
Introduction to
Ada & SPARK

CSE 814 1 SPARK - Introduction

•  In 1970s, US DoD was concerned by
number of obsolete, hardware-dependent,
non-modular languages

•  Working group to formulate requirements
for programming languages for DoD
projects
–  no existing language met the requirements
–  one of four proposals selected as DoD’s

language mandated for new projects
–  called “Ada” after Ada Lovelace, world’s first

programmer

CSE 814 2 SPARK - Introduction

Ada - Genesis

http://en.wikipedia.org/wiki/Ada_Lovelace

Ada - Genesis
“…none of the evidence we have so far can inspire
confidence that this language has avoided any of the
problems that have afflicted other complex language
projects of the past.
It is not too late! I believe that by careful pruning of the
Ada language, it is still possible to select a very
powerful subset that would be reliable and efficient in
implementation and safe and economic to use.”

-- Professor Tony Hoare
-- 1980 ACM Turing Award Lecture

…some people argue that perhaps the SPARK subset
corresponds to what he might have had in mind.

CSE 814 3 SPARK - Introduction

Ada - Genesis

CSE 814 4 SPARK - Introduction

By 1987:
•  Reduced the number of languages in DoD software from 450 to 37
•  Ada was mandated for all projects where new code was 30% or more of

total

•  Boeing 777 -- nearly all software in Ada
•  French TGV automatic train control system (Alsys World Dialogue, vol. 8, no. 2, Summer 1994)

•  European Space Agency GPS Receiver for space applications
•  Swiss Postbank Electronice Funds Transfer system
•  Commercial launch platforms (Ariane 4, Ariane 5, Atlas V)
•  Satellites and space probes from the European space agency
•  Many US DoD weapons platforms such as Crusader, HIMARS, Tomahawk, B1-B

Bomber, Patriot Missile Defense System, etc.

Examples of systems programmed largely in Ada

Ada Information Clearing House http://www.adaic.org/
Also http://www.seas.gwu.edu/~mfeldman/ada-project-summary.html

Ada - Overview

•  Designed for large, long-lived applications,
– Safety-critical / high-security
– Embedded, real-time systems
–  e.g., commercial and military aircraft avionics,

air traffic control, railroad systems, and medical
devices.

•  First internationally standardized (ISO)
language (Ada 95, Ada 05, Ada 12)

CSE 814 SPARK - Introduction 5

Ada - Overview

•  Strong typing with explicit scalar ranges
•  Packages: Data abstraction
•  Generic programming/templates
•  Exception handling
•  Concurrent programming
•  Standard libraries for I/O, string handling,

numeric computing, containers

CSE 814 SPARK - Introduction 6

Ada - Overview
•  Facilities for modular organization of code
•  Object orientated programming
•  Systems programming
•  Real-time programming
•  Distributed systems programming
•  Numeric processing
•  Interoperablity: Interfaces to other

languages (C, COBOL, Fortran)
CSE 814 SPARK - Introduction 7

Goal: Correctness by construction
•  Correct by virtue of techniques used for construction
•  Design By Contract (DBC)

–  A program unit is both a
•  client, when using services provided by other entities
•  supplier, when providing services to other entities

–  Contracts specify the rights and responsibilities of both
clients and suppliers:

•  Contract specifies the interface to a module: module is
“correct” if it satisfies its contract

•  Compositional: rights may be assumed in order to
discharge responsibilities

CSE 814 8 SPARK - Introduction

•  Represent the effects of a sequence of
components as the composition of the effects
of its components

CSE 814 SPARK - Introduction 9

A(S1) A(S2) A(S3) A(Sn) …

Sequence of statements: S1 ; S2 ; S3 ; … ; Sn;

! ! ! !

A(S1 ; S2 ; S3 ; … ; Sn)

Abstraction & composition

CSE 814 SPARK - Introduction 10

N(…..)

}

Pre-condition

Post-condition

Pre-condition
M(…,…,…) {
 ….

 N(…..)

}

Post-condition

No need to
check body of N
when called
from M. Check that method

conforms to its contract

Check that N’s
precondition is
satisfied…

…assume N’s post-
condition after call

Affects of a unit specified by its contract

Abstraction & composition

CSE 814 SPARK - Introduction 11

N(…..)

}

Pre-condition

Post-condition

Pre-condition
M(…,…,…) {
 ….

 N(…..)

}
Post-condition

"  allows each method to be checked
in isolation

"  allows analysis without access to
procedure bodies
#  early during development
#  before programs are complete

or compile-able
"  if a method is changed, only need

to check that one method (not the
entire code base)

"  enables checking to be carried out
in parallel

Affects of a unit specified by its contract

Correctness by construction

•  Need interface specs (contracts) that are:
–  Unambiguous (precise)
–  Complete (no exploitable “loop holes”)
–  Consistent (no contradictions)
–  Accurate (say what is “meant”)

•  Would like static analysis that is
–  Sound (no false negatives)
–  Accurate (few false positives)
–  Deep (reveals subtle application-specific flaws)
–  Fast (scalable)
–  Modular (compositional)

CSE 814 12 SPARK - Introduction

What is Spark?

