degq = 0, then
k[x]/(q) is the trivial ring and is not a k-algebra. Otherwise, k[x]/(q) is a k-algebra. �

DEFINITION 4.4.4. Let A be a k-algebra. If X ⊆ A, then by k[X ] we denote the k-
subalgebra of A generated by k and X . Thus k[X ] is the smallest subring of A that contains
both k and X .

DEFINITION 4.4.5. Let k be a field, A a k-algebra, and α an element of A. If there is a
nonzero polynomial f ∈ k[x] and f (α) = 0, then we say α is algebraic over k. Otherwise
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we say α is transcendental over k. We say A is algebraic over k if every α ∈ A is algebraic
over k.

THEOREM 4.4.6. (Fundamental Theorem on Algebraic Elements) Let k be a field, A
a k-algebra, and α ∈ A−{0}. There is a k-algebra homomorphism τ : k[x]→ A satisfying
the following.

(1) τ(x) = α .
(2) The kernel of τ is I(α) = {p ∈ k[x] | p(α) = 0}. There is a polynomial f ∈ k[x]

such that I(α) is equal to the principal ideal ( f ) generated by f .
(3) The image of τ is k[α], the subalgebra of A generated by k and α .
(4) α is transcendental over k if and only if I(α) = (0).
(5) α is algebraic over k if and only if I(α) 6=(0). In this case, deg f > 0, dimk k[α] =

deg f , f can be taken to be monic, and if p ∈ I(α), then f | p.
(6) k[α]∼= k[x]/( f ).
(7) k[α] is a commutative principal ideal ring.

The polynomial f is called the minimal polynomial of α and is denoted min.polyk(α). If
α is algebraic and f is taken to be monic, then f is uniquely determined by α .

PROOF. Given α ∈ A, the evaluation homomorphism τ : k[x] → A, is a k-algebra
homomorphism determined by x 7→ α (Theorem 3.6.2). Since k[x] is a principal ideal
domain (Corollary 3.6.5), there exists a polynomial f ∈ k[x] which generates the ker-
nel of τ . The image of τ is denoted k[α]. By Exercise 3.6.33, k[α] is a commutative
principal ideal ring and is the smallest subring of A containing k and α . By Propo-
sition 3.2.15, k[α] ∼= k[x]/( f ). By Definition 4.4.5, α is transcendental if and only if
I(α) = (0). In this case, τ is one-to-one and k[α]∼= k[x]. If I(α) 6= (0), then deg f ≥ 1 and
f is unique up to associates in k[x]. Hence if f is taken to be monic, then f is unique. Let
f = xn + an−1xn−1 + · · ·+ a1x+ a0 be the minimal polynomial of α , where n ≥ 1. Exer-
cise 4.2.18 says k[α] is a k-vector space of dimension n spanned by 1,α, . . . ,αn−1. �

EXAMPLE 4.4.7. If x is an indeterminate, and k(x) is the field of rational functions
over k, then k[x]→ k(x) is one-to-one (Lemma 3.5.1). Hence x is transcendental over k.

COROLLARY 4.4.8. If k is a field and A is a finite dimensional k-algebra, then A is
algebraic over k. If α ∈ A and dimk(A) = n, then the degree of min.polyk(α) is less than
or equal to n.

PROOF. Let α ∈ A, and dimk(A) = n. By Theorem 4.2.4, the set {un,un−1, . . . ,u,1}
is linearly dependent. A dependence relation 0 = anun +an−1un−1 + · · ·+a1u+a0 over k
shows that u is algebraic over k. �

COROLLARY 4.4.9. Let k be a field and A a k-algebra. If α ∈ A is algebraic over k,
then k[α] is algebraic over k.

PROOF. By Theorem 4.4.6 (5), k[α] is finite dimensional over k. �

COROLLARY 4.4.10. Let k be a field, A a k-algebra, and u an element of A that is
algebraic over k. Then u is an invertible element of A if and only if min.polyk(u) has a
nonzero constant term.

PROOF. Let f (x) = min.polyk(u) = xn + an−1xn−1 + · · ·+ a1x+ a0. If u ∈ k, then
f (x) = x− u and in this case the result holds. Assume n ≥ 2. We have f (u) = un +
an−1un−1 + · · ·+a1u+a0 = 0. Solving for a0 and factoring, we get

(4.1) −a0 = u(un−1 +an−1un−2 + · · ·+a1).
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Assume a0 = 0 and for sake of contradiction assume u is invertible. Then multiplying
(4.1) by u−1 on both sides we get un−1 + an−1un−2 + · · ·+ a1 = 0, which contradicts the
definition of the minimal polynomial of u in Theorem 4.4.6. Conversely, assume a0 6= 0.
Multiplying both sides of (4.1) by −a−1

0 , we get

1 = u(−a−1
0 )(un−1 +an−1un−2 + · · ·+a1)

which shows u is invertible in A. �

THEOREM 4.4.11. Let k be a field, A a finite dimensional k-algebra, and u ∈ A.
(1) If u is not a zero divisor, then u is invertible.
(2) If A is a domain (that is, A has no zero divisors), then A is a division ring.

PROOF. By Corollary 4.4.8, A is algebraic over k. The proof is by contraposition.
Assume A contains a nonzero element u which is not invertible. We show that u is a zero
divisor in A. Let f = min.polyk(u) ∈ k[x]. By Corollary 4.4.10, u is invertible if and only
if f (0) ∈ k− (0). Assume f (x) = xn +an−1xn−1 + · · ·+a1x has zero constant term. By Eq.
(4.1),

0 = u(un−1 +an−1xn−2 + · · ·+a1).

Since the minimum polynomial for u has degree n, we know un−1+an−1xn−2+ · · ·+a1 6= 0.
This shows u is a zero divisor in A. �

4.1. Exercises.

EXERCISE 4.4.12. Let R be a commutative ring and A an R-algebra. Suppose α ∈ A
is a root of the polynomial p ∈ R[x]. Prove:

(1) If B is another R-algebra and φ : A→ B is an R-algebra homomorphism, then
φ(α) is a root of p.

(2) If u is a unit in A, then u−1αu is a root of p.

EXERCISE 4.4.13. (Universal Mapping Property) Let R be a commutative ring, G a
finite group, and R(G) the group ring (see Example 3.1.6). Let A be an R-algebra and
h : G→ A∗ a homomorphism from G to the group of units of A. Show that there is a unique
homomorphism of R-algebras φ : R(G)→ A such that diagram

G

⊆
��

h

!!
R(G)

φ // A

commutes. Show that the same result holds if G is a group that is not necessarily finite.

EXERCISE 4.4.14. Let R be a commutative ring and M a finitely generated free R-
module of rank n. Using Exercises 4.1.41 and 4.4.13, show that there exists an R-algebra
homomorphism φ : R(Sn)→ HomR(M,M) from the group ring to the ring of endomor-
phisms. Show that in general φ is not one-to-one.

5. Matrix Theory

If R is a commutative ring and M and N are finitely generated free modules over R,
then we show that any R-module homomorphism φ : M→N can be represented as a matrix.
The matrix representation of φ depends on a choice of bases for M and N. When M is free
of rank n, then we show that there is an isomorphism of R-algebras HomR(M,M)∼= Mn(R).
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5.1. The Matrix of a Linear Transformation.

DEFINITION 4.5.1. Let R be any ring and m,n positive integers. By Mnm(R) we denote
the set of all n-by-m matrices over R. If m = n, then we simply write Mn(R) instead
of Mnn(R). Addition of matrices is coordinate-wise (αi j)+ (βi j) = (αi j + βi j). We can
multiply by elements of R from the left r(αi j) = (rαi j). If (αi j) ∈ Mnm(R) and (β jk) ∈
Mmp(R), then the matrix product is defined by (αi j)(β jk) = (γik) ∈ Mnp(R), where γik =

∑
m
j=1 αi jβ jk. If R is a commutative ring, in Corollary 4.5.7 below we prove that Mn(R) is

an R-algebra. When R is an arbitrary ring, see [4, Section 4.3.1] for the proof that Mn(R)
is a ring that contains R as a subring.

DEFINITION 4.5.2. Let ei j be the matrix with 1 in position (i, j) and 0 elsewhere. The
matrix ei j is called an elementary matrix (see Example 3.2.10).

LEMMA 4.5.3. For a ring R, the set Mnm(R) of n-by-m matrices over R is a free R-
module. The set {ei j | 1≤ i≤ n, 1≤ j ≤m} of elementary matrices is a free basis with nm
elements.

PROOF. See Definition 4.1.24 for the definition of free module. The proof is left to
the reader. �

DEFINITION 4.5.4. Let R be any ring, M a free R-module of rank m and N a free
R-module of rank n. Let X = {x1, . . . ,xm} be a basis for M and Y = {y1, . . . ,yn} a basis for
N. Given φ ∈ HomR(M,N), φ maps x j ∈ X to a linear combination of Y . That is,

φ(x j) =
n

∑
i=1

φi jyi

where the elements φi j are in R. The matrix of φ with respect to the bases X and Y is
defined to be M(φ ,X ,Y ) = (φi j), which is a matrix in Mnm(R).

PROPOSITION 4.5.5. Let R be any ring. If M is a free R-module of rank m, and N is a
free R-module of rank n, then there is a Z-module isomorphism HomR(M,N)∼= Mnm(R). If
R is a commutative ring, then this is an R-module isomorphism and HomR(M,N) is a free
R-module of rank mn.

PROOF. Let X = {x1, . . . ,xm} be a basis for M and Y = {y1, . . . ,yn} a basis for N. The
assignment φ 7→M(φ ,X ,Y ) defines a Z-module homomorphism

M(·,X ,Y ) : HomR(M,N)→Mnm(R).

Conversely, if (αi j) ∈Mnm(R), define α in HomR(M,N) by

α(x j) =
n

∑
i=1

αi jyi.

The rest is left to the reader. �

PROPOSITION 4.5.6. Let R be any ring. Let M, N, and P denote free R-modules, each
of finite rank. Let X, Y and Z be bases for M, N, and P respectively. Let φ ∈ HomR(M,N)
and ψ ∈ HomR(N,P). If the matrices M(ψ,Y,Z) and M(φ ,X ,Y ) are treated as having
entries from the ring Ro, the opposite ring of R, then

M(ψφ ,X ,Z) = M(ψ,Y,Z)M(φ ,X ,Y ).
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PROOF. The opposite ring Ro is defined as in Definition 3.1.8. Let X = {x1, . . . ,xm},
Y = {y1, . . . ,yn}, and Z = {z1, . . . ,zp}. Let M(φ ,X ,Y ) = (φi j), M(ψ,Y,Z) = (ψi j). It
follows from

ψφ(x j) = ψ

(
n

∑
i=1

φi jyi

)
=

n

∑
i=1

φi j

p

∑
k=1

ψkizk =
p

∑
k=1

(
n

∑
i=1

φi jψki

)
zk

that M(ψφ ,X ,Z) = (γk j), where γk j = ∑
n
i=1 φi jψki. Computing the product of the two

matrices over Ro, we get M(ψ,Y,Z)M(φ ,X ,Y ) = (τk j), where

τk j =
n

∑
i=1

ψki ∗φi j =
n

∑
i=1

φi jψki.

�

COROLLARY 4.5.7. Let R be any ring. With the binary operations defined in Defini-
tion 4.5.1, Mn(R) is a ring with identity element In = e11 + · · ·+ enn. The set R · In of all
scalar matrices in Mn(R) is a subring which is isomorphic to R. The center of the ring
Mn(R) is equal to the center of the subring R · In. If R is commutative, the matrix ring
Mn(R) is an R-algebra and the center of Mn(R) is equal to R · In.

PROOF. Use Proposition 4.5.6 to show that matrix multiplication is associative. If R
is commutative, as shown in Example 3.1.13, the center of Mn(R) is equal to the set of
scalar matrices. The same proof can be used to prove that the center of Mn(R) is equal to
the center of the subring R · In. The rest is left to the reader. �

PROPOSITION 4.5.8. Let R be any ring. If M is a free R-module of rank n, then
there is an isomorphism of rings HomR(M,M) ∼= Mn(Ro). If R is commutative, this is an
isomorphism of R-algebras.

PROOF. Pick a basis for M. The map of Proposition 4.5.5 defines an isomorphism of
abelian groups. It is multiplicative by Proposition 4.5.6. �

DEFINITION 4.5.9. Let R be a commutative ring and n ≥ 1. If A,B are matrices in
Mn(R) and P is an invertible matrix in Mn(R) such that A = P−1BP, then we say A and B
are similar. The reader should verify that this defines an equivalence relation on Mn(R).

PROPOSITION 4.5.10. Let R be a commutative ring and M a free R-module of rank
n. Let X and Y be two bases for M. If φ ∈ HomR(M,M), then the matrix M(φ ,X ,X) of
φ with respect to X and the matrix M(φ ,Y,Y ) of φ with respect to Y are similar. In fact,
if 1 ∈ HomR(M,M) is the identity map, then M(1,X ,Y )−1 = M(1,Y,X) and M(φ ,X ,X) =
M(1,Y,X)M(φ ,Y,Y )M(1,X ,Y ).

PROOF. Let I ∈Mn(R) be the identity matrix. It follows from Proposition 4.5.6 that
I =M(1,X ,X) =M(1,Y,Y ), M(1,X ,Y )M(1,Y,X) = I, and M(1,Y,X)M(1,X ,Y ) = I. Also
M(φ ,X ,Y ) = M(1,X ,Y )M(φ ,X ,X) = M(φ ,Y,Y )M(1,X ,Y ). �

EXAMPLE 4.5.11. Let R be a commutative ring and A ∈ Mmn(R). Elements of Rn

can be viewed as n-by-1 column matrices in Mn1. As in Proposition 4.5.5, multiplication
by A from the left defines an element in HomR(Rn,Rm). In particular, if k is a field and
A ∈Mn(k), then left multiplication by A defines a linear transformation from kn to kn. We
define the rank of A and the nullity of A as in Exercise 4.2.11. Define the column space of
A to be the subspace of kn spanned by the columns of A. The rank of A is seen to be the
dimension of the column space of A.
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5.2. The Transpose of a Matrix and the Dual of a Module.

DEFINITION 4.5.12. Let R be a commutative ring. Let M be a left R-module. The dual
of M is defined to be M∗ = HomR(M,R). We turn M∗ into a right R-module by the action
( f r)(x) = ( f (x))r, for r ∈ R, f ∈M∗, x ∈M. The reader should verify that this is a well
defined right R-module action on M∗. If N is another left R-module, and ψ ∈HomR(M,N),
define ψ∗ : N∗→M∗ by the rule ψ∗( f ) = f ◦ψ , for any f ∈ N∗.

LEMMA 4.5.13. Let R be a commutative ring. Let M and N be left R-modules. If
ψ : M→ N is a homomorphism of left R-modules, then ψ∗ : N∗→M∗ is a homomorphism
of right R-modules. If L is another R-module, and φ ∈ HomR(L,M), then (ψφ)∗ = φ ∗ψ∗.

PROOF. Let f ,g ∈ N∗ and a ∈ R. The reader should verify that ψ∗( f +g) = ψ∗( f )+
ψ∗(g). If x ∈M, then

(ψ∗( f a))(x) = ( f a)(ψ(x)) = ( f (ψ(x)))a = (ψ∗( f )(x))a = (ψ∗( f )a)(x).

Lastly, φ ∗ψ∗( f ) = (ψφ)∗( f ). �

DEFINITION 4.5.14. Let R be a commutative ring. Let M be a left R-module which is
free of finite rank. If B = {v1, . . . ,vn} is a basis for M, then define v∗1, . . . ,v

∗
n in M∗ by the

rules

v∗i (v j) =

{
1 if i = j,
0 otherwise.

PROPOSITION 4.5.15. Let R be a commutative ring. If M is a free left R-module with
basis B = {v1, . . . ,vn}, then M∗ is a free right R-module with basis B∗ = {v∗1, . . . ,v∗n}.

PROOF. By Proposition 4.5.5, M∗ is isomorphic to M1n(R) as Z-modules. Under
this isomorphism, v∗i is mapped to the row matrix e1i which has 1 in position i and zeros
elsewhere. This is therefore a homomorphism of right R-modules. �

THEOREM 4.5.16. Let R be a commutative ring. Let M and N be free R-modules,
each of finite rank. Let X be a basis for M, and Y a basis for N. Let X∗ and Y ∗ be the
corresponding bases for M∗ and N∗. Given φ ∈ HomR(M,N),

M(φ ∗,Y ∗,X∗) = M(φ ,X ,Y )T .

That is, the matrix of φ ∗ with respect to Y ∗ and X∗ is the transpose of the matrix of φ with
respect to X and Y .

PROOF. Let X = {u1, . . . ,um} and Y = {v1, . . . ,vn}. Let M(φ ,X ,Y ) = (φi j). Con-
sider φ ∗(v∗l )(u j) = v∗l (φ(u j)) = v∗l (∑

n
i=1 φi jvi) = φl j. Now consider (∑m

i=1 φliu∗i )(u j) = φl j.
Therefore, φ ∗(v∗l ) = ∑

m
i=1 φliu∗i as elements of M∗ = HomR(M,R) because they agree on a

basis of M. This also shows that column l of the matrix M(φ ∗,Y ∗,X∗) is the transpose of
(φl1,φl2, . . . ,φlm), which is row l of M(φ ,X ,Y ) �

DEFINITION 4.5.17. If k is a field, the space V ∗∗ = Homk(V ∗,k) is called the double
dual of V . Given v ∈ V , let ϕv : V ∗→ k be the “evaluation at v” map. That is, if f ∈ V ∗,
then ϕv( f ) = f (v). The reader should verify that ϕv is an element of V ∗∗, and that the
assignment v 7→ ϕv is a homomorphism of k-vector spaces V →V ∗∗.

THEOREM 4.5.18. Let V be a finitely generated vector space over a field k. The map
V →V ∗∗ which sends a vector v ∈V to ϕv is a vector space isomorphism.
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PROOF. Let v be a nonzero vector in V . By Theorem 4.2.4, we can extend {v} to
a basis for V , say B = {v,v2, . . . ,vn}. Define f ∈ V ∗ to be the projection mapping onto
the v-coordinate. Then f (v) = 1, and f (vi) = 0 for 2 ≤ i ≤ n. Then ϕv( f ) = f (v) = 1.
This proves V →V ∗∗ is one-to-one. If V is finite dimensional, then V →V ∗∗ is onto since
dimk(V ) = dimk(V ∗∗). �

Theorem 4.5.18 extends to finitely generated projective modules over any ring (see [4,
Exercise 6.5.22]).

THEOREM 4.5.19. Let D be a field and V and W finitely generated D-vector spaces.
Let φ ∈ HomD(V,W ). Let φ ∗ : W ∗ → V ∗ be the associated homomorphism of right D-
vector spaces.

(1) If φ is one-to-one, then φ ∗ is onto.
(2) If φ is onto, then φ ∗ is one-to-one.
(3) The rank of φ is equal to the rank of φ ∗.

PROOF. (1): Assume φ is one-to-one. Let f : V → D be in V ∗. By Exercise 4.2.15
there is f̄ : W → D in W ∗ such that f = f̄ φ = φ ∗( f̄ ).

(2): Assume φ is onto. A typical element of W is of the form w = φ(v), for some
v ∈V . Assume g ∈W ∗ and gφ = 0. Then g(w) = g(φ(v)) = 0.

(3): Let n = dimD(V ). By Proposition 4.5.5, dimD(V ∗) = n. Let U = kerφ . Let
ψ : U → V be the inclusion map. By (1), ψ∗ is onto. Then Rank(ψ∗) = dim(U∗) =
dim(U) = Nullity(φ) = n−Rankφ . By Lemma 4.5.13, imφ ∗ ⊆ kerψ∗. We prove the
reverse inclusion. Suppose f ∈V ∗ and ψ∗( f )= f ψ = 0. Then f factors through V/kerφ =
imφ . There is f̄ : imφ → D such that f = f̄ φ . By Exercise 4.2.15, f̄ extends to W , so f is
in the image of φ ∗. This proves Rankφ ∗ = Nullityψ∗ = n−Rankψ∗ = Rankφ . �

COROLLARY 4.5.20. Let D be a field and A ∈Mnm(D). The row rank of A is equal to
the column rank of A.

PROOF. As in Proposition 4.5.5, define α in HomD(Dm,Dn) to be “left multiplication
by A”. Let α∗ be the associated map on dual spaces. By Theorem 4.5.16 the matrix
of α∗ is AT . The column rank of A is equal to Rankα which is equal to Rankα∗, by
Theorem 4.5.19. But Rankα∗ is equal to the column rank of AT , which is the row rank of
A. �

5.3. Exercises.

EXERCISE 4.5.21. Let k be a field and V a finite dimensional vector space over k.
Show that Homk(V,V ) is a commutative ring if and only if dimk(V )≤ 1.

EXERCISE 4.5.22. Suppose φ ∈ HomD(V,V ), where V is a finite dimensional vector
space over the field D. Prove:

(1) There is a chain of subspaces ker(φ)⊆ ker(φ 2)⊆ ker(φ 3)⊆ ·· · .
(2) There is a chain of subspaces φ(V )⊇ φ 2(V )⊇ φ 3(V )⊇ ·· · .
(3) The kernel of φ : φ(V )→ φ 2(V ) is equal to ker(φ)∩ φ(V ). More generally, if

m≥ 1, the kernel of φ m : φ m(V )→ φ 2m(V ) is equal to ker(φ m)∩φ m(V ).
(4) If m≥ 1 and φ m(V ) = φ m+1(V ), then φ m(V ) = φ m+i(V ) for all i≥ 1.
(5) If n = dimD(V ), then there exists m such that 1≤m≤ n and φ m(V ) = φ m+1(V ).
(6) If n = dimD(V ), then there exists m such that 1≤m≤ n and ker(φ m)∩φ m(V ) =

(0).
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EXERCISE 4.5.23. Let R be a commutative ring. Let A ∈Mnm(R) and B,C ∈Mml(R).
Prove:

(1) (AT )T = A.
(2) (B+C)T = BT +CT .
(3) (AB)T = BT AT .

EXERCISE 4.5.24. If R is a commutative ring, show that the mapping Mn(R) →
Mn(R)o defined by A 7→ AT is an isomorphism of R-algebras.

EXERCISE 4.5.25. If R is any ring, show that the mapping Mn(R)→Mn(Ro)o defined
by A 7→ AT is an isomorphism of rings. Using the Morita Theorems, a very general version
of this is proved in [4, Corollary 6.9.3].

EXERCISE 4.5.26. Let R be any ring, M and N finitely generated R-modules, and φ ∈
HomR(M,N). Show that there exist positive integers m and n, epimorphisms f : R(m)→M,
g : R(n)→ N, and θ ∈ HomR(R(m),R(n)) such that the diagram

R(m) θ //

f
��

R(n)

g

��
M

φ // N

commutes. Therefore, given generators for M and N, φ can be represented as a matrix.

5.4. The Canonical Form of a Linear Transformation. If k is a field, V a finite
dimensional k-vector space, and φ : V → V a linear transformation, then we show that
there is basis for V such that the matrix of φ is in so-called rational canonical form. The
method of proof is to make V into a module over the polynomial ring k[x] using φ and apply
Theorem 4.3.7. Assuming the minimal polynomial for φ splits over k, we show that there
is a basis for V such that the matrix of φ is in so-called Jordan canonical form. The proof
is an application of Theorem 4.3.8. With respect to the standard basis, a matrix in Mn(k)
defines a linear transformation on k(n). By treating a matrix A as a linear transformation,
we define the rational canonical form for A. The canonical form is a unique matrix in the
similarity class containing A. Two matrices are similar if and only if they have the same
canonical form.

5.4.1. A vector space as a k[φ ]-module. Let k be a field and V a k-vector space. Let
S = Homk(V,V ). By Proposition 4.5.5, S is finite dimensional as a k-vector space. By
Corollary 4.4.8, S is algebraic over k. By Theorem 4.4.6, every φ in S = Homk(V,V ) has a
minimal polynomial f = min.polyk(φ). By Proposition 4.5.8, Mn(k) and Homk(V,V ) are
isomorphic as k-algebras. If X is a basis for V , and A = M(φ ,X ,X), then f equal to both
min.polyk(φ) and min.polyk(A). The evaluation homomorphism λφ : k[x]→ Homk(V,V )
(Theorem 3.6.2) defined by x 7→ φ maps k[x] onto the commutative subring k[φ ]. There is
a k-algebra isomorphism k[x]/( f ) ∼= k[φ ] (Theorem 4.4.6). Since k[x] is a PID, by Corol-
lary 3.2.17 every ideal in k[φ ] is a principal ideal. The ideals in k[φ ] correspond up to
associates to the divisors of f in k[x] (see Exercises 4.3.11 and 4.3.12).

By Exercise 4.1.34, V is a left S-module by the action ψv = ψ(v), for any ψ ∈ S
and v ∈ V . By Example 4.1.16, the left regular representation λ : k→ S = Homk(V,V )
is a homomorphism of rings that maps k into the center of S. Since k is a field, this map
is one-to-one. Let φ ∈ Homk(V,V ). Using this φ , we make V into a left k[x]-module.
By Theorem 3.6.2, the evaluation homomorphism λφ : k[x]→ S which maps x to φ is a
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homomorphism of rings.

k λ //

��

S = Homk(V,V )

k[x]
λφ

88

If p(x) = a0 +a1x+ · · ·+anxn ∈ k[x], then λφ (p(x)) = a0 +a1φ + · · ·+anφ n. The image
of λφ is the commutative k-algebra denoted k[φ ]. By Example 4.1.4 (4), λφ turns V into a
k[x]-module. For any v ∈V and p(x) ∈ k[x], the left multiplication of v by p(x) is given by
the formula:

p(x)v = λφ (p(x))v

= (a0 +a1φ + · · ·+anφ
n)v

= a0v+a1φ(v)+ · · ·+anφ
n(v).

By Vφ we denote the left k[x]-module structure on V induced by λφ . Since V is finitely
generated as a k-vector space, Vφ is finitely generated as a k[x]-module. By Corollary 3.6.5,
k[x] is a euclidean domain. By Theorem 4.3.2, Vφ is the internal direct sum of cyclic
submodules. That is, there exist v1, . . . ,vq in V such that Vφ = (v1)⊕ ·· · ⊕ (vq), where
(vi) = k[φ ]vi.

If f = xn + an−1xn−1 + · · ·+ a1x+ a0 is the minimal polynomial of φ , then a k-basis
for k[φ ] is {φ n−1, . . . ,φ ,1} (Theorem 4.4.6). If u ∈ V , the cyclic k[x]-submodule of Vφ

generated by u is therefore equal to

k[φ ]u = {p(φ)u | p ∈ k[x]}= kφ
n−1u+ · · ·+ kφu+ ku.

Since φ maps this subspace to itself, we say k[φ ]u is φ -invariant. If u is nonzero, the k[x]-
module homomorphism k[x]→ k[φ ]u is onto. The kernel is a principal ideal Iu = (q), and
we have

k[φ ]u∼= k[x]/(q).

The polynomial q is called the order of u. Since u is nonzero and k[φ ]u is finite dimensional
over k, by Lemma 4.4.3 we know q is a monic polynomial of positive degree. In fact, q is
the polynomial of minimal degree such that q(φ)u = 0. By Exercise 4.5.45, q is a divisor
of the minimal polynomial f of φ . Because the dimension of the k-vector space k[φ ]u is
equal to the degree of q, we see that q is the minimal polynomial of the restriction of φ to
the φ -invariant subspace k[φ ]u.

For reference we list in Proposition 4.5.27 the fundamental results on cyclic k[φ ]-
modules derived in the previous paragraphs.

PROPOSITION 4.5.27. Let k be a field, V a k-vector space of dimension n, and φ a
nonzero linear transformation in Homk(V,V ). Let Vφ be the k[x]-module structure on V
induced by the ring homomorphism k[x]→Homk(V,V ) which maps x to φ . If Vφ is a cyclic
k[x]-module with generator u, then the following are true.

(1) The set B = {u,φu,φ 2u, . . . ,φ n−1u} is a k-basis for V .
(2) As k[x]-modules, Vφ

∼= k[x]/( f ).
(3) If min.polyk(φ) = f , then deg f = n and f is the monic polynomial of minimal

degree such that f (φ)u = 0.

PROOF. See the paragraphs immediately preceding the proposition. �
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EXAMPLE 4.5.28. The ring of matrices Mn(k) is a k-algebra where we identify k with
the set of scalar matrices. The center of the ring of matrices is k. By Proposition 4.5.5,
dimk(Mn(k)) = n2. Since Mn(k) is finite dimensional over k, every matrix A ∈Mn(k) has
a minimal polynomial min.polyk(A) (see Theorem 4.4.6). The evaluation homomorphism
θ : k[x]→Mn(R) which is defined by x 7→ A maps k[x] onto the commutative subring k[A]
of Mn(R). The kernel of θ is the principal ideal generated by f = min.polyk(A).

k[x] θ //

η ##

k[A]
⊆ // Mn(R)

k[x]/( f )

∼=

OO

EXAMPLE 4.5.29. Let k be a field, n≥ 2, and A = Mn(k) the ring of n-by-n matrices
over k. Let est be the elementary matrix with 1 in position (s, t) and 0 elsewhere (see
Definition 4.5.2). Notice that

esteuv =

{
esv if t = u,
0 otherwise.

Therefore, estest = 0 if s 6= t and essess = ess. From this it follows that

min.polyk(est) =

{
x2− x if s = t,
x2 if s 6= t.

In both cases we see that the minimal polynomial of est is not irreducible.

k[est ]∼=

{
k[x]/x2− x if s = t,
k[x]/x2 if s 6= t.

Therefore, k[est ] is not a field.

EXAMPLE 4.5.30. Let k be a field, a ∈ k, A = M3(k) the ring of 3-by-3 matrices

over k, and α =

0 0 a
1 0 0
0 1 0

. Notice that α2 =

0 a 0
0 0 a
1 0 0

 and α3 =

a 0 0
0 a 0
0 0 a

 = aI3.

Therefore, α3 is in k. Let p(x) = x3−a. Then p(α) = 0. Let f (x) = min.polyk(α). Then
f (x) divides p(x). To show that f (x) is equal to p(x), it suffices to show f (x) has degree
greater than 2. First, since α is not a diagonal matrix we know f (x) has degree greater than
1. For contradiction’s sake, suppose f (x)= x2+bx+c for some b,c∈ k. Then α2+bα ∈ k.
But

α
2 +bα =

0 a 0
0 0 a
1 0 0

+
0 0 ab

b 0 0
0 b 0

=

0 a ab
b 0 a
1 b 0


is not a diagonal matrix. This contradiction implies f (x) has degree greater than 2, hence
min.polyk(α) = x3− a. This example is a special case of Exercise 4.6.21. The matrix α

is called the companion matrix of the polynomial x3−a. Notice that k[α]∼= k[x]/(x3−a)
is a field if and only if x3−a is irreducible in k[x]. For instance, if k =Q, and a = 8, then
x3− 8 = (x− 2)(x2 + 2x+ 4) is not irreducible, hence Q[α] is not a field. On the other
hand, if k =Q and a = 10, then α is a root of x3−10 in M3(Q), Q[α] is an extension field
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of k inside of A, and there is a lattice of subrings

A = M3(Q)

Q[α]

dim=3
ee

Q

dim=9

OO

dim=3

99

where an arrow denotes set containment. Using the fact that Q[α] is a subring of A we can
view A as a vector space over Q[α]. We have 9 = (A : Q) = (Q[α] : Q)(Q[α] : Q) = 3 ·3.
Notice that Q[α] is not contained in the center of A, hence A is not an algebra over Q[α].

5.4.2. Rational Canonical Form.

THEOREM 4.5.31. If V is a finite dimensional vector space over the field k, and φ is a
nonzero linear transformation in Homk(V,V ), then there is a basis {u1,u2, . . . ,ur} for the
k[φ ]-module V such that the following are true.

(1) The k[φ ]-module V is equal to the internal direct sum U1⊕U2⊕·· ·⊕Ur where
Ui = k[φ ]ui is the cyclic submodule of V spanned by ui.

(2) Ui ∼= k[x]/(qi) where qi is the order of ui and q1 | q2 | · · · | qr.
(3) Ui is a φ -invariant subspace of V and the minimal polynomial of φ |Ui is qi.
(4) The minimal polynomial of φ is qr.
(5) The sequence of polynomials (q1,q2, . . . ,qr) is uniquely determined by φ .

The polynomials q1, . . . ,qr are called the invariant factors of φ .

PROOF. Apply Theorem 4.3.7 to the finitely generated k[x]-module V . �

If V and φ are as in Theorem 4.5.31, then V = U1⊕·· ·⊕Ur where each φ(Ui) ⊆Ui.
Then each Ui is a k-subspace of V . We can pick a k-basis Bi for each subspace Ui and
concatenate to get a basis B = B1 + · · ·+Br for V . It is clear that the matrix of φ with
respect to B is the block diagonal matrix

M(φ ,B) = diag(M(φ |U1 ,B1), . . . ,M(φ |Ur ,Br))

where there are r blocks and block i is the matrix with respect to Bi of the restriction of φ

to Ui.
Now we determine a canonical form for the matrix of φ . In other words, we try

to find a basis B of V for which the matrix M(φ ,B) is simplified. Based on the previ-
ous paragraph, we consider the case where V = k[φ ]u is a cyclic module over the ring
k[φ ]. We are in the context of Proposition 4.5.27. Suppose the minimal polynomial of φ

is min.polyk(φ) = p = xn + an−1xn−1 + · · ·+ a1x+ a0. The k[x]-module homomorphism
k[x]→ k[φ ]u defined by 1 7→ u is surjective and the kernel is the principal ideal Iu = (p)
generated by p. Therefore, as a k[x]-module, V is isomorphic to k[x]/(p). Applying the di-
vision algorithm, we see that 1,x,x2, . . . ,xn−1 is a k-basis for k[x]/(p). Therefore, a k-basis
for V is B = {u,φu,φ 2u, . . . ,φ n−1u}. Introduce the notation xi = φ i−1u. The action of φ
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on B = {x1,x2, . . . ,xn} determines the matrix M(φ ,B). Computing, we get
φx1 = φu = x2

φx2 = φφu = x3

...

φxn−1 = φ
n−1u = xn

φxn = φ
nu =−an−1φ

n−1u−·· ·−a1φ
1u−a0u =−a0x1−a1x2−·· ·−an−1xn

so the matrix is

(5.1) M(φ ,B) =



0 0 0 . . . 0 0 −a0
1 0 0 . . . 0 0 −a1
0 1 0 . . . 0 0 −a2
...

...
...

...
...

0 0 0 . . . 0 0 −an−3
0 0 0 . . . 1 0 −an−2
0 0 0 . . . 0 1 −an−1


.

We call (5.1) the companion matrix of the polynomial p = xn +an−1xn−1 + · · ·+a1x+a0.
If p ∈ k[x] is a polynomial of degree n ≥ 1, denote the companion matrix of p in Mn(k)
by C(p). Conversely, by Exercise 4.5.46, the minimal polynomial of (5.1) is again p =
xn +an−1xn−1 + · · ·+a1x+a0.

COROLLARY 4.5.32. If V is a finite dimensional vector space over the field k, φ ∈
Homk(V,V ), and q1,q2, . . . ,qr are the invariant factors of φ , then there is a basis B for V
such that the matrix of φ with respect to B is the block diagonal matrix

M(φ ,B) = diag(C(q1),C(q2), . . . ,C(qr))

where block i is the companion matrix of qi. The matrix M(φ ,B) is called the rational
canonical form for φ .

5.4.3. Jordan Canonical Form.

THEOREM 4.5.33. If V is a finite dimensional vector space over the field k, and φ is a
nonzero linear transformation in Homk(V,V ), then there exist positive integers s,ν1, . . . ,νs
and a basis {ui j | 1≤ i≤ s;1≤ j ≤ νi} for the k[φ ]-module V such that the following are
true.

(1) The k[φ ]-module V is equal to the internal direct sum

V =
s⊕

i=1

νi⊕
j=1

Ui j

where Ui = k[φ ]ui j is the cyclic submodule of V spanned by ui j.
(2) Ui j ∼= k[x]/(π

ei j
i ) where

(a) π1, . . . ,πs are distinct monic irreducible polynomials,
(b) the order of ui j is π

ei j
i , and

(c) ei1 ≥ ei2 ≥ ·· · ≥ eiνi ≥ 1.
(3) Ui j is a φ -invariant subspace of V and the minimal polynomial of φ |Ui j is π

ei j
i .

(4) The minimal polynomial of φ is

min.polyk(φ) =
s

∏
i=1

π
ei1
i
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(5) The sequence of irreducible polynomials (π1,π2, . . . ,πs) and the positive integers
{ei j} are uniquely determined by φ .

The polynomials π
ei j
i are called the elementary divisors of φ .

