
Introduction to Access SQL
https://support.office.com/en-za/article/Introduction-to-Access-SQL-d5f21d10-cd73-4507-925e-bb26e377fe7e

SQL (Structured Query Language) is a computer language that closely resembles English that database programs understand.
Knowing SQL is important because every query in Microsoft Access uses SQL. Understanding how SQL works can help create
better queries, and can make it easier for you to fix a query when it is not returning the results that you want.
NOTE TO SELF: this should be part of single table queries going forward

Here is an example of a simple SQL statement that retrieves a list of last names for contacts whose first name is Mary

might resemble this:
SELECT Last_Name This is the field

FROM Contacts This is the table

WHERE First_Name = 'Mary'; This is the criteria

SELECT statements

To describe a set of data by using SQL, you write a SELECT statement. A SELECT statement contains a complete

description of a set of data that you want to obtain from a database. This includes the following:

 What tables contain the data.

 How data from different sources is related.

 Which fields or calculations will produce the data.

 Criteria that data must match to be included.

 Whether and how to sort the results.

SQL clauses
Like a sentence, a SQL statement has clauses. Each clause performs a function for the SQL statement. Some clauses are
required in a SELECT statement.

SQL terms
Each SQL clause is composed of terms — comparable to parts of speech.

Basic SQL clauses: SELECT, FROM, and WHERE

An SQL statement takes the general form:

SELECT field_1
FROM table_1
WHERE criterion_1
;

 Access ignores line breaks in a SQL statement. However, consider using a line for each clause to help

improve the readability of your SQL statements for yourself and others.

 Every SELECT statement ends with a semi-colon (;). The semi-colon can appear at the end of the last clause

or on a line by itself at the end of the SQL statement.

The following illustrates what a SQL statement for a simple select query might look like in Access:

1. SELECT clause
2. FROM clause
3. WHERE clause

This example SQL statement reads "Select the data that is stored in the fields named E-mail Address and Company from
the table named Contacts, specifically those records in which the value of the field City is Seattle."

Let's look at the example, one clause at a time, to see how SQL syntax works.

https://support.office.com/en-za/article/Introduction-to-Access-SQL-d5f21d10-cd73-4507-925e-bb26e377fe7e#bm2

The SELECT clause

SELECT [E-mail Address], Company

This is the SELECT clause. It consists of an operator (SELECT) followed by two identifiers ([E-mail Address] and Company).

If an identifier contains spaces or special characters (such as "E-mail Address"), it must be enclosed in square brackets.

A SELECT clause does not have to say which tables contain the fields, and it cannot specify any conditions that must be
met by the data to be included.

The SELECT clause always appears in front of the FROM clause in a SELECT statement.

The FROM clause

FROM Contacts

This is the FROM clause. It consists of an operator (FROM) followed by an identifier (Contacts).

A FROM clause does not list the fields to be selected.

The WHERE clause

WHERE City="Seattle"

This is the WHERE clause. It consists of an operator (WHERE) followed by an expression (City="Seattle").

NOTE: Unlike the SELECT and FROM clauses, the WHERE clause is not a required element of a SELECT statement.

Sorting the results: ORDER BY

Like Microsoft Office Excel, Access lets you sort query results in a datasheet. You can also specify in the query how you
want to sort the results when the query is run, by using an ORDER BY clause. If you use an ORDER BY clause, it is the last
clause in the SQL statement.

An ORDER BY clause contains a list of the fields that you want to use for sorting, in the same order that you want to
apply the sort operations.

For example, suppose that you want your results sorted first by the value of the field Company in descending order,
and — if there are records with the same value for Company — sorted next by the values in the field E-mail Address in
ascending order. Your ORDER BY clause would resemble the following:

ORDER BY Company DESC, [E-mail Address]

NOTE By default, Access sorts values in ascending order (A-Z, smallest to largest). Use the DESC keyword to sort values

in descending order instead.

https://support.office.com/en-za/article/Introduction-to-Access-SQL-d5f21d10-cd73-4507-925e-bb26e377fe7e#rb2

Working with summarized data: GROUP BY and HAVING

Sometimes you want to work with summarized data, such as the total sales in a month, or the most expensive items in
an inventory. To do this, you apply an aggregate function to a field in your SELECT clause. For example, if you want your
query to show the count of e-mail addresses listed for each company, your SELECT clause might resemble the following:

SELECT COUNT([E-mail Address]), Company

The aggregate functions that you can use depend on the type of data that is in the field or expression that you want to
use.

Specifying fields that are not used in an aggregate function: The GROUP BY clause

When you use aggregate functions, you usually must also create a GROUP BY clause. A GROUP BY clause lists all the
fields to which you do not apply an aggregate function. If you apply aggregate functions to all the fields in a query, you
do not have to create the GROUP BY clause.

A GROUP BY clause immediately follows the WHERE clause, or the FROM clause if there is no WHERE clause. A GROUP
BY clause lists the fields as they appear in the SELECT clause.

For example, continuing the previous example, if your SELECT clause applies an aggregate function to [E-mail Address]
but not to Company, your GROUP BY clause would resemble the following:

GROUP BY Company

Limiting aggregate values by using group criteria: the HAVING clause

If you want to use criteria to limit your results, but the field that you want to apply criteria to is used in an aggregate
function, you cannot use a WHERE clause. Instead, you use a HAVING clause. A HAVING clause works like a WHERE
clause, but is used for aggregated data.

For example, suppose that you use the AVG function (which calculates an average value) with the first field in your
SELECT clause:

SELECT COUNT([E-mail Address]), Company

If you want the query to restrict the results based on the value of that COUNT function, you cannot use a criteria for that
field in the WHERE clause. Instead, you put the criteria in a HAVING clause. For example, if you only want the query to
return rows if there are more than one e-mail addresses associated with the company, the HAVING clause might
resemble the following:

HAVING COUNT([E-mail Address])>1

NOTE A query can have a WHERE clause and a HAVING clause — criteria for fields that are not used in an aggregate

function go in the WHERE clause, and criteria for fields that are used with aggregate functions go in the HAVING clause.

https://support.office.com/en-za/article/Introduction-to-Access-SQL-d5f21d10-cd73-4507-925e-bb26e377fe7e#bm4

TO BE CONTINUED (have not yet covered)

http://www.sqlcourse.com/create.html
http://www.w3schools.com/sql/sql_foreignkey.asp cool “class” on sql

http://www.sqlcourse.com/create.html
http://www.w3schools.com/sql/sql_foreignkey.asp