CSE 814 SPARK - Introduction 13

Subset of Ada
appropriate for
critical systems -- no
heap data, pointers,
exceptions,, gotos,
aliasing

Programming Language

What is Spark?

CSE 814 SPARK - Introduction 14

Subset of Ada
appropriate for
critical systems -- no
heap data, pointers,
exceptions, gotos,
aliasing

Programming Language

Aspects & pragmas
for pre/post-conditions,
assertions, loop
invariants, information
flow specifications

Interface Specification
Language

+

What is Spark?

CSE 814 SPARK - Introduction 15

Subset of Ada
appropriate for
critical systems -- no
heap data, pointers,
exceptions, gotos,
aliasing

Programming Language

Aspects & pragmas
for pre/post-conditions,
assertions, loop
invariants, information
flow specifications

Interface Specification
Language

+

Automated Verification Tools

Flow analysis
static analysis to check aspects
related to data flow,
initialization of variables

Dynamic analysis
dynamic check of pre/post-
conditions, loop invariants, loop
variants on an execution path

Proof Checker
semi-automated framework for
caring out proof steps to
discharge verification
conditions.

SPARK 2014 Language: Guiding Principles
•  Support the largest practical subset of Ada 2012

that is
–  Unambiguous & amenable to sound formal verification
–  DO-333 says: “…an analysis method can only be

regarded as formal analysis if its determination of a
property is sound. Sound analysis means that the
method never asserts a property to be true when it is not
true.”

•  What does “unambiguous” mean in practice?
–  No erroneous behaviour, no unspecified lang. features.
–  Limit implementation-defined features to as small a set

as possible, and allow these to be configured for a
particular implementation.

SPARK 2014 Language: Guiding Principles

•  Designed to be a “formal method” as defined by
DO-333.

•  Support both static and dynamic verification of
contracts.

•  Practical note: started with the full-blown GNAT
compiler infrastructure, so many “difficult”
language features are just removed or expanded
out by the compiler.

The SPARK 2014 language

Ada
2012

SPARK
2014

SPARK
2005

What is left out of Ada
•  Things that make formal reasoning harder:

– Access types (pointers)
– Unstructured control flow (goto’s)
– Exception handling
– Aliasing of outputs of subprograms
– Side-effects in expressions and functions
– Tasks (concurrency)
– Dynamic arrays ?

CSE 814 SPARK - Introduction 19

Why no access types (pointers)

•  Access types only make sense in connection
with dynamic storage allocation.

•  But dynamic allocation is a real problem,
hard to prove that storage is never
exhausted.

CSE 814 20 SPARK - Introduction

Why no goto’s?
•  Are inherently non-compositional

– The effect of a sequence of code cannot be
represented as the composition of the effects of its
components.

•  Not needed

CSE 814 21 SPARK - Introduction

A(S1) A(S2) A(S3) A(Sn) …

Sequence of statements: S1 ; S2 ; S3 ; … ; Sn;

! ! ! !

A(S1 ; S2 ; S3 ; … ; Sn)

Why no exceptions handling

•  Exception handling makes the control flow
of a program much more complex

•  Certifiable programs cannot have
unexpected exceptions

CSE 814 22 SPARK - Introduction

Why no aliasing?
•  Can lead to language ambiguities: e. g., Multiply(A, B, A)

procedure Multiply(X, Y : in Matrix; Z : out Matrix) is
begin
 Z := Matrix’(Matrix_Index => (Matrix_Index => 0));
 for I in Matrix_Index loop
 for J in Matrix_Index loop
 for K in Matrix_Index loop
 Z(I, J) := Z(I, J) + X(I,K) * Y(K, J);
 end loop;
 end loop;
 end loop;
end Multiply

CSE 814 23 SPARK - Introduction

Why no aliasing?

CSE 814 24 SPARK - Introduction

•  Complicates analysis of procedure/function
calls
– Meaning of statements in body depends on

calling context
– Compromises compositional methods
–  e.g., x := y + 1; z := y + 1;

Why no side-effects in functions?
•  Can lead to language ambiguities, e.g.,

CSE 814 SPARK - Introduction 25

 X : Integer := 1;
 function F(Y : Integer) return Integer is
 X := Y + 1;
 return X;
 end F;
 function G(Y : Integer) return Integer is
 return 2 * Y
 end G;

 Y := F(X) + G(X)

•  Complicates analysis of function/procedure calls
 foo(F(X), G(X))

Why no dynamic arrays?

•  Need to bound the amount of storage space
a program uses to know it will function
correctly
– Sizes of arrays calculated statically
– Bound on stack size calculated statically

CSE 814 26 SPARK - Introduction

Why no tasks (concurrency)?
•  The effect of a sequence of code cannot be

represented as the composition of the effects
of its sequential components
– Cannot reason about the effects of a module by

examining its code in isolation
– Need to consider potential “interference” from

modules executed by other tasks
•  Non-determinacy is a concern

CSE 814 27 SPARK - Introduction

SPARK - Introduction

What is SPARK?