PROOF. Apply Theorem 4.3.8 to the finitely generated k[x]-module V . �

Using the basis for V given by Theorem 4.5.33, we determine a canonical form for the
matrix of φ . The minimal polynomial for φ restricted to Ui j is a power of the irreducible
polynomial πi. We assume each πi is a linear polynomial, because the canonical form of
φ in this case is particularly simplified. This case will occur if and only if the minimal
polynomial of φ factors into a product of linear polynomials in k[x]. The k-bases for the in-
dividual φ -invariant subspaces Ui j can be concatenated for a basis of V . We now determine
a canonical form for the matrix of φ under the following assumptions

(1) V is a cyclic k[φ ]-module spanned by u.
(2) min.polyk(φ) = (x−b)n is a power of a linear polynomial.

Notice that V is a cyclic k[φ ]-module, spanned by u. Since k[φ ] = k[φ − b], it follows
that V is a cyclic k[φ − b]-module, spanned by u. If θ : k[x]→ Homk(V,V ) is defined by
x 7→ φ , then kerθ is the principal ideal generated by (x−b)n. If τ : k[x]→ Homk(V,V ) is
defined by x 7→ φ −b, then the minimal polynomial of ψ = φ −b is the monic generator of
kerτ , which is xn. Therefore B = {u,ψu,ψ2u, . . . ,ψn−1u} is a k-basis for V . The matrix
of ψ = φ −b with respect to the basis B is

M(φ −b,B) =



0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

0 0 0 . . . 0 0 0
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0


which is the companion matrix of the polynomial xn. The matrix of φ with respect to the
basis B is equal to M(φ ,B) = M(φ −b,B)+M(b,B). Therefore,

(5.2) M(φ ,B) =



b 0 0 . . . 0 0 0
1 b 0 . . . 0 0 0
0 1 b . . . 0 0 0
...

...
...

0 0 0 . . . b 0 0
0 0 0 . . . 1 b 0
0 0 0 . . . 0 1 b


.

We denote the n-by-n matrix (5.2) by Jn(b) and refer to it as the basic Jordan block for the
polynomial (x−b)n.

COROLLARY 4.5.34. Assume V is a finite dimensional vector space over the field k,
φ ∈ Homk(V,V ), and that the minimal polynomial min.polyk(φ) factors into a product of
linear factors in k[x]. If b1, . . . ,bs are the distinct roots of min.polyk(φ) and {ei j} is the
set of exponents of the elementary divisors of φ , then there is a basis B for V such that the
matrix of φ with respect to B is the block diagonal matrix

M(φ ,B) = diag
(
Je11(b1),Je12(b1), . . . ,Jei j(bi), . . .

)
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where the block corresponding to the ordered pair (i, j) is the Jordan matrix of (x−bi)
ei j .

The matrix M(φ ,B) is called the Jordan canonical form for φ and B is called a Jordan
basis.

5.4.4. Canonical form of a matrix. Let k be a field, and A a matrix in Mn(k). With
respect to the standard basis on k(n), left multiplication by A defines a linear transformation
`A in Homk(k(n),k(n)). The invariant factors, elementary divisors, rational canonical form,
and the Jordan canonical form of A are defined to be the corresponding invariants of `A.

LEMMA 4.5.35. Let V be a finite dimensional vector space over the field k. Let φ and
ψ be linear transformations in Homk(V,V ). The k[x]-modules Vφ and Vψ are isomorphic
if and only if there exists an invertible linear transformation ρ in Homk(V,V ) such that
φ = ρ−1ψρ .

PROOF. Let f : Vφ → Vψ be an isomorphism of k[x]-modules. Then f is an isomor-
phism of k-vector spaces. That is, f = ρ for some invertible element ρ in Homk(V,V ). For
each u ∈V we have f (φu) = ψ f (u). Therefore, φ = ρ−1ψρ . Conversely, if φ = ρ−1ψρ ,
define f : Vφ →Vψ by f (u) = ρu. For i≥ 1, we have ρφ i = ψ iρ . Then f (φ iu) = ρφ iu =

ψ iρu = ψ i f (u). The rest follows from the fact that ρ is k-linear. �

COROLLARY 4.5.36. Let k be a field, and A and B two matrices in Mn(k). The fol-
lowing are equivalent.

(1) A and B are similar.
(2) A and B have the same invariant factors.
(3) A and B have the same rational canonical form.

PROOF. If A and B have the same invariant factors, say q1,q2, . . . ,qr, then they are
both similar to the block diagonal matrix C = diag(C(q1),C(q2), . . . ,C(qr)). The matrix
C is in rational canonical form. The reader should verify that the invariant factors of C are
q1, . . . ,qr. If A and B are similar, then by Proposition 4.5.8 and Lemma 4.5.35, the k[x]-
modules that they induce on kn are isomorphic. So they have the same invariant factors. �

EXAMPLE 4.5.37. Consider the matrix A =

 1 1 1
−1 −1 −1
1 1 0

 over the field Q. Let

S = {e1,e2,e3} be the standard basis for V = Q(3). By Proposition 4.5.5, A = M(φ ,S,S),
where φ is the linear transformation in HomQ(V,V ) defined by multiplication by A from

the left. Notice that A2 =

 1 1 0
−1 −1 0
0 0 0

, and A3 = 0. Thus, A is nilpotent and the index of

nilpotency is 3. This proves that min.poly(A) = x3. Since the minimal polynomial of A has
only one root and is split, the rational canonical form of A is equal to the Jordan canonical

form, which is J3(0) =

0 0 0
1 0 0
0 1 0

. Let u1 = (1,0,0)t , u2 = Au1 = (1,−1,1)t , and u3 =

Au2 = (1,−1,0)t . Then B = {u1,u2,u3} is a Jordan basis for φ . If P =

1 1 1
0 −1 −1
0 1 0
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is the matrix with columns u1,u2,u3, the reader should verify that P−1 =

1 1 0
0 0 1
0 −1 −1


and P−1AP = J3(0).

5.5. Reduced Row Echelon Form. In this section we show that any matrix over a
field has a unique reduced row echelon form. This canonical form exists whether the
matrix is square or not. Using gaussian elimination and elementary row operations, an al-
gorithm which is not included in this book, the reduced row echelon form can be efficiently
computed.

DEFINITION 4.5.38. Let k be a field and R ∈Mmn(k) an m-by-n matrix. We say R is
in reduced row echelon form, if the following conditions are satisfied:

(1) Any row that consists only of zeros is below any nonzero row.
(2) The left-most nonzero entry of a row is equal to 1. We call this 1 a leading 1.
(3) The leading ones form a staggered, or echelon pattern from left to right and top

to bottom. That is, if i < j and rows i and j are nonzero, then the leading 1 in
row i is to the left of the leading 1 in row j.

(4) Above and below any leading 1 are zeros.

LEMMA 4.5.39. Let k be a field and R ∈ Mmn(k) an m-by-n matrix in reduced row
echelon form.

(1) The rank of R is equal to the number of nonzero rows.
(2) The rank of R is equal to the number of leading ones.
(3) The nullity of R is equal to the number of columns that do not contain a leading

1.
(4) Let R1, . . . ,Rn be the columns of R. If R j does not contain a leading 1, then R j is

a unique linear combination of the columns in the set {R1, . . . ,R j−1} that contain
a leading one. In other words, there is a unique vector in the kernel of R of the
form (x1, . . . ,x j−1,1,0, . . . ,0) such that for 1≤ i < j, xi = 0 if Ri does not contain
a leading 1.

PROOF. The proof is left to the reader. �

PROPOSITION 4.5.40. Let k be a field and A ∈Mmn(k).
(1) There is an invertible matrix Q in Mm(k) such that QA is in reduced row echelon

form.
(2) The reduced row echelon form of A is unique in the sense that if Q1 is another

invertible matrix in Mm(k) and Q1A is in reduced row echelon form, then QA =
Q1A.

PROOF. (1): Let X = {A1,A2, . . . ,An} be the columns of A. The column space of A is
equal to the span of X in k(m). By Corollary 4.2.6 there exists a subset of X that is a basis
for the column space of A. Let U ⊆ X be a basis for the column space of A such that U
is minimal with respect to the ordering on 2X defined in Exercise 1.2.24. Then U ⊆ X has
the property that if A j ∈ X −U , then A j is a linear combination of {Ai ∈U | i < j}. By
Theorem 4.2.4, we can extend U to a basis for k(m). Call the resulting basis B. Let Q be the
change of basis matrix. Then Q is an invertible matrix in Mm(k). Let QA = R. We show
that R is a matrix in reduced row echelon form. Let Rank(A) = r and MU = (u1, . . . ,ur)
the m-by-r matrix with columns the r vectors in U . Then QMU is the m-by-r matrix equal



158 4. LINEAR ALGEBRA

to the first r columns of the identity matrix Im in Mm(k). Therefore, the columns of A in U
correspond to the standard basis vectors e1, . . . ,er in R. The column space of R is spanned
by e1, . . . ,er, hence rows r+1, . . . ,m of R are zeros. As mentioned above, if A j ∈ X −U ,
then A j is a linear combination of those columns of A that are in U and to the left of A j.
This says that every nonzero row of R has a leading one.

(2): Since Q is invertible, the kernel of `QA is equal to the kernel of `A. Suppose
Q1A = R1 and Q2A = R2 are two reduced row echelon forms for A. For sake of con-
tradiction, suppose there is a difference in the columns containing leading ones. Say
there is a leading 1 in column i of R1 but not in column i of R2. Then this contradicts
Lemma 4.5.39 (4) because a column containing a leading 1 is not linearly dependent on
the columns to its left. The uniqueness of those columns that do not contain leading ones
follows from Lemma 4.5.39 (4) and the fact that the kernels of `R1 and `R2 are equal. �

PROPOSITION 4.5.41. Let k be a field, A a matrix in Mmn(k), and Q an invertible
matrix in Mm(k) such that QA is in reduced row echelon form.

(1) The columns of QA containing leading ones correspond to a set of columns of A
that make up a basis for the column space of A.

(2) If A has rank r, then the n− r vectors described in Lemma 4.5.39 (4) make up a
basis for the kernel of A.

PROOF. The proof is left to the reader. �

EXAMPLE 4.5.42. Consider the matrix A =

1 2 −1 0
2 1 1 3
1 −1 2 3

 over a field k, where

we assume chark 6= 3. Notice that Q =

−1/3 2/3 0
2/3 −1/3 0

1 −1 1

 is invertible and the inverse

is Q−1 =

1 2 0
2 1 0
1 −1 1

. Multiplying, QA =

1 0 1 2
0 1 −1 −1
0 0 0 0

 is in reduced row echelon

form. The rank of A is 2, the nullity of A is 2. The first two columns of A make up a basis
for the column space of A. From Lemma 4.5.39 (4), we obtain a basis for the kernel of A
by writing columns 3 and 4 of QA as linear combinations of columns 1 and 2: 1

−1
0

=

1
0
0

−
0

1
0

 ,
 2
−1
0

= 2

1
0
0

−
0

1
0


A basis for the kernel of A is (−1,1,1,0)t ,(−2,1,0,1)t .

5.6. A System of Linear Equations. Let k be a field. Consider a system of m linear
equations in n variables over k:

(5.3)

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 +am2x2 + · · ·+amnxn = bm

Then the matrix of coefficients A = (ai j) is in Mmn(k) and the vector b = (b1, . . . ,bm)
t on

the right-hand side is in k(m). If x = (x1, . . . ,xn)
t , then (5.3) can be expressed in matrix

form: Ax = b. With respect to the standard bases on k(n) and k(m), left multiplication by A
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defines a linear transformation T = `A in Homk(k(n),k(m)). The image of T is the column
space of A. The rank of A is the dimension of the column space of T . The nullity of A is
the dimension of the kernel of T .

PROPOSITION 4.5.43. In the above context,
(1) If b is in the image of T , then the system of linear equations (5.3) has a solution.

Let c = (c1, . . . ,cn)
t be a particular solution. Then the general solution to (5.3)

is x = c+ z, where z = (z1, . . . ,zn)
t represents a typical element in the kernel of

T . The nullity of T is equal to the number of degrees of freedom in the solution.
The solution x is unique if and only if the nullity of T is zero. If the nullity of T is
positive, then we say the system of equations is underdetermined.

(2) If b is not in the image of T , then there is no solution to (5.3). In this case, we
say the system of equations is overdetermined.

PROOF. The proof is left to the reader. �

EXAMPLE 4.5.44. This is a continuation of Example 4.5.42. Consider the system of
3 linear equations in 4 variables:

x1 +2x2− x3 = 2
2x1 + x2 + x3 +3x4 = 7
x1 − x2 +2x3 +3x4 = 5

Then the matrix of coefficients is A =

1 2 −1 0
2 1 1 3
1 −1 2 3

 and the right-hand side vector

is b = (2,7,5)t . From Example 4.5.42, the reduced row echelon form of A is obtained by

multiplying by Q =

−1/3 2/3 0
2/3 −1/3 0

1 −1 1

. Let x = (x1,x2,x3,x4)
t . A basis for the kernel of

A is (−1,1,1,0)t ,(−2,1,0,1)t . Multiply both sides of the matrix equation Ax = b by Q:

QAx =

1 0 1 2
0 1 −1 −1
0 0 0 0




x1
x2
x3
x4

=

 4
−1
0


Then the general solution is:

x1
x2
x3
x4

=


4
−1
0
0

+a


−1
1
1
0

+b


−2
1
0
1


where a and b represent arbitrary elements of k.

5.7. Exercises.

EXERCISE 4.5.45. Let k be a field, V a finite dimensional k-vector space, u a nonzero
vector in V , and φ ∈Homk(V,V ). Let f ∈ k[x] be the monic polynomial of minimal degree
such that f (φ)u = 0. Prove that f divides min.polyk(φ).

EXERCISE 4.5.46. Let k be a field, V a k-vector space of dimension n, and φ ∈
Homk(V,V ). Suppose B = {x1, . . . ,xn} is a k-basis for V and {a0, . . . ,an−1} ⊆ k such
that φx1 = x2, φx2 = x3, . . . , φxn−1 = xn, and φxn =−a0x1−a1x2−·· ·−an−1xn. Prove:
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(1) Vφ = k[φ ]x1. In other words, Vφ is a cyclic k[φ ]-module and is generated by x1.
(2) min.polyk(φ) = xn +an−1xn−1 + · · ·+a1x+a0.

EXERCISE 4.5.47. Assume A is an n-by-n matrix over the field Q such that the min-
imum polynomial of A in Q[x] is equal to (x2 + 1)(x+ 2). If n = 7, exhibit all possible
rational canonical forms for A.

EXERCISE 4.5.48. Let k be a field. Let q and ` be monic polynomials in k[x], where
q is an irreducible quadratic and ` is linear. If A is a 7-by-7 matrix over k such that the
minimum polynomial of A in k[x] is q`, exhibit all possible rational canonical forms for A.

EXERCISE 4.5.49. Let k be a field. Let q and ` be monic polynomials in k[x], where
q is an irreducible quadratic and ` is linear. Let A be a 6-by-6 matrix over k. Exhibit all
possible rational canonical forms for A, if the minimum polynomial of A in k[x] is q2`. Do
the same if the minimum polynomial of A in k[x] is `2q.

EXERCISE 4.5.50. Let k be a field. Let q and t be irreducible monic polynomials in
k[x], where degq = 2 and deg t = 3. Let A be a 15-by-15 matrix over k. Exhibit all possible
rational canonical forms for A, if the minimum polynomial of A in k[x] is q2t2. Do the same
if the minimum polynomial of A in k[x] is q3t.

EXERCISE 4.5.51. Let k be a field. Let q1, q2 and ` be distinct irreducible monic
polynomials in k[x], where q1 and q2 are quadratics and ` is linear. Let A be a 10-by-
10 matrix over k. Exhibit all possible rational canonical forms for A, if the minimum
polynomial of A in k[x] is `q2

1q2.

EXERCISE 4.5.52. Let k be a field. Let `1, `2 be distinct monic polynomials in k[x],
where deg`1 = deg`2 = 1. Let A be an 8-by-8 matrix over k. Exhibit all possible rational
canonical forms for A, if the minimum polynomial of A in k[x] is `2

1`
3
2.

EXERCISE 4.5.53. Let F/k be an extension of fields. Prove the following.

(1) Let A ∈ Mn(k). Then A is invertible in Mn(k) if and only if A is invertible in
Mn(F). (Hint: Theorem 4.4.11.)

(2) If X is a basis for k(n) over the field k, then X is a basis for F(n) over the field F .
(3) If A ∈Mn(k), then the invariant factors of A in k[x] are the same as the invariant

factors of A in F [x].
(4) Let A,B ∈Mn(k). Then A is similar to B in Mn(k) if and only if A is similar to B

in Mn(F).

EXERCISE 4.5.54. Let k be a field and b ∈ k. Let B ∈ Mn(k) be the Jordan block
corresponding to (x− b)n. That is, B is the matrix which has main diagonal entries all
equal to b, first lower subdiagonal entries all equal to 1 and 0 elsewhere. Prove that the
transpose of B is similar to B. For a continuation of this exercise, see Exercise 5.2.24.

6. The Determinant

Throughout this section, R is a commutative ring and n is a fixed positive integer. We
prove that the determinant function det : Mn(R)→ R exists and is the unique alternating
multilinear form (on the columns) such that if In is the identity matrix, then det(In) = 1.

Let J = {1, . . . ,n} and Jn = J×·· ·× J (n times). We view the symmetric group Sn as
the subset of Jn consisting of n-tuples ~j = ( j1, . . . , jn) that are permutations of J. The sign
of a permutation σ ∈ Sn is denoted sign(σ).
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DEFINITION 4.6.1. Let R be a commutative ring, n ≥ 1, and (Rn)n =
⊕n

i=1 Rn. Con-
sider a function f : (Rn)n→ R. We say that f is a multilinear form if for each i,

f (x1, . . . ,xi−1,αu+βv,xi+1, . . . ,xn) =

α f (x1, . . . ,xi−1,u,xi+1, . . . ,xn)+β f (x1, . . . ,xi−1,v,xi+1, . . . ,xn).

We say that f is an alternating form if f (x1, , . . . ,xn) = 0 whenever xi = x j for some pair
i 6= j.

LEMMA 4.6.2. If f : (Rn)n → R is an alternating multilinear form and σ ∈ Sn is a
permutation on the set {1, . . . ,n}, then

f (xσ1, . . . ,xσn) = sign(σ) f (x1, , . . . ,xn).

We say that f is skew symmetric.

PROOF. Because σ factors into a product of transpositions, it is enough to show that
acting on the variables by a transposition changes the sign of f . For simplicity’s sake,
assume σ = (i, j) = (1,2). Look at

0 = f (x1 + x2,x1 + x2,x3, . . . ,xn)

= f (x1,x1,x3, . . . ,xn)+ f (x1,x2,x3, . . . ,xn)+

f (x2,x1,x3, . . . ,xn)+ f (x2,x2,x3, . . . ,xn)

= f (x1,x2,x3, . . . ,xn)+ f (x2,x1,x3, . . . ,xn).

This shows f (x1,x2,x3, . . . ,xn) =− f (x2,x1,x3, . . . ,xn). �

LEMMA 4.6.3. If R is a commutative ring and r ∈ R, there is a unique alternating mul-
tilinear form f : (Rn)n→ R such that f (e1, . . . ,en) = r, where (e1, . . . ,en) is the standard
basis for Rn.

PROOF. (Uniqueness) Given (x1, . . . ,xn) ∈ (Rn)n, for each i we can write xi = a1ie1 +
· · ·+anien. Since f is multilinear,

f (x1, . . . ,xn) = f
(

∑
j∈J

a j1e j, . . . ,∑
j∈J

a jne j

)

= ∑
j1∈J

(
a j11 f

(
e j1 ,∑

j∈J
a j2e j, . . . ,∑

j∈J
a jne j

))

= ∑
j1∈J

∑
j2∈J

(
a j11a j22 f

(
e j1 ,e j2 , . . . ,∑

j∈J
a jne j

))
...

= ∑
( j1,..., jn)∈Jn

a j11 · · ·a jnn f
(

e j1 , . . . ,e jn

)
.

Since f is alternating, if ~j = ( j1, . . . , jn) ∈ Jn is not a permutation, then f (e j1 , . . . ,e jn) = 0.
We can restrict the latest summation to ~j ∈ Sn. In this case, since f is skew symmetric,
f (e j1 , . . . ,e jn) = sign( j) f (e1, . . . ,en) = sign( j)r. This proves that

(6.1) f (x1, . . . ,xn) = r ∑
~j∈Sn

sign(~j)a j11 · · ·a jnn

is completely determined by r and (x1, . . . ,xn).



162 4. LINEAR ALGEBRA

(Existence) The formula in (6.1) defines a function f : (Rn)n→ R. Notice that

f (e1, . . . ,en) = r

since only for ~j = (1,2, . . . ,n) is the product formula in the summation (6.1) nonzero. We
need to prove f is an alternating multilinear form. Let α,β ∈ R, u,v∈ Rn. Write u = ∑uiei
and v = ∑viei. Set aik = αui+βvi, so that xk = ∑aikei = ∑(αui+βvi)ei = αu+βv. Then

f (x1, . . . ,αu+βv, . . . ,xn) = r ∑
~j∈Sn

sign( j)a j11 · · ·a jkk · · ·a jnn

= r ∑
~j∈Sn

sign( j)a j11 · · ·(αu jk +βv jk) · · ·a jnn

= rα ∑
~j∈Sn

sign( j)a j11 · · ·u jk · · ·a jnn+

rβ ∑
~j∈Sn

sign( j)a j11 · · ·v jk · · ·a jnn

= α f (x1, . . . ,u, . . . ,xn)+β f (x1, . . . ,v, . . . ,xn)

shows f is multilinear.
Now we show f is alternating. Suppose i < j and let τ be the transposition that

switches i and j. The alternating group An has index 2 in Sn, so every odd permutation is
of the form στ for some σ ∈ An. Assume xi = x j and show f (x1, . . . ,xn) = 0. For all k we
have aki = ak j. Also, if σ ∈ An then στ(i) = σ( j) and στ( j) = σ(i).

f (x1, . . . ,xn) = r ∑
σ∈Sn

sign(σ)aσ(1)1 · · ·aσ(n)n

= r ∑
σ∈An

(
aσ(1)1 · · ·aσ(n)n−aστ(1)1 · · ·aστ(n)n

)
= r ∑

σ∈An

(
aσ(1)1 · · ·aσ(n)n−aστ(1)1 · · ·aστ(i)i · · ·aστ( j) j · · ·aστ(n)n

)
= r ∑

σ∈An

(
aσ(1)1 · · ·aσ(n)n−aσ(1)1 · · ·aσ( j)i · · ·aσ(i) j · · ·aσ(n)n

)
= r ∑

σ∈An

(
aσ(1)1 · · ·aσ(n)n−aσ(1)1 · · ·aσ( j) j · · ·aσ(i)i · · ·aσ(n)n

)
= 0.

�

DEFINITION 4.6.4. By viewing the columns of a matrix in Mn(R) as vectors in Rn,
we identify Mn(R) with (Rn)n. The determinant is the unique alternating multilinear form
det : Mn(R)→ R such that det(In) = 1. By Lemma 4.6.3,

det(ai j) = ∑
~j∈Sn

sign( j)a j1,1 · · ·a jn,n.

LEMMA 4.6.5. Let A,B ∈Mn(R).
(1) det(AB) = det(A)det(B).
(2) A is invertible if and only if det(A) is a unit in R.
(3) If A and B are similar, then det(A) = det(B).
(4) det(A) = det(AT ).
(5) The determinant is an alternating multilinear form on the rows of matrices in

Mn(R).
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PROOF. (1): Fix A. Taking r = det(A) in (6.1) defines an alternating multilinear form
g : Mn(R)→ R, where g(C) = det(A)det(C). Define another function f : Mn(R)→ R by
f (C) = det(AC). Since f (In) = det(A), by Lemma 4.6.3, it is enough to prove that f is
alternating and multilinear. Assume u,v ∈ Rn and C = (c1, . . . ,cn) ∈Mn(R). Then

f (c1, . . . ,αu+βv, . . . ,cn) = det(A(c1, . . . ,αu+βv, . . . ,cn))

= det(Ac1, . . . ,αAu+βAv, . . . ,Acn)

= α det(Ac1, . . . ,Au, . . . ,Acn)+β det(Ac1, . . . ,Av, . . . ,Acn)

= α f (c1, . . . ,u, . . . ,cn)+β f (c1, . . . ,v, . . . ,cn).

If two columns of C are equal, then two columns of AC are equal, so f is alternating.
(2): If AB = In, then det(A)det(B) = 1. The converse follows from Lemma 4.6.9

because in this case A−1 = det(A)−1Aa.
(3): If A = X−1BX , then

det(A) = det(X−1)det(B)det(X)

= det(B)det(X−1)det(X)

= det(B)det(X−1X)

= det(B).

(4): Since R is commutative, for every σ ∈ Sn we have

aσ(1),1 · · ·aσ(n),n = a1,σ−1(1) · · ·an,σ−1(n).

This together with the fact that sign(σ) = sign(σ−1) lead to

det(A) = ∑
σ∈Sn

sign(σ)aσ(1),1 · · ·aσ(n),n

= ∑
σ∈Sn

sign(σ)a1,σ−1(1) · · ·an,σ−1(n)

= ∑
σ∈Sn

sign(σ)a1,σ(1) · · ·an,σ(n)

= det(AT ).

(5): Follows from (4). �

DEFINITION 4.6.6. For A ∈ Mn(R), let Ai j be the matrix in Mn−1(R) obtained by
deleting row i and column j from A. Then det(Ai j) is called the minor of A in position
(i, j) and (−1)i+ j det(Ai j) is called the cofactor of A in position (i, j).

LEMMA 4.6.7. If A is a matrix in Mn(R), then the following are true.

(1) For each row i, det(A) = ∑
n
j=1 ai j(−1)i+ j det(Ai j), and

(2) For each column j, det(A) = ∑
n
i=1 ai j(−1)i+ j det(Ai j).

PROOF. We prove that the determinant can be computed by cofactor expansion of row
i. The statement about column expansion follows from Lemma 4.6.5 (4). Define a function
f : Mn(R)→ R by the formula f (A) = ∑

n
j=1 ai j(−1)i+ j det(Ai j). The reader should verify

that f (In) = 1. By Lemma 4.6.3 it is enough to show that f is alternating and multilinear.
Assume the columns of A are (A1, . . . ,An) and assume Ak = A` and k < `. Therefore

aik = ai`. If j 6= k and j 6= `, then Ai j has two columns that are equal, so det(Ai j) = 0. The
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formula for f reduces to

f (A) = aik(−1)i+k det(Aik)+ai`(−1)i+` det(Ai`)

= aik(−1)i+k det(Aik)+aik(−1)i+` det(Ai`)

= aik

(
(−1)i+k det(Aik)+(−1)i+` det(Ai`)

)
.

But Aik is obtained from Ai` by permuting the columns. In fact, `−k−1 transpositions are
sufficient. Since the determinant form is skew symmetric, det(Aik) = (−1)`−k−1 det(Ai`).
The reader should verify that (−1)i+k +(−1)i+`(−1)`−k−1 = 0, hence

f (A) = aik

(
(−1)i+k det(Aik)+(−1)i+` det(Ai`)

)
= aik

(
(−1)i+k det(Aik)+(−1)i+`(−1)`−k−1 det(Aik)

)
= aik det(Aik)

(
(−1)i+k +(−1)i+`(−1)`−k−1

)
= 0

which proves f is alternating.
Assume the columns of A are (A1, . . . ,An) where Ak = αu+ βv for some u,v ∈ Rn.

Let B = (bi j) be the matrix obtained by replacing column k of A with the vector u. Let
C = (ci j) be the matrix obtained by replacing column k of A with the vector v. We show that
f (A) = α f (B)+β f (C). Because they differ only in column k, we have Aik = Bik =Cik. If
j 6= k, then the determinant is multilinear, so det(Ai j) = α det(Bi j)+β det(Ci j). Therefore

f (A) =
n

∑
j=1

ai j(−1)i+ j det(Ai j)

= ∑
j 6=k

ai j(−1)i+ j (α det(Bi j)+β det(Ci j))+(αbik +βcik)(−1)i+k det(Aik)

= α

n

∑
j=1

bi j(−1)i+ j det(Bi j)+β

n

∑
j=1

ci j(−1)i+ j det(Ci j)

= α f (B)+β f (C)

�

DEFINITION 4.6.8. Let A ∈Mn(R). The adjoint of A, denoted Aa, is the transpose of
the matrix of cofactors of A. Therefore, Aa =

(
(−1)i+ j det(A ji)

)
.

LEMMA 4.6.9. AaA = AAa = det(A)In.

PROOF. Assume i 6= j. Let B be the matrix which is equal to A with column i replaced
with a copy of column j. Compute det(B) = 0 by column expansion down column i. Use
the facts that Bki = Aki and bki = bk j = ak j for each k.

0 =
n

∑
k=1

bki(−1)i+k det(Bki)

=
n

∑
k=1

ak j(−1)i+k det(Aki)

Let AaA = (ci j). Then

ci j =
n

∑
k=1

(−1)i+k det(Aki)ak j =

{
det(A) if i = j
0 if i 6= j.
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�

DEFINITION 4.6.10. By Lemma 4.6.5, the determinant function is constant on simi-
larity classes. If M is a finitely generated free R-module and φ ∈ HomR(M,M), then the
determinant of φ is defined to be the determinant of the matrix of φ with respect to any
basis of M.

6.1. The Characteristic Polynomial.

DEFINITION 4.6.11. Let k be a field, V a finite dimensional k-vector space, and T ∈
Homk(V,V ). If T is not invertible, then we say T is singular.

THEOREM 4.6.12. Let k be a field, V a finite dimensional k-vector space, and T ∈
Homk(V,V ). The following are true.

(1) T 6= 0 if and only if there exists v ∈V such that T (v) 6= 0.
(2) min.polyk(T ) has degree less than or equal to n2.
(3) k[T ] is a commutative k-subalgebra of Homk(V,V ).
(4) The following are equivalent.

(a) T is singular.
(b) The constant term of min.polyk(T ) is zero.
(c) There exists S ∈ Homk(V,V ) such that S 6= 0 and T S = ST = 0.
(d) There exists v ∈V − (0) such that T (v) = 0.

(5) The following are equivalent.
(a) T is invertible.
(b) Rank(T ) = dimk(V ).
(c) Nullity(T ) = 0.

PROOF. For the proof, apply Proposition 4.5.5, Theorems 4.4.6 and 4.4.11, Corollar-
ies 4.4.8 and 4.4.10, and Exercise 4.2.11. �

DEFINITION 4.6.13. Let R be a commutative ring and M ∈Mn(R). If x is an indeter-
minate, then we can view M as a matrix in Mn(R[x]). The characteristic polynomial of M is
char.polyR(M) = det(xIn−M), which is a polynomial in R[x]. Computing the determinant
using row expansion (Lemma 4.6.7) along row one, it is easy to see that char.polyR(M) is
monic and has degree n. The characteristic polynomial is constant on similarity classes, by
Exercise 4.6.22. If P is a finitely generated free R-module and φ ∈ HomR(P,P), then the
characteristic polynomial of φ is defined to be the characteristic polynomial of the matrix
of φ with respect to any basis of P.

THEOREM 4.6.14. Let k be a field and V a finite dimensional vector space over k. Let
φ ∈ Homk(V,V ). As in Theorem 4.5.31, let q1,q2, . . . ,qr be the invariant factors of φ .

(1) char.polyk(φ) = q1q2 · · ·qr.
(2) (Cayley-Hamilton) If p(x) = char.polyk(φ), then p(φ) = 0. The minimal poly-

nomial of φ divides the characteristic polynomial of φ . That is, min.polyk(φ) |
char.polyk(φ).

(3) If f ∈ k[x] is irreducible, then f | char.polyk(φ) if and only if f | min.polyk(φ).
The roots of min.polyk(φ) are precisely the roots of char.polyk(φ).

PROOF. (1): By Corollary 4.5.32 there is a basis for V such that the matrix of φ is the
block diagonal matrix (C(q1),C(q2), . . . ,C(qr)), where C(qi) is the companion matrix for
qi. By Exercise 4.6.21, the characteristic polynomial of C(qi) is qi. Apply Exercise 4.6.23
iteratively to show that char.polyk(φ) = q1q2 · · ·qr.
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(2): By Theorem 4.5.31, min.polyk(φ) = qr.
(3): By Theorem 4.5.31, q1 | q2 | · · · | qr. The irreducible factors of char.polyk(φ) are

equal to the irreducible factors of min.polyk(φ). �

DEFINITION 4.6.15. Let k be a field, V a finite dimensional k-vector space. If φ ∈
Homk(V,V ) and λ ∈ k, then λ is called a characteristic root or eigenvalue of φ if φ −λ is
singular. The set U(λ ) = ker(φ −λ ) = {x ∈V | φ(x) = λx} is called the eigenspace of λ .
By Theorem 4.6.12 (4), U(λ ) 6= (0). If v ∈U(λ ) and v 6= 0, then φ(v) = λv and we say v
is an eigenvector corresponding to λ . The reader should verify that U(λ ) is a φ -invariant
subspace of V .

THEOREM 4.6.16. Let k be a field, V a finite dimensional vector space over k and φ ∈
Homk(V,V ). Then the eigenvalues of φ are precisely the roots of the minimal polynomial
of φ .

PROOF. Let λ ∈ k and f (x) = min.polyk(φ). By the division algorithm, f (x) =
q(x)(x− λ ) + f (λ ). Then f (φ) = 0 implies f (λ ) = −q(φ)(φ − λ ) = −(φ − λ )q(φ).
If λ is an eigenvalue of φ , then there exists a nonzero v ∈ V such that (φ − λ )(v) = 0.
Therefore, f (λ )v = 0, which implies f (λ ) = 0. Conversely, assume f (λ ) = 0. Since
deg(q)< deg( f ), we know q(φ) 6= 0. By Theorem 4.6.12 (1), there exists u 6= 0 such that
v = q(φ)u 6= 0. Then 0 = (φ −λ )q(φ)u = (φ −λ )v. Theorem 4.6.12 (4) implies φ −λ is
singular, hence λ is an eigenvalue of φ . �

THEOREM 4.6.17. Let k be a field, V a finite dimensional vector space over k and
φ ∈ Homk(V,V ). Then the following are equivalent.

(1) There is a basis B for V such that M(φ ,B) is diagonal.
(2) There is a basis of V consisting of eigenvectors of φ .
(3) The minimal polynomial min.polyk(φ) factors into a product of linear factors in

k[x] and has no multiple roots.

PROOF. (1) is equivalent to (2): This follows straight from Definitions 4.5.4 and
4.6.15.

(1) is equivalent to (3): This follows from Corollary 4.5.34. The Jordan blocks are
one-by-one if and only if the exponents ei j are equal to 1, if and only if the matrix is
diagonal. �

EXAMPLE 4.6.18. Consider the matrix B =

 1 1 1
−1 −1 −1
0 1 1

 over the field Q. Then

B2 =

 0 1 1
0 −1 −1
−1 0 0

, and B3 =

−1 0 0
1 0 0
−1 −1 −1

. Using determinants we compute the

characteristic polynomial of B:

char.poly(B) = det(x−B)

=

∣∣∣∣∣∣
x−1 −1 −1

1 x+1 1
0 −1 x−1

∣∣∣∣∣∣
= (x−1)(x+1)(x−1)+1+(x−1)+(x−1)

= x(x2− x+1).
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The roots of the characteristic polynomial are 0, α = (1−
√

3i)/2 and β = (1+
√

3i)/2.
By Theorem 4.6.16, 0,α,β are also roots of the minimal polynomial of B. This proves that
min.poly(B) = x(x2−x+1). The rational canonical form of B over Q is therefore equal to

the companion matrix of x(x2− x+1), which is C(x3− x2 + x) =

0 0 0
1 0 −1
0 1 1

. Let V =

Q(3) and ψ ∈ HomQ(V,V ) the linear transformation corresponding to left multiplication
by B. Since min.poly(ψ) has degree 3, we know V is a cyclic Q[ψ]-module. Let u1 =
(1,0,0)t , u2 = Bu1 = (1,−1,0)t , and u3 = Bu2 = (0,0,−1)t . Then U = {u1,u2,u3} is a

basis for V such that M(ψ,U,U) = C(x3− x2 + x). Set P =

1 1 0
0 −1 0
0 0 −1

. Then we

see that P = P−1 and PBP = C(x3− x2 + x). The Jordan canonical form of ψ exists over
F = Q(α), the splitting field of x2− x+1. Since B has 3 distinct eigenvalues, the Jordan

form of ψ is the diagonal matrix

0 0 0
0 α 0
0 0 β

. By Theorem 4.6.17, a Jordan basis for B

is a basis of eigenvectors. Using elementary row operations and gaussian elimination, the

reduced row echelon form of B is

1 0 0
0 1 1
0 0 0

. Therefore, v1 = (0,1,−1)t is an eigenvector

for 0. Using the identity α2−α +1 = 0, we find the reduced row echelon form of B−α

is

1 0 α−1
0 1 1−α

0 0 0

. Therefore, v2 = (1−α,α − 1,1)t is an eigenvector for α . Likewise,

v3 = (1−β ,β −1,1)t is an eigenvector for β . Then V = {v1,v2,v3} is a Jordan basis for
ψ . Let P be the matrix with columns v1,v2,v3. Using a symbolic calculator such as [14],
for instance, one can show that P−1BP is equal to the matrix with diagonal (0,α,β ).

EXAMPLE 4.6.19. Consider the matrix A =

 2 3 1
−1 2 1
4 −1 −1

 over the field Q. Using

determinants we compute the characteristic polynomial of A:

char.poly(A) = det(x−A)

=

∣∣∣∣∣∣
x−2 −3 −1

1 x−2 −1
−4 1 x+1

∣∣∣∣∣∣
= (x−2)2(x+1)−12−1+(x−2)+3(x+1)−4(x−2)

= x2(x−3).

The roots of the characteristic polynomial are 0, and 3. Since A(A−3) =

−1 2 1
3 −6 −3
−7 14 7


has rank 1, we see from Theorem 4.6.16, that the minimal polynomial of A is min.poly(A)=
x2(x−3). The rational canonical form of A over Q is therefore equal to the companion ma-

trix of x3−3x2, which is C(x3−3x2) =

0 0 0
1 0 0
0 1 3

. Let V =Q(3) and φ ∈HomQ(V,V ) the
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linear transformation corresponding to left multiplication by A. Since min.poly(φ) has de-
gree 3, we know V is a cyclic Q[φ ]-module. Let u1 = (1,0,0)t , u2 = Au1 = (2,−1,4)t , and
u3 = Au2 = (5,0,5)t . Then U = {u1,u2,u3} is a basis for V such that M(φ ,U,U) =C(x3−

3x2). Set Q =

1 2 5
0 −1 0
0 4 5

. Then we see that AQ = QC(x3−3x2). The Jordan canonical

form of ψ exists over Q. By Theorem 4.3.8, the elementary divisors of φ are x2,x− 3.

The Jordan canonical form for φ is J(φ) =

0 0 0
1 0 0
0 0 3

. The cyclic submodule of V corre-

sponding to the eigenvalue 0 has dimension 2. The matrix A−3 =

−1 3 1
−1 −1 1
4 −1 −4

 has

rank 2 and A2(A−3) = 0. Set w1 = (1,1,−4)t and w2 = Aw1 = (1,−3,7)t . Then A2w1 = 0
and Aw2 = 0. Set w3 = (1,0,1)t . Then (A− 3)w3 = 0, so w3 is an eigenvector for 3. Let
P be the matrix with columns w1,w2,w3. The reader should verify that P is invertible and
AP = PJ(φ). So w1,w2,w3 is a Jordan basis for φ .

EXAMPLE 4.6.20. Let k be a field and A =

[
1 1
1 1

]
. The characteristic polynomial of

A is (x− 1)2− 1 = x2− 2x = x(x− 2). If chark 6= 2, then A has two distinct eigenvalues,

hence the Jordan form of A is diagonal: J(A) =
[

0 0
0 2

]
. A Jordan basis for A is a basis of

eigenvectors, (1,−1)t , (1,1)t . If chark = 2, then 0 is the only eigenvalue of A. The Jordan

form of A is therefore J(A) =
[

0 0
1 0

]
and a Jordan basis for A is (1,0)t , (1,1)t .

6.2. Exercises.

EXERCISE 4.6.21. Suppose k is a field and

M =



0 0 0 . . . 0 0 −a0
1 0 0 . . . 0 0 −a1
0 1 0 . . . 0 0 −a2
...

...
...

...
...

0 0 0 . . . 0 0 −an−3
0 0 0 . . . 1 0 −an−2
0 0 0 . . . 0 1 −an−1


is a matrix in Mn(k).

(1) Prove that min.polyk(M) = xn +an−1xn−1 + · · ·+a1x+a0.
(2) Prove that char.polyk(M) = min.polyk(M).
(3) Prove that the rank of M is equal to the rank of the transpose of M.

EXERCISE 4.6.22. Let R be a commutative ring and A and B similar matrices in
Mn(R). Prove that char.polyR(A) = char.polyR(B).

EXERCISE 4.6.23. Let R be a commutative ring, A ∈Mm(R), B ∈Mn(R). Define the
direct sum of A and B by

A⊕B =

[
A 0
0 B

]
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which is a matrix in Mm+n(R). The direct sum A⊕B is sometimes called a block diagonal
matrix and is denoted diag(A,B). Prove:

(1) det(A⊕B) = det(A)det(B).
(2) char.polyR(A⊕B) = char.polyR(A)char.polyR(B).
(3) Rank(A⊕B) = Rank(A)+Rank(B).

EXERCISE 4.6.24. (Cramer’s Rule) Let R be a commutative ring. Suppose A∈Mn(R),
x,b ∈ Rn such that Ax = b. Prove that xi det(A) = det(Bi), where Bi = (a1, . . . ,b, . . . ,an)
is the matrix obtained by replacing column i of A with the column vector b. (Hint: If
A= (a1, . . . ,an) is written in columnar form, then b= x1a1+ · · ·+xnan. Use the multilinear
and alternating properties when computing det(Bi).)

EXERCISE 4.6.25. Let θ : R→ S be a homomorphism of commutative rings.
(1) Show that θ induces a homomorphism of rings θ : Mn(R)→Mn(S).
(2) Show that θ(det(M)) = det(θ(M)), for every M in Mn(R).
(3) We know from Theorem 3.6.2 that θ induces a homomorphism of rings R[x]→

S[x]. Show that θ(char.polyR(M)) = char.polyS(θ(M)).

EXERCISE 4.6.26. Let A =

 0 1 1
−4 −4 −1
0 0 −2

 in the ring of 3-by-3 matrices over the

field Q.
(1) Find char.poly(A), the characteristic polynomial.
(2) Find min.poly(A), the minimal polynomial.
(3) Find the invariant factors of A in Q[x].
(4) Find the elementary divisors of A in Q[x].
(5) Find the rational canonical form of A.
(6) Find the Jordan canonical form of A.
(7) Find an invertible matrix P such that P−1AP is equal to the Jordan canonical

form of A. In other words, find a Jordan basis for the linear transformation on
Q(3) defined by A.

EXERCISE 4.6.27. Let R be a commutative ring and A ∈ Mnm(R). For each i, let Ai
denote column i. Assume 1≤ i < j≤m and α ∈ R. If B is the matrix obtained by replacing
A j with αAi +A j, show that det(B) = det(A).

EXERCISE 4.6.28. This exercise is a generalization of Example 4.6.20. Let k be a
field and A = (ai j) the n-by-n matrix in Mn(k) with ai j = 1 for every pair (i, j).

(1) Assume the characteristic of k does not divide n. Prove the following:
(a) min.polyk(A) = x(x−n).
(b) char.polyk(A) =±xn−1(n− x).
(c) The set

v1 =



−1
1
0
0
...
0


,v2 =



−1
0
1
0
...
0


, . . . ,vn−1 =



−1
0
0
...
0
1


,vn =



1
1
1
...
1
1


is a Jordan basis for A.
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(2) Assume the characteristic of k divides n. Prove the following:
(a) min.polyk(A) = x2.
(b) char.polyk(A) =±xn.
(c) The set v1, v2, . . . , vn−2, vn−1 = (0,0, . . . ,0,1)t , vn is a Jordan basis for A,

where v1, . . . ,vn−2 and vn are the vectors from Part (1) (c).

EXERCISE 4.6.29. Let R be an integral domain and M a finitely generated R-module.
Let φ ∈ HomR(M,M). Show that there exists a monic polynomial p(x) ∈ R[x] such that
p(φ) = 0. (Hints: Exercise 4.5.26, Lemma 3.5.1, and Theorem 4.6.14 (2).)

EXERCISE 4.6.30. Let R be a commutative ring and n ≥ 1. Define the trace of a
matrix α = (αi j) ∈Mn(R) by trace(α) = ∑

n
i=1 αii.

(1) Prove that the trace mapping is an R-module homomorphism from Mn(R) to R.
(2) Prove that trace(αβ ) = trace(βα). (Hint: First show trace(αei j) = trace(ei jα)

if ei j is an elementary matrix and α is arbitrary.)
(3) Prove that if α and β are similar, then trace(α) = trace(β ).

EXERCISE 4.6.31. Let R be a commutative ring, M a finitely generated free R-module,
and X a basis for M over R. Define the trace of φ ∈ HomR(M,M) to be trace(φ) =
trace(M(φ ,X)). Show that this definition is independent of the choice for X . Show that the
trace mapping is an R-module homomorphism from HomR(M,M) to R.

EXERCISE 4.6.32. Let k be a field, n ≥ 1, f = xn + an−1xn−1 + · · ·+ a0 ∈ k[x] and
M =C( f ) the companion matrix of f . Prove the following.

(1) det(M) = (−1)na0.
(2) trace(M) =−an−1.

EXERCISE 4.6.33. Let R be a commutative ring and M a finitely generated free R-
module of rank n. Let φ ∈ HomR(M,M). Show that if char.polyR(φ) = xn + an−1xn−1 +
· · ·+a0, then trace(φ) =−an−1 and det(φ) = (−1)na0.

EXERCISE 4.6.34. Let k be a field, V a finitely generated vector space over k, and
φ ∈ Homk(V,V ). Suppose q = min.polyk(φ) = xm +am−1xm−1 + · · ·+a0 is irreducible in
k[x]. Prove the following.

(1) char.polyk(φ) = qr for some integer r.
(2) det(φ) = (−1)mrar

0.
(3) trace(φ) =−ram−1.

EXERCISE 4.6.35. Let k be a field and A a matrix in Mn(k) such that Rank(A) = r < n.
Prove:

(1) det(A) = 0.
(2) If B is an r+1-by-r+1 submatrix of A, then det(B) = 0.
(3) A contains an r-by-r submatrix of rank r.

EXERCISE 4.6.36. Let k be a field and f an irreducible polynomial with coefficients
in k. Show that if M is an n-by-n matrix over k such that f (M) = 0, then deg( f )≤ n.

EXERCISE 4.6.37. Let R be a commutative ring and n ≥ 1. If A ∈Mn(R), show that
the trace of A (see Exercise 4.6.30) satisfies:

n

∑
i=1

n

∑
j=1

ei jAe ji = trace(A)In

where ei j denotes the elementary matrix (Definition 4.5.2) and In = e11 + · · ·+ enn the
identity matrix.
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EXERCISE 4.6.38. Let R be a commutative ring and A = Mn(R) the ring of n-by-
n matrices over R. The so-called trace pairing τ : A×A→ R is defined by τ(α,β ) =
trace(αβ ), where the trace map is defined in Exercise 4.6.30. Show that τ satisfies these
properties:

(1) τ(α,β ) = τ(β ,α).
(2) τ(a1α1 +a2α2,β ) = a1τ(α1,β )+a2τ(α2,β ) for a1,a2 ∈ R.
(3) τ(α,b1β1 +b2β2) = b1τ(α,β1)+b2τ(α,β2) for b1,b2 ∈ R.
(4) If α 6= 0 is fixed, then τ(α, ) : A→ R is nonzero. That is, there exists β such that

τ(α,β ) 6= 0.
We say that τ is a symmetric nondegenerate bilinear form.





CHAPTER 5

Fields

If k is a field, there is a unique homomorphism η : Z→ k and the kernel of η is
either (0), or (p) for some prime p (Example 3.2.4 (5) and Exercise 3.2.29 (2)). If η is
one-to-one, then the characteristic of k is zero and k contains the quotient field of imη ,
which is isomorphic to the field of rational numbers Q (Exercise 3.5.2). Otherwise, the
characteristic of k is positive and the image of η is a finite field isomorphic to Z/p, where
p = chark. The image of η is contained in every subring of k. The prime subfield of k
is the smallest subfield P of k. Since P contains the image of η , if chark = 0, then P is
isomorphic to Q. Otherwise, chark = p is positive and P is isomorphic to Z/p. In this
chapter, the study of an arbitrary field F is always in relation to its subfields. That is, F
will be viewed as an extension of a subfield.

A central theme of this book is that Algebra is the study of polynomial equations. If
p(x) is a polynomial with coefficients over a field k, then we show in Kronecker’s Theorem
(see Theorem 5.2.4) that there is an extension field F of k which contains all of the roots
of p(x). In this chapter, groups arise as permutation groups of the roots of the polynomial
p(x). Since a polynomial has only a finite number of roots, in this chapter we restrict our
attention to finite groups. There is a connection between the groups acting on the roots of
p(x) and the intermediate fields between k and F . This relationship is encapsulated in the
Fundamental Theorem of Galois Theory.

1. Field Extensions

This section serves as the preparation site for the rest of the chapter. The results in
Section 5.1.1 are basic and of a foundational nature. Section 5.1.1 contains an illustration
of how Algebra can be applied to Geometry. Using field extensions, three questions of an-
tiquity involving straightedge and compass constructions are answered in Theorem 5.1.17.

1.1. Algebraic Extensions and Transcendental Extensions. Let k and F be fields.
If k is a subring of F , then we say F is an extension of k, k is a subfield of F , or that F/k is
an extension of fields. An intermediate field of F/k is a field E such that k ⊆ E ⊆ F , k is a
subfield of E, and E is subfield of F .

DEFINITION 5.1.1. Let F/k be an extension of fields. Then F is a k-algebra, and
in particular F is a vector space over k. If X ⊆ F , then as in Definition 4.4.4 we denote
by k[X ] the k-subalgebra of F generated by k and X . By k(X) we denote the subfield of
F generated by k and X . If F = k(u1, . . . ,un), then we say F is a finitely generated field
extension of k. If F = k(u), then we say F is a simple extension of k and u is a primitive
element.

EXAMPLE 5.1.2. Let F be a finite field of order q. Let k be the prime subfield of F .
If F has characteristic p, then k is isomorphic to Z/p. If dimk F = n, then q = pn. By
Corollary 3.6.10, the group of units of F is a cyclic group of order q−1. Let ζ ∈ F∗ be an
element of order q−1. Then F = k(ζ ) is a simple extension and ζ is a primitive element.

173
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LEMMA 5.1.3. Let F/k be an extension of fields and X ⊆ F.

(1) k[X ] = {g(u1, . . . ,un) | n≥ 1,ui ∈ X ,g ∈ k[x1, . . . ,xn]}
(2) k(X) =

{
g(u1,...,un)
h(v1,...,vn)

| n≥ 1,ui,v j ∈ X ,g,h ∈ k[x1, . . . ,xn],h(v1, . . . ,vn) 6= 0
}

As k-algebras, the quotient field of k[X ] is isomorphic to k(X).

PROOF. Is left to the reader. �

Let F/k be an extension of fields and u ∈ F . By Definition 4.4.5, u is algebraic over k
if there is a nonzero polynomial f ∈ k[x] and f (u) = 0. Otherwise, u is transcendental over
k. If each element of F is algebraic over k, then F/k is an algebraic extension.

THEOREM 5.1.4. (Fundamental Theorem on Algebraic Elements in a Field Extension)
Let F/k be an extension of fields. Let u ∈ F be an element that is algebraic over k. Let x
be an indeterminate. The the following are true.

(1) k[u] = k(u).
(2) k[u]∼= k[x]/( f ) where f is a polynomial in k[x] satisfying:

(a) f is monic and irreducible,
(b) f (u) = 0, and
(c) if g ∈ k[x] and g(u) = 0, then f | g. The polynomial f is uniquely de-

termined by u. We call f the irreducible polynomial of u and write f =
Irr.polyk(u). Sometimes we call f the minimal polynomial of u and write
f = min.polyk(u).

(3) If f = Irr.polyk(u), and deg f = n, then {1,u, . . . ,un−1} is a basis for k[u] as a
k-vector space.

(4) dimk k[u] = n.

PROOF. Since u is algebraic, we know from Theorem 4.4.6 that deg f > 0. If f =
gh, then 0 = f (u) = g(u)h(u). Since F is a field, this implies g(u) = 0 or h(u) = 0.
Theorem 4.4.6 implies that f | g or f | h. So degg = deg f or degh = deg f . This proves f
is irreducible. The rest follows from Theorem 4.4.6 and Lemma 4.4.3. �

THEOREM 5.1.5. Let F/k be an extension of fields and u ∈ F an element that is tran-
scendental over k. Let x be an indeterminate. Then k(x)∼= k(u) by a k-algebra isomorphism
that maps x to u.

PROOF. Define τ : k[x]→ F to be the “evaluation at u” map. By Theorem 4.4.6, τ

maps k[x] isomorphically onto k[u]. By Exercise 3.5.2, τ factors through k(x). Hence there
is a k-algebra isomorphism k(x)∼= k(u). �

THEOREM 5.1.6. Let F/k be an extension of fields and u∈ F. Assume L/K is another
extension of fields and v ∈ L. Let σ : k→ K be an isomorphism of fields and assume either

(1) u is transcendental over k and v is transcendental over K, or
(2) there exists an irreducible polynomial f ∈ k[x] such that f (u) = 0 and (σ f )(v) =

0.

Then there is an isomorphism τ : k(u)→ K(v) such that τ(u) = v and τ|k = σ .

PROOF. (1): Follows straight from Theorem 5.1.5.
(2): Because σ is an isomorphism of fields, we have an isomorphism of polynomial

rings σ : k[x]→K[x], where σ
(
∑aixi

)
= ∑σ(ai)xi. Therefore, σ( f ) is irreducible in K[x].
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Then kerησ = ( f ) and the diagram

k[x] σ //

��

K[x]

η

��
k[x]
( f )

τ // K[x]
(σ f )

commutes. By the Isomorphism Theorem, τ is an isomorphism. The rest follows from
Theorem 5.1.4. �

The next two corollaries play a fundamental role in Galois Theory.

COROLLARY 5.1.7. Let F/k be an extension of fields and assume u,v ∈ F. Assume
either

(1) u and v are transcendental over k, or
(2) u and v are algebraic and satisfy the same irreducible polynomial.

Then there is a k-algebra isomorphism τ : k(u)→ k(v) such that τ(u) = v.

COROLLARY 5.1.8. Let F/k be an extension of fields. Assume u,v ∈ F are algebraic
over k and that there is a k-algebra isomorphism τ : k(u)→ k(v) such that τ(u) = v. Then
u and v satisfy the same irreducible polynomial.

PROOF. Let φ : k[x]→ k[u] where φ(x) = u. Let ψ : k[x]→ k[v] where ψ(x) = v. The
diagram of k-algebra homomorphisms

k[x]
φ //

=

��

k[u]

τ

��
k[x]

ψ // k[v]

commutes. Let ker(φ) = ( f ), where f is the monic irreducible polynomial for u. The
diagram commutes, so f ∈ ker(ψ). It follows that f (v) = 0. By Theorem 5.1.4, it follows
that ker(ψ) is generated by f . �

EXAMPLE 5.1.9. In Q[x], let p(x) = x3 + 2x+ 1. By the Rational Root Theorem,
p(1) = 4 and p(−1) =−2 imply p(x) has no root in Q. Therefore, p is irreducible. Since
p′(x) = 3x2 +2 is positive, we see that p(x) has exactly one real root, call it α . In C there
are two nonreal roots of p(x), call them β1,β2. Then β1 and β2 are complex conjugates of
each other. By Corollary 5.1.7, the fields Q(α),Q(β1),Q(β2) are pairwise isomorphic to
each other. Since Q(α)⊆ R and βi 6∈ R, we know that as subsets of C, Q(α) is not equal
to Q(βi). Therefore, over the field Q(α), the polynomial p(x) factors into p(x) = (x−
α)q(x), where q(x) is an irreducible quadratic with roots β1,β2. This implies Q(α)(β1) =
Q(α)(β2) has degree 2 over Q(α). Using Galois Theory we will see later that the fields
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Q(β1) and Q(β2) are not equal as sets.

Q(α,β1) =Q(α,β2)

Q(α)

dim=2
77

Q(β1)

dim=2

OO

Q(β2)

dim=2
gg

Q
dim=3

gg

dim=3

OO

dim=3

66

PROPOSITION 5.1.10. Let F/k be an extension of fields.

(1) (Finite Dimensional is Finitely Generated and Algebraic) If F is finite dimen-
sional over k, then F is finitely generated and algebraic over k.

(2) (Finitely Generated and Algebraic is Finite Dimensional) If X = {u1, . . . ,un}⊆F
and each ui is algebraic over k, then dimk k(X)< ∞.

(3) If F = k(X) and every element of X is algebraic over k, then F is algebraic over
k.

(4) (Algebraic over Algebraic is Algebraic) Let E be an intermediate field of F/k. If
F/E is algebraic and E/k is algebraic, then F/k is algebraic.

(5) (Algebraic Closure of k in F Exists) If E = {u ∈ F | u is algebraic over k}, then
E is an intermediate field of F/k.

PROOF. (1): Since F is finite dimensional over k, F is finitely generated (Defini-
tion 4.2.5). By Corollary 4.4.8, F is algebraic over k.

(2): By Theorem 4.4.6 (5), dimk k(u1)< ∞. Now use induction and Proposition 4.2.8.
(3): Let u ∈ k(X). By Lemma 5.1.3 there exist u1, . . . ,um,v1, . . . ,vn in X and polyno-

mials f ,g over k such that

u =
f (u1, . . . ,um)

g(v1, . . . ,vn)
.

This shows u ∈ k(u1, . . . ,um,v1, . . . ,vn). By Parts (2) and (1) this shows u is algebraic over
k.

(4): Let u∈ F . There is a polynomial f =∑
n
i=0 aixi in E[x] such that f (u) = 0. Let K =

k(a0, . . . ,an). Then u is algebraic over K and dimK K(u) < ∞. Since each ai is algebraic
over k, by Part (2), dimk K < ∞. By Proposition 4.2.8, dimk K(u) < ∞. By Part (1), u is
algebraic over k.

(5): Let u,v be algebraic over k. By Part (3), k(u,v) is an algebraic extension of k. So
k(u,v)⊆ E. Therefore, u+ v, u− v, uv, u/v are all in E. It follows that E is a field. �

DEFINITION 5.1.11. Let K/k be an extension of fields. Let E and F be intermediate
fields. That is, k ⊆ E ⊆ K and k ⊆ F ⊆ K. The composite of E and F , denoted EF , is
k(E ∪F).
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THEOREM 5.1.12. (Fundamental Theorem on Composite Fields) Let K/k be an ex-
tension of fields. Let E and F be intermediate fields.

EF

E F

E ∩F

k

Assume dimk F = n is finite and that {v1, . . . ,vn} is a basis for F as a k-vector space. The
following are true.

(1) As a vector space over E, EF is spanned by {v1, . . . ,vn}.
(2) dimE (EF)≤ dimk F.
(3) If dimk E = m is finite and {u1, . . . ,um} is a basis for E as a k-vector space,

then dimk EF ≤ dimk E dimk F and as a vector space over k, EF is spanned by
{uiv j | 1≤ i≤ m, 1≤ j ≤ n}.

(4) If dimk E and dimk F are both finite and relatively prime to each other, then
dimk EF = dimk F dimk E.

(5) If dimk EF = dimk F dimk E, then k = E ∩F.

PROOF. (1): We have F = k(v1, . . . ,vn). It follows that EF = k(E ∪F) = k(E)(F) =
E(F) =E(k(v1, . . . ,vn)) =E(v1, . . . ,vn). By Exercise 5.1.22, a typical element u in EF is a
linear combination u = e1M1 + · · ·+erMr where each ei is in E and each Mi is a monomial
of the form Mi = v

εi,1
1 · · ·v

εi,n
n , where εi, j ≥ 0 for each i, j. In the field F , each monomial

Mi can be written as a k-linear combination in the form Mi = ai,1v1 + · · ·+ ai,nvn, where
ai, j ∈ k for each i, j. Therefore,

u = e1M1 + · · ·+ erMr

=
r

∑
i=1

ei

(
n

∑
j=1

ai, jv j

)

=
r

∑
i=1

(
n

∑
j=1

eiai, jv j

)

=
n

∑
j=1

(
r

∑
i=1

eiai, j

)
v j

This proves (1) since each eiai, j is in E.
(2): This follows from (1) and Corollary 4.2.6.
(3): This follows from (2) and Proposition 4.2.8.
(4): We have dimk (E) = m and dimk (F) = n both divide dimk (EF). Since m and

n are relatively prime, it follows that mn is the least common multiple of m and n. Thus
mn≤ dimk (EF). This and (3) proves (4).

(5): We have dimk (EF) = dimk (F)dimk (E) = dimE (EF)dimk (E), which implies
dimE (EF) = dimk (F). By this and (2), dimE (EF) = dimk (F) ≤ dimE∩F (F). It follows
from Proposition 4.2.8 that k = E ∩F . �
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1.2. Classical Straightedge and Compass Constructions. In this section we apply
field extensions to answer three questions of antiquity on geometric constructions using
straightedge and compass. The results of this section are not applied anywhere else in the
book.

A real number a in R is constructible if by use of straightedge and compass we can
construct a line segment of length |a|. We are given that 1 is constructible. Ruler and
compass constructions involve:

(1) Drawing lines through two points.
(2) Intersecting two lines.
(3) Drawing a circle with a given center and radius.
(4) Intersecting a line and a circle.
(5) Intersecting two circles.

LEMMA 5.1.13. The set of all constructible numbers is a subfield of R containing Q.

PROOF. Using the straightedge we can construct the x-axis. Given the unit length 1
and compass we can construct any n ∈ Z. In fact, for any constructible numbers a and b,
the compass can be used to construct a± b. Using the straightedge and compass we can
construct the y-axis, by erecting a perpendicular to the x-axis at the number 0. The line L
through the points (0,0) and (1,b) in R2 is the set of solutions to y = bx. The point (a,ab)
is the intersection of L with the vertical line through (a,0). If b 6= 0, the point (a/b,b)
is the intersection of L with the horizontal line through (0,b). Therefore, ab and a/b are
constructible. �

Let F be any subfield of R. Let F2 = {(x,y) | x,y ∈ F} be the plane over F , which we
view as a subset of the euclidean plan R2. A linear equation over F in two variables is an
equation of the form ax+by+c = 0, where a and b are in F and are not both equal to 0. A
line in F2 is the set of solutions (x,y)∈ F2 to a linear equation over F . A circle in F2 is the
set of solutions (x,y) ∈ F2 to a quadratic equation of the form x2 + y2 + ax+ by+ c = 0,
where a,b,c ∈ F .

LEMMA 5.1.14. The following are true.

(1) Given A0 = (x0,y0) and A1 = (x1,y1) in F2, if A0 6= A1, there is a line L in F2

passing through A0 and A1.
(2) Given a point A0 = (x0,y0) in F2 and a positive r ∈ F, there is a circle in F2 with

center A0 and radius r.
(3) If L1 and L2 are non-parallel lines in F2, then L1∩L2 is a point in F2.
(4) If L is a line and C a circle, both in F2, and L∩C is non-empty in R2, then L∩C

is non-empty in the plane over F(
√

γ), for some γ ∈ F, γ ≥ 0.
(5) If C0 and C1 are circles in F2, and C0 ∩C1 is non-empty in R2, then C0 ∩C1 is

non-empty in the plane over F(
√

γ), for some γ ∈ F, γ ≥ 0.

PROOF. (1), (2) and (3): Proofs are left to the reader.
(4): Suppose the equation for C is x2 + y2 +ax+by+ c = 0, and the equation for L is

dx+ ey+ f = 0, where a,b,c,d,e, f ∈ F . Without loss of generality, assume e 6= 0. Solve
for y on the line L to get y =−( f +dx)/e. Substituting into C,

x2 +( f +dx)2/e2 +ax−b( f +dx)/e+ c = 0.
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This is a quadratic equation over F of the form Ax2+Bx+C = 0, where A= (e2+d2)/e2 >
0. In the field of complex numbers C the solutions are

x =
−B±

√
B2−4AC

2A
.

Let γ = B2−4AC. Then γ ∈ F . If γ = 0, then L∩C consists of one point in F2. If γ < 0,
then in R2, L∩C = /0. If γ > 0, then there are two points in L∩C, and both belong to the
plane over F(

√
γ).

(5): Suppose the equation for C0 is x2 + y2 +a0x+b0y+ c0 = 0, and the equation for
C1 is x2 + y2 + a1x+ b1y+ c1 = 0. If C0 = C1, then take γ to be 1. Otherwise subtract
to get (a0− a1)x+(b0− b1)y+(c0− c1) = 0. If a0 = a1 and b0 = b1, then C0 ∩C1 = /0.
Otherwise the linear equation (a0−a1)x+(b0−b1)y+(c0−c1) = 0 defines a line, which
we call L. Then C0∩L =C1∩L =C0∩C1, and we reduce to part (4). �

PROPOSITION 5.1.15. If u ∈ R is constructible, then for some r ≥ 0, dimQ(Q(u)) is
equal to 2r.

PROOF. To construct u, a finite sequence of straightedge and compass constructions
are performed. By Lemma 5.1.14, u belongs to a field extension of Q obtained by a fi-
nite number of quadratic extensions, each of which is inside R. There exist positive real
numbers γ1, . . . ,γn such that u belongs to Q(γ1) · · ·(γn), a subfield of R. Moreover, γ2

1 ∈Q
and for 1 < i ≤ n, γ2

i ∈ Q(γ1, . . . ,γi−1). By Proposition 4.2.8, degrees of consecutive ex-
tensions multiply. The degree of each consecutive extension is either 1 or 2. This means
dimQ(Q(γ1, . . . ,γn)) is 2s for some s≥ 0. Since dimQ(Q(u)) divides 2s, we are done. �

COROLLARY 5.1.16. Suppose u∈R is algebraic over Q and the degree of Irr.polyQ(u)
has degree d. If d is not of the form 2r, then u is not constructible.

THEOREM 5.1.17. It is impossible by straightedge and compass alone to
(1) trisect the angle 60◦ (that is, cos20◦ is not constructible),
(2) double the cube (that is, 3√2 is not constructible), or
(3) square the circle (that is,

√
π is not constructible).

PROOF. (1): Take θ to be 60◦. Then cosθ = 1
2 . By trigonometry, cosθ = 4cos3

(
θ

3

)
−

3cos
(

θ

3

)
. Let u = 2cos20◦. Then u satisfies u3−3u−1 = 0. The irreducible polynomial

for u over Q is x3−3x−1, which has degree 3. Then u is not constructible, cos20◦ is not
constructible, and it is impossible to trisect 60◦.

(2): The irreducible polynomial for 3√2 over Q is x3−2, which has degree 3.
(3): We have not proved it here, but π is transcendental. Hence

√
π is not constructible.

�

1.3. Exercises.

EXERCISE 5.1.18. Let p be an odd prime and k = Z/p the field of order p. Show that
there are (p−1)/2 elements α ∈Up such that φα = x2−α is irreducible. Show that in this
case k[x]/(φα) is a field of order p2.

EXERCISE 5.1.19. Let k = Z/3 be the field of order 3. Show that f = x2 + 1 is
irreducible over k. Let F = k[x]/( f ). Let u ∈ F be the coset represented by x. By Corol-
lary 3.6.10, the group F∗ is cyclic. A generator for F∗ is called a primitive element. Show
that u+1,u−1,−u+1,−u−1 are the four primitive elements in F∗.
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EXERCISE 5.1.20. Let p(x) = x3− 3x− 1 ∈ Q[x]. Show that p is irreducible and let
F = Q[x]/(p) be the quotient. Let u denote the element of F corresponding to the coset
containing x.

(1) Exhibit a basis for F as a Q-vector space.
(2) Write the following in terms of the basis given in (1): u−1, u4 +2u3 +3, u−2.

EXERCISE 5.1.21. Let k be a field, x an indeterminate, and K = k(x) the field of
rational functions. Let α denote the rational function x4/(4x3−1) in K. Then F = k(α) is
a field extension of k and K is a field extension of F . There is a lattice of subfields

K = k(x)

F = k(α)

ff

k

OO

88

where an arrow denotes set containment. Show that K is algebraic over F . Determine the
minimal polynomial of x over F and the dimension dimF(K). (Hint: Apply Theorem 3.7.9
to show that y4−α(4y3−1) is an irreducible polynomial in K[y].)

EXERCISE 5.1.22. Let K/k be an extension of fields and u1, . . . ,un elements of K,
where n ≥ 1. As in Definition 5.1.1, k[u1, . . . ,un] is the k-subalgebra of K generated by
k and u1, . . . ,un. Show that a typical element in k[u1, . . . ,un] can be written as a sum of
the form k1M1 + · · ·+ krMr where ai ∈ k for each i and each Mi is a product of the form
Mi = u

εi,1
1 · · ·u

εi,n
n where εi, j ≥ 0 for each i, j.

EXERCISE 5.1.23. Let F/k be a finite dimensional extension of fields. If E is an
intermediate field of F/k, show that F/E is finite dimensional, E/k is finite dimensional,
and dimk(F) = dimk(E)dimE(F).

2. Algebraic Field Extensions

There are two main results in this section. Let k be a field and f a polynomial over k.
The main result of Section 5.2.1 is the proof that there is a unique extension F/k generated
by adjoining the roots of f to k (Corollary 5.2.8). The main result of Section 5.2.2 is the
Primitive Element Theorem (Theorem 5.2.14) which contains sufficient conditions for an
algebraic extension of fields to be a simple extension.

2.1. Existence and Uniqueness of a Splitting Field. Let k be a field and p a poly-
nomial in k[x] of positive degree. If F/k is an extension of fields, then we say that p splits
in F if each irreducible factor of p in F [x] is linear. Equivalently, p factors in F [x] into a
product of linear polynomials.

LEMMA 5.2.1. Let F be a field. The following are equivalent.
(1) Every nonconstant polynomial p ∈ F [x] has a root in F.
(2) Every nonconstant polynomial p ∈ F [x] splits in F.
(3) Every irreducible polynomial p ∈ F [x] has degree 1.
(4) If K/F is an algebraic extension of fields, then F = K.
(5) F contains a subfield k such that F/k is algebraic and every polynomial in k[x]

splits in F.
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PROOF. (1), (2), and (3) are clearly equivalent.
(2) implies (5): Is trivial.
To show (3) and (4) are equivalent, use Theorem 5.1.4.
(5) implies (4): If K/F is algebraic, then by Proposition 5.1.10 (4), K/k is algebraic.

If u ∈ K, then the irreducible polynomial of u over k splits in F . Therefore u ∈ F . �

DEFINITION 5.2.2. If F is a field that satisfies any of the equivalent statements of
Lemma 5.2.1, then we say F is algebraically closed. If F/k is an extension of fields, we
say F is an algebraic closure of k in case F is algebraic over k, and F is algebraically
closed.

DEFINITION 5.2.3. Let F/k be an extension of fields and p a nonconstant polynomial
in k[x]. We say that F is a splitting field of p if

(1) p splits in F , and
(2) F = k(u1, . . . ,un) where p(ui) = 0 for each i.

THEOREM 5.2.4. (Kronecker’s Theorem) Let k be a field and f a polynomial of posi-
tive degree in k[x]. There exists an extension field F of k and an element u ∈ F satisfying

(1) u is a root of f ,
(2) dimk(k[u])≤ deg( f ), and
(3) if f is irreducible, then dimk(k[u]) = deg( f ) and k[u] is unique up to a k-algebra

isomorphism.

PROOF. Let p be an irreducible factor of f . Write f = pq. Let F = k[x]/(p) and
take u to be the coset represented by x in F . Then p(u) = p([x]) = [p(x)] = [0]. Then
f (u) = p(u)q(u) = 0. The rest follows from Theorems 5.1.4 and 5.1.6. �

EXAMPLE 5.2.5. Let p be a prime and k a field of characteristic p. Let α ∈ k and
f = xp−α . In this example we show that f is either irreducible, or splits. The Frobenius
homomorphism θ : k→ k is defined by a 7→ ap (Exercise 3.2.31). If α = ap for some a∈ k,
then f = xp−ap = (x−a)p by (Exercise 3.2.30). This shows that f splits over k if f has
a root in k. Now assume that α is not in the image of the Frobenius map. Thus f does not
have a root in k. For sake of contradiction assume f is reducible over k. Let f = gg1 where
g is irreducible and degg = m where 1 ≤ m < p. Let F = k[x]/(g). By Theorem 5.2.4, F
is an extension field of k containing a root u of g. Every root of g is a root of f . By the first
part, f = (x− u)p in F [x]. By Corollary 3.6.5, F [x] is a UFD. This implies g = (x− u)m

in F [x]. But g ∈ k[x]. By the Binomial Theorem, g = xm−muxm−1 + · · ·+(−u)m, which
implies mu ∈ k. But gcd(m, p) = 1 implies u ∈ k. This contradicts our original assumption
that f does not have a root in k. We have shown that f = xp−α is either irreducible, or
splits.

COROLLARY 5.2.6. If k is a field and f a polynomial in k[x] of positive degree n, then
there exists a splitting field F/k for f such that dimk(F)≤ n!.