•  Developed by Praxis High Integrity
Systems
–  http://www.praxis-his.com/sparkada/

•  Marketed in a partnership with AdaCore
–  http://www.adacore.com/
–  integrated with AdaCore GnatPro compiler and

integrated development environment
•  SPARK tools are GPL open source

CSE 814 28

Precise Interface Specifications

•  Important properties should be exposed
–  usage requirements / guarantees of the unit
–  in some domains, non-functional properties such as worse-case

execution time and use of system resources (e.g., threads) are also
important

•  Implementation details should be hidden
–  hide (if at all possible) data structure choices

Producing appropriate interface specification is a key element of
the design process

…a good programming language
should facilitate these tasks!

CSE 814 29 SPARK - Introduction

Ada / Spark Interfaces

•  Interfaces and implementations are lexically distinct
•  Parameters modes declare whether parameter is input, output,

or both

Ada interfaces

SPARK interfaces
$  Specify intended data and information flow
 with Global … with Depends … with Abstract_State …
 with Refined_Global … with Refined_State …
 with Refined_Depends …
$  Specify intended behavior (for formal verification)
 with Pre … with Post … pragma Assert …
 pragma Loop_Invariant … pragma Loop_Variant …
CSE 814 30 SPARK - Introduction

SPARK Program

•  Package specification declares the public interface of the package
–  Ada elements: types, procedures/functions, public global variables
–  SPARK elements: data flow and procedure contracts

•  Package body provides the implementations of procedures,
initialization of package globals, and private types and variables

CSE 814 SPARK - Introduction 31

A SPARK program is a set Ada packages

package MyPackage
 with SPARK_mode
is

 type MyPublicType is…
 G1: …
 G2: …

 procedure P(in X, out Y)
 with Global => …,
 Pre -> …,
 Post => …;

end MyPackage;

Package Specification

package body MyPackage
is
 G3: …

 type MyPrivateType is…

 procedure P(in X, out Y) is
 begin
 …P implementation…
 end P;

begin
 …initialization…
end MyPackage;

Package Body

Purpose of Contracts

•  Make code clearer at specification level
– more abstract (“what” not “how”)

•  Introduce redundancy, compiler can check
•  Allow error checks to be made
•  Support verification

CSE 814 32 SPARK - Introduction

What is Spark?

CSE 814 SPARK - Introduction 33

Subset of Ada
appropriate for
critical systems -- no
heap data, pointers,
exceptions, gotos,
aliasing

Programming Language

Aspects & pragmas
for pre/post-conditions,
assertions, loop
invariants, information
flow specifications

Interface Specification
Language

+

Automated Verification Tools

Flow analysis
static analysis to check aspects
related to data flow,
initialization of variables

Dynamic analysis
dynamic check of pre/post-
conditions, loop invariants, loop
variants on an execution path

Proof Checker
semi-automated framework for
caring out proof steps to
discharge verification
conditions.

Tools in Action: Examine

CSE 814 34 SPARK - Introduction

Phase 1 of 2: frame condition computation ...
Phase 2 of 2: analysis of data and information flow ...
exchange.ads:5:23: warning: unused initial value of "X"

Tools in Action: Examine

CSE 814 35 SPARK - Introduction

warning: unused initial value of "X”
warning: missing dependency "null => X”
warning: missing dependency "Y => Y”
warning: incorrect dependency "Y => X"

Tools in Action: Examine

Error: T is undefined

CSE 814 36 SPARK - Introduction

Tools in Action: Examine

warning: unused initial value of "T”
. . .
warning: missing dependency "T => X”

CSE 814 37 SPARK - Introduction

Tools in Action: Examine

Phase 1 of 2: frame condition computation ...
Phase 2 of 2: analysis of data and information flow ...
Summary logged in . . .
process terminated successfully, elapsed time: 00.75s

CSE 814 38 SPARK - Introduction

Tools in Action: Prove

. . .
Phase 3 of 3: generation and proof of VCs ...
analyzing Exchange, 0 checks
analyzing Exchange.Exchange, 1 checks
exchange.ads:8:19: info: postcondition proved

CSE 814 39 SPARK - Introduction

Tools in Action: Prove

CSE 814 40 SPARK - Introduction

. . .
Phase 3 of 3: generation and proof of VCs ...
analyzing Inc, 0 checks
analyzing Inc.Inc, 1 checks
inc.adb:7:14: warning: range check might fail

Tools in Action: Prove
Type declarations are contractual:
•  Inc has the right to assume no

RTE at entry
•  Inc has responsibility to

guarantee no RTE while
executing

CSE 814 SPARK - Introduction 41

type T is range -128 .. 128;

procedure Inc (X : in out T)
is begin
 X := X + 1;
end;

VC’s:
 H1: x >= -128
 H2: x <= 128
 ->
 C1: x + 1 >= -128
 C2: x + 1 <= 128

VC’s:
 H1: x >= -128
 H2: x <= 128
 ->
 C1: true
 C2: x <= 127

GNATProve

Tools in Action: Prove

CSE 814 42 SPARK - Introduction

. . .
Phase 3 of 3: generation and proof of VCs