PROOF. Factor f = p1 . . . pm in k[x] where each pi is irreducible. If deg pi = 1 for
each i, then take F = k and stop. Otherwise, assume deg p1 > 1. By Kronecker’s Theorem
(Theorem 5.2.4), there is an extension field F1/k such that F1 = k(α) and p1(α) = 0. Note
that f (α) = 0 and dimk(F1) = deg p1 ≤ n. Factor f = (x−α)g in F1[x]. By induction on
n, there exists a splitting field F/F1 for g and dimF1(F) ≤ (n− 1)!. So f splits in F and
there exist roots u1, . . . ,um of f such that F = F1(u1, . . . ,um) = k(α,u1, . . . ,um). Lastly,
dimk(F) = dimk(F1)dimF1(F)≤ n!, by Proposition 4.2.8. �
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LEMMA 5.2.7. Let k be a field, f a polynomial in k[x] of positive degree n, and F a
splitting field for f over k. Let σ : k→ K be an isomorphism of fields, σ( f ) the image of
f in K[x]. Let L/K be an extension field such that σ( f ) splits in L. Then σ extends to a
homomorphism of k-algebras σ̄ : F → L making a commutative

F σ̄ // L

k

OO

σ // K

OO

diagram. Every root of f in F is mapped by σ̄ to a root of σ( f ) in L. If L is a splitting field
for σ( f ), then σ̄ is an isomorphism.

PROOF. If F = k, then take σ̄ = σ and stop. Otherwise, dimk(F)> 1 and there is an
irreducible factor g of f such that degg > 1. Let α be a root of g in F and β a root of
σ(g) in L. By Theorem 5.1.6 there is a k-algebra isomorphism τ : k(α)→ K(β ) such that
τ(α) = β and the bottom square of the diagram

F ∃σ̄ // L

k(α)

OO

τ

∼=
// K(β )

OO

k

OO

σ

∼=
// K

OO

commutes. Also, F is a splitting field for f over k(α), and dimk(α)(F) < dimk(F). By
induction on dimk(F), τ can be extended to a k-algebra homomorphism σ̄ : F → L such
that the entire diagram above commutes. A root of f is mapped under σ̄ to a root of σ( f ).
Since f splits in F , σ( f ) splits in σ̄(F). The polynomial σ( f ) has at most deg( f ) roots in L
by Corollary 3.6.8, and they all belong to σ̄(F). If λ ∈ L is a root of σ( f ), then λ ∈ σ̄(F).
If L/K is generated by roots of σ( f ), then L⊆ σ̄(F) and σ̄ is an isomorphism. �

COROLLARY 5.2.8. Let k be a field and f ∈ k[x]. A splitting field for f exists and is
unique up to k-algebra isomorphism.

PROOF. This follows straight from Corollary 5.2.6 and Lemma 5.2.7. �

EXAMPLE 5.2.9. Let n ≥ 2. In C, let ζ = e2πi/n. Then ζ is a primitive nth root of
unity. That is, {ζ k | 0 ≤ k ≤ n− 1} are the n distinct roots of xn− 1 in C. Therefore, in
C[x]

xn−1 = (x−1)(x−ζ )(x−ζ
2) · · ·(x−ζ

n−1)

is the unique factorization of xn− 1. For each k, ζ k ∈ Q(ζ ). This shows that Q(ζ ) is a
splitting field for xn−1 over Q. Consider the polynomial

Φn(x) = 1+ x+ · · ·+ xn−1 =
xn−1
x−1

of degree n−1. The distinct roots of Φn in C are ζ ,ζ 2, . . . ,ζ n−1. By the same reasoning
as above, Q(ζ ) is a splitting field for Φn over Q. If p is a prime, then by Example 3.7.8,
Φp is irreducible over Q. By Theorem 5.1.4, Φp = Irr.polyQ(ζ ), Q(ζ ) =Q[x]/(Φp), and
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{1,ζ ,ζ 2, . . . ,ζ p−2} is a basis for Q(ζ ) as a Q-vector space. The polynomial Φp(x) is
called the pth cyclotomic polynomial.

2.2. The Primitive Element Theorem. Let k be a field, f ∈ k[x], and F/k a splitting
field for f . By Corollary 5.2.8, F exists and is unique up to a k-algebra isomorphism.
We say f is separable in case for every irreducible factor p of f , every root of p in F is
a simple root. If K/k is a extension of fields, then we say K/k is a separable extension
if every u ∈ K is the root of a separable polynomial in k[x]. If u ∈ K is the root of a
separable polynomial in k[x], then we say u is separable. A separable extension is an
algebraic extension. If chark = 0, then by Theorem 3.6.15 (1), every polynomial f ∈ k[x]
is separable. The purpose of this section is to prove Theorem 5.2.14 which shows that a
finite separable extension of fields is a simple extension.

EXAMPLE 5.2.10. Let k be a field of prime characteristic p. The Frobenius homo-
morphism θ : k→ k is defined by a 7→ ap (Exercise 3.2.31). The image of θ is denoted
kp. Assume θ is not onto and let α ∈ k− kp. As shown in Example 5.2.5, the polynomial
f = xp−α is irreducible in k[x] but is not separable.

LEMMA 5.2.11. Let k be a field and f an irreducible polynomial in k[x]. The formal
derivative of f is denoted f ′ (see Definition 3.6.13).

(1) The following are equivalent:
(a) f is separable.
(b) gcd( f , f ′) = 1.
(c) f ′ 6= 0.

(2) If f is not separable, then chark = p is a prime number and there exists a poly-
nomial g(x) ∈ k[x] such that f (x) = g(xp).

PROOF. This follows from Theorem 3.6.15. �

THEOREM 5.2.12. Let F be a finite field with charF = p. Let k be the prime subfield
of F and n = dimk(F).

(1) The group of units of F is a cyclic group.
(2) F = k(u) is a simple extension, for some u ∈ F.
(3) The order of F is pn.
(4) F/k is a separable extension.
(5) F is the splitting field for the separable polynomial xpn − x over k.
(6) Any two finite fields of order pn are isomorphic as fields.

PROOF. As a k-vector space, F is isomorphic to kn, which has cardinality |k|n, by
Exercise 1.1.12. By Corollary 3.6.10, the group of units of F is a finite cyclic group of order
pn− 1. If u is a generator for F∗, then F = k(u). The polynomial xpn − x = x(xpn−1− 1)
has pn distinct roots in F . Therefore F is the splitting field for the separable polynomial
xpn − x over k and every element of F is separable over k. By Corollary 5.2.8, F is unique
up to k-algebra isomorphism. �

LEMMA 5.2.13. Let F/k be an extension of fields. Let α and β be elements of F
that are algebraic over k. If β is separable over k, then there exists γ ∈ F such that
k(α,β ) = k(γ).

PROOF. First we prove the lemma for some special cases. Let K = k(α,β ). If α ∈ k,
then K = k(β ), so set γ = β . If β ∈ k, then K = k(α), so set γ = α . If k is a finite field, then
K is a finite field by Proposition 5.1.10 (2). In this case K = k(γ) is a simple extension, by
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Theorem 5.2.12 (2). Assume from now on that α 6∈ k, β 6∈ k, and k is infinite. The proof of
the general case is split into a sequence of three steps.

Step 1 is to define a candidate for γ . Let f = min.polyk(α) and g = min.polyk(β ).
Let F1 be a splitting field for f g over F . Let α = α1,α2, . . . ,αm be the distinct roots of f
in F1. Let β = β1,β2, . . . ,βn be the distinct roots of g in F1. By our hypotheses, m≥ 2 and
n≥ 2. Consider

S =

{
α1−αi

β j−β1
| i = 2, . . . ,m and j = 2, . . . ,n

}
which is a finite subset of F . Since k is infinite, there exists c ∈ k∗ such that c 6∈ S. Set
γ = α + cβ . So c ∈ k(α,β ). To finish, it is enough to show α ∈ k(γ) and β ∈ k(γ).

Step 2 is to show that γ = αi +cβ j if and only if i = j = 1. If 1≤ i≤m and 1≤ j ≤ n
and γ = αi + cβ j, then αi + cβ j = α + cβ . So c(β j−β ) = α−αi. If j = 1, then i = 1. If
j 6= 1, then c = (α−αi)/(β j−β ). This contradicts the choice of c. This completes Step 2.

Step 3 is to show that k(α,β ) ⊆ k(γ). Define h(x) ∈ k(γ)[x] by h(x) = f (γ − cx).
Then h(β ) = f (γ − cβ ) = f (α) = 0. If j > 1, then γ − cβ j 6= αi for any i. Thus h(β j) =
f (γ − cβ j) 6= 0. Thus, β2, . . . ,βn are not roots of h(x). Let g1 = min.polyk(γ)(β ). Since
h(β ) = 0, by Theorem 5.1.4 we know g1 | h. Likewise, g(β ) = 0 implies g1 | g. Every root
of g1 is a root of h and g. We proved that the only root g and h have in common is β . At
this point in the proof we use the fact that g is separable. It follows that gcd(g,h) = x−β .
Hence g1 is linear with one root, β , which implies β ∈ k(γ). Moreover, α = γ − cβ ∈
k(β ,γ) = k(γ). �

THEOREM 5.2.14. (The Primitive Element Theorem) Let F/k be a finite dimensional
separable extension of fields. Then there is a separable element u ∈ F such that F = k(u).

PROOF. Let dimk(F) = n. Let α1, . . . ,αn be a basis for F as a k-vector space. For
i = 1, . . . ,n, let Fi = k(α1, . . . ,αi). Then So F2 = k(α1,α2). Lemma 5.2.13 implies there
exists γ2 ∈F such that F2 = k(γ2). By the same argument, F3 =F2(α3)= k(γ2,α3) and there
exists γ3 ∈ F such that F3 = k(γ3). Iterate this process n−1 times. Hence F = Fn = k(γn)
for some γn. �

2.3. Exercises.

EXERCISE 5.2.15. Show that two finite fields E and F are isomorphic if and only if
the order of E is equal to the order of F .

EXERCISE 5.2.16. Let α = 3√2 be the cube root of 2 in R and ζ = e2πi/3 a primitive
cube root of 1 in C.

(1) Show that the splitting field for x3−2 over Q is Q(ζ ,α) and that dimQQ(ζ ,α)=
6.

(2) Show that Q(ζ ,α) is equal to the composite field EF where E and F are any two
fields from this list: Q(ζ ), Q(α), Q(ζ α), Q(ζ 2α).

(3) Show that Irr.polyQ(ζ ) (α) has degree 3. Show that Irr.polyQ(ζ ) (ζ α) has degree
3. Show that Irr.polyQ(ζ ) (ζ

2α) has degree 3.
(4) Show that Irr.polyQ(ζ α) (α) has degree 2. Show that Irr.polyQ(ζ 2α) (α) has de-

gree 2.

EXERCISE 5.2.17. Let F/k be an extension of fields and assume dimk F = p is prime.
Let u be any element of F that is not in k. Prove that F = k(u).
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EXERCISE 5.2.18. Let F/k be an extension of fields and assume dimk F = 2. Let u
be an element of F that is not in k and f = Irr.polyk u. Show that F is a splitting field for
f over k.

EXERCISE 5.2.19. Let K/k be an extension of fields. Let F1,F2 be two intermediate
fields where k ⊆ Fi ⊆ K and dimk Fi = 2 for each i. Suppose there exists a k-algebra
isomorphism σ : F1→ F2. Show that F1 and F2 are equal as sets.

EXERCISE 5.2.20. Let k = F2 be the field of order 2. In k[x], let f = x2, g = x2 + 1,
and h = x2 + x+1. Show that the following four rings are distinct in the sense that no two
are isomorphic to each other: Z/(4), k[x]/( f ), k[x]/(g), k[x]/(h). For a continuation of this
exercise, see Exercise 5.6.10.

EXERCISE 5.2.21. Let k be a field and A a finite dimensional k-algebra. Prove that if
dimk(A) = 2, then A is commutative.

EXERCISE 5.2.22. True or False. Justify your answers.
(1) Q(

√
2)∼=Q(

√
3)

(2) R(
√
−2)∼= R(

√
−3)

EXERCISE 5.2.23. Let k be a field and K = k(x) the field of rational functions over
k in the variable x. Let σ : K→ K be the function which maps a typical rational function
f (x) ∈ K to the rational function f (x−1). Show that σ is an automorphism of the field K.
(Hint: Corollary 5.1.7.)

EXERCISE 5.2.24. This exercise is a continuation of Exercise 4.5.54. Let k be a field
and A a matrix in Mn(k). Prove that A is similar to the transpose of A.

3. Galois Theory

Let k be a field, f ∈ k[x] a separable polynomial, and F a splitting field for f over k.
The roots of f are the solutions to the algebraic equation f (x) = 0. The field extension
F/k is generated by the roots of f . As in Definition 4.4.1, by Autk(F) we denote the
group of all k-algebra automorphisms of F . In Theorem 5.3.15 we show that F/k is a
so-called Galois extension. For a Galois extension, the group Autk(F) acts not only on F ,
but on the set of roots of f (x). Moreover the action of the group Autk(F) on F is entirely
determined by its action on the roots of f (x). In the Fundamental Theorem of Galois
Theory (Theorem 5.3.18), we show that there is a one-to-one correspondence between the
intermediate fields of F/k and the subgroups of Autk(F). By this theorem, the study of the
roots of the polynomial equation f (x) = 0 is reduced to the study of the action of a finite
group acting on the set of roots. It was Galois himself who emphasized the importance of
studying the set of roots of a polynomial under the action by a finite group of permutations
(see [6]).

3.1. A Group Acting on a Field. In this section we will be using some results as well
as some terminology from Group Theory. For instance, if a group of permutations G acts on
a set X , there is the well defined notion of the subset of X fixed by G. Also, for any subset S
of X there is the subgroup of G fixing S. The reader is referred to Section 2.4.1, especially
Definition 2.4.9. While the underlying theory applies, the notation and terminology in the
present context are slightly different than that of Chapter 2. Proposition 5.3.1 extends to
the context of field extensions these important notions from Group Theory.

PROPOSITION 5.3.1. Let F/k be an extension of fields and G = Autk(F).
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(1) If H is a subset of G, then

FH = {v ∈ F | σ(v) = v for all σ ∈ H}

is an intermediate field of F/k which is called the fixed field of H.
(2) If E is an intermediate field of F/k, then

GE = {σ ∈ G | σ(v) = v for all v ∈ E}

is a subgroup of G which is called the subgroup of G fixing E. Note that GE =
AutE(F).

PROOF. The proof is left to the reader. �

PROPOSITION 5.3.2. Let F/k be an extension of fields.

(1) Let f ∈ k[x], σ ∈ Autk(F), and u ∈ F. If f (u) = 0, then f (σ(u)) = 0.
(2) Assume u ∈ F is algebraic over k and E = k[u]. If σ ∈ Autk(E), then σ is

completely determined by σ(u).

PROOF. (1): If f = ∑
n
i=0 aixi, then

f (σ(u)) =
n

∑
i=0

ai(σ(u))i =
n

∑
i=0

σ(aiui) = σ(
n

∑
i=0

aiui) = σ( f (u)) = σ(0) = 0.

(2): By Theorem 5.1.4, there is a k-basis for E of the form 1,u,u2, . . . ,un−1 where
n = dimk(E). �

EXAMPLE 5.3.3. Let F2 = {0,1} be the field of order 2, which is isomorphic to the
ring Z/2. Let p(x) = x2 + x+ 1 ∈ F2[x]. Since p(0) = p(1) = 1, p(x) has no root in F2
and is irreducible in F2[x]. Let F be the splitting field of p(x). Then F has order 4. Let
α be a root of p(x) in F . Then α2 = α + 1 and by Theorem 5.1.4, F = {0,1,α,α + 1}.
By Theorem 5.2.12, F is unique up to isomorphism. Let φ ∈ Aut(F). Then φ(0) = 0,
φ(1) = 1 and φ(α) is equal to α or α +1. If φ(α) = α , then φ is equal to 1 ∈Aut(F), the
identity function. By Proposition 5.3.2, φ is determined by the value of φ(α). Therefore,
Aut(F) has order at most 2. We prove that there is an automorphism of order two in
Aut(F). By Exercise 3.2.31, the Frobenius homomorphism σ : F → F defined by σ(a) =
a2 is a homomorphism. Since F is a finite field, σ is necessarily one-to-one and onto
(Exercises 3.2.28 and 1.1.11). Since σ(α) = α2 = α +1, we have shown that Aut(F) has
order two.

EXAMPLE 5.3.4. The polynomial p(x) = x2 + 1 is irreducible in Q[x]. The roots of
p(x) in C are i,−i. Let F = Q(i) = Q(i) be the splitting field for p(x) over Q. By Theo-
rem 5.1.4, a basis for F over Q is 1, i. By Corollary 5.1.7, there exists an automorphism
χ : Q(i)→Q(i) such that χ(i) =−i. The automorphism χ is usually called complex con-
jugation (see Section 1.4). By Proposition 5.3.2 (1), if φ ∈ AutQ(F), then φ(i) is equal to
either i or −i. By Proposition 5.3.2 (2), this implies AutQ(F) has order at most two. This
proves AutQ(F) = 〈σ〉 is a cyclic group of order two.

In the next theorem we show that automorphisms of a field are linearly independent
over F . In Section 5.3 it will not be necessary to view the automorphisms as elements in
an F-vector space, but Theorem 5.3.5 will be applied in the proof of Lemma 5.5.1 where
we show that if F/k is an extension of fields, then the endomorphism ring Homk(F,F) is
an F-vector space which contains the automorphism group Autk(F) as a subset.
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Theorems 5.3.5, 5.3.6, and 5.3.8 play key roles in Galois Theory. The proof we give
below of the Fundamental Theorem (Theorem 5.3.18) relies heavily on these three the-
orems. The statements of the theorems concern a field and its group of automorphisms.
Because the topic of this section is Galois Theory, this is to be expected. But, upon a
close look at the proofs of these results, the common feature that stands out is that they
are strictly of a linear algebra nature. From this perspective, we see that Galois Theory is
inherently a part of Linear Algebra.

THEOREM 5.3.5. Let F be a field and σ1, . . . ,σn a finite set of distinct automorphisms
of F. If u1, . . . ,un are elements of F and

(3.1) u1σ1(x)+ · · ·+unσn(x) = 0

for all x ∈ F, then each ui is equal to zero.

PROOF. For sake of contradiction assume a nontrivial dependence relation of the type
(3.1) exists. Pick one such relation involving a minimal number of the automorphisms. If
necessary, relabel the automorphisms and assume

(3.2) u1σ1 + · · ·+urσr = 0

where u1, . . . ,ur are all nonzero and r is minimal. Since σi(1) = 1 for each i, in (3.2) we
have r ≥ 2. For some y ∈ F we have σ1(y) 6= σr(y). Evaluating (3.2) at yx, we have:

(3.3) u1σ1(y)σ1(x)+ · · ·+urσr(y)σr(x) = 0

for all x ∈ F . Multiplying (3.2) by σr(y), we have:

(3.4) u1σr(y)σ1(x)+ · · ·+urσr(y)σr(x) = 0

for all x ∈ F . Subtracting (3.3) and (3.4), we have:

u1(σ1(y)−σr(y))σ1(x)+ · · ·+ur−1(σr−1(y)−σr(y))σr−1(x) = 0

which is a shorter dependence relation, a contradiction. �

THEOREM 5.3.6. Let F/k be a finite dimensional extension of fields. Then the order
of the group of automorphisms Autk(F) is less than or equal to dimk(F).

PROOF. If Autk(F) = 〈1〉, then there is nothing to prove. Let r = dimk(F). For sake
of contradiction assume Autk(F) contains a set of r+1 distinct automorphisms, which we
enumerate: σ0, . . . ,σr. Let v1, . . . ,vr be a basis for F as a k-vector space. By Theorem 4.2.4,
the r+1 vectors

x0 =
(
σ0(v1),σ0(v2), . . . ,σ0(vr)

)
,

x1 =
(
σ1(v1),σ1(v2), . . . ,σ1(vr)

)
,

...

xr =
(
σr(v1),σr(v2), . . . ,σr(vr)

)
,

in Fr are linearly dependent over F . Hence there exists a nonzero vector (c0,c1, . . . ,cr) in
Fr+1 such that

(3.5) c0σ0(v j)+ c1σ1(v j)+ · · ·+ crσr(v j) = 0

for j = 1, . . . ,r. Let u be an arbitrary element of F . In terms of the k-basis, u has a
representation u = a1v1 + · · ·+arvr for unique a1, . . . ,ar in k. For each σi we have:

(3.6) σi(u) = a1σi(v1)+ · · ·+arσi(vr).



188 5. FIELDS

Consider:
r

∑
i=0

ciσi(u) =
r

∑
i=0

ci (a1σi(v1)+ · · ·+arσi(vr))

=
r

∑
j=1

a j

(
r

∑
i=0

ciσi(v j)

)
= 0

(3.7)

where the last equation follows from (3.5). Since u was arbitrary, (3.7) is a contradiction
to Theorem 5.3.5. �

EXAMPLE 5.3.7. Let F = Fq be a finite field with order q and char(F) = p. If k = Fp
is the prime subfield and dimk(F) = n, then q = pn. By Exercise 3.2.31, the Frobenius
homomorphism σ : F → F defined by σ(x) = xp is a homomorphism. Since F is a finite
field, σ is necessarily one-to-one and onto (Exercises 3.2.28 and 1.1.11). Let α be a
generator for the group of units of F (Corollary 3.6.10). Then in F∗, the order of α is
|α|= pn−1. Therefore α pn

= α and if 1 < i < pn, then α i 6= α . It follows from σ(α) =

α p 6=α , σ2(α)=σ(α p)= (α p)p =α p2 6=α , . . . , σ i(α)=α pi 6=α , . . . , σn(α)=α pn
=α

that σ has order n in Aut(F). By Theorem 5.3.6, Aut(F) is cyclic and the Frobenius
homomorphism σ is a generator.

If G is a group and H is a subgroup, the index of H in G is denoted [G : H]. The order
of G is [G : 1].

THEOREM 5.3.8. Let F/k be an extension of fields, G a finite subgroup of Autk(F),
and K = FG. Then F/K is finite dimensional and dimK(F)≤ [G : 1].

PROOF. Assume [G : 1] = n and G = {σ1, . . . ,σn}. For sake of contradiction, as-
sume the statement of the theorem is false. By Exercise 4.2.22, there exists a subset
{v0, . . . ,vn}⊆ F which is linearly independent over K. By Theorem 4.2.4, the n+1 vectors

x0 =
(
σ1(v0),σ2(v0), . . . ,σn(v0)

)
,

x1 =
(
σ1(v1),σ2(v1), . . . ,σn(v1)

)
,

...

xn =
(
σ1(vn),σ2(vn), . . . ,σn(vn)

)
in Fn are linearly dependent over F . Let V be the subspace of Fn spanned by X =
{x0,x1, . . . ,xn}. Then dimF(V ) ≤ n so a linearly independent subset of X has cardinal-
ity at most n. By Corollary 4.2.6, there is a linearly independent subset of X that is a
spanning set for V . If necessary, reorder the vectors in X such that x0 is in the linear span
of {x1, . . . ,xn}. If c0 is an arbitrary element of F , then there exist n elements c1, . . . ,cn in
F such that 0 = c0x0 + c1x1 + · · ·+ cnxn. This is equivalent to

(3.8) 0 =
n

∑
i=0

ciσ j(vi)

for j = 1, . . . ,n. For each i = 0, . . . ,n, consider

ai = σ1(ci)+ · · ·+σn(ci).

By Theorem 5.3.5, σ1, . . . ,σn are linearly independent so we can find c0 in F such that
a0 6= 0. By the comment above, we can pick c1, . . . ,cn so that (3.8) holds for j = 1, . . . ,n.
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Since G is a group,
σ j(ai) = σ jσ1(ci)+ · · ·+σ jσn(ci)

= σ1(ci)+ · · ·+σn(ci)

= ai

implies ai ∈ K = FG, for i = 0,1, . . . ,n. Consider
n

∑
i=0

aivi =
n

∑
i=0

(
n

∑
j=1

σ j(ci)

)
vi

=
n

∑
i=0

(
n

∑
j=1

σ j(ci)σ j(σ
−1
j (vi))

)

=
n

∑
j=1

σ j

(
n

∑
i=0

ciσ
−1
j (vi)

)
= 0

(3.9)

where the last 0 is from (3.8). The left hand side of (3.9) is a nontrivial K-linear combina-
tion of v0,v1, . . . ,vn. This is a contradiction. �

3.2. Galois Extensions. In this section useful necessary and sufficient conditions for
an extension of fields F/k to be a Galois extension are derived. As an application, in
Corollary 5.3.17 we prove the important result that any finite separable extension can be
embedded as an intermediate field of a Galois extension.

DEFINITION 5.3.9. Let F/k be an extension of fields and G a finite subgroup of
Autk(F). If k = FG, then we say F/k is a Galois extension with Galois group G. We
also say F is a G-Galois extension of k.

PROPOSITION 5.3.10. If F is a G-Galois extension of k, then dimk(F) = [G : 1] and
G = Autk(F).

PROOF. This follows directly from Theorems 5.3.6 and 5.3.8. �

PROPOSITION 5.3.11. Let F be a G-Galois extension of k and α ∈ F. The subgroup
of G fixing α is denoted Gα (Definition 2.4.9). If Gα = 〈1〉, then F = k(α).

PROOF. Let f = min.polyk(α). The orbit of α under the group G is R = {σ(α) | σ ∈
G}. If σ ,τ ∈ G and σ(α) = τ(α), then σ−1τ ∈ Gα = 〈1〉. Therefore, |R| = [G : 1]. By
Proposition 5.3.2, every element of R is a root of f . So deg f ≥ [G : 1]. By Theorem 5.1.4,
dimk k(α) = deg f . By Proposition 5.3.10, all of the numbers in the string of inequalities:

[G : 1]≤ deg f = dimk k(α)≤ dimk(F)

are equal. Hence k(α) = F . �

PROPOSITION 5.3.12. Let F/k be a finite dimensional extension of fields and σ1, . . . ,σn
a finite set of distinct automorphisms in Autk(F). If dimk(F) = n, then F/k is Galois with
group Autk(F) = {σ1, . . . ,σn}.

PROOF. We have {σ1, . . . ,σn}⊆Autk(F), hence n≤ [Autk(F) : 1]. By Theorem 5.3.6,
n = dimk(F) ≥ [Autk(F) : 1] ≥ n. Therefore, Autk(F) = {σ1, . . . ,σn}. In particular, this
proves the set {σ1, . . . ,σn} is a group. For notational simplicity, let G = Autk(F) and
K = FG. By Theorem 5.3.8, dimK(F) = n. By Exercise 5.1.23 applied to the tower of
fields: k ⊆ K ⊆ F , we conclude that k = K = FG. �
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EXAMPLE 5.3.13. Let F = Fq be a finite field with characteristic char(F) = p and
order q. If k = Fp is the prime subfield and dimk(F) = n, then q = pn. By Example 5.3.7,
Autk(F) = 〈σ〉 is cyclic of order n where σ is the Frobenius homomorphism defined by
σ(x) = xp. By Proposition 5.3.12, Fq/Fp is Galois with cyclic Galois group.

DEFINITION 5.3.14. Let F/k be an algebraic extension of fields. We say F/k is a
normal extension if every irreducible polynomial over k that has a root in F actually splits
over F .

Theorem 5.3.15 provides very useful necessary and sufficient conditions for an exten-
sion of fields to be Galois.

THEOREM 5.3.15. Let F/k be a finite dimensional extension of fields. The following
are equivalent.

(1) F/k is a Galois extension.
(2) F/k is normal and separable.
(3) F is the splitting field over k of a separable polynomial in k[x].

PROOF. (1) implies (2): Suppose F/k is Galois with group G = {σ1, . . . ,σn}. We
prove F/k is normal and separable. Let f (x) ∈ k[x] be an irreducible polynomial and
suppose u ∈ F is a root of f . Look at the orbit of α under G: R = {σ1(u), . . . ,σn(u)}.
Suppose R has r elements which we enumerate: R = {u1, . . . ,ur}. Then G acts as a group
of permutations of R. The polynomial g(x) = (x−u1)(x−u2) · · ·(x−ur) is in F [x] and is
fixed by every element of G. Since k = FG, we have g(x) ∈ k[x]. Now u ∈ R, so g(u) = 0.
Since f (x) is the irreducible polynomial of u, by Theorem 5.1.4 we have f | g. This proves
f splits over F . Since g is separable, so is f . We have proved that F/k is normal. Let v be
an arbitrary element of F . Then by the previous argument, min.polyk(v) is separable. This
proves F/k is separable.

(2) implies (1): By Theorem 5.2.14, F = k(α) for some α ∈ F . If f = Irr.polyk(α),
then f is separable and splits over F . If n = deg( f ), then by Theorem 5.1.4, n = dimk(F).
Let α1, . . . ,αn be the distinct roots of f in F . Then for each i we have f = Irr.polyk(αi).
Since k(αi is an intermediate field of F/k and dimk k(αi) = dimk F , we have F = k(αi).
By Corollary 5.1.7 there is a k-automorphism σi : F → F such that σi(α) = αi. By Propo-
sition 5.3.2 (2), σ1, . . . ,σn are distinct elements of Autk(F). By Proposition 5.3.12, F/k is
Galois.

(2) implies (3): By Theorem 5.2.14, The Primitive Element Theorem, F = k(α) for
some α ∈ F . If f = Irr.polyk(α), then f is separable and splits in F .

(3) implies (1): Suppose f ∈ k[x] is separable and F is the splitting field for f over
k. Let n = dimk(F). If n = 1, then F = k, so F/k is Galois with group 〈1〉. Inductively,
assume n > 1 and that (3) implies (1) for any extension of fields of dimension less than
n. Let G = Autk(F). To finish the proof, we show FG = k. Let g be a monic irreducible
factor of the polynomial f and assume degg = d > 1. Since g is separable and splits in
F , there are d distinct roots α1, . . . ,αd in F and g = (x−α1) · · ·(x−αd). Now k(α1) is
an intermediate field of F/k and F is a splitting field of the separable polynomial f over
k(α1). By the induction hypothesis, we can assume F/k(α1) is a Galois extension with
group H and [H : 1] = dimk(α1)(F). By Corollary 5.1.7, for each i, there is a k-algebra
isomorphism σi : k(α1)→ k(αi). By Lemma 5.2.7, each σi extends to an automorphism
also denoted σi, in G = Autk(F). Let θ be an arbitrary element of FG. Since H is a
subgroup of G = Autk(F), θ ∈ FH = k(α1). By Theorem 5.1.4(3) there are c0,c1, . . . ,cd−1
in k such that

(3.10) θ = c0 + c1α1 + · · ·+ cd−1α
d−1
1 .
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Applying σi to (3.10) we have

(3.11) θ = c0 + c1αi + · · ·+ cd−1α
d−1
i

since θ is fixed by G. Let p(x) = (c0−θ)+ c1x+ · · ·+ cd−1xd−1 ∈ k(αi)[x]. Then in F ,
there are d distinct roots α1, . . . ,αd of p(x). Since deg p(x)≤ d−1, we must have p = 0.
In particular, θ = c0 is in k. �

COROLLARY 5.3.16. Let k be a field, f an irreducible separable polynomial in k[x],
and F a splitting field for f over k. If n = deg( f ), then the following are true:

(1) F/k is a Galois extension with group G = Autk(F).
(2) G acts as a group of permutations of the roots α1, . . . ,αn of f .
(3) G is isomorphic to a subgroup of Sn, the symmetric group on n letters.

PROOF. By Theorem 5.3.15, F/k is Galois. By Exercise 5.3.29, G acts on the roots of
f . There is a homomorphism θ : G→ Sn. Since F = k(α1, . . . ,αn), if two automorphisms
define the same permutation of α1, . . . ,αn, they define the same automorphism of F . This
proves θ is one-to-one. �

COROLLARY 5.3.17. (Embedding Theorem for Fields) Let F/k be a finite dimen-
sional extension of fields. If F/k is separable, then there exists a finite dimensional Galois
extension K/k which contains F as an intermediate field.

PROOF. Pick a finite set of separable elements u1, . . . ,un that generate F/k. For each
i, if fi = Irr.polyk(ui), then fi is separable over k. Let K be the splitting field for f1 · · · fn
over k. So K contains a generating set for F , hence F is an intermediate field of K/k. By
Theorem 5.3.15, K/k is a Galois extension. �

3.3. The Fundamental Theorem of Galois Theory. In this section, we prove the
Fundamental Theorem of Galois Theory. To illustrate the theorem, nontrivial examples are
given for which the Galois group is completely determined.

THEOREM 5.3.18. (The Fundamental Theorem of Galois Theory) Let F/k be a Galois
extension of fields with finite group G. There is a one-to-one order inverting correspon-
dence between the subgroups H of G and the intermediate fields E of F/k. A subgroup H
corresponds to the fixed field FH . An intermediate field E corresponds to the subgroup of
G fixing E, GE . If E is an intermediate field of F/k, then

(1) dimE(F) = [GE : 1], dimk(E) = [G : GE ], GE = AutE(F),
(2) F/E is a Galois extension with group GE , and
(3) E/k is a Galois extension if and only if GE is a normal subgroup of G and in this

case, G/GE ∼= Autk(E).

PROOF. By Proposition 5.3.1 there are functions

{H | H is a subgroup of G}
ρ //
{E | E is an intermediate field of F/k}

λ

oo

defined by ρ(H) = FH and λ (E) = GE . It is clear that if H1 ⊆ H2, then ρ(H1) ⊇ ρ(H2).
Likewise, if E1 ⊆ E2, then λ (E1)⊇ λ (E2). Suppose A and B are two subgroups of G such
that FA = FB. Let E = FA = FB. Proposition 5.3.10 says dimE(F) = [A : 1] = [B : 1]. If
there exists σ ∈ B−A, then we get a contradiction to Theorem 5.3.6. So B⊆ A. Similarly,
A ⊆ B. This shows ρ is one-to-one. Let E be an intermediate field of F/k. Since F/k
is Galois, by Theorem 5.3.15, F is the splitting field of a separable polynomial f in k[x].
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Then f is a separable polynomial in E[x] and F is the splitting field of f over E. Since F/E
is finite dimensional, Theorem 5.3.15 implies F/E is Galois. By Proposition 5.3.2, GE =
AutE(F) is the subgroup of Autk(F) fixing E and dimE(F) = [GE : 1]. This implies E =
ρλ (E), so ρ is a one-to-one correspondence. By Lagrange’s Theorem (Corollary 2.2.12),
[G : 1] = [G : GE ][GE : 1]. By Exercise 5.1.23 dimk(F) = dimk(E)dimE(F). This says
dimk(E) = [G : GE ]. We have proved (1) and (2).

The rest of the proof is devoted to proving (3). Assume E/k is Galois. We prove that
GE = AutE(F) is a normal subgroup of G = Autk(F) and Autk(E) is isomorphic to the
quotient G/GE . First we show that there is a homomorphism of groups:

G = Autk(F)
h−→ Autk(E)

defined by φ 7→ φ |E . The binary operation in both groups is composition of functions, so
it suffices to show that if φ ∈G, then φ(E) = E. By Theorem 5.2.14, E = k(ξ ) is a simple
extension. Say g(x) = min.polyk(ξ ) and degg = m. Since E/k is normal, g splits over
E and has m distinct roots in E, call them ξ1, . . . ,ξm. Given φ ∈ Autk(F), φ(ξ ) = ξ j for
some j, by Proposition 5.3.2. Therefore, φ(E) = φ(k(ξ )) ⊆ E. Since φ is one-to-one,
φ(E) = E by Theorem 4.6.12. From this is follows that φ |E is an automorphism of E,
and h is a homomorphism of groups. The kernel of h is GE , the set of all φ ∈ G fixing E.
Therefore, GE = AutE(F) is a normal subgroup of G = Autk(F). To show that Autk(E) is
isomorphic to the quotient G/GE , it suffices to show h is onto (Theorem 2.3.12). We are
given that E/k is a Galois extension. This and (1) yield [Autk(E) : 1] = dimk(E) = [G : GE ].
Theorem 2.3.12 and Lagrange’s Theorem (Corollary 2.2.12) yield: [G : GE ] = [imh : 1].
Therefore, [imh : 1] = [Autk(E) : 1]. Since the groups are finite, h is onto.

Conversely, assume GE =AutE(F) is a normal subgroup of G and prove E/k is Galois.
First we show that there is a homomorphism of groups

G = Autk(F)
h−→ Autk(E)

defined by ψ 7→ψ|E . To show that h is well defined, we use the fact that ψ−1 AutE(F)ψ =
AutE(F) (Lemma 2.3.4). Let φ ∈ AutE(F). Then ψ−1φψ = φ1 ∈ AutE(F). Let y be an
arbitrary element of E. Then ψ−1φψ(y) = φ1(y) = y. Therefore, φψ(y) = ψ(y). This
shows ψ(y) is fixed by each φ in AutE(F). By (2), this means ψ(y) ∈ E, hence h is
well defined. The kernel of h is GE = AutE(F), the subgroup of Autk(F) fixing E. By
Theorem 2.3.11, the diagram

Autk(F)
h //

η ''

Autk(E)

Autk(F)/AutE(F)

h̄

77

commutes and h̄ is one-to-one. From (1) and Lagrange’s Theorem,

dimk(E) = dimk(F)/dimE(F)

= [Autk(F) : 1]/[AutE(F) : 1]

= [im(h) : 1]

≤ [Autk(E) : 1]

By Proposition 5.3.12, E/k is Galois. �

EXAMPLE 5.3.19. This is an example of a Galois extension of Q with Galois group the
full symmetric group Sp. Let p be a prime number and f ∈Q[x] an irreducible polynomial
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of degree p such that f has exactly two nonreal roots. In this example we show that
the Galois group of f is isomorphic to Sp, the symmetric group on p letters. Let F be the
splitting field for f in C. By Theorem 5.3.15, F is Galois over Q. Let a and b be the nonreal
roots of f . If p= 2, then F =Q(a) has degree two over Q and AutQ(F) has order two hence
is isomorphic to S2. Assume p> 2 and let c be a real root of f . Then dimQQ(c) = p and by
Theorem 5.3.18, p divides the order of AutQ(F). By Cauchy’s Theorem (Corollary 2.4.14),
AutQ(F) contains an element σ of order p. By Corollary 5.3.16, we know that AutQ(F) is
a group of permutations of the roots of f . By Corollary 2.6.4 we know that σ is a p-cycle
and can be written in the form σ = (s1s2 · · ·sp). For some i and j we have a = si and b = s j.
Then σ j−i(si) = s j. Therefore, we can write σ j−i in the cycle form (abt3 · · · tp). Let χ be
the automorphism of C defined by complex conjugation (Example 5.3.4). Then χ maps F
to F . Also, χ(a) = b and χ fixes every real root of f . So χ corresponds to the transposition
χ = (ab). By Exercise 2.6.16, the group Sp is generated by the transposition (12) and the
p-cycle (123 · · · p). Therefore, AutQ(F) is generated by χ and σ j−i, hence is isomorphic
to Sp.

EXAMPLE 5.3.20. In Q[x], let f (x) = x4−2. Let u be the positive real number such
that u4 = 2 and let i ∈ C be a root of x2 +1. Then the four roots of f (x) in C are

(3.12) {u,−u,ui,−ui}.
Let F = Q(u,ui) be the splitting field of f over Q. By Theorem 5.1.4, (Q(u) : Q) =
(Q(ui) : Q) = 4. Since u ∈ R is real and ui 6∈ R is nonreal, we know Q(u) 6=Q(ui). Over
Q(u2) we have the factorization f = (x2− u2)(x2 + u2) into irreducibles. The irreducible
polynomial for ui over Q(u) is x2 + u2. The irreducible polynomial for u over Q(ui) is
x2−u2. Then (F : Q(u)) = (F : Q(ui)) = 2. By Corollary 5.1.7, there is an isomorphism
σ : Q(u)→ Q(ui) which is given by σ(u) = ui. By Lemma 5.2.7, σ can be extended to
an isomorphism F = Q(u)(ui)→ Q(ui)(u) = F which is defined by sending ui to one of
u or −u. Let τ be the automorphism of F defined by τ(u) = ui, t(ui) = −u. Let θ be
the automorphism of F defined by τ(u) = ui, t(ui) = u. By Theorem 5.3.15, F is Galois
over Q with group G = AutQ(F). By Exercise 5.3.29, we can view G as a subgroup of
S4. Using the ordering of the roots given in (3.12), the cycle representations of τ and θ are
τ = (1324), θ = (13)(24). We can now compute the elements of G: 〈e,τ = (1324),τ2 =
(12)(34),τ3 = (1423),θ = (13)(24),τθ = (12),τ2θ = (14)(23),τ3θ = (34)〉. Therefore,
G is isomorphic to the dihedral group D4 (Example 2.1.16). The subgroup lattice of G was
computed in Example 2.3.37:

G = 〈τ,θ〉

〈τ2,θ〉 〈τ〉 〈τ2,τθ〉

〈τ2θ〉 〈θ〉 〈τ2〉 〈τθ〉 〈τ3θ〉

〈e〉

By Example 2.3.32, the center of G is 〈τ2〉 which is normal. The three subgroups of
order four are normal. The other four subgroups of order two, 〈θ〉, 〈τ2〉, 〈τθ〉, and
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〈τ3θ〉, are not normal. Notice that τ3θ is complex conjugation. The reader should ver-
ify that F〈τ

2〉 =Q(i,u2), F〈τθ〉 =Q(ui), F〈τ
3θ〉 =Q(u), F〈τ

2,θ〉 =Q(u2i), F〈τ〉 =Q(i),
F〈τ

2,τθ〉 =Q(u2), F〈τ
2θ〉 =Q(u+ui), and F〈θ〉 =Q(u+ui). The subfield lattice of F is

F =Q(u,ui)

Q(u+ui) Q(u+ui) Q(i,u2) Q(ui) Q(u)

Q(u2i) Q(i) Q(u2)

Q

Notice that Q(u) is Galois over Q(u2), Q(u2) is Galois over Q, but Q(u) is not Galois over
Q. This example shows that the property of being Galois is not transitive. In other words,
Galois over Galois is not Galois. The analogous statement for groups is also true. Namely,
normal over normal is not normal.

3.4. Exercises.

EXERCISE 5.3.21. Show that the group of automorphisms of a prime field is trivial.
In other words, prove: Aut(Q) = 〈1〉 and Aut(Zp) = 〈1〉. (Hint: Exercise 3.2.48.)

EXERCISE 5.3.22. Let F be a field, k the prime field of F , and σ an automorphism of
F . Show that σ(a) = a for every a ∈ k.

EXERCISE 5.3.23. This exercise outlines a proof that Aut(R) = 〈1〉. In the following,
assume a,b,c are real numbers and r,s are rational numbers. For this exercise you can
assume that if a < b, then there exists a rational number r such that a < r < b. Let σ be an
automorphism of R. Prove:

(1) σ(a2) = σ(a)2.
(2) If b > 0, then σ(b)> 0.
(3) If r < c < s, then r < σ(c)< s.
(4) For every c ∈ R, σ(c) = c.

EXERCISE 5.3.24. Let f (x) = x3 + 3x+ 3. Show that f is irreducible in Q[x] and f
has exactly one real root and two nonreal roots. Let α ∈ R be the real root and β1,β2
be the nonreal roots of f (x). Show that Q[α,β1] is the splitting field for f over Q and
dimQQ[α,β1] = 6. Show that AutQ(Q[α]) = 〈1〉. Show that AutQ(Q[α,β1]) is isomorphic
to S3, the group of permutations of {α,β1,β2}.

EXERCISE 5.3.25. Prove the following for f = x3 + x−1.
(1) f is irreducible in Q[x].
(2) If F =Q[x]/( f ) and σ is an automorphism of F , then σ is the identity function.
(3) In R[x], f factors into a product of a linear polynomial and an irreducible qua-

dratic.
(4) If F is the splitting field of f over Q, then the Galois group AutQ(F) is a non-

abelian group of order six.
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EXERCISE 5.3.26. Let F be the splitting field of f = x3−5 over Q.

(1) Show that the Galois group AutQ(F) is a nonabelian group of order six.
(2) Find all intermediate fields K between Q and F .
(3) Prove or give a counterexample: Each intermediate field K is a Galois extension

of Q.

EXERCISE 5.3.27. Let F be the splitting field of f = (x2−2)(x2−3) over Q.

(1) Show that the Galois group AutQ(F) is a noncyclic abelian group of order four.
(2) Find all intermediate fields K between Q and F .
(3) Prove or give a counterexample: Each intermediate field K is a Galois extension

of Q.

EXERCISE 5.3.28. Consider the polynomial f = x4 + p2 in Q[x], where p is a prime
number. Determine the following.

(1) The splitting field of f over Q. Call this field K.
(2) The Galois group of f over Q.
(3) The lattice of intermediate fields of K/Q. Determine which intermediate fields

are normal over Q.

EXERCISE 5.3.29. Let f ∈ k[x] be an irreducible separable polynomial of degree n
over the field k. Let F/k be the splitting field for f over k and let G = Autk(F) be the
Galois group. We call G the Galois group of f . Prove the following.

(1) G acts transitively on the roots of f . That is, given two roots α,β of f , there is
σ ∈ G such that σ(α) = β . (Hint: apply Corollary 5.1.7 and Lemma 5.2.7.)

(2) n divides [G : 1].

EXERCISE 5.3.30. Let F be a field and f (x) a polynomial in F [x] such that f ′(x) = 0.
That is, the derivative of f (x) is the zero polynomial.

(1) If F has characteristic 0, show that f (x) = α , for some α ∈ F .
(2) If F has characteristic p > 0, show that there exists g(x) ∈ F [x] such that f (x) =

g(xp).

EXERCISE 5.3.31. Let F/k be an extension of fields. Let α ∈ F . Prove that F(α) is a
separable extension of k if and only if α is separable over k.

EXERCISE 5.3.32. Let F/k be a separable extension of fields such that dimk(F) = 2.
Prove that F/k is a Galois extension.

EXERCISE 5.3.33. Let F be a field, φ ∈ Aut(F) and k = F〈φ〉. Let f ∈ F [x] be a
polynomial satisfying:

(1) f is monic,
(2) f splits in F [x],
(3) f has no repeated root, and
(4) if α ∈ F and f (α) = 0, then f (φ(α)) = 0.

Show that f ∈ k[x].

EXERCISE 5.3.34. Let F/k be an extension of fields where chark = p > 0. Let α ∈ F .
Prove that α is separable over k if and only if k(α) = k(α p).

EXERCISE 5.3.35. Determine the group of automorphisms AutQ(Q(
√

2)).
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EXERCISE 5.3.36. Let p be a prime number and ζ = e2πi/p a primitive pth root of
unity in C. Show that the group of automorphisms AutQ(Q(ζ )) is isomorphic to the group
of units in the ring Z/p, hence is a cyclic group of order p−1.

EXERCISE 5.3.37. Let F be the splitting field for x3−2 over Q (see Exercise 5.2.16).
Show that the group of automorphisms AutQ(F) is isomorphic to the symmetric group S3.

EXERCISE 5.3.38. Let F/k be a Galois extension of fields with finite group G. Let α

be an arbitrary element of F , and set

g = ∏
σ∈G

(x−σ(α)).

Show that g ∈ k[x] and the only irreducible factor of g in k[x] is Irr.polyk(α).

EXERCISE 5.3.39. Determine the Galois group of the polynomial x4 + x2−6 over Q.

EXERCISE 5.3.40. Determine the smallest Galois extension K/Q containing 21/2 +

21/3. Determine AutQ(K).

EXERCISE 5.3.41. Determine the Galois group of the polynomial x6−8 over each of
these fields: Q, Q

(√
2
)
, and Q(ζ ), where ζ = e2πi/3 is a primitive third root of 1 in C.

EXERCISE 5.3.42. Determine the Galois group of the polynomial
(
x2−2

)(
x3 +2

)
over each of these fields: R, Q, Q

(√
2
)
, Q
( 3√2

)
, and Q(ζ ), where ζ = e2πi/6 is a primitive

third root of −1 in C.

EXERCISE 5.3.43. Let F denote the splitting field of x8−1 over the field Q of rational
numbers. Determine the lattice of subfields and show that the Galois group AutQ(F) is a
noncyclic group of order 4.

EXERCISE 5.3.44. Let k be a field of characteristic zero and f an irrreducible poly-
nomial in k[x]. Let F/k be an extension of fields and assume f splits over F . Prove that if
α ∈ F and f (α) = 0, then f (α +1) 6= 0.

4. Separable Closure

Given an algebraic extension of fields F/k we construct the separable closure of k in
F . This result is then applied to show that the property of being separable is transitive.
As another application, we prove in Theorem 5.4.5 a characterization of perfect fields. As
we saw in Example 5.3.20, the property of being Galois is not transitive. Nevertheless, we
prove in Theorem 5.4.6 that the property of being Galois is preserved under a change of
base field. As an application of Galois Theory, in Theorem 5.4.10 we give a proof of the
Fundamental Theorem of Algebra.

4.1. The Existence of a Separable Closure.

LEMMA 5.4.1. Let F/k be an extension of fields and assume chark = p > 0. Let u∈ F
and assume u is algebraic over k. There exists n≥ 0 such that upn

is separable over k.

PROOF. If u is separable over k, then take n = 0. Let f = Irr.polyk(u) and use induc-
tion on the degree of f . Assume f is not separable and d = deg f > 1. By Lemma 5.2.11,
there exists g ∈ k[x] such that f (x) = g(xp). Because f is irreducible, so is g. Therefore,
f (u) = g(up) = 0, up is algebraic over k, and the degree of Irr.polyk(u

p) is equal to d/p.
By induction on d, there is some n≥ 0 such that (up)pn

is separable over k. �
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THEOREM 5.4.2. Let F/k be an algebraic extension of fields. If

S = {u ∈ F | u is separable over k},

then S is an intermediate field of F/k, and S/k is separable. The field S is called the
separable closure of k in F.

PROOF. It is enough to show S is a field. Let α and β be elements of S− k. If
f = Irr.polyk(α), then f is separable and irreducible over k. Likewise, g = Irr.polyk(β )
is separable and irreducible over k. By Theorem 5.3.15, if E is the splitting field over k of
f g, then E/k is a separable extension of fields. Since k(α,β ) is an intermediate field of
E/k, it is itself a separable extension of k. Therefore, S contains α +β , α−β , αβ , α/β .
It follows that S is a field. �

THEOREM 5.4.3. (Separable over Separable is Separable) Let k ⊆ F ⊆ K be a tower
of algebraic field extensions. If F is separable over k and K is separable over F, then K is
separable over k.

PROOF. By Proposition 5.1.10 (4), K is algebraic over k. If chark = 0, then an alge-
braic extension is separable, so assume chark = p > 0. By Theorem 5.4.2, let S be the
separable closure of k in K. Then F ⊆ S ⊆ K. It is enough to show S = K. Let u ∈ K. By
Lemma 5.4.1, there exists n≥ 0 such that α = upn

is in S. Then u satisfies the polynomial
xpn−α ∈ S[x] and in K[x] we have the factorization xpn−α =(x−u)pn

. If f = Irr.polyS(u),
then f divides (x−u)pn

in K[x]. If g = Irr.polyF(u), then g is separable and since f divides
g in S[x], we know that f has no multiple roots in K. So f = x−u and u ∈ S. �

DEFINITION 5.4.4. A field k is said to be perfect if chark = 0, or chark = p is a
prime number and the Frobenius homomorphism θ : k→ k by a 7→ ap is onto (see Exer-
cise 3.2.31).

THEOREM 5.4.5. Let k be a field. The following are equivalent.
(1) k is a perfect field.
(2) Every irreducible polynomial in k[x] is separable.
(3) Every algebraic extension of k is separable over k.

PROOF. If chark = 0, then this is immediate.
(2) is equivalent to (3): This is Exercise 5.4.11.
(3) implies (1): Assume k has positive characteristic p and every algebraic extension

of k is separable. Let ϕ : k→ k be the Frobenius homomorphism (Exercise 3.2.31). Let
α ∈ k. We show α = ϕ(u) for some u ∈ k. Consider the polynomial xp−α in k[x]. Let
F be an extension of k containing a root u of xp−α . In F [x] we have the factorization
xp − α = (x− u)p. By assumption, F/k is separable, which implies this factorization
occurs in k[x]. That is, u ∈ k and α = ϕ(u).

(1) implies (3): Let F/k be an algebraic extension. Let α ∈ F − k. Let f ∈ k[x] be
the irreducible polynomial of α over k. We show that k(α) is a separable extension of
k. If chark = 0, it follows from Theorem 3.6.15 that f is separable and we are done.
Assume chark = p > 0 and the Frobenius homomorphism ϕ : k→ k is an automorphism
of k. By Theorem 3.6.2, ϕ( f ) = g is an irreducible polynomial in k[x] such that degg =
deg f . Since g(α p) = ( f (α))p = 0, we see that k(α p) is a field extension of k which is an
intermediate field of k(α)/k such that dimk(k(α p)) = dimk(k(α)). It follows that k(α p) =
k(α), hence the Frobenius homomorphism is an automorphism ϕ : k(α)→ k(α). For any
m > 0, ϕm(x) = xpm

. Since k[α] = k(α), a typical element in k(α) can be represented in
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the form u = ∑i aiα
i where ai ∈ k. Therefore ϕm(u) = ∑i apm

i (α pm
)i is in k(α pm

). This
shows k(α pm

) = k(α) for all m > 0. By Theorem 5.4.2, let S be the separable closure of
k in k(α). For some n ≥ 0, α pn ∈ S. Therefore k(α) = k(α pn

) ⊆ S so k(α) is a separable
extension of k. �

4.2. A Change of Base Theorem for a Galois Extension. Theorem 5.4.6 is what is
called a “change of base” theorem for a Galois extension. It says that if F1/k is a Galois
extension and F2/k is a finite field extension, then F = F1F2 is a Galois extension of F2.
The base field is extended from k to F2. This useful result also gives sufficient conditions
such that the Galois group is preserved.

THEOREM 5.4.6. Let K/k be a finite dimensional extension of fields. Let F1 and F2 be
intermediate fields. Set F = F1F2 and F0 = F1∩F2.

F = F1F2

F1 F2

F0 = F1∩F2

k

(1) If F1 is a Galois extension of k, then F is a Galois extension of F2 and there
is an isomorphism of groups AutF2(F) ∼= AutF0(F1) defined by the assignment
φ 7→ φ |F1 .

(2) If F1 and F2 are both Galois extensions of k, then F is a Galois extension of k. If
F1∩F2 = k, then Autk(F)∼= AutF1(F)×AutF2(F).

PROOF. (1): By Theorems 5.3.15 and 5.2.14, F1 = k(u) is a simple extension. Let
f = Irr.polyk(u). By Theorem 5.1.12, F = F2(u). Let g = Irr.polyF2

(u). Theorem 5.1.4
implies g divides f . Then every root of g is in F , hence F is a splitting field for g. By The-
orem 5.3.15, F/F2 is a Galois extension. If φ ∈ AutF2 F , then φ is completely determined
by the value of φ(u). But φ(u) is a root of f . Since F1 is a splitting field for f , φ(F1)⊆ F1.
Since φ fixes F2 point-wise, φ fixes k point-wise. Therefore, θ : AutF2(F)→ Autk(F1) is
a homomorphism of groups. If φ fixes F1 point-wise, then φ(u) = u and φ is the identity
function on F . This proves θ is one-to-one. Using θ , we identify AutF2 (F) with a sub-

group of Autk F1. Let E = F
AutF2 (F)

1 . By Theorem 5.3.18, F1/E is a Galois extension and
dimE(F1) = |AutF2 (F)| = dimF2(F). Since F1 ⊆ F , we have E ⊆ FAutF2 (F) = F2. Since
dimF2(F) = dimE(F1), Exercise 5.1.23 implies that dimE(F) = dimE(F1)dimE(F2). By
Theorem 5.1.12 (5), we have E = F1∩F2, which completes the proof.

(2): This is Exercise 5.4.12. �

4.3. Examples. In this section we include some examples that did not seem to fit in
elsewhere.

EXAMPLE 5.4.7. This is an example of a Galois extension of Q with abelian Galois
group of order 8. Let a be a positive odd integer and f = x8 + a4. By Exercise 3.7.12, f
is irreducible over Q. Let ζ be the complex number e2πi/16. Then ζ 8 =−1. Let α be the
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positive real number such that α2 = a. For any integer k, f (ζ 2k+1α) = ζ 8ζ 16kα8+a4 = 0.
Therefore the eight roots of f in C are S = {ζ 2k+1α | 0 ≤ k ≤ 7}. By Theorem 5.1.4, the
set {1,ζ α,ζ 2α2, . . . ,ζ 7α7} is a basis for Q(ζ α) as a Q-vector space. Since (ζ α)2k+1 =
ζ 2k+1akα , we see that S ⊆ Q(ζ α). Hence Q(ζ α) is a splitting field for f . By Corol-
lary 5.1.7 applied to ζ α and ζ 3α , there is an automorphism τ ∈ AutQ(Q(ζ α)) such
that τ(ζ α) = ζ 3α . Since ζ 2α2 = ζ 2a, it follows that ζ 2 ∈ Q(ζ α). We have τ(ζ 2) =
τ((ζ α)2a−1) = τ(ζ α)2a−1 = (ζ 3α)2a−1 = (ζ 6a)a−1 = ζ 6. Using this it is now possi-
ble to compute the action of τ on S: τ(ζ α) = ζ 3α , τ(ζ 3α) = −ζ α , τ(−ζ α) = −ζ 3α ,
τ(−ζ 3α) = ζ α , τ(ζ 5α) =−ζ 7α , τ(−ζ 7α) =−ζ 5α , τ(−ζ 5α) = ζ 7α , τ(ζ 7α) = ζ 5α .
So τ has two disjoint orbits, each of length four. Fix this ordering of the 8 elements of S:

(4.1) S = {ζ α,ζ 3
α,−ζ α,−ζ

3
α,ζ 7

α,ζ 5
α,−ζ

7
α,−ζ

5
α}.

Then τ has the cycle representation τ = (1234)(5678) (see Example 2.1.14). Let χ :
C→ C be complex conjugation (see Example 5.3.4). Then χ restricts to a permutation
of S, hence defines an automorphism of Q(ζ α). Based on the ordering of S in (4.1),
χ = (17)(28)(35)(46) is the disjoint cycle representation of χ . By direct computation,
we see that τχ = (1836)(2547) = χτ . By Exercise 2.5.19, τ and χ generate an abelian
group, call it G, isomorphic to Z/4⊕Z/2. Since dimQ(Q(ζ α)) = 8 = [G : 1], by Propo-
sition 5.3.12, Q(ζ α) is Galois over Q and the Galois group is G = 〈τ,χ〉. This also shows
G = AutQ(Q(ζ α)).

EXAMPLE 5.4.8. This is a generalization of Example 5.4.7. In this example we con-
struct a Galois extension over Q such that the Galois group is isomorphic to the group of
units in Z/(2n+1). As in Example 2.1.3, the set of invertible elements in the ring Z/(2n+1)
is denoted U2n+1 and the order of this group is 2n. Let a be a positive odd integer and
n≥ 2. Let f = x2n

+a2n−1
. When n = 3, this example agrees with Example 5.4.7. By Ex-

ercise 3.7.12, f is irreducible over Q. Let ζ be the complex number e2πi/2n+1
, a primitive

2n+1th root of unity. Then ζ 2n+1
= 1 and ζ 2n

=−1. Let α be the positive real number such
that α2 = a. For any integer k,

f (ζ 2k−1
α) = (ζ 2k−1

α)2n
+a2n−1

= ζ
−2n

(ζ 2n+1
)k

α
2n
+a2n−1

=−a2n−1
+a2n−1

= 0.

Therefore the 2n roots of f in C are

S = {ζ 2k−1
α | 1≤ k ≤ 2n}= {ζ α,ζ 3

α, . . . ,ζ 2n+1−1
α}.

By Theorem 5.1.4, the set

{(ζ α) j | 0≤ j < 2n}= {1,ζ α,(ζ α)2, . . . ,(ζ α)2n−1}
is a basis for Q(ζ α) as a Q-vector space. Since (ζ α)2k+1 = ζ 2k+1akα , we see that S ⊆
Q(ζ α). Hence Q(ζ α) is a splitting field for f . Let t be an arbitrary odd integer. By
Corollary 5.1.7 applied to ζ α and ζ tα , there is an automorphism τt ∈ AutQ(Q(ζ α)) such
that τt(ζ α) = ζ tα . Let s be another odd integer. Since ζ is a primitive 2n+1th root of
unity, Proposition 5.3.2 (2) implies that τt = τs if and only if s ≡ t (mod 2n+1). Since
ζ 2α2 = ζ 2a, it follows that ζ 2 ∈Q(ζ α). We have

τt(ζ
2) = τt((ζ α)2a−1) = τt(ζ α)2a−1 = (ζ t

α)2a−1 = (ζ 2ta)a−1 = ζ
2t .

Using this, we see that

τt(ζ
2k+1

α) = τt((ζ
2)k

ζ α) = (ζ 2t)k(ζ t
α) = (ζ 2k+1)t

α

and
τsτt(ζ α) = τs(ζ

t
α) = ζ

ts
α = τts(ζ α).
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Let σ denote an arbitrary automorphism in AutQ(Q(ζ α)). Then Proposition 5.3.2 (1) im-
plies σ(ζ α) = ζ tα for a unique t ∈ {1,3, . . . ,2n+1− 1}. By Proposition 5.3.2 (2), σ is
equal to τt . The computations above show that the assignment θ(t) = τt defines an isomor-
phism of groups θ : U2n+1 →AutQ(Q(ζ α)). Since dimQ(Q(ζ α)) = 2n, Proposition 5.3.12
implies Q(ζ α) is Galois over Q and the Galois group is isomorphic to U2n+1 . See [4, The-
orem 5.8.4] for a related result concerning cyclotomic extensions.

The next proposition shows that for a Galois extension F/k, if f is an irreducible
separable polynomial in k[x], then the irreducible factors of f in F [x] all have the same
degree.

PROPOSITION 5.4.9. Let F/k be a Galois extension of fields and f an irreducible
separable polynomial in k[x]. If the unique factorization of f in F [x] is f = f1 · · · fm, then
deg f1 = deg f2 = · · ·= deg fm.

PROOF. We prove this in two steps.
Step 1: Suppose K/k is a Galois extension of fields with group G. Assume f splits in

K[x]. Let N be a normal subgroup of G and assume F = KN . We prove that the irreducible
factors of f in F [x] all have the same degree. Let X = {α1, . . . ,αn} be the roots of f in
K. If L = k(X) is the splitting field for f in K, then L/k is Galois by Theorem 5.3.15.
By Exercise 5.3.29, Autk(L) acts transitively on X . By Theorem 5.3.18, Autk(L) is a
homomorphic image of G, hence G acts transitively on X . Let a,b be two arbitrary elements
of X . Let τ ∈G such that τ(a) = b. Since N is normal, τN = Nτ . Therefore τNa = Nτa =
Nb. This shows the orbit containing a is in one-to-one correspondence with the orbit
containing b. Let O1, . . . ,Om be the orbits of N acting on X . Then |O1| = · · ·= |Om|. For
each 1≤ i≤ m, set fi = ∏a∈Oi(x−a). We have

f = ∏
a∈X

(x−a)

=
m

∏
i=1

∏
a∈Oi

(x−a)

= f1 · · · fm.

Since deg fi = |Oi|, all of the fi have the same degree. Now we prove that each fi is in F [x].
If τ ∈ N, then τOi = Oi, hence

τ( fi) = ∏
a∈Oi

(x− τ(a)) = ∏
a∈Oi

(x−a) = fi

so the coefficients of fi are fixed by N. Hence fi ∈ F [x]. Now we prove that each fi is irre-
ducible in F [x]. Fix one element of Oi, say ai. If pi = Irr.polyF(ai), then by Theorem 5.1.4
we have pi | fi. For each τ ∈N, pi(τai) = τ(pi(ai)) = 0 shows that every element of Oi is a
root of pi. Therefore, deg pi ≥ deg fi. This proves fi = pi and in particular, fi is irreducible
over F . We have proved that f = f1 · · · fm is the factorization of f into irreducibles in the
ring F [x] and all of the factors fi have the same degree.

Step 2. In the context of the proposition, assume F/k is a Galois extension. Let U/F
be a splitting field for f over F . Let X = {α1, . . . ,αn} be the roots of f in U . Let L = k(X)
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be the splitting field for f over k in U . Then L/k is Galois by Theorem 5.3.15.

U

K = FL

F L

k

By Theorem 5.4.6, K = FL is a Galois extension of k containing K. By Theorem 5.3.18,
Step 2 reduces to Step 1. �

4.4. The Fundamental Theorem of Algebra. The purpose of this section is to apply
Galois Theory and some facts about the completion of the metric space R to prove the
Fundamental Theorem of Algebra.

As in Section 1.4, the field of real numbers is denoted R and the field of complex
numbers is denoted C. The proof of the Fundamental Theorem of Algebra utilizes results
from Calculus. By Theorem 1.4.2, an irreducible polynomial of odd degree in R[x] is linear.
By Proposition 1.4.3 (5), the ring C[x] contains no irreducible quadratic polynomial.

THEOREM 5.4.10. The field of complex numbers is algebraically closed. In particular,
an irreducible polynomial over C is linear.

PROOF. By Lemma 5.2.1, we show that every irreducible polynomial over C is lin-
ear. Let F be a finite dimensional extension field of C. By Theorem 5.2.4, it suffices to
show that F = C. Since F is a finite dimensional separable extension field of R, by Corol-
lary 5.3.17, there is a finite dimensional Galois extension K/R which contains F as an
intermediate field. Let G be the Galois group of K over R. Let S be a Sylow-2 subgroup
of G. Then KS is an extension field of R and dimR KS is odd. If α ∈ KS, then dimRR(α)
divides dimR KS, hence is odd. By Theorem 5.1.4, the degree of Irr.polyR(α) is odd.
By Theorem 1.4.2, an irreducible polynomial of odd degree in R[x] is linear. Therefore,
KS = R. This proves S = G is a 2-group. For sake of contradiction, assume AutC(K) is
a nontrivial 2-group. By Theorem 2.7.1, there exists a normal subgroup H of AutC(K) of
index 2. Then KH is a field extension of C of degree 2. This is a contradiction, because by
Proposition 1.4.3 (5), the ring C[x] contains no irreducible quadratic polynomial.

K

F KH KS

C

R
�
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4.5. Exercises.

EXERCISE 5.4.11. Prove that (2) is equivalent to (3) in Theorem 5.4.5.

EXERCISE 5.4.12. Prove Theorem 5.4.6 (2).

5. The Trace Map and Norm Map

We show that to a Galois extension F/k are associated the trace map T F
k : F → k and

the norm map NF
k : F→ k. By the left regular representation, F is a subring of Homk(F,F).

Therefore we can make the group of linear functionals Homk(F,k) into an F-vector space.
Since F/k is Galois, Homk(F,k) has dimension one over the field F and the trace map is a
generator. We give a proof of Hilbert’s Theorem 90 for the special case where Autk(F) is
a cyclic group. Results from this short section will be applied in Section 5.6.

Let F/k be a Galois extension with finite group G. For x ∈ F , define

(5.1) T F
k (x) = ∑

σ∈G
σ(x)

and

(5.2) NF
k (x) = ∏

σ∈G
σ(x).

Since G is a group, for any τ ∈ G,

τ

(
∑

σ∈G
σ(x)

)
= ∑

σ∈G
τσ(x)

= ∑
σ∈G

σ(x)

so the right hand side of (5.1) is fixed by every τ ∈ G. Likewise,

τ

(
∏
σ∈G

σ(x)
)
= ∏

σ∈G
τσ(x)

= ∏
σ∈G

σ(x)

so the right hand side of (5.2) is fixed by G as well. Since FG = k, this means that both T F
k

and NF
k are mappings from F to k. We call the mapping T F

k the trace from F to k and the
mapping NF

k is called the norm from F to k. If x,y ∈ F and a,b ∈ k, then

T F
k (ax+by) = ∑

σ∈G
σ(ax+by)

= a ∑
σ∈G

σ(x)+b ∑
σ∈G

σ(y)

= aT F
k (x)+bT F

k (y).

Therefore, the trace is k-linear and represents an element of Homk(F,k). Also

NF
k (xy) = ∏

σ∈G
σ(xy)

= ∏
σ∈G

σ(x) ∏
σ∈G

σ(y)

= NF
k (x)N

F
k (y).

Hence, the norm induces a homomorphism of multiplicative groups F∗→ k∗.
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LEMMA 5.5.1. Let F/k be a Galois extension of fields with finite group G. Let
Homk(F,F) be the ring of k-linear transformations of F as a k-vector space.

(1) There is a one-to-one homomorphism of rings λ : F → Homk(F,F) defined by
λ (a) = `a, where `a is “left multiplication by a”. That is, `a(x) = ax. The
homomorphism λ is called the left regular representation of F in Homk(F,F).

(2) If n = [G : 1], then Homk(F,F) is an F-vector space of dimension n and {σ | σ ∈
G} is a basis.

(3) There exists c ∈ F such that T F
k (c) = 1.

(4) Homk(F,k) is an F-vector space of dimension 1 and {T F
k } is a basis.

PROOF. (1) and (2): The field F is a k-algebra, hence it acts as a ring of k-linear
transformations on itself. That is, if a ∈ F , then `a(x) = ax defines a k-linear transfor-
mation: `a : F → F . The reader should verify that a 7→ `a defines a homomorphism of
rings λ : F → Homk(F,F). Since F is a field, the image of λ is a commutative subring of
Homk(F,F). By Example 4.1.4 (3), multiplication in Homk(F,F) makes Homk(F,F) into
an F-vector space. By Theorem 5.3.5, G is a basis for Homk(F,F) as an F-vector space.

(3): By Theorem 5.3.5, there exists y ∈ F such that x = ∑σ∈G σ(y) 6= 0. Since G
is a group, τ(x) = x for every τ ∈ G. Therefore, x ∈ FG = k. Define c = x−1y. Then
T F

k (c) = ∑σ∈G σ(x−1y) = x−1
∑σ∈G σ(y) = 1.

(4): Using λ we can turn Homk(F,k) into an F-vector space. For every f ∈Homk(F,k)
and a ∈ F , define a f to be f ◦`a. By Proposition 4.2.8, Homk(F,k) is an F-vector space of
dimension one. As an F-vector space, any nonzero element f ∈Homk(F,k) is a generator.
By (3), the trace mapping T F

k is a generator for Homk(F,k) over F . This implies for
every f ∈ Homk(F,k) there is a unique α ∈ F such that f (x) = T F

k (αx) for all x ∈ F . The
mapping F→Homk(F,k) given by α 7→ T F

k ◦`α is an isomorphism of k-vector spaces. �

PROPOSITION 5.5.2. Suppose F/k is G-Galois where the group G has order [G : 1] =
n. Then there exist elements a1, . . . ,an,y1, . . . ,yn in F such that

(1) T F
k (y jai) = δi j (Kronecker delta), and

(2) for each σ ∈ G: a1σ(y1)+ · · ·+anσ(yn) =

{
1 if σ = 1
0 if σ 6= 1

.

PROOF. Let {a1, . . . ,an} be a k-basis for F . For each j = 1,2, . . . ,n, let f j : F → k be
the projection onto coordinate j. That is, f j(ai) = δi j (Kronecker delta). For each x ∈ F ,

x =
n

∑
j=1

f j(x)a j.

We say {(a j, f j) | j = 1, . . . ,n} is a dual basis for F . By Lemma 5.5.1, T F
k is a generator

for Homk(F,k) over F . There exist unique y1, . . . ,yn in F such that for each x ∈ F , f j(x) =
T F

k (y jx) = ∑σ∈G σ(y jx). Part (1) follows by substituting x = ai. Combining these facts,

x =
n

∑
j=1

f j(x)a j

=
n

∑
j=1

∑
σ∈G

σ(y jx)a j

= ∑
σ∈G

(
σ(x)

n

∑
j=1

σ(y j)a j

)
.
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By Lemma 5.5.1, G is a basis for Homk(F,F) over F . Therefore, ∑
n
j=1 σ(y j)a j = δσ ,1,

which is (2). �

LEMMA 5.5.3. Suppose F/k is a Galois extension of fields with finite group G. If H
is a normal subgroup of G and E = FH , then T F

k = T E
k ◦T F

E and NF
k = NE

k ◦NF
E .

PROOF. Let x ∈ F . Then

T E
k

(
T F

E (x)
)
= T E

k

(
∑

σ∈H
σ(x)

)
= ∑

τ∈G/H
τ

(
∑

σ∈H
σ(x)

)
= ∑

τ∈G/H
∑

σ∈H
τσ(x)

= ∑
ρ∈G

ρ(x)

= T F
k (x).

The proof of the second identity is left to the reader. �

For generalizations of Theorem 5.5.4, see [4, Theorem 11.5.25]

THEOREM 5.5.4. (Hilbert’s Theorem 90) Let F/k be a Galois extension of fields with
finite group G. Assume G = 〈σ〉 is cyclic and u ∈ F. Then

(1) T F
k (u) = 0 if and only if u = v−σ(v) for some v ∈ F.

(2) NF
k (u) = 1 if and only if u = v/σ(v) for some v ∈ F∗.

PROOF. Throughout the proof, assume G = {1,σ ,σ2, . . . ,σn−1} and σn = 1.
(1): If v ∈ F , then T (σ(v)) = ∑τ∈G τσ(v) = ∑ρ∈G ρ(v) = T (v). It follows that T (v−

σ(v)) = 0. Conversely, assume T (u) = 0. By Lemma 5.5.1 (3), there exists w ∈ F with
T (w) = 1. Starting with

v = uw+(u+σ(u))σ(w)+(u+σ(u)+σ
2(u))σ2(w)+ . . .

+(u+σ(u)+σ
2(u)+ · · ·+σ

n−2(u))σn−2(w),

apply σ to get

σ(v) = σ(u)σ(w)+(σ(u)+σ
2(u))σ2(w)+ . . .

+(σ(u)+σ
2(u)+ · · ·+σ

n−1(u))σn−1(w).

Subtract σ(v) from v. Use the identities T (u) = u+σ(u)+ · · ·+σn−1(u) = 0 and T (w) = 1
to simplify

v−σ(v) = uw+uσ(w)+uσ
2(w)+ · · ·+uσ

n−2(w)

−
(
σ(u)+σ

2(u)+ · · ·+σ
n−1(u)

)
σ

n−1(w)

= u
(
(w+σ(w)+σ

2(w)+ · · ·+σ
n−2(w)

)
− (−u)σn−1(w)

= u
(
(w+σ(w)+σ

2(w)+ · · ·+σ
n−2(w)+σ

n−1(w)
)

= uT (w) = u.

(2): If v ∈ F∗, then N(σ(v)) = ∏τ∈G τσ(v) = N(v). This shows N (v/σ(v)) = 1.
Conversely, assume N(u) = 1. By Theorem 5.3.5 we know that

v = ux+uσ(u)σ(x)+uσ(u)σ2(u)σ2(x)+ · · ·+uσ(u)σ2(u) · · ·σn−1(u)σn−1(x)
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is nonzero for some x ∈ F . In this case, we have

u−1v = x+σ(u)σ(x)+σ(u)σ2(u)σ2(x)+ · · ·+σ(u)σ2(u) · · ·σn−1(u)σn−1(x)

and

σ(v) = σ(u)σ(x)+σ(u)σ2(u)σ2(x)+ · · ·+σ(u)σ2(u) · · ·σn(u)σn(x)

= σ(u)σ(x)+σ(u)σ2(u)σ2(x)+ · · ·+N(u)x

= σ(u)σ(x)+σ(u)σ2(u)σ2(x)+ · · ·+ x.

This shows σ(v) = u−1v, hence u = v/σ(v). �

5.1. Exercises.

EXERCISE 5.5.5. Let k be a field. Show that for any n ≥ 1 there exists a polynomial
f ∈ F [x] of degree n such that f has no repeated roots.

EXERCISE 5.5.6. Let F/k be a Galois extension of fields with finite group G. Assume
G = 〈σ〉 is cyclic.

(1) Show that the function D : F∗→ F∗ defined by D(u) = u/σ(u) is a homomor-
phism of abelian groups.

(2) Show that the kernel of D is k∗, and the image of D is the kernel of NF
k : F∗→ k∗.

EXERCISE 5.5.7. For the cyclic Galois extension C/R of degree two, determine the
image of the norm map NC

R : C∗→ R∗ and show that it is a subgroup of R∗ of index two.

EXERCISE 5.5.8. Let F/k be a Galois extension of fields with finite group G. Assume
G = 〈σ〉 is cyclic.

(1) Show that the function D : F→F defined by D(x)= x−σ(x) is a homomorphism
of additive abelian groups.

(2) Show that the kernel of D is k, and the image of D is the kernel of the trace map
T F

k : F → k.

EXERCISE 5.5.9. Let F/k be an extension of fields and assume dimk F = n is finite.
As in Lemma 5.5.1, the left regular representation λ : F→Homk(F,F) makes Homk(F,F)
into a left F-vector space. Prove:

(1) dimF (Homk(F,F)) = n.
(2) If {v1, . . . ,vn} is a k-basis for F and {φ1, . . . ,φn} is an F-basis for Homk(F,F),

then the matrix (φi(v j)) is invertible in Mn(F).
(3) If F/k is a Galois extension of fields with group G = {σ1, . . . ,σn}, then the

matrix (σi(v j)) in Mn(F) is invertible.

6. Cyclic Galois Extensions

We say a finite Galois extension of fields F/k is cyclic of degree n if the group Autk(F)
is a cyclic group of order n.

THEOREM 5.6.1. (The Normal Basis Theorem) Let F/k be a cyclic Galois exten-
sion of degree n with group Autk(F) = 〈σ〉. Then there exists α ∈ F such that the set
{α,σ(α),σ2(α), . . . ,σn−1(α)} is a basis for F as a k-vector space. We call the basis
{α,σ(α),σ2(α), . . . ,σn−1(α)} a normal basis for F/k.
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PROOF. We have dimk(F) = n. View 1,σ ,σ2, . . . ,σn−1 as elements of Homk(F,F).
Then char.polyk(σ) has degree n (see Definition 4.6.13). Since Autk(F) = 〈σ〉 has order
n, the minimal polynomial of σ divides xn− 1. By Theorem 5.3.5, the automorphisms
1,σ ,σ2, . . . ,σn−1 are linearly independent over k, so the degree of min.polyk(σ) is at
least n. Therefore, min.polyk(σ) = xn− 1. Since the minimal polynomial and the char-
acteristic polynomial of σ both have degree n, this implies they are equal. By Theo-
rem 4.6.14, F is a cyclic k[σ ]-module. By Theorem 4.5.31, there exists α ∈ F such that
the set {α,σ(α),σ2(α), . . . ,σn−1(α)} is a k-basis for F . �

6.1. Finite Fields. A finite field has positive characteristic and is finite dimensional
over its prime subfield. We prove in Theorem 5.6.4 (9) that a finite extension of finite fields
is a cyclic extension.

LEMMA 5.6.2. Let F be a field and assume charF = p is positive. For any r > 0, the
mapping ϕ : F → F defined by x 7→ xpr

is a homomorphism of fields. If F is finite, then ϕ

is an automorphism of F. If r = 1, then ϕ is called the Frobenius homomorphism.

PROOF. This follows from Exercise 3.2.31. �

LEMMA 5.6.3. For each prime number p and for every n≥ 1, there exists a field F of
order pn.

PROOF. Let k denote the field Z/p. Let f = xpn−x ∈ k[x]. Let F be the splitting field
of f over k. Since f ′ =−1, by Theorem 3.6.15, f has no multiple roots in F . Therefore, f
is separable and there are pn distinct roots of f in F . Let ϕ : F → F be the automorphism
of F defined by x 7→ xpn

. If u ∈ F is a root of f , then ϕ(u) = u. By Exercise 5.3.21, the
prime field k is fixed by ϕ . Since F is generated over k by roots of f , F is fixed point-wise
by ϕ . Every u in F is a root of f , and F has order pn. �

THEOREM 5.6.4. (Fundamental Theorem on Finite Fields) Let F be a finite field with
charF = p. Let k be the prime subfield of F and n = dimk(F).

(1) The group of units of F is a cyclic group.
(2) F = k(u) is a simple extension, for some u ∈ F.
(3) The order of F is pn.
(4) F is the splitting field for the separable polynomial xpn − x over k.
(5) F/k is a separable extension.
(6) Any two finite fields of order pn are isomorphic as fields.
(7) F/k is a Galois extension.
(8) The Galois group Autk(F) is cyclic of order n and is generated by the Frobenius

homomorphism ϕ : F → F defined by ϕ(x) = xp.
(9) If d is a positive divisor of n, then E = {u ∈ F | upd

= u} is an intermediate field
of F/k which satisfies the following.
(a) dimE(F) = n/d, and dimk(E) = d.
(b) If ϕ is the generator for Autk(F), then AutE(F) is the cyclic subgroup gen-

erated by ϕd .
(c) E/k is Galois and Autk(E) is the cyclic group of order d generated by the

restriction ϕ|E .
(10) If E is an intermediate field of F/k, and d = dimk(E), then d divides n and E is

the field described in Part (9).
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PROOF. Parts (1) – (6) are from Theorem 5.2.12. Parts (7) and (8) are from Exam-
ple 5.3.13. The proofs of Parts (9) and (10) follow straight from Theorem 5.3.18 and
Part (8). �

6.1.1. Irreducible Polynomials over Finite Fields. Throughout this section, p will be
a fixed prime number and Fp = Z/p is the prime field of order p.

THEOREM 5.6.5. The factorization of the polynomial xpn−x in Fp[x] into irreducible
factors is equal to the product of all the monic irreducible polynomials of degree d where
d runs through all divisors of n.

PROOF. Is left to the reader. �

THEOREM 5.6.6. Let ψ(n) denote the number of distinct monic irreducible polyno-
mials of degree n in Fp.

(1) If µ is the Möbius function, then ψ(n) =
1
n ∑

d|n
µ(d)pn/d =

1
n ∑

d|n
µ

(n
d

)
pd .

(2) ψ(n)>
pn

2n
.

PROOF. (1): By Theorem 5.6.5, pn = ∑
d|n

dψ(d). Now apply the Möbius Inversion

Formula (Theorem 1.2.16).
(2): The reader should verify the identities:

nψ(n) = pn + ∑
d|n,d<n

µ

(n
d

)
pd

≥ pn− ∑
d|n,d<n

pd

≥ pn− ∑
1≤d≤n/2

pd

≥ pn− pbn/2c+1

where bn/2c is the greatest integer less than n/2. If n > 2, then bn/2c+1≤ n−1, so

ψ(n)>
1
n

(
pn− pn−1)= pn

n

(
1− 1

p

)
≥ pn

2n
.

If n = 2, the formula can be derived from ψ(2) = (1/2)(p2− p). �

6.2. Exercises.

EXERCISE 5.6.7. Prove Theorem 5.6.5.

EXERCISE 5.6.8. Let K be a finite field of order pd . As in Theorem 5.6.6, let ψ(n) be
the number of irreducible monic polynomials of degree n in Fp[x]. If d | n, show that there
are at least ψ(n) irreducible monic polynomials of degree n/d in K[x].

EXERCISE 5.6.9. Let k be a finite field and K/k a finite dimensional extension of
fields, with dimk K = d. Let n be an arbitrary positive integer and A = K⊕ ·· · ⊕K the
direct sum of n copies of K.

(1) Show that if there exists a surjective k-algebra homomorphism f : k[x]→ A, then
there exist at least n distinct irreducible monic polynomials in k[x] of degree d.
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(2) Find an example of k and A such that the k-algebra A is not the homomorphic
image of k[x].

(3) Show that for some integer m ≥ 1, there exist n distinct irreducible monic poly-
nomials h1, . . . ,hn in k[x] such that each hi has degree md.

(4) Show that for some integer m≥ 1, if F/k is a finite extension field with dimk F =
md, then the direct sum F⊕·· ·⊕F of n copies of F is the homomorphic image
of k[x]. Show that m can be chosen to be relatively prime to d.

(5) Show that there is a separable polynomial g ∈ k[x] such that A is isomorphic to a
subalgebra of k[x]/(g).

EXERCISE 5.6.10. Classify up to isomorphism all finite rings of order four. For a
generalization of this result to rings of order p2, p a prime number, see Exercise 5.6.11.
The reader interested in rings that do not necessarily contain a unit element is referred to
the classification obtained in [12].

EXERCISE 5.6.11. Let p be a prime number and A a finite ring of order p2.
(1) Prove that either A is isomorphic to Z/(p2), or the characteristic of A is p and A

is isomorphic as Z/p-algebras to (Z/p)[x]/(φ), for some monic quadratic poly-
nomial φ with coefficients in the field Z/p.

(2) Prove that A is commutative.
(3) Prove that A is isomorphic to exactly one of the following four rings:

(a) Z/(p2) (if char(A) = p2).
(b) Z/p⊕Z/p (if char(A) = p and φ factors and is separable).
(c) (Z/p)[x]/(x2) (if char(A) = p and φ is a square).
(d) a finite field of order p2 (if char(A) = p and φ is irreducible).

EXERCISE 5.6.12. If F/k is an extension of finite fields, show that the image of the
norm map NF

k : F∗→ k∗ is equal to k∗.

6.3. Artin-Schreier Theorem.

EXAMPLE 5.6.13. Let k be a field of positive characteristic p. For any a ∈ k, the
polynomial f = xp− x− a ∈ k[x] is separable over k. To see this, assume u is a root of
f in any extension field F/k. Let i ∈ Z/p be any element of the prime field of k. Then
f (u+ i) = (u+ i)p− (u+ i)−a = up+ i−u− i−a = f (u) = 0. Therefore, f has p distinct
roots in F , namely u,u+1, . . . ,u+ p−1.

THEOREM 5.6.14. (Artin-Schreier) Suppose k is a field of positive characteristic p.
(1) If F/k is a cyclic Galois extension of degree p, then there exists a ∈ k such that

f = xp−x−a is an irreducible separable polynomial over k and F is the splitting
field for f over k. In this case F = k(u), where u is any root of f .

(2) If a ∈ k and f = xp− x−a, then
(a) f is separable, and
(b) either f is irreducible over k, or splits in k[x].

(3) If a ∈ k and f = xp− x−a is irreducible over k, then
(a) F = k[x]/( f ) is a splitting field for f , and
(b) F/k is a cyclic Galois extension of k of degree p.

PROOF. (1): Let G=Autk(F) = 〈σ〉. Since G is simple and abelian (Exercise 2.2.28),
there are no proper intermediate fields for F/k. Since char(k)= dimk(F)= p, T F

k (1)= p=
0. By Theorem 5.5.4, there is v ∈ F such that v−σ(v) = 1. If u =−v, then σ(u) = 1+u.
This shows u 6∈ k, hence F = k(u). Note that σ(up) = (σ(u))p = (1+u)p = 1+ up, and
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σ(up− u) = σ(up)−σ(u) = (1+ up)− (u+ 1) = up− u. If a = up− u, then a ∈ k and
u satisfies the polynomial f = xp− x− a. Since the dimension of k(u) over k is p, this
implies f is equal to the irreducible polynomial of u. By Example 5.6.13, f is separable
and splits in F .

(2): Let f = xp− x− a in k[x]. Let F be a splitting field for f . As was shown in
Example 5.6.13, f is separable and if u ∈ F is a root of f , then the p distinct roots of f are
u,u+1, . . . ,u+ p−1, hence F = k(u). By Theorem 5.3.15, F/k is a Galois extension. For
any τ in Autk(F), by Proposition 5.3.2, τ(u) is a root of f . Thus, τ(u)− u is an element
of the prime field Z/p. Define a function θ : Autk(F)→ Z/p by θ(τ) = τ(u)−u. If σ is
another element of Autk(F), then σ(τ(u)−u) = τ(u)−u. Hence στ(u)−σ(u) = τ(u)−u.
From this we see that

(6.1) στ(u)−u = σ(u)+ τ(u)−u−u.

The left hand side of (6.1) is θ(στ), the right hand side is θ(σ)+θ(τ). This shows θ is
a homomorphism from the group Autk(F) to the additive cyclic group Z/p. By Proposi-
tion 5.3.2, θ is one-to-one. Since Z/p is a simple group, either Autk(F) has order 1 or p.
By Theorem 5.3.18, if Autk(F) has order 1, then F = k and f splits in k[x]. If Autk(F) has
order p, then dimk(F) = p. Since F = k(u), by Theorem 5.1.4, Irr.polyk(u) has degree p.
Therefore, f = Irr.polyk(u).

(3): This follows from Part (2). �

6.4. Kummer Theory. If ζ ∈ k∗ and ζ generates a subgroup of order n in k∗, then
we say ζ is a primitive nth root of 1 in k and write ζ = n

√
1. There are at most n solutions to

xn−1 in k, so the subgroup 〈ζ 〉 has ϕ(n) generators. That is, if k contains a primitive nth
root of 1, then k contains ϕ(n) primitive nth roots of 1. A cyclic extension F/k of degree
n is called a Kummer extension if n

√
1 ∈ k.

THEOREM 5.6.15. Let n > 0 and assume k is a field containing a primitive nth root of
1. The following are equivalent.

(1) F/k is a cyclic Galois extension of degree d, for some positive divisor d of n.
(2) F is a splitting field over k of xn−a for some a ∈ k∗.
(3) F is a splitting field over k of xd−a for some a ∈ k∗ and some positive divisor d

of n.

PROOF. Throughout the proof, let ζ = n
√

1 be a primitive nth root of 1 in k.
(2) implies (1): Let α be a root of xn− a in F . For each i ≥ 0 we have

(
ζ iα

)n
=

(ζ n)i
αn = a, so the roots of xn−a in F are {ζ iα | 0≤ i < n}. This shows xn−a is sepa-

rable. Also, since ζ ∈ k, this implies F = k(α) is a simple extension. If σ ∈G = Autk(F),
then σ(α) = ζ iα for some i such that 0 ≤ i < n. As σ runs through the nonidentity ele-
ments of G, consider the positive numbers i such that σ(α) = ζ iα and pick the smallest.
Fix σ ∈ G, such that σ(α) = ζ iα and i is minimal. We prove that G is generated by σ .
Let τ be any element of G. Then τ(α) = ζ jα and we can assume 0 < i≤ j < n. Dividing,
j = iq+ r, where 0 ≤ r < i. Now σq(α) = ζ qiα . Therefore, σ−qτ(α) = σ−q(ζ jα) =
ζ jσ−q(α) = ζ jζ−qiα = ζ rα . By the choice of i we conclude that r = 0, so τ = σq. The
order of G is equal to the order of ζ i, which is a divisor of n.

(3) implies (2): Assume F is the splitting field of xd−a where d is a divisor of n, and
a ∈ k. Let ρ = ζ n/d . Then ρ = d

√
1. Let α ∈ F satisfy αd = a. Then xd−a factors in F [x]

as (x−α)(x−ρα) · · ·(x−ρd−1α). This implies F = k(α), because ρ ∈ k. Consider the
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polynomial xn−an/d . For any i such that 0≤ i < n we see that
(
ζ iα

)n
= αn =

(
αd
)n/d

=

an/d . So xn−an/d splits in F .
(1) implies (3): Assume F/k is cyclic of degree d and that σ is a generator for G =

Autk(F). Since ρ = ζ n/d = d
√

1 is in k, the norm of ρ is N(ρ) = ρd = 1. By Theorem 5.5.4,
there is u∈F∗ such that ρ = u/σ(u). Setting v= u−1, we have ρ = v−1σ(v), or σ(v) = ρv.
Then σ(vd) = (ρv)d = vd . This says vd ∈ k and v satisfies the polynomial xd − vd . The
roots of xd− vd are {v,ρv, . . . ,ρd−1v}. Note that σ i(v) = ρ iv, for all i such that 0≤ i < d.
If f is the irreducible polynomial for v, then f has d roots in F . Therefore deg( f ) = d and
f = xd− vd . We have shown that F is the splitting field of f and F = k(v). �

6.5. Cyclotomic Extensions. Let k be a field. We say F is a cyclotomic extension of
k of order n if F is the splitting field over k of xn−1. If chark = p > 0, then we can factor
n = pem where (m, p) = 1. Then xn−1 = (xm)pe −1pe

= (xm−1)pe
, so the splitting field

of xn−1 is equal to the splitting field of xm−1. For this reason, we assume n is relatively
prime to chark and xn−1 is separable. In the following, φ(n) denotes the Euler φ -function.

LEMMA 5.6.16. Let k be any field. If m and n are positive integers and m | n, then
xm−1 divides xn−1 in the ring k[x]. Conversely, if the characteristic of k does not divide
m and xm−1 divides xn−1, then m | n.

PROOF. Use Mathematical Induction on n−m. If m = n, then this is trivial. Assume
m < n and apply the Division Algorithm to write

xn−1 = (xm−1)xn−m +(xn−m−1).

Since m | n we have m | (n−m). By Mathematical Induction, xm− 1 divides xn−m− 1.
Therefore, xm−1 divides the right hand side.

For the converse, let F be a field extension of k containing all of the roots of xn− 1.
By hypothesis, we can factor xn− 1 = (xm− 1)q(x) for some q(x) ∈ k[x]. If we let f =
xm− 1, then f splits over F . Since chark does not divide m, we have gcd( f , f ′) = 1. By
Theorem 3.6.15 (1), f = xm− 1 has m distinct roots in F . By Corollary 3.6.9, the set of
roots of xm− 1 is a cyclic subgroup of F∗ of order m. That is, there exists an element
α ∈ F∗ such that α has order m. Then αn− 1 = (αm− 1)g(α) = 0 says αn = 1. By
Lemma 2.2.16, we have m | n. �

THEOREM 5.6.17. Let F be a cyclotomic extension of k of order n. If chark = p > 1,
assume (n, p) = 1. Then

(1) F = k(ζ ) where ζ is a primitive nth root of 1 over k.
(2) F is a Galois extension of k and Autk(F) is a subgroup of the group of units in

Z/n. The dimension dimk(F) is a divisor of φ(n).

PROOF. (1): By assumption, xn−1 is separable, and the group µn of nth roots of unity
in F is a cyclic group of order n, by Corollary 3.6.9. Let ζ be a primitive nth root of unity
in F . Therefore F = k(ζ ) is a simple extension.

(2): Since F is the splitting field of a separable polynomial, F/k is Galois by Theo-
rem 5.3.15. The Galois group G = Autk(F) acts on the cyclic group of order n generated
by ζ (Corollary 5.3.16). This defines a homomorphism G→ Aut(〈ζ 〉). Since F = k(ζ ),
this mapping is one-to-one. By Theorem 2.3.27, the order of Aut(〈ζ 〉) is φ(n). �

Let F be a cyclotomic extension of k of order n. If chark = p > 1, assume (n, p) = 1.
By Theorem 5.6.17 (1), the group µn of nth roots of unity in F is a cyclic group of order n.
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There are φ(n) generators of µn. The nth cyclotomic polynomial over k is

Φn(x) = (x−ζ1) · · ·(x−ζφ(n))

where ζ1, . . . ,ζφ(n) are the φ(n) primitive nth roots of unity in µn. We have seen in Exam-
ples 5.2.9 and 3.7.8 that if p is a prime number and k = Q, then Φp(x) = xp−1 + xp−2 +
· · ·+ x+1 is irreducible in Q[x].

PROPOSITION 5.6.18. Assume k is the prime subfield of F and F is a cyclotomic
extension of k of order n. If chark = p > 1, assume (n, p) = 1. Then

(1) xn−1 = ∏d|n Φd(x).
(2) Φn(x) ∈ k[x].
(3) If k =Q, then Φn(x) ∈ Z[x].

PROOF. (1): By Theorem 2.3.25, we can partition µn into disjoint subsets

µn =
⋃
d|n
{ζ ∈ µn | |ζ |= d}.

The set elements of order d in µn has cardinality φ(d). The corresponding factorization of
xn−1 is xn−1 = ∏d|n Φd(x).

(2): The proof is by induction on n. For n = 1, Φ1(x) = x−1 is in k[x]. Assume n > 1
and that (2) is true for all 1≤m < n. Define g(x) = ∏ d|n

d 6=n
Φd(x). By our induction hypoth-

esis, g(x) ∈ k[x]. By (1), xn−1 = g(x)Φn(x). By the Division Algorithm, Theorem 3.6.3,
Φn(x) ∈ k[x].

(3): In the proof of (2), by the induction hypothesis, g(x) ∈ Z[x]. Moreover, g(x) is
monic, so Theorem 3.6.3 implies Φn(x) ∈ Z[x]. �

PROPOSITION 5.6.19. If Φn(x) is the nth cyclotomic polynomial over Q, then Φn(x)
is irreducible.

PROOF. Let F be a cyclotomic extension of order n over the field Q and Φn(x) the nth
cyclotomic polynomial over Q. We know from Proposition 5.6.18 that Φn(x) is a monic
polynomial in Z[x] and has degree φ(n). By Theorem 3.7.4 (Gauss’ Lemma) it suffices to
show that Φn(x) is irreducible in Z[x]. Let f (x) be a monic irreducible factor of Φn(x) in
Z[x] and write Φn(x) = f (x)g(x). To complete the proof, we show that Φn(x) = f (x). To
do this, we show that f (x) has degree φ(n). Let ζ ∈ F be a root of f . Then ζ is a root of
Φn(x), hence is a primitive nth root of unity. By Theorem 2.3.25, a typical primitive nth
root of unity is of the form ζ d , where 0 < d < n and gcd(d,n) = 1. We show that each
such ζ d is a root of f . We do this is several steps.

First let p be a prime divisor of d. Then ζ p is a root of Φn(x) = f (x)g(x). We show
ζ p is a root of f . For contradiction’s sake, assume g(ζ p) = 0. Then ζ is a root of g(xp).
Since f (x) is irreducible, f = Irr.polyQ(ζ ) and by Theorem 5.1.4 we have f (x) | g(xp) in
Q[x]. By Theorem 3.6.3 applied over Z and Q, we have g(xp) = f (x)h(x) where h ∈ Z[x].
We apply Theorem 3.6.2 (1) to reduce the coefficients of the polynomials modulo p. The
image of the polynomial g(xp) = f (x)h(x) under the natural map Z[x]→ Z/(p)[x] will
be denoted [g(xp)] = [ f (x)][h(x)]. The Frobenius homomorphism Z/(p)[x]→ Z/(p)[x] of
Exercise 3.2.31 fixes the field Z/(p), hence [g(xp)] = [g(x)]p = [ f (x)][h(x)]. By unique
factorization, some irreducible factor of [ f (x)] divides [g(x)]. By Proposition 5.6.18 (1),
for some q(x) ∈ Z[x] we have xn− 1 = Φn(x)q(x) = f (x)g(x)q(x). Reduce modulo p to
get xn−1 = [ f (x)][g(x)][q(x)]. Since [ f (x)] and [g(x)] have a common factor, this proves
xn−1 is not separable, a contradiction. This proves ζ p is a root of f (x).
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Now assume 0 < d < n and gcd(d,n) = 1. We show that ζ d is a root of f . Factor
d = p1 · · · pm into a product of primes. If m = 1, then by the first step, ζ d is a root of
f . Inductively assume m > 1 and that ζ p1···pm−1 is a root of f . Then by the first step,
ζ d = (ζ p1···pm−1)pm is a root of f . Since there are φ(n) choices for d, we have shown f has
φ(n) roots, hence Φn(x) = f (x) is irreducible. �

COROLLARY 5.6.20. Let F be a cyclotomic extension of order n over the field Q and
Φn(x) the nth cyclotomic polynomial over Q. Then the following are true.

(1) If ζ ∈ F is a primitive nth root of unity, then Φn(x) = Irr.polyQ(ζ ).
(2) F ∼=Q[x]/(Φn).
(3) F is a Galois extension of Q, the Galois group AutQ(F) is isomorphic to the

group of units in the ring Z/(n), and dimQ(F) = φ(n).

6.6. Radical Extensions. Throughout this section, all fields are tacitly assumed to
have characteristic zero.

DEFINITION 5.6.21. Let k be a field. A radical tower over k is a tower of field exten-
sions

k = F0 ⊆ F1 ⊆ ·· · ⊆ Fn

and positive integers r1, . . . ,rn such that Fi = Fi−1(ui) and uri
i ∈ Fi−1. We say Fn is a radical

extension of k. Notice that Fi = k(u1, . . . ,ui), for i = 1, . . . ,n. If f (x) ∈ k[x], we say f is
solvable by radicals in case there is a radical extension F/k such that f splits over F .

LEMMA 5.6.22. Let F/k be a finite dimensional separable extension of fields. Then
there is a field K satisfying the following.

(1) k ⊆ F ⊆ K is a tower of field extensions.
(2) K/k is a Galois extension.
(3) There exist intermediate fields F1, . . . ,Fm of K/k such that

(a) each Fi is isomorphic to F as a k-algebra, and
(b) K = F1F2 · · ·Fm.

(4) If F/k is a radical extension, then K/k is a radical extension.

PROOF. Write F = k(u1, . . . ,un). For each i in {1, . . . ,n}, let fi = Irr.polyk(ui). Let K
be the splitting field for f1 · · · fn over F . By the Embedding Theorem, Corollary 5.3.17, the
field K satisfies parts (1) and (2). We prove that K satisfies (3). Let α ∈ K be an arbitrary
root of f1 · · · fn. Then α is a root of fi, for some i. By Theorem 5.1.5, there is a k-algebra
isomorphism θ : k(ui)→ k(α). By Lemma 5.2.7, θ extends to a k-algebra automorphism
θ̄ : K → K. Then θ̄(F) is an intermediate field of K/k which is k-isomorphic to F and
contains α . Since K/k is generated by the roots α of f1 · · · fn, there is a finite number of
fields of the form θ̄(F) that generate K.

(4): We are given F = k(u1, . . . ,un), where uri
i is in k(u1, . . . ,ui−1). Let F1, . . . ,Fm be

as in (3). For each i, there is a k-algebra isomorphism Fi ∼= F . Therefore, Fi is a radical
extension of k. For each j we have Fj = k(u j1, . . . ,u jn), where uri

ji is in k(u j1, . . . ,u j,i−1).
Therefore

K = F1F2 · · ·Fm = k(u11, . . . ,u1n,u21, . . . ,u2n, . . . ,um1, . . . ,umn)

is a radical extension of k. �

THEOREM 5.6.23. Let k be a field of characteristic zero and assume for each n > 0
that xn− 1 splits over k. Let p(x) ∈ k[x]. If p(x) is solvable by radicals over k, then the
Galois group of p(x) is a solvable group.
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PROOF. Since p(x) is solvable by radicals, there is a radical tower

k = F0 ⊆ F1 ⊆ ·· · ⊆ Fn

positive integers r1, . . . ,rn such that Fi = Fi−1(ui), uri
i ∈ Fi−1, and p(x) splits over Fn. By

Lemma 5.6.22, we can assume Fn is a Galois extension over k. By Kummer Theory (The-
orem 5.6.15), Fi is a Galois extension of Fi−1 and AutFi−1 Fi is cyclic. By the Fundamental
Theorem of Galois Theory (Theorem 5.3.18), Fn is Galois over Fi, AutFi(F) is a normal
subgroup of AutFi−1(F) and

AutFi−1 Fi ∼= AutFi−1(F)/AutFi(F).

Therefore the series of groups

Autk Fn ⊇ AutF1 Fn ⊇ ·· · ⊇ AutFi−1 Fn ⊇ AutFi Fn ⊇ ·· · ⊇ AutFn−1 Fn ⊇ 〈e〉

is a normal series and at each step the quotient is an abelian group. So the series is a
solvable series for Autk Fn. Let E be the splitting field for p(x) over k in Fn. Then E
is an intermediate field. By Theorem 5.3.15, E is a Galois extension of k. By the Fun-
damental Theorem of Galois Theory, Autk E is a homomorphic image of Autk Fn. By
Exercise 2.10.18 , Autk E is solvable. �

Theorem 5.6.24 is a partial converse to Theorem 5.6.23. In characteristic zero, if f is
a polynomial with solvable Galois group, then f is solvable by radicals.

THEOREM 5.6.24. Let k be a field of characteristic zero, f ∈ k[x] a separable poly-
nomial and E a splitting field for f . If Autk(E) is solvable, then f is solvable by radicals.
That is, there exists a radical extension of k that contains E.

PROOF. Let n = dimk(E). Let F = E(ζ ) be a cyclotomic extension of E of order n.
That is, ζ is a primitive nth root of unity over k.

F = E(ζ )

E k(ζ )

k

By Theorem 5.3.15, E/k is a Galois extension and by hypothesis Autk(E) is a solvable
group. By Theorem 5.4.6, F = E(ζ ) is a Galois extension of k(ζ ) and G = Autk(ζ )(F)

embeds as a subgroup of Autk(E). By Exercise 2.10.18, G is a solvable group. By Ex-
ercise 2.10.20, G has a composition series G = G0 ⊇ G1 ⊇ G2 ⊇ ·· · ⊇ Gm = 〈e〉 where
the factor group Gi/Gi+1 is cyclic of order [Gi : Gi+1], a prime divisor of |G|. By Theo-
rem 5.3.18 there is a tower of field extensions F = F0 ⊇ F1 ⊇ F2 ⊇ ·· · ⊇ Fm = k(ζ ) and
Fi/Fi+1 is a cyclic extension, hence a Kummer extension. By Theorem 5.6.15, Fi =Fi+1(vi)
is a radical extension. Since k(ζ ) is a radical extension, this proves F/k is a radical exten-
sion. �
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6.7. Exercises.

EXERCISE 5.6.25. Let k be a field, n≥ 1 and a∈ k. Let f = xn−a and F/k a splitting
field for f . Show that the following are equivalent

(1) Every root of f in F is a simple root.
(2) F [x]/( f ) is a direct sum of fields.
(3) n = 1 or na 6= 0.

EXERCISE 5.6.26. This exercise is a continuation of Exercise 4.2.13. Let R be a UFD
with quotient field K. Assume the characteristic of R is not equal to 2. Let a ∈ R be an
element which is not a square in R and f = x2−a ∈ R[x]. Let S = R[x]/( f ), L = K[x]/( f ).

(1) Show that there is a commutative square

S // L

R

OO

// K

OO

where each arrow is the natural map and each arrow is one-to-one.
(2) Show that L is the quotient field of S.
(3) AutK L = 〈σ〉 is a cyclic group of order two and L/K is a Galois extension.
(4) If σ : L→L is the automorphism of order two, then σ restricts to an R-automorphism

of S.
(5) The norm map NL

K : L→ K restricts to a norm map NS
R : S→ R.

EXERCISE 5.6.27. Let p be a prime number, and F/k an extension of fields which is
cyclic of degree pn. If E is an intermediate field such that F = E(a), and E/k is cyclic of
degree pn−1, then F = k(a).

EXERCISE 5.6.28. Let k be a field of positive characteristic p.
(1) The map a 7→ ap − a defines a homomorphism of additive groups ϕ : k → k.

Prove that a cyclic extension field E/k of degree p exists if and only if the map
ϕ is not onto.

(2) In this exercise, we outline a proof that a cyclic extension field E/k of degree
pn−1 can be embedded in a cyclic extension field F/k of degree pn. For the com-
plete classification of cyclic extensions F/k of degree pn, the interested reader is
referred to [1]. Assume n > 1, E/k is cyclic of degree pn−1, and Autk(E) = 〈σ〉.
(a) Show that there exists a,b∈ E satisfying: T E

k (a) = 1 and σ(b)−b = ap−a.
(b) Show that xp− x−a is irreducible in E[x].
(c) Let F = E[x]/(xp− x−a). Show that F/E is cyclic of degree p and F/k is

cyclic of degree pn.

EXERCISE 5.6.29. Let K be a finite extension field of Q. Prove that K contains only
a finite number of roots of unity.

7. Transcendental Field Extensions

For a finite extension of fields K/k we prove that a transcendence base exists and any
two transcendence bases have the same number of elements. Therefore, the transcendence
degree of the extension is well defined. These notions play important roles in Algebraic
Geometry. The field of rational functions K on an algebraic variety V is a finite exten-
sion of the ground field k. The transcendence degree of K/k is equal to the dimension
of V . In other words, the number of topological degrees of freedom on V is equal to the
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number of algebraic degrees of freedom in K. In the Fundamental Theorem on Symmet-
ric Rational Functions we prove that the transcendence degree of the field of symmetric
rational functions in n variables over k is equal to n. Moreover, we show that the field
of symmetric rational functions is generated by the elementary symmetric polynomials,
hence a transcendence base is constructed. In the Fundamental Theorem on Symmetric
Polynomials we prove that the ring of symmetric polynomials is generated by the elemen-
tary symmetric polynomials. In fact, we show that the ring of symmetric polynomials
contains a transcendence base for the field of symmetric rational functions. This is called
a globalization result, because rational functions in general have a nonempty pole set, but
polynomials do not. There is a version of Emmy Noether’s Normalization Lemma (see [5,
Theorem 8.4.6]) that says under certain sufficient conditions a transcendence base can be
constructed globally.

7.1. Transcendence Bases.

DEFINITION 5.7.1. Let F/k be an extension of fields and Ξ ⊆ F . We say Ξ is alge-
braically dependent over k if there exist n distinct elements ξ1, . . . ,ξn in Ξ and a nonzero
polynomial f ∈ k[x1, . . . ,xn] such that f (ξ1, . . . ,ξn) = 0. Otherwise we say Ξ is alge-
braically independent. A transcendence base for F/k is a subset Ξ⊆ F which satisfies

(1) Ξ is algebraically independent over k and
(2) if Ξ⊆ Z and Z is algebraically independent over k, then Ξ = Z.

LEMMA 5.7.2. Let F/k be an extension of fields and Ξ a subset of F which is alge-
braically independent over k. For u ∈ F− k(Ξ), the following are equivalent

(1) Ξ∪{u} is algebraically independent over k.
(2) u is transcendental over k(Ξ).

PROOF. (2) implies (1): Suppose there exist a polynomial f in k[x1, . . . ,xn] and el-
ements ξ1, . . . ,ξn−1 in Ξ such that f (ξ1, . . . ,ξn−1,u) = 0. Expand f as a polynomial in
xn with coefficients in k[x1, . . . ,xn−1], say f = ∑ j h jx

j
n. Then 0 = f (ξ1, . . . ,ξn−1,u) =

∑ j h j(ξ1, . . . ,ξn−1)u j. But u is transcendental over k(Ξ), so h j(ξ1, . . . ,ξn−1) = 0 for each
j. But Ξ is algebraically independent, so each polynomial h j = 0. Thus f = 0.

(1) implies (2): We prove the contrapositive. Assume u is algebraic over k(Ξ) and
f = min.polyk(Ξ)(u) = xm + hm−1xm−1 + · · ·+ h1x+ h0. Each h j is in k(Ξ), so there is
a finite subset ξ1, . . . ,ξn of Ξ and polynomials α0, . . . ,αm, β0, . . . ,βm in k[x1, . . . ,xn] such
that h j = α j(ξ1, . . . ,ξn)/β j(ξ1, . . . ,ξn). Multiply across by the least common multiple, β ,
of the denominators to get

f (x)β (ξ1, . . . ,ξn) = ∑
j

γ j(ξ1, . . . ,ξn)x j

where β (ξ1, . . . ,ξn) 6= 0 and each γ j is in k[x1, . . . ,xn]. Since ( f β )(ξ1, . . . ,ξn,u) = 0, we
are done. �

LEMMA 5.7.3. Let F/k be an extension of fields and Ξ a subset of F which is alge-
braically independent over k. The following are equivalent.

(1) F is algebraic over k(Ξ).
(2) Ξ is a transcendence base for F over k.

PROOF. (1) implies (2): Suppose Z is linearly independent, Z ⊇ Ξ, and z ∈ Z. Then z
is algebraic over k(Ξ), so by Lemma 5.7.2, Ξ∪{z} is linearly dependent. Therefore, z ∈ Ξ,
which implies Z = Ξ.
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(2) implies (1): We prove the contrapositive. Suppose u ∈ F− k(Ξ) and u is transcen-
dental over k(Ξ). By Lemma 5.7.2, Ξ∪{u} is algebraically independent, so Ξ is not a
transcendence base. �

LEMMA 5.7.4. Let F be a finitely generated field extension of k. Then the following
are true:

(1) If Ξ is a finite subset of F such that F is algebraic over k(Ξ), then there is a
subset of Ξ that is a transcendence base for F/k.

(2) There is a finite transcendence base for F/k.

PROOF. We prove (1). The reader should verify (2). Let Ξ be a finite subset of F such
that F is algebraic over k(Ξ). Consider the finite set

S = {Z ⊆ Ξ | Z is algebraically independent over k}
ordered by set containment. Then S contains a maximal member, call it X . Given u ∈ Ξ,
by Lemma 5.7.2, u is algebraic over k(X). By Proposition 5.1.10 (3), k(Ξ) is algebraic
over k(X). By Proposition 5.1.10 (4), F is algebraic over k(X). By Lemma 5.7.3, X is a
transcendence base. �

THEOREM 5.7.5. Let F/k be an extension of fields and assume Ξ = {ξ1, . . . ,ξn} is a
transcendence base for F over k. If Z is another transcendence base for F over k, then Z
also has cardinality n.

PROOF. Step 0: If n= 0, then by Exercise 5.7.14, F/k is an algebraic extension. Since
Z is algebraically independent over k, we conclude that Z = /0. Assume from now on that
n > 0.

Step 1: There exists ζ1 ∈ Z such that ζ1,ξ2, . . . ,ξn is a transcendence base for F/k.
First we show that there exists ζ ∈ Z such that ζ is transcendental over K = k(ξ2, . . . ,ξn).
Assume the contrary. Then F is algebraic over K(Z) and K(Z) is algebraic over K, hence
F is algebraic over K. Then ξ1 is algebraic over K, which contradicts Lemma 5.7.2. Sup-
pose ζ1 ∈ Z and ζ1 is transcendental over K. By Lemma 5.7.2, {ζ1,ξ2, . . . ,ξn} is alge-
braically independent over k. The set {ζ1,ξ2, . . . ,ξn}∪{ξ1} is algebraically dependent, so
Lemma 5.7.2 says ξ1 is algebraic over k(ζ1,ξ2, . . . ,ξn). In this case, the field k(Ξ)(ζ1) =
k(ζ1,ξ2, . . . ,ξn)(ξ1) is algebraic over k(ζ1,ξ2, . . . ,ξn) and F is algebraic over k(Ξ)(ζ1) =
k(ζ1,ξ2, . . . ,ξn)(ξ1), hence by Proposition 5.1.10 (4), F is algebraic over k(ζ1,ξ2, . . . ,ξn).
By Lemma 5.7.3, the set ζ1,ξ2, . . . ,ξn is a transcendence base for F/k.

Step 2: Iterate Step 1 n− 1 more times to get a subset {ζ1, . . . ,ζn} of Z which is a
transcendence base for F/k. By Definition 5.7.1, this implies Z = {ζ1, . . . ,ζn}. �

DEFINITION 5.7.6. Let F/k be an extension of fields such that a finite transcendence
base exists. The transcendence degree of F/k, denoted tr.degk(F), is the number of ele-
ments in any transcendence base of F over k.

THEOREM 5.7.7. Suppose k ⊆ F ⊆ K is a tower of field extensions. Assume Ξ =
{ξ1, . . . ,ξn} is a transcendence base for F/k and Z = {ζ1, . . . ,ζm} is a transcendence base
for K/F. Then

(1) Ξ∪Z is a transcendence base for K/k, and
(2) tr.degk(K) = tr.degk(F)+ tr.degF(K).

PROOF. (2): Follows straight from (1).
(1): The reader should verify that K is algebraic over k(Z∪Ξ)(F) and k(Z∪Ξ)(F) is

algebraic over k(Z ∪Ξ). Therefore, K is algebraic over k(Z ∪Ξ). Let f be a polynomial
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in k[x1, . . . ,xn][z1, . . . ,zm] such that f (ξ1, . . . ,ξn,ζ1, . . . ,ζm) = 0. Since Z is algebraically
independent over F , this implies f (ξ1, . . . ,ξn,z1, . . . ,zm) is the zero polynomial in the ring
k(ξ1, . . . ,ξn)[z1, . . . ,zm]. Therefore, each coefficient of f (ξ1, . . . ,ξn,z1, . . . ,zm) is an alge-
braic relation over k involving ξ1, . . . ,ξn. Because ξ1, . . . ,ξn are algebraically independent
over k, we conclude that f = 0. This proves Z∪Ξ is algebraically independent over k. By
Lemma 5.7.3 we are done. �

7.2. Symmetric Rational Functions. Let k be a field and A = k[x1, . . . ,xn] the ring
of polynomials over k in the variables x1, . . . ,xn (see Section 3.6.1). The field of rational
functions in x1, . . . ,xn over k is denoted K = k(x1, . . . ,xn). Let Sn be the symmetric group
on {1,2, . . . ,n}. The group Sn acts on A as a group of k-algebra automorphisms in the
following way. Given any permutation σ ∈ Sn and any polynomial f (x1, . . . ,xn)∈A, define
σ( f ) to be the polynomial f (xσ(1), . . . ,xσ(n)). Using Theorem 3.6.2 we see that σ defines
an automorphism of A that fixes each element of k. By Exercise 3.5.2, the permutation σ

induces an automorphism of K and Sn can be viewed as a group of automorphisms of K.
Then K is a Galois extension of KSn with group Sn. The degree of the extension K/KSn

is equal to the order of the group Sn, which is n!, by Example 2.1.14. The fixed field KSn

is called the field of symmetric rational functions in n variables over k. The subring of A
fixed by Sn is denoted ASn . We call ASn the ring of symmetric polynomials in n variables
over k. Let λ be another indeterminate. Consider the polynomial

Λ = (λ − x1)(λ − x2) · · ·(λ − xn)

in A[λ ]. Notice that Λ is symmetric in x1, . . . ,xn. In other words, if we extend the action
by Sn on A to an action on the ring A[λ ], then Λ is fixed by Sn. Therefore, the coefficients
of Λ are symmetric polynomials and belong to the ring ASn . The elementary symmetric
polynomial of degree i in the variables x1, . . . ,xn, denoted σi,n, is the coefficient of λ n−i in
the expansion of Λ:

Λ = λ
n−σ1,nλ

n−1 +σ2,nλ
n−2−·· ·+(−1)i

σi,nλ
n−i + · · ·+(−1)n

σn,n.

We see that
σ1,n = x1 + x2 + · · ·+ xn

σ2,n = ∑
i1<i2

xi1 xi2

σ3,n = ∑
i1<i2<i3

xi1xi2xi3

...
σn,n = x1x2 . . .xn

By Exercise 5.7.18, if 1 < i < m≤ n, then the polynomials σi,m satisfy the recurrence rela-
tion: σi,m =σi,m−1+xmσi−1,m−1. Therefore, we have the tower of fields: k(σ1,n, . . . ,σn,n)⊆
k(x1, . . . ,xn)

Sn ⊆ k(x1, . . . ,xn).

THEOREM 5.7.8. (Fundamental Theorem on Symmetric Rational Functions) Let k be
a field and k(x1, . . . ,xn) the field of rational functions in the variables x1, . . . ,xn over k. Let
Sn be the symmetric group on {1, . . . ,n} and k(x1, . . . ,xn)

Sn the field of symmetric rational
functions in the variables x1, . . . ,xn over k. Then the following are true.

(1) k(x1, . . . ,xn) is a Galois extension of k(x1, . . . ,xn)
Sn with Galois group Sn.

(2) The degree of the extension k(x1, . . . ,xn)/k(x1, . . . ,xn)
Sn is n!.
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(3) If σ1,n, . . . ,σn,n are the elementary symmetric polynomials in x1, . . . ,xn, then
k(x1, . . . ,xn)

Sn = k(σ1,n, . . . ,σn,n).
(4) k(x1, . . . ,xn) is the splitting field of the polynomial

Λ = λ
n−σ1,nλ

n−1 +σ2,nλ
n−2−·· ·+(−1)i

σi,nλ
n−i + · · ·+(−1)n

σn,n

over the field k(x1, . . . ,xn)
Sn = k(σ1,n, . . . ,σn,n).

PROOF. Parts (1) and (2) were proved in the paragraph preceding this theorem. By
definition, Λ = (λ − x1)(λ − x2) · · ·(λ − xn) splits over k(x1, . . . ,xn) and k(x1, . . . ,xn) is
generated by the roots of Λ. This proves k(x1, . . . ,xn) is the splitting field for Λ over
k(σ1,n, . . . ,σn,n), which is (4). By Corollary 5.2.6 and and Corollary 5.2.8, the dimension
of k(x1, . . . ,xn) as a vector space over k(σ1,n, . . . ,σn,n) is at most n!. Part (2) and Exer-
cise 5.1.23 imply k(x1, . . . ,xn)

Sn = k(σ1,n, . . . ,σn,n), which proves (3). �

COROLLARY 5.7.9. Let k be a field and k[x1, . . . ,xn] the ring of polynomials in the
variables x1, . . . ,xn over k. If σ1,n, . . . ,σn,n are the elementary symmetric polynomials in
x1, . . . ,xn, then the k-algebra homomorphism k[t1, . . . , tn]→ k[σ1,n, . . . ,σn,n] defined by ti 7→
σi,n is an isomorphism.

PROOF. By Exercise 5.7.16, K = k(x1, . . . ,xn) has transcendence degree n over k. By
Theorem 5.7.8, K is algebraic over k(s1,n, . . . ,sn,n). By Lemma 5.7.4 and Theorem 5.7.5,
{s1,n, . . . ,sn,n} is a transcendence base for K over k. Therefore, the k-algebra homomor-
phism k[t1, . . . , tn]→ k[s1,n, . . . ,sn,n] defined by ti 7→ σi,n is a k-algebra isomorphism. �

COROLLARY 5.7.10. If G is a finite group, then there exists a Galois field extension
with Galois group isomorphic to G.

PROOF. Let [G : 1] = n. By Cayley’s Theorem, Theorem 2.4.4, we can identify G
with a subgroup of Sn. By Theorem 5.7.8 and Theorem 5.3.18, k(x1, . . . ,xn) is a Galois
extension of k(x1, . . . ,xn)

G with Galois group G. �

7.3. The General Polynomial of Degree n is not solvable by Radicals. Let k be a
field of characteristic zero and assume xd−1 splits over k, for each d > 1. Let t0, t1, . . . , tn−1
be indeterminates, and K = k(t0, t1, . . . , tn−1) the field of rational functions over k. The
general polynomial of degree n over the field k is

p(x) = xn− tn−1xn−1 + . . .(−1)n−1t1x+(−1)nt0

which is an element of the ring K[x].

COROLLARY 5.7.11. If n ≥ 5, the general polynomial of degree n is not solvable by
radicals.

PROOF. Let σ1, . . . ,σn be the elementary symmetric polynomials in the n variables
x1, . . . ,xn. By Theorem 5.7.8, K = k(x1, . . . ,xn) is the splitting field of the polynomial

Λ = (λ − x1)(λ − x2) · · ·(λ − xn)

= λ
n−σ1,nλ

n−1 + · · ·+(−1)n−1
σn−1,nλ +(−1)n

σn,n.

over k(σ1,n, . . . ,σn,n). By Corollary 5.7.9, the field k(σ1,n, . . . ,σn,n) is isomorphic to the
field of rational functions k(t0, t1, . . . , tn−1) in n variables over k. Therefore, Λ is a general
polynomial of degree n over k. The Galois group of K over k(σ1,n, . . . ,σn,n) is Sn, the
symmetric group on n letters. By Corollary 2.10.14, Sn is not solvable. By Theorem 5.6.23,
Λ is not solvable by radicals, �
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7.4. Symmetric Polynomials. Theorem 5.7.8 (3) says that every symmetric ratio-
nal function is a rational function in the elementary symmetric polynomials. In Theo-
rem 5.7.12, which is due to Gauss, we improve this result by proving that every symmetric
polynomial is a polynomial in the elementary symmetric polynomials.

THEOREM 5.7.12. (Fundamental Theorem on Symmetric Polynomials) Let k be a field
and k[x1, . . . ,xn] the ring of polynomials in the variables x1, . . . ,xn over k. Let Sn be the
symmetric group on {1, . . . ,n} and k[x1, . . . ,xn]

Sn the ring of symmetric polynomials in the
variables x1, . . . ,xn over k. If σ1,n, . . . ,σn,n are the elementary symmetric polynomials in
x1, . . . ,xn, then the following are true.

(1) If f is a nonzero symmetric polynomial, then there exists a polynomial g ∈
k[t1, . . . , tn] such that f = g(σ1,n, . . . ,σn,n).

(2) k[x1, . . . ,xn]
Sn = k[σ1,n, . . . ,σn,n].

(3) The polynomial g in (1) is unique.

The proof of the theorem will utilize the following lemma.

LEMMA 5.7.13. In the context of Theorem 5.7.12, let f be a nonzero symmetric poly-
nomial in k[x1, . . . ,xn]

Sn . If the leading term of f (see Lemma 3.6.16) is M = rxe1
1 · · ·xen

n ,
then e1 ≥ e2 ≥ ·· · ≥ en.

PROOF. For sake of contradiction assume 1≤ i < j ≤ n and ei < e j. Apply the trans-
position τ = (i, j) to f . Since τ f = f , we know that f has the monomial

τM = rxe1
1 · · ·x

ei−1
i−1 xei

j xei+1
i+1 · · · · · ·x

e j−1
j−1 x

e j
i x

e j+1
j+1 · · ·x

en
n = rxe1

1 · · ·x
e j
i · · ·x

ei
j · · ·x

en
n .

Thus in the monomial τM, the exponents of xi and x j are swapped. But

M = rxe1
1 · · ·x

ei
i · · ·x

e j
j · · ·x

en
n < rxe1

1 · · ·x
e j
i · · ·x

ei
j · · ·x

en
n = τM.

This is a contradiction, since M is the leading term of f . �

PROOF OF THEOREM 5.7.12. (1) and (2): Let f ∈ k[x1, . . . ,xn]
Sn be a nonzero sym-

metric polynomial and assume the leading term of f is r1xe1
1 · · ·xen

n . By Lemma 5.7.13,
e1 ≥ e2 ≥ ·· · ≥ en. Set d1 = e1− e2, d2 = e2− e3, . . . , dn−1 = en−1− en, and dn = en. By
Exercise 5.7.20, the leading term of sd1

1,nsd2
2,n · · ·sdn

n,n is equal to

xd1+d2+···+dn
1 xd2+···+dn

2 · · ·xen
n = xe1

1 xe2
2 · · ·x

en
n .

Let g1 = r1sd1
1,nsd2

2,n · · ·sdn
n,n. Then g1 ∈ k[s1,n, . . . ,sn,n] and f1 = f −g1 is a symmetric poly-

nomial in k[x1, . . . ,xn]
Sn . The leading terms of f and g1 are equal, so if f1 is nonzero,

the leading term of f1 is less than the leading term of f in the lexicographical order (see
Section 3.6.1). If f1 is nonzero, then we repeat the above steps to get g2 ∈ k[s1,n, . . . ,sn,n]
with the same leading term as f1. Hence f2 = f1 − g2 is either zero, or has a leading
term less than the leading term of f1. Iterating, we get a sequence of symmetric poly-
nomials f , f1, f2, . . . such that the leading terms form a strictly decreasing sequence. By
Lemma 3.6.16 (3), after a finite number of iterations we have fm = 0. This shows that
f = g1 +g2 + · · ·+gm is in k[s1,n, . . . ,sn,n], proving (1) and (2).

(3): This follows from Corollary 5.7.9, because the map induced by sending ti to σi,n
is a k-algebra isomorphism k[t1, . . . , tn]∼= k[s1,n, . . . ,sn,n]. �
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7.5. Exercises.

EXERCISE 5.7.14. If F/k is an extension of fields, show that /0 is a transcendence base
if and only if F/k is an algebraic extension.

EXERCISE 5.7.15. If F/k is an extension of fields, and Ξ ⊆ F is algebraically inde-
pendent over k, show that there exists a transcendence base Z such that Z ⊇ Ξ.

EXERCISE 5.7.16. Let k is a field, and x1, . . . ,xn a set of indeterminates. Show that
tr.degk k(x1, . . . ,xn) = n and {x1, . . . ,xn} is a transcendence base for k(x1, . . . ,xn) over k.

EXERCISE 5.7.17. If F is a finitely generated extension field of the field k, show that
tr.degk(F) is equal to the least integer n such that there exist ξ1, . . . ,ξn in F and F is
algebraic over k(ξ1, . . . ,ξn).

EXERCISE 5.7.18. Let x1, . . . ,xn be a set of indeterminates. If 1≤ i≤ m≤ n, let σi,m
be the elementary symmetric polynomial of degree i in the variables x1, . . . ,xm. Prove the
following recursive formula:

σi,m =


x1 + x2 + · · ·+ xm if i = 1,
x1x2 . . .xm if i = m,
σi,m−1 + xmσi−1,m−1 if 1 < i < m≤ n.

EXERCISE 5.7.19. Let Sn be the symmetric group on {1,2, . . . ,n} and Sn−1 the sym-
metric group on {1,2, . . . ,n−1}. We view Sn−1 as a subgroup of Sn. Let k be a field. Prove
that if f (x1, . . . ,xn)∈ k[x1, . . . ,xn]

Sn , then f (x1, . . . ,xn−1,0)∈ k[x1, . . . ,xn−1]
Sn−1 . Show that

there exists a commutative diagram

An = k[x1, . . . ,xn]
α // An−1 = k[x1, . . . ,xn−1]

ASn
n

a ⊆

OO

β // ASn−1
n−1

b ⊆

OO

k[σ1,n, . . . ,σn,n]
γ //

c ⊆

OO

k[σ1,n−1, . . . ,σn−1,n−1]

d =

OO

of commutative rings satisfying the following:
(1) The maps a,b,c,d are homomorphisms defined by set inclusion.
(2) The epimorphism α is defined by xn 7→ 0.
(3) The homomorphism β is the restriction of α to ASn

n .
(4) The epimorphism γ is the restriction of α to k[σ1,n, . . . ,σn,n].

EXERCISE 5.7.20. Let ei ≥ 0 for each i. In the context of Theorem 5.7.12, show that
the leading term of se1

1,mse2
2,m · · ·sem

m,m is equal to xe1+e2+···+em
1 xe2+···+em

2 · · ·xem
m .

EXERCISE 5.7.21. Follow the steps below to show that the map γ in Exercise 5.7.19
has a section.

(1) Show that there is a k-algebra homomorphism

ε : k[σ1,n−1, . . . ,σn−1,n−1]→ k[σ1,n, . . . ,σn,n]

defined by σi,n−1 7→ σi,n.
(2) Show that γε is the identity map on k[σ1,n−1, . . . ,σn−1,n−1].
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EXERCISE 5.7.22. Let F/k be an extension of fields. Apply Zorn’s Lemma, Proposi-
tion 1.3.3, to prove: If Ξ is a subset of F such that F is algebraic over k(Ξ), then Ξ contains
a subset which is a transcendence base for F over k.

8. Applications to Algebraic Curves

If k is a field, then the affine plane over k is the cartesian product k2 = k× k. If x and
y are indeterminates and f (x,y) ∈ k[x,y], then

Z( f ) = {(a,b) ∈ k2 | f (a,b) = 0}
is the set of solutions of the equation f (x,y) = 0 in k2. We call Z( f ) an affine algebraic
curve. This terminology agrees with that of Section 5.1.2 where we discussed lines and
circles in the affine plane. The commutative ring R = k[x,y]/( f ) is known as the affine
coordinate ring of the curve Z( f ). There is a correspondence between points (a,b) on the
cuve Z( f ) and maximal ideals in R. For instance, given (a,b) ∈ Z( f ), consider the ideal
(x−a,y−b) in k[x,y]. Applying Exercise 3.6.34 twice, once for x−a and once for y−b,
we see that k[x,y]/(x−a,y−b) ∼= k. Hence (x− a,y− b) is a maximal ideal. Applying
Theorem 3.6.2 for x and y, there is a k-algebra homomorphism θ : k[x,y]→ k defined by
x 7→ a and y 7→ b. Clearly θ is onto and the maximal ideal (x− a,y− b) is contained in
kerθ . Hence kerθ = (x−a,y−b). By Theorem 3.2.15, there is a commutative diagram

k[x,y] θ //

η ##

k

k[x,y]
(x−a,y−b)

∼=

==

of k-algebras where η is the natural map. Since θ( f ) = f (a,b) = 0, f ∈ kerθ = (x−a,y−
b). If we set m= (x−a,y−b) in R, then by Corollary 3.2.16, R/m= k[x,y]/(x−a,y−b) =
k and m is a maximal ideal of R. The correspondence between points of Z( f ) and maximal
ideals of R is not onto. That is, if M is a maximal ideal of R, then R/M is in general an
extension field of k, hence M does not have the form (x−a,y−b) and does not correspond
to a point on Z( f ). In this case, the maximal ideal M is called an R/M-rational point of the
curve Z( f ). In the example of Section 5.8.1 below, we show that when k is not algebraically
closed, the affine coordinate ring R of the circle Z(x2 + y2− 1) has maximal ideals such
that the residue field R/M is strictly greater than k (see Proposition 5.8.1 (4)). Although
we do not prove it here, since R/M is a finitely generated k-algebra, by the Hilbert Basis
Theorem, R/M is finitely generated and algebraic over k (see [4, Proposition 10.2.4] or [2,
Proposition 7.9], for example). Therefore, if k is algebraically closed, then every point of
Z( f ) is k-rational.

8.1. A Nonsingular Affine Conic. If k is a field, then the unit circle C in the plane k2

is the set of solutions of the equation x2 + y2−1 = 0. That is,

C = {(x,y) ∈ k2 | x2 + y2−1 = 0}.
This terminology agrees with that of Section 5.1.2. In this section we investigate the com-
mutative ring R = k[x,y]/(x2 + y2−1) which is known as the affine coordinate ring of the
unit circle C.

First we establish notation that will be in effect throughout this section. Let k be a
field such that x2 +1 is irreducible over k. In particular, this implies that the characteristic
of the base field k is not 2 (Exercise 3.2.30). Let k[x] be the polynomial ring in one variable
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over k. Then k[x] is a UFD (Example 3.4.12) and x−1 is a prime in k[x]. Let k(x) be the
field of rational functions, the quotient field of k[x]. Consider the polynomial x2 + y2− 1
in k[x][y]. By Eisenstein’s Criterion (Theorem 3.7.6) with prime p = x−1, y2 +(x2−1) is
irreducible in k[x][y]. By Theorem 3.7.5, the polynomial ring k[x][y] is a UFD. Therefore,

R =
k[x,y]

(x2 + y2−1)
is an integral domain, by Corollary 3.4.14. The ring R is known as the affine coordinate ring
of the unit circle C in the affine plane k2. By Gauss’ Lemma (Theorem 3.7.4), x2 + y2−1
is irreducible in k(x)[y] and

F =
k(x)[y]

(y2 + x2−1)
is a field. By Exercise 5.3.32, F is a Galois extension of k(x). The Galois group Autk(x) F
is cyclic of order 2, and generated by the automorphism τ defined by y 7→ −y. Let K = k(i)
be the splitting field for x2 + 1 over k. The Galois group of K/k is the cyclic group 〈σ〉,
where σ(i) = −i. In the following, cosets in the factor rings R and F are written without
brackets or any extra adornment.

PROPOSITION 5.8.1. In the above context, the following properties hold for R and F:
(1) F is the quotient field of R.
(2) As a k[x]-module, R is free of rank two with basis 1,y.
(3) There is a norm map NR

k[x] : R→ k[x] defined by a+ by 7→ (a+ by)(a− by) =

a2−b2y2 = a2−b2(1− x2).
(4) In general, R contains K-rational points.

PROOF. (1): The diagram of ring homomorphisms

(8.1) R = k[x,y]
(x2+y2−1)

φ // F = k(x)[y]
(x2+y2−1)

k[x,y] α //

η

OO

k(x)[y]

η

OO

k[x] //

OO

k(x)

OO

commutes. The vertical maps are the natural maps. The horizontal map α exists by Theo-
rem 3.6.2 applied to k[x]→ k(x). Since ηα(x2 + y2−1) = 0, φ exists by Theorem 3.2.15.
Using Gauss’ Lemma (Theorem 3.7.4), we see that the kernel of ηα is the principal ideal
(x2+y2−1). Therefore, φ is one-to-one. By Exercise 3.5.2, we can view the quotient field
of R as a subfield of F . In this context, we show that F is equal to the quotient field of R.
By Lemma 4.4.3, a k(x)-basis for F is {1,y}. Since y∈ R we know y is in the quotient field
of R. The quotient field of k[x] is k(x), hence k(x) is in the quotient field of R. A typical
element of F is of the form f (x)+g(x)y, where f (x) and g(x) are in k(x). Hence a typical
element of F is in the quotient field of R.

(2): By Lemma 4.4.3, a k(x)-basis for F is {1,y}. Therefore, {1,y} is linearly indepen-
dent over k[x]. Since the image of ηα is generated by polynomials over k in the variables
x and y, {1,y} is a generating set for the image of φ as a k[x]-module. In Diagram (8.1), φ

is one-to-one. So {1,y} is a generating set for R as an A-module.
(3): The norm map NF

k(x) : F → k(x) restricts to a norm map R→ k[x].
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(4): To see that for general k, R has K-rational points, suppose for instance that 2 is a
square in k. Then R/(y−

√
2)∼= k[x]/(x2+1)∼= K. Therefore, the principal ideal (y−

√
2)

is a maximal ideal of R with residue field K. �

We retain the notation from Proposition 5.8.1. The affine coordinate ring of the unit
circle in the plane K2 is S = K[x,y]/(x2 + y2−1). Identifying K with k[z]/(z2 +1), we see
that

S =
k[x,y,z]

(x2 + y2−1,z2 +1)

=
R[z]

(z2 +1)
= R[i].

The diagram

K(x)[y]
(x2+y2−1)

S = K[x,y]
(x2+y2−1)

88

K = k[i]

99

F = k(x)[y]
(x2+y2−1)

OO

R = k[x,y]
(x2+y2−1)

OO

88

k

OO

88

commutes. By Proposition 5.8.1, the quotient field of S is

K[x,y]
(x2 + y2−1)

=
k[x,y,z]

(x2 + y2−1,z2 +1)
= F [i].

The field extension F [i]/F is Galois with group 〈σ〉 where σ(i) = −i. Notice that σ

restricts to an R-algebra automorphism of S and the norm NS
R : S∗→ R∗ is a homomorphism

of groups. We can also view R as the ramified quadratic extension of k[x] defined by
adjoining the square root of 1− x2. Likewise, S is the ramified quadratic extension of K[x]
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defined by adjoining the square root of 1− x2.

S = K[x,y]
(x2+y2−1)

R = k[x,y]
(x2+y2−1)

88

K[x]

OO

k[x]

OO

77

Geometrically, the extension R/k[x] or S/K[x] corresponds to the projection of the circle C
onto the x-axis.

PROPOSITION 5.8.2. In the above context, the following are true.

(1) S is a UFD.
(2) S∗ = K∗×〈x+ iy〉.
(3) R∗ = k∗.
(4) R is not a UFD. In fact, x, y+1, y−1 are irreducible in R and x2 =(y+1)(y−1).

PROOF. (1) and (2): To show that S is a UFD, by Exercise 3.6.26, it suffices to show
that S is isomorphic to the ring of Laurent polynomials K[u,u−1]. In S we have x2+y2−1=
(x+ iy)(x− iy)−1. Define K-algebra homomorphisms

K[u,v]
(uv−1)

φ−→ K[x,y]
(x2 + y2−1)

θ−→ K[u,v]
(uv−1)

by φ(u) = x+ iy, φ(v) = x− iy, θ(x) = u+v
2 and θ(y) = u−v

2i . One can check that φ and
θ are well defined K-algebra homomorphisms. Since φ and θ are inverses of each other,
they are isomorphisms. There is an isomorphism of K-algebras

K[u,v]
(uv−1)

∼=−→ K[u,u−1]

induced by v 7→ u−1. By Exercise 3.6.26, K[u,u−1] is a UFD and the group of units is equal
to the internal direct product K∗×〈u〉. Using the isomorphism θ , this proves S is a UFD
and

S∗ = K∗×〈x+ iy〉.
Notice that the inverse of x+ iy is x− iy. This proves (1) and (2).

(3): We have the homomorphism of groups NS
R : S∗→ R∗ and if a ∈ R∗, then NS

R(a) =
a2. Since NS

R(x+ iy) = (x+ iy)(x− iy) = x2 + y2 = 1, we see that R∗ = (K∗)〈σ〉 = k∗.
(4): To prove that x is irreducible in R, we use the norm map R→ k[x] of Proposi-

tion 5.8.1 (3). Look at the norm of x from R to k[x]:

NR
k[x](x) = x2.

For sake of contradiction, assume x has a nontrivial factorization x = αβ in R. Since
R∗ = k∗, this means the norm of α is equal to cx for some c ∈ k∗. Suppose α = a+by for
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some a,b ∈ k[x]. Then the equation NR
k[x](a+by) = cx becomes

a2−b2(1− x2) = cx.

Substitute x = 1 and x =−1 to get c = a(1)2 and −c = a(−1)2. Hence

−1 = a(1)2a(−1)−2

which contradicts our assumption that −1 is not a square in k. Therefore, x is irreducible
in R. Since

NR
k[x](1+ y) = NR

k[x](1− y) = (1+ y)(1− y) = x2

the same argument proves that y+1 and y−1 are irreducible in R. This proves R is not a
UFD, since the identity

x2 = (1− y)(1+ y)

holds in R. �

PROPOSITION 5.8.3. In the above context, the ideal m = (x,y− 1) of R has the fol-
lowing properties:

(1) m is a maximal ideal.
(2) m is not a principal ideal.
(3) m2 is equal to the principal ideal (y−1).

PROOF. (1): Since R/m= k[x,y]/(x,y−1) = k is a field, m is a maximal ideal.
(2): Assume m= (z) is a principal ideal. Then z divides x. Since x is irreducible, this

implies z and x are associates. But R/(x) = k[y]/(y2−1) is not a field. Therefore, m 6= (x),
a contradiction.

(3): Notice that m2 = (x,y−1)2 is generated by the three elements x2 = 1− y2, x(y−
1), and (y−1)2, all of which are in the principal ideal (y−1). Conversely, since x2+y2 = 1
in R,

x2 +(y−1)2 = x2 + y2−2y+1

= 2(1− y)

which shows y−1 is in m2. This proves m2 = (y−1) is a principal ideal in R. �

PROPOSITION 5.8.4. In the above context, the ideal m = (x,y− 1) of R has the fol-
lowing properties:

(1) m is a projective R-module.
(2) m is not a free R-module.

PROOF. (1): From Proposition 5.8.1, we can view R as a subring of F . An arbitrary
element m ∈m can be written in the form m = ax+b(y−1), for some a,b ∈ R. From(

y+1
x

)
m =

y+1
x

(ax+b(y−1))

=
ax(y+1)+b(y2−1)

x

=
ax(y+1)−bx2

x
= a(y+1)−bx
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we see that
(

y+1
x

)
m ∈ R. Define

m
φ−→ R2

m 7→
(

y+1
2x

m,
−m
2

)

and

R2 π−→m

(a,b) 7→ ax+b(y−1).

The reader should verify that φ and π are R-module homomorphisms. For each m ∈m we
have

πφ(m) = π

(
y+1

2x
m,
−m
2

)
=

(
y+1

2x

)
mx− m

2
(y−1)

=
y+1

2
m− y−1

2
m

= m.

Therefore, πφ = 1m. Hence φ is one-to-one and π is onto. By Proposition 4.1.21, φ(M)
is an R-module direct summand of R2. By Proposition 4.1.29, M is a finitely generated
projective R-module.

(2): For sake of contradiction, assume m is a free R-module of rank r. By Exer-
cise 4.2.16, m/m2 is a vector space of dimension r over the field R/m. By Proposi-
tion 5.8.3 (3), m/m2 is generated by x. Therefore, r = 1. This implies m is a principal
ideal, contradicting Proposition 5.8.3 (2). �

8.2. A Nonsingular Affine Elliptic Curve. This short section is devoted to an exam-
ple of an algebraic curve that is nonsingular and nonrational. Assume that the characteristic
of k, the base field, is not 2. Let A = k[x] be the polynomial ring in one variable over k.
Then A is a UFD (Example 3.4.12) and x is a prime in A. Let K = k(x) be the quotient
field of A. Consider the polynomial y2− x(x2−1) in A[y]. By Eisenstein’s Criterion (The-
orem 3.7.6) with prime p = x, y2− x(x2− 1) is irreducible in A[y]. By Gauss’ Lemma
(Theorem 3.7.4), y2− x(x2− 1) is irreducible in K[y] and F = K[y]/(y2− x(x2− 1)) is a
field. By Exercise 5.3.32, F/K is a Galois extension, AutK(F) = 〈σ〉 has order 2, and σ is
defined by y 7→ −y. The norm map is NF

K : F → K.
In the following, cosets in the factor ring F are written without brackets or any extra

adornment. By Theorem 3.7.5, the polynomial ring A[y] = k[x,y] is a UFD. Therefore,
R = k[x,y]/(y2− x(x2− 1)) is an integral domain, by Corollary 3.4.14. The diagram of
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ring homomorphisms

(8.2) A = k[x] //

��

K = k(x)

��
A[y] α //

η

��

K[y]

η

��
R = A[y]/(y2− x(x2−1))

φ // F = K[y]/(y2− x(x2−1))

commutes. The vertical maps are the natural maps. The horizontal map α exists by The-
orem 3.6.2 applied to A→ K. Since ηα(y2− x(x2−1)) = 0, φ exists by Theorem 3.2.15.
Using Gauss’ Lemma (Theorem 3.7.4), we see that the kernel of ηα is the principal ideal
(y2− x(x2−1)). Therefore, φ is one-to-one.

PROPOSITION 5.8.5. In the above context, the following are true.

(1) The quotient field of R is F.
(2) As an A-module, R is free of rank 2. The set {1,y} is a free basis. The image of

φ is {p(x)+q(x)y | where p(x) and q(x) are in A = k[x]}.
(3) The homomorphism A→ R defined by sending x to its image in R is one-to-one.
(4) The automorphism σ ∈AutK(F) defined by y 7→−y restricts to an automorphism

σ : R→ R.
(5) For any a∈ R, define the norm of a to be N(a) = aσ(a). Then N(1) = 1, N : R→

A, and N is multiplicative.
(6) The map on groups of units k∗→ R∗ is an isomorphism. That is, the units of R

are precisely the units of k.
(7) x and y are irreducible elements of R.
(8) R is not a unique factorization domain.
(9) R is not a principal ideal domain.

PROOF. (1): By Exercise 3.5.2, we can view the quotient field of R as a subfield of
F . In this context, we show that F is equal to the quotient field of R. By Lemma 4.4.3, a
k(x)-basis for F is {1,y}. Since y ∈ R we know y is in the quotient field of R. The quotient
field of k[x] is k(x), hence k(x) is in the quotient field of R. A typical element of F is of the
form f (x)+g(x)y, where f (x) and g(x) are in k(x). Hence a typical element of F is in the
quotient field of R.

(2): By Lemma 4.4.3, a K-basis for F is {1,y}. Therefore, {1,y} is linearly indepen-
dent over A. Since the image of ηα is generated by polynomials over k in the variables x
and y, {1,y} is a generating set for the image of φ as an A-module. As mentioned in the
paragraph that precedes the proposition, φ is one-to-one. So {1,y} is a generating set for
R as an A-module.

(3): The composite map A→ K→ F is one-to-one and factors through R.
(4): Using Theorem 3.6.2, we see that the map σ : A[y]→ A[y] defined by y 7→ −y is

an automorphism and maps the principal ideal (y2− x(x2−1)) onto itself.

(8.3) A[y] σ //

η

��

A[y]

η

��
R // R
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The kernel of ησ is the principal ideal (y2− x(x2−1)). Hence σ : R→ R is an automor-
phism.

(5): Let a ∈ R. By (2), a has a unique representation in the form a = f + gy, for
polynomials f and g in A = k[x]. Then N(a) = aσ(a) = f 2− g2y2 = f 2− g2x(x2− 1) is
in the image of A→ R. Notice that N : R→ A is the restriction of NF

K : F → K, hence
N(1) = 1 and N(ab) = N(a)N(b) by Section 5.5.

(6): The map k→ R is one-to-one because k is a field. We show that k∗→ R∗ is onto.
Let a,b ∈ R and assume ab = 1. Then N(a)N(b) = 1 in A. But A∗ = k∗. This proves
N(a) ∈ k. By (2), a has a unique representation in the form a = f +gy, for polynomials f
and g in A = k[x]. Then N(a) = f 2−g2x(x2−1) = u for some u∈ k∗. Then ( f (0))2 = u. If
g 6= 0, then the leading term of f 2 which is even is equal to the leading term of g2x(x2−1),
which is odd, a contradiction. Therefore, g = 0 and a = f = f (0) is in k.

(7): If x is not irreducible, then there is a nontrivial factorization x = ab. By (5),
we have the factorization N(x) = x2 = N(a)N(b) in A = k[x]. Therefore, N(a) = x up to
associates. By (2), a has a representation in the form a = f +gy, for polynomials f and g
in A = k[x]. Then up to associates, N(a) = f 2−g2x(x2−1) = x. Then f 2 = g2x(x2−1)+x
which is impossible because the degree of the left hand is even and that of the right hand
side is odd. This proves x is not in the image of the norm map N : R→ A, hence x is
irreducible in R.

If y is not irreducible in R, then there is a nontrivial factorization y = ab. By (5),
we have the factorization N(y) = x(x2 − 1) = N(a)N(b) in A = k[x]. Therefore, up to
associates, one of N(a) or N(b) is in {x,x+ 1,x− 1}. The same proof from above shows
that x+1 and x−1 are not in the image of N : R→ A. Therefore, y is irreducible in R.

(8): In R we have the identity y2 = x(x2−1). By the proof of (7), N(x)= x2 and N(y)=
x(x2−1). Therefore, x and y are not associates of each other. So unique factorization does
not exist.

(9): Consider the ideal m= (x,y). Then R/m= k[x,y]/(x,y) = k is a field, hence m is a
maximal ideal. If m= (a) is principal, then a | x and a | y. Since x and y are irreducible, by
Lemma 3.4.5, this implies x and y are associates of each other, a contradiction to (8). �

8.3. Exercises.

EXERCISE 5.8.6. Let k be a field. Assume the characteristic of k is not 2 or 3 and that
k contains a primitive sixth root of unity denoted ζ6.

(1) Show that k(x) is a cyclic Galois extension of k(x6) of degree 6 (in other words,
a Kummer extension). Let G = 〈σ〉 be the Galois group. Determine the lattice
of subfields and lattice of subgroups guaranteed by the Fundamental Theorem of
Galois Theory.

(2) Show that G acts on k[x] and the fixed subring is k[x6]. Determine the lattice of
fixed subrings of k[x] corresponding to the subgroups of G.

(3) As in Exercise 3.6.17, let R = k[x2,x3]. Show that the quotient field of R is k(x).
We say that R is birational to k[x]. Determine the subgroup of G that fixes R
point-wise (that is, the stabilizer of R in G).

(4) True or False?
(a) k[x] is a free k[x2]-module.
(b) k[x] is a free k[x2,x3]-module.
(c) k[x2,x3] is a free k[x2]-module. (Hint: k[x2] is a PID, in fact it is a euclidean

domain. Section 4.3 applies.)



8. APPLICATIONS TO ALGEBRAIC CURVES 229

EXERCISE 5.8.7. Let k be a field. In Algebraic Geometry, the ring k[x2,x3] of Exer-
cise 3.6.17 corresponds to a cuspidal cubic curve and is not a UFD. The ring k[x2,x+ x3]
corresponds to a nodal cubic curve.

(1) Show that the quotient field of k[x2,x+ x3] is k(x). In other words, k[x2,x+ x3]
and k[x] are birational.

(2) Prove that k[x2,x+ x3] is not a UFD.

EXERCISE 5.8.8. In the context of Proposition 5.8.5, consider the maximal ideal m=
(x,y). Show that m2 is principal.
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Acronyms

ACC Ascending Chain Condition
DCC Descending Chain Condition
GCD Greatest Common Divisor
PID Principal Ideal Domain
UFD Unique Factorization Domain
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Dieudonné, Edited, with notes and commentary by Robert Bourgne and Jean-Pierre Azra, Reprint of the
second (1976) edition. MR 1452597

[7] I. N. Herstein, Topics in algebra, second ed., Xerox College Publishing, Lexington, Mass., 1975.
MR 0356988 (50 #9456)

[8] Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York,
1980, Reprint of the 1974 original. MR 600654 (82a:00006)

[9] John L. Kelley, General topology, Springer-Verlag, New York-Berlin, 1975, Reprint of the 1955 edition
[Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27. MR 0370454 (51 #6681)

[10] James H. McKay, Another proof of Cauchy’s group theorem, Amer. Math. Monthly 66 (1959), 119.
MR 98777

[11] Eugen Netto, Ueber die Irreductibilität ganzzahliger ganzer Functionen, Math. Ann. 48 (1896), no. 1-2,
81–88. MR 1510925

[12] David Singmaster and D. M. Bloom, Problems and Solutions: Solutions of Elementary Problems: E1648,
Amer. Math. Monthly 71 (1964), no. 8, 918–920. MR 1532917

[13] Michael Spivak, Calculus, fourth ed., Publish or Perish, Inc., PMB 377, 1302 Waugh Drive, Houston, Texas
77019, 2008.

[14] The Sage Development Team, Sagemath, the Sage Mathematics Software System (Version 8.8), The Sage
Development Team, 2019-06-26, http://www.sagemath.org.

[15] A. R. Wadsworth, Problems in abstract algebra, Student Mathematical Library, vol. 82, American Mathe-
matical Society, Providence, RI, 2017. MR 3643210

[16] Helmut Wielandt, Ein Beweis für die Existenz der Sylowgruppen, Arch. Math. (Basel) 10 (1959), 401–402.
MR 147529

[17] Max Zorn, A remark on method in transfinite algebra, Bull. Amer. Math. Soc. 41 (1935), no. 10, 667–670.
MR 1563165

231





Glossary of Notations

〈X | Y 〉 group defined by generators X and relations Y , 58
(X) ideal generated by X , 91
(X) submodule generated by X , 127
1X identity map on X , 10
2X power set of X , 9
[G : 1] order of the group G, 27
[G : H] index of the subgroup H in the group G, 34
annihR(M) annihilator of M in R, 126
Aut(G) group of automorphisms of G, 39
AutR(A) automorphism group of an R-algebra A, 143⋂

i∈I Xi intersection of a family of sets, 9⋃
i∈I Xi union of a family of sets, 9(n

k

)
binomial coefficient, 12

char(R) characteristic of R, 91
dimD(V ) dimension of the D-vector space V , 136
`(G) length of a composition series of G, 83
/0 empty set, 9
gcd(a1, . . . ,an) greatest common divisor of {a1, . . . ,an}, 15
GLn(F) general linear group of n-by-n matrices over F , 30
Hom(A,A) endomorphism ring of an abelian group, 86
im( f ) image of a homomorphism f , 90
ker( f ) kernel of a homomorphism f , 90
〈X〉 subgroup generated by X , 33
dxe ceiling of x, 14
lcm(a,b) least common multiple, 17
bxc floor of x, 14
|a| order of the element a, 27
|X | cardinality of the set X , 11
Map(X) set of all functions from X to X , 13
C complex numbers, 9
N natural numbers, 9
Nn {1,2, . . . ,n}, 12
Q rational numbers, 9
Q/Z rational numbers modulo the integers, 42
Q/Z(p) p-torsion subgroup of Q/Z, 142
R real numbers, 9
Z integers, 9
Z/(m) integers modulo m, 17
min.polyk(α) minimal polynomial of α over k, 144
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234 GLOSSARY OF NOTATIONS

µ the group of all roots of unity in C, 42
µn the group of nth roots of unity, 42
Perm(X) set of all permutations of X , 25
PGLn(F) projective general linear group, 46
φ(n) Euler φ -function, 18
∏i∈I Xi product of a family of sets, 22
ψ∗ the dual of ψ ∈ HomR(M,N), 148
RadR(0) nil radical of R, 97
Rank(M) rank of the module M, 131
sign(σ) sign of a permutation, 62
SLn(F) special linear group, 46
trace(α) trace of a matrix, 170
trace(φ) trace of a homomorphism, 170
tr.degk(F) transcendence degree of F/k, 216
Units(R) or R∗ group of units in the ring R, 86
a+ I left coset of I containing a, 93
a | b a divides b, 15
An powers of an ideal, 98
An alternating group on n letters, 62
Dn dihedral group of order 2n, 29
ei j elementary matrix, 97
F(X) free group on the set X , 58
f ′ formal derivative of the polynomial f , 115
G∼= G′ G is isomorphic to G′, 27
G/H set of all left cosets of H modulo G, 34
G′ commutator subgroup, 48
Go opposite group, 31
H oK semidirect product of H and K, 53
H\G set of all right cosets of H modulo G, 34
I : J ideal quotient, 97
k(x) field of rational functions over k in the variable x, 113
M(φ ,X ,Y ) matrix of φ with respect to the bases X , Y , 146
M(π) submodule of M annihilated by powers of π , 140
M/S factor module of M modulo S, 128
M∗ HomR(M,R), the dual module, 148
M1⊕M2⊕·· ·⊕Mn direct sum of modules, 130
Mn(R) ring of n-by-n matrices over R, 86
Mnm(R) set of all n-by-m matrices over R, 146
NEG N is a normal subgroup of G, 39
NG(S) normalizer of S in G, 52
o(G) order of the group G, 27
Q8 quaternion eight group, 29
R(G) group ring, 86
R/I residue class ring, 93
Ro opposite ring of R, 87
R(n) free R-module of rank n, 131
S1 +S2 + · · ·+Sn sum of submodules, 130
Sn symmetric group on n letters, 12
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Un units modulo n, 18
X = Y equality of sets, 9
X ∩Y intersection of sets, 9
X ∪Y union of sets, 9
x≡ y (mod H) x is congruent to y modulo H, 33
x≡ y (mod m) x is congruent to y modulo m, 17
x ∈ X x is an element of X , 9
X ⊆ Y X is a subset of Y , 9
X×Y product of sets, 9
X1∩·· ·∩Xn intersection of a family of sets, 10
X1∪·· ·∪Xn union of a family of sets, 10
X1×·· ·×Xn product of a family of sets, 10
Y −X complement of a set, 9
Z(A) center of a ring A, 87
Z(G) center of a group G, 45
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p-Sylow subgroup, 68–78
p-groups, 54, 66–67, 70, 74

are nilpotent, 81
are solvable, 82

abelian group, 25
Z-module, 126
nth power homomorphism, 42, 71–72
x2 = e criterion, 31, 45
examples

groups of various orders, 70
of order 36, 59
of order six, 45
of order three, 28
of order two, 27
the additive integers, 26
the group of units modulo n, 26
the integers modulo n, 26

left multiplication by n
homomorphism, 41, 72, 74

algebra, 143–145
algebraic, 143

finite dimensional is, 144
algebraic element of, 143, 144, 174
example

k[x], 143
k[x]/(q), 143

finite dimensional, 145
quadratic, 185
transcendental element of, 143, 174,

175
Algebraic over Algebraic is Algebraic,

176
alternating group, 62–65

A4, 65
alternating multilinear form, 160–165
Artin-Schreier Theorem, 208–209

ascending central series of a group,
80–82

associates, 103
automorphism of a field

Aut(R) = 〈1〉, 194
example

k(x), 185
fixes the prime field, 194
linearly independent, 187
permutation of roots of a polynomial,

186
uniquely determined by a generating

set, 186
automorphism of a group, 38

Aut(Z), 44
Aut(Z,+), 89
Aut(Z/n), 89
automorphism of a cyclic group, 44
conjugation, 38
group of all, Aut(G), 39, 48, 51, 53,

75
inner, 39, 48, 51

automorphism of a module, 127
automorphism of a ring, 90
automorphism of an R-algebra, 143

group of all, AutR(A), 143, 185
automorphism of rings

Aut(Z), 98
Aut(Z/n), 98
group of all, Aut(R), 98
inner, 90

Axiom of Choice, 21, 22

Bézout’s Identity, 16–19, 43, 107
Basis Theorem for Finite Abelian

Groups, 73, 139–140, 142
binary operation, 13, 25

associative law, 25
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associative law fails for cross product,
13

associative, commutative, distributive
laws, 13

distributive law for intersection and
union, 13

distributive law for intersection and
union, 13

General Associative Law, 26
identity element, 13, 25
inverse element, 25
multiplication table, 28, 31–32

binary relation, see also equivalence
relation, 11–12

partial order, see also partially
ordered set, 20

reflexive, symmetric, antisymmetric,
transitive, 11

binomial coefficient, 12, 20, 118
Pascal’s Identity, 12

Binomial Theorem, 14, 20
for a ring, 89

cardinal number, 11
Cauchy’s Theorem, 42, 44, 53, 67, 68,

193
p = 2 case, 31
for abelian groups, 44

Cayley’s Theorem, 51, 218
Cayley-Hamilton Theorem, 165
center of a group, 45, 48

various properties, 48
center of a ring, 87

central element, 87
chain, see also partially ordered set
Change of Base Theorem for a Galois

Extension, 198
characteristic

of a field, 173
of a ring, 91, 96

Chinese Remainder Theorem, 17, 18,
55, 70, 76

for rings, 100–102, 122
circle group in the complex plane, 42,

50
Class Equation, 52, 53
classification

elements in a finite dimensional
algebra, 145

elements in a finite ring, 111
finite rings of order p1 · · · pm, 102
groups of order 12, 75–76
groups of order 171, 77–78
groups of order 225, 78–79
groups of order 2p, 54
groups of order 30, 76
groups of order 63, 77, 79
groups of order 8, 79
groups of order 99, 79
groups of order pq, 70
groups of order six, 45
quadratic extensions of a field, 122
rings of order p2, 208
rings of order four, 185, 208

comaximal ideals, 99–101, 133
commutative diagram, 10
commutator subgroup, 48–50
companion matrix of a polynomial, 154,

159, 168
determinant and trace, 170

complex conjugation, 105
complex conjugation, 23, 175, 186, 193,

194, 199
complex numbers, 9, 23–24, 42, 50,

179, 201–202
field, 86
root of unity, 42, 198, 199

composition series, 83
congruence modulo m, 17
congruence modulo m

gcd(x,m) constant on congruence
classes, 20

congruence modulo a subgroup, 33
coset, see also coset
equivalence relation, 33

conjugacy class, 52
conjugate of a subgroup

is a subgroup, 42
conjugation, 52
content of a polynomial, 119
Correspondence Theorem

for Groups, 40, 43, 67, 68, 81, 94
for modules, 129
for Rings, 94, 95

coset
complete set of left coset

representatives, 34
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correspondence between left and
right, 34, 37

definition, 34, 93
Cramer’s Rule, 169
cyclic group, 42, 58

equivalent conditions, 74
finite, 36
infinite, 35
simple, 37, 44, 208

cyclotomic extension, 210–212
order 8, 196
order p, 196

cyclotomic polynomial, 121, 182, 211,
212

degree of a polynomial, 111, 115
DeMorgan’s Laws, 13
derived series, 82, 83
determinant, 160–165

cofactor expansion of rows or
columns, 163

constant under elementary column
operation, 169

homomorphic image, 169
dihedral group, 29, 54, 58, 79, 83, 193

D4, conjugacy classes, 54
D4, subgroup lattice, 47, 50
D5, conjugacy classes, 54
ascending central series, 83
center of, 45, 83, 193
commutator subgroup, 49
internal direct sum of subgroups, 83
semidirect product, 54

direct product
of groups, 55
of groups, 31, 37, 42, 56
of modules, 130

over a direct product of rings, 138
of quotient groups, 60
of rings, 99

direct summand, 130
a subspace of a vector space is, 137

divides, 15, 102, 103
divisible group, 142
Division Algorithm, 15, 17, 36, 105

for polynomials, 112
division ring, 85, 96

real quaternions, 89
domain, 85, 94

double dual module, 148
double the cube, 179
dual module, 148–149

dual basis, 148
functorial property, 148, 149

Eisenstein’s Irreducibility Criterion,
120, 121

elementary matrix, 97, 146
Embedding Theorem for Fields, 191
empty set, 9
endomorphism of a group, 38
endomorphism of a module, 127, 134,

145
endomorphism ring, see also ring of

endomorphisms
of a module, 147, 149

epimorphism of groups, 38
epimorphism of modules, 127
equivalence relation, 11, 14, 17

defined by a function, 14, 52
equivalence class, 11
full set of representatives, 17
natural map, 11, 14
Universal Mapping Property, 14, 40

Euclid’s Lemma, 16
for a commutative ring, 109

Euclidean Algorithm, 107
euclidean domain

definition, 105
is a PID, 106
is a UFD, 106
various properties, 106

Euler φ -function, 43
Euler φ -function, 18, 36, 48, 210
Euler’s generalization of Fermat’s Little

Theorem, 36
extension of a ring by a module,

example, 102

Fermat’s Little Theorem, 36
field, 85, 96

algebraically closed, 180, 181
example

Q[i], 89
perfect, 197

field extension, 173
dimFG(F)≤ |G|, 188
|Autk(F)| ≤ dimk(F), 187
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algebraic, 174
algebraic closure, 181
algebraic element of, 174

irreducible polynomial, 174, 175
algebraic over algebraic is algebraic,

176
example
Q(
√

2) and Q(
√

3), 185
Q[x]/(x3−3x−1), 180
R(
√
−2) and R(

√
−3), 185

k(x)/k(x4/(4x3−1)), 180
splitting field of cyclotomic

polynomial, 182
splitting field of x3 +2x+1, 175
splitting field of x3−2, 184
splitting field of xp−α , 181

existence of algebraic closure, 176
finite dimensional, 180
finite dimensional if and only if

finitely generated and algebraic,
176

finitely generated, 173
generated by X , 173, 174, 180
inseparable

example, 117
intermediate field, 173

composite, 176
fixed by G, 186
subgroup fixing, 186

is an example of an algebra, 143
normal, 190
quadratic extension, 185
separable, 183, 195, 196
separable closure, 197
simple, 173

sufficient criterion, 184, 189
transcendental element of, 174, 215

field of rational functions, 113, 121–122
finite field

example
order 4, 185
order 9, 179
order p2, 208

existence of, 206
existence of primitive element, 114,

173
image of the norm map, 208
irreducible polynomial

number of, 207
quadratic, 179

uniquely determined by its order, 184
various properties, 183

Finitely Generated Modules over a
Euclidean Domain, 139–142

Basis Theorem
Elementary Divisor Form, 141
Invariant Factor Form, 141

Finitely Generated over Finitely
Generated is Finitely Generated,
134

formal derivative of a polynomial, 115
free group on X , 58

universal mapping property, 58
free module

basis, 131
finitely generated is projective, 133
modulo an ideal, 138
of finite rank n, 131, 136
over a commutative ring has a rank,

138
standard basis, 131
universal mapping property, 134, 135

Free over Free is Free, 136, 180
Frobenius homomorphism, 96, 118, 206
function, 10

composition, 10, 13
identity map, 10
inclusion map, 10
inverse, 10, 22
one-to-one correspondence, 10, 12,

13
onto, one-to-one, 10, 13
preimage, image, 10
restriction map, 10
surjective, injective, bijective, 10

Fundamental Theorem
of Algebra, 201
of Arithmetic, 16, 69, 97, 105
of Galois Theory, 191–194
of Group Homomorphisms, 39, 40,

94, 128, 192
of Ring Homomorphisms, 93
on p-groups, 66
on Algebraic Elements, 144
on Algebraic Elements in a Field

Extension, 174
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on Composite Fields, 176
on Cyclic Groups, 43–45, 48, 56, 72
on Finite Fields, 206
on Internal Direct Sums of Ideals,

99–100
on Module Homomorphisms, 128
on Principal Ideal Domains, 108–109
on Symmetric Polynomials, 219
on Symmetric Rational Functions,

217

Galois extension
cyclic, 195, 205

of degree pn, 214
cyclotomic, see also cyclotomic

extension
definition, 189
example
Q(21/2 +21/3)/Q, 196
Q(
√

2)/Q, 195
Q(i)/Q, 186
k[x]/k[x6], 228
abelian group of order 2n, 199
abelian group of order 8, 198
field of order four, 186
finite field of order q, 188, 190
quadratic, 214
splitting field of (x2−2)(x2−3),

195
splitting field of (x2−2)(x3 +2),

196
splitting field of x3−5, 195
splitting field of x3 +3x+3, 194
splitting field of x3 + x−1, 194
splitting field of x3−2, 196
splitting field of x4 + p2, 195
splitting field of x4−2, 193
splitting field of x4 + x2−6, 196
splitting field of x6−8, 196
splitting field of x8−1, 196
splitting field of xp−1, 196
symmetric group Sp, p a prime,

192
existence of a dual basis, 203
existence theorem, 218
necessary and sufficient conditions,

189–191
norm map, 202–205, 214
C→ R, 205

kernel of, 205
quadratic, 195
trace map, 202–205

kernel of, 205
Galois group

group of permutations, 191, 195, 196
Gauss’ Lemma, 119
gaussian integers

definition, 89, 105
is a PID, 106
is a euclidean domain, 105

general linear group GLn, 30, 46, 75, 78,
79, 134

GL2, 49, 50
GL2(Z/2), 31
GL2(Z/3), 59
GL2(Z/5), 79, 80
center of GL2, 46

greatest common divisor, 15, 103, 109
existence, 104
of polynomials under a change of

base, 117
uniqueness, 104

group
nth power map, 26, 33
abelian, see also abelian group
cyclic, see also cyclic group
defined by generators and relations,

58
definition, 25
divisible, see also divisible group
finiteness criterion, 37
left multiplication by n map, 27, 36,

41
nonabelian, see also nonabelian group
of permutations of a set, 25, 28, 39
order of an element, 72
order of, 27
order of an element, see also order of

an element in a group
product, see also product
simple, see also simple group
solvability and cancellation

properties, 27
subgroup, see also subgroup
uniqueness of idempotent, 31

group action
definition, 51
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equivalent conditions, 50
faithful, 51
group acting on itself, 28
group acting on a group, 51, 53
group acting on a normal subgroup,

51, 53, 77
group acting on itself, 27, 28, 51
group acting on left cosets, 51, 54, 65,

67, 69
orbit decomposition, 51
orbit of an element, 51, 52
stabilizer of a set, 54, 186
stabilizer of an element, 52
subset fixed by G, 52, 185

group of nth roots of unity, 42, 114
group of all roots of unity in C, 42
group of homomorphisms

Hom(A,B) for abelian groups A and
B, 74

Hom(Z/m,Z/n), 54, 74
HomR(M,N) for modules M and N,

129
group of inner automorphisms, 48
group of units, 86

functorial property, 97, 116
group ring, 86, 98, 145

is a free module, 132
over the Klein four group, 89
universal mapping property, 145

Hilbert’s Theorem 90, 204
homogeneous polynomial, 115
homomorphism of algebras, 143
homomorphism of groups, 38

composition of, 39
homomorphism on a cyclic group, 43
image, 40, 41
kernel, 38, 39
natural map, 38
preimage, 39, 41
various properties, 41

homomorphism of modules, 127, 134,
135

kernel, image, 127
lifting to a matrix, 150, 170

homomorphism of rings, 90
group rings, 90, 138
image, 90, 96
kernel, 90, 96

makes an S-module into an R-module,
126, 136

natural map, 90, 93, 97, 110
polynomial rings, 112, 117

evaluation homomorphism, 112
universal mapping property, 112

section to, 101
unique map from Z to R, 91
zero mapping, 91

ideal
(0), 92
definition, 90
equivalent properties, 93
example, 90
generated by a set, 91
homomorphic preimage and image,

91
intersection of, 97, 101
is an R-module, 126
principal, 91, 92

sufficient criterion, 109
unit ideal, 92

ideal quotient, 97
idempotent, 99

central, 102
orthogonal, 99

indeterminate, 111
index of a subgroup in a group, 34
indicator function, 20
inseparable polynomial

example, 118, 181, 183
necessary and sufficient conditions,

183, 195
integers, 9, 15, 35

ring, 86, 91, 92
is a UFD, 105
is a euclidean domain, 105

integers modulo m, 17, 26, 36
addition, multiplication, 17
ring, 86, 102
Universal Mapping Property, 19

integral domain, 85, 94
finite is a field, 95
subring of a field, 94, 110

internal direct product
of normal subgroups, 56, 60, 69, 99,

102
a counterexample, 59
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internal direct sum
of ideals, 99, 102

example of a ring that is not, 101
of submodules, 130

necessary and sufficient conditions,
130

invertible element in a ring, 85, 96
involution, 88
irreducible element in a ring, 103, 117
irreducible polynomial

over Q, 122
over k(x), 121
over a finite field, 207
over a unique factorization domain,

120
over an infinite field, 118
reduction modulo p criterion, 122

isomorphism of algebras, 143
isomorphism of groups, 27, 38, 39
isomorphism of modules, 127
isomorphism of rings, 88, 90
Isomorphism Theorem

for Groups, 40, 41, 43, 56, 67, 71, 72,
94, 129, 192

for Modules, 128
for Rings, 94

Klein four group, 29, 30, 59, 75
Kronecker’s Theorem, 181
Kummer Theory, 209–210

Lagrange basis polynomials, 114
Lagrange Interpolation, 113–114
Lagrange’s Theorem, 72, 192
Lagrange’s Theorem, 34–36, 44, 45, 53,

66–70
Laurent polynomial ring, 117
leading coefficient, 111
least common multiple, 17
left regular representation, 129, 140,

150, 203
lexicographical ordering, 116
lexicographical ordering, 20, 219
linear diophantine equation, 19
linear transformation, 135

characteristic polynomial, 165
defines a k[x]-module, 150–153, 159
determinant, 165, 170
diagonalizable, 166

eigenvalue, characteristic root, 166
eigenvector, characteristic vector, 166
elementary divisors, 154
extension of, 137
image and kernel, 137
invariant factors, 153
invertible

necessary and sufficient conditions,
137, 165

Jordan canonical form, 154–156
minimal polynomial, 150, 165, 170
powers of, 149
rank and nullity, 137
rational canonical form, 153–154,

160
singular, 165

necessary and sufficient conditions,
165

trace, 170
linearly independent set, 131, 135, 138
local ring, 98
localization at a multiplicative subset,

110–111

Möbius function, 18, 20, 207
Möbius Inversion Formula, 19, 207
Mathematical Induction, 15
matrices over R, 146

free R-module, 146
matrix

adjoint, 164
canonical form, invariant factors,

156–157, 160
example, 166–169

characteristic polynomial, 165
constant on similarity class, 168
homomorphic image, 169

column rank equal to row rank, 149
column space and kernel, 147
defines a linear transformation, 147
direct sum, block diagonal, 168
minimal polynomial, 170
minor, cofactor, 163
rank and nullity, 147
reduced row echelon form, 157–158
singular, 170
trace, 170
transpose, 148, 150, 160, 185
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various properties preserved by a
change of base field, 160

matrix of a linear transformation, 146
product rule, 146

maximal ideal, 95
equivalent conditions, 96
existence of, 20, 96, 138
homomorphic preimage, 95
in Z/n, 97

maximal left ideal, 98
McKay, J., 67
minimal polynomial

definition, 144, 174
example of a 3-by-3 matrix, 152
of an elementary matrix, 152

module, 125–135
annihilator, 126
definition, 125
equivalent definition, 126
examples, 126
faithful, 126
finitely generated, 127, 131
finitely generated and projective,

132–134
generating set, 127
minimal generating set, 131
order of an element, 140
rank, 131
torsion element, 140
torsion free, 140

monic polynomial, 111
monoid, 25, 30

group criterion, 31
inverse of inverse, 31
invertible times invertible is

invertible, 31
uniqueness of identity element, 30
uniqueness of inverses, 31

monomial, 111, 115
monomorphism of groups, 38

trivial kernel criterion, 39
monomorphism of modules, 127
monomorphism of rings, 96
multiplicative subset, 110

natural numbers, 9, 15
nil radical of a ring, 97
Z/n, 102

nilpotent element in a ring, 97, 98

nilpotent group, 80–82
is solvable, 82

nilpotent ideal, 98
nonabelian group

example of order 9 ·37, 54
of order (p−1)p2, 71
of order 40, 55
of order 55, 55
of order 7 ·29, 55
of order p3, 79
of order pq, 54
of order six, 45

normal subgroup, 39–41, 191, 192
definition, 38, 39
generated by X , 49
index 2 criterion, 41, 76
intersection of is normal, 49
normal over normal is not normal, 70,

194
subgroup of an abelian group is, 39
sufficient conditions, 42, 45
trivial subgroup is, 39

normalizer, 52

opposite group, 31, 98
opposite ring, 87, 98, 134
order of an element in a group, 27, 36,

37, 43, 45, 48, 56, 66, 72, 114

partial fractions, 123
partially ordered set, 11–12

chain, 11
comparable elements, 11
descending chain condition,

ascending chain condition, 22
descending chain condition,

ascending chain condition, 12
infimum, supremum, 12
least element, 11, 15
lower bound, upper bound, 11, 15
minimal element, maximal element,

11
minimum condition, maximum

condition, 12, 22
Pascal’s Identity, see also binomial

coefficient
permutation, 12

k-permutation, 12
array notation, 28
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cycle decomposition, 60, 61
cycle notation, 28, 60, 199
number of, 12
order of, 61
sign of, 61, 62

Pigeonhole Principle, 188
Pigeonhole Principle, 14, 33, 65, 95,

186
pole set, 121
power set

well ordered, 157
power series

cosine, 23
exponential, 23
sine, 23

power set, 9
cardinality of, 14, 20
well ordered, 20

prime element in a ring, 103, 117
prime ideal, 95

equivalent conditions, 95, 98
homomorphic preimage, 95, 98

prime number, 16
prime ring, 91
primitive element, 173
Primitive Element Theorem, 183–184
primitive polynomial, 119
principal ideal domain, 91

an irreducible element is prime, 104
ideals are free, 142
is a Bézout domain, 104

principal ideal ring
example

R/(πe), 142
R/(πe1

1 π
e2
2 · · ·πen

n ), 142
product

of a family of sets, 10, 22
canonical injection map, 55, 99
canonical projection map, 22, 55,

99, 149, 203
of ideals, 91, 92, 98, 101, 116
of normal subgroups, 40, 41, 70, 76
of subsets of a group, 26, 35, 37, 75

projective general linear group, 46

quaternion eight group, 29, 59, 79, 88
center of, 45, 54
conjugacy classes, 54
not a semidirect product, 54

subgroup lattice, 50
quaternions, the ring of, 88

over C, 89
over R, 89
over Z/2, 89

quotient field, 109–110
example

Z[
√
−5], 111

universal mapping property, 110
quotient group, 38, 39
quotient module, 128

over the quotient ring, 133, 138
quotient ring, 93

radical extension, 212–213
Rank-Nullity Theorem, 137
rational numbers, 9

field, 86
modulo the integers, 42, 142

p-torsion subgroup, 142
Rational Root Theorem, 118
real numbers, 9, 13, 22, 23, 178, 194,

201
exponential and logarithm maps, 41,

50
field, 86
modulo the integers, 42

relation, 10
binary, see also binary relation
domain, range, 10

relatively prime numbers, 16
reverse of a polynomial, 122
ring

definition, 85
example

R[x]/( f ), 138
Z/4[i], 89
Z[i], 89
k[x,y]/(x2 + y2−1), 221
k[x,y]/(x2 + y2−1)), 226
k[x,y]/(y2− f (x)), 120
k[x,y]/(y2− x(x2−1)), 226–228
k[x]/(x2−a), 137, 214
k[x]/(xn), 117
k[x2,x+ x3], 118, 229
k[x2,x3], 116, 118, 228, 229
rings of order p2, 208
rings of order p1 · · · pm, 102
rings of order four, 185
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trivial ring (0), 86
ring of n-by-n matrices, 86, 87, 146, 147

center, 87
is algebraic, 152
not a domain, 95
over C, 89
over Z/2, 89
simple ring, 97
subring of upper triangular, 101

ring of endomorphisms
Hom(A,A) for an abelian group A,

74, 86, 125, 129
Hom(Z,Z), 44, 86, 88
Hom(Z/n,Z/n), 86, 89
HomR(M,M) for a module M, 129,

133
HomR(R/I,R/I), 133

ring of polynomials
as a ring of functions, 117
group of units, 116
in several variables, 115–116
is a free module, 132
nil radical, 116
over a UFD is a UFD, 120
over a commutative ring, 111
over a field

is a PID, 106
is a euclidean domain, 105, 113

over an integral domain, 112
root of a polynomial, 113

equivalent conditions, 113
homomorphic image of, 145
multiplicity, 113, 114
simple root, 114

criteria in characteristic p, 115
jacobian criterion, 115

Schur’s Lemma, 134
semidirect product, 53
semigroup, 25
Separable over Separable is Separable,

197
separable polynomial

conjugate splitting, 196, 200
definition, 183
example

xn−a, 214
existence of, 205
necessary criteria, 183

sufficient criteria, 115, 183
set, 9–10

k-subset
number of, see also binomial

coefficient
n-set, 12
element, 9
equality, subset, 9
equivalent sets, 11
finite, infinite, 11
index set, 9
infinite, 14
partition of, 11
product

cardinality of, 183
cardinality of, 14, 18

union, intersection, complement,
product, 9

similar matrices, 147, 160, 185
change of bases, 147

simple group, 37, 42, 83
An, if n 6= 4, 63, 64, 82
examples, 70

simple module, 134
simple ring

field, 92
ring of matrices over a field, 92, 97

solvable by radicals
definition, 212
general polynomial is not, 218
necessary and sufficient conditions,

212, 213
solvable group, 82

has composition series with cyclic
factors, 83

various properties, 83
special linear group, 46, 49, 50

SL2(Z/3), 59
splitting field, 180, 181

existence and uniqueness of, 181–182
square the circle, 179
straightedge and compass constructions,

178–179
subalgebra

generated by X , 143, 173, 174, 180
generated by an element, 118

subfield, 173
prime, 173



INDEX 247

subgroup
HK = KH criterion, 35
cyclic, 33, 35–37
definition, 32
finitely generated, 33
generated by a subset, 33
intersection of, 37

is a subgroup, 33, 37
lattice, 48
trivial and proper subgroups, 32

submodule
annihilated by powers of π , 140
definition, 127
generated by a set, 127
of all torsion elements, 142
principal, cyclic, 127

subring, 87
Z/n has no proper subring, 87
example, 87
ideal is not a subring, 87

subspace
φ -invariant, 151, 166

sum
of ideals, 91
of submodules, 130

Sylow’s First Theorem, 68, 69
Sylow’s Second Theorem, 69
Sylow’s Third Theorem, 69
symmetric group, 12, 28, 51, 60–66,

160, 191, 217, 218, 220
S3, 29, 31, 37, 45, 46, 75, 82, 196
Sp, p a prime, 192
acting on n-tuples, 70, 134, 145
center of, 46
conjugacy classes, 49, 62–63
generated by transpositions, 61
generating set, 65
number of k-cycles, 65
solvable if and only if n≤ 4, 82
subgroups of the form Sk×Sn−k, 66

symmetric polynomial, 219
elementary, 217, 220
ring of, 220

symmetric rational functions, 217–218
Synthetic Division, 113
system of linear equations, 158–159

total ring of quotients, 111
trace pairing, 171
transcendence base, 215–217, 220–221

existence of, 216, 221
transcendence degree, 216, 220
Transfinite Induction Principle, 21, 22
trisect the angle, 179

unique factorization domain
an irreducible element is prime, 105
definition, 104
exponential notation, 109
greatest common divisors exist, 105

unit circle, 221
unit in a ring, 85
units modulo n, 199
units modulo n, 18, 26, 36, 89, 196, 210

vector space, 135–138
basis, 135, 136, 138
definition, 125
dimension, 136, 138
Replacement Theorem, 135
spanning set, 135, 138
subspace, 135, 137, 138
vector, 135

Viergruppe, see also Klein four group

Wadsworth, A., 19
Wedderburn, J., 95
Well Ordering Principle, 15, 36
well ordered set, 20
well ordered set, 11, 20
Well Ordering Principle, 15
Well Ordering Principle, 15, 17, 20–22
Wielandt, H., 68

zero divisor in a ring, 85
zero set, 121
Zorn’s Lemma, 20, 21, 96, 138, 221
Zorn, M., 21
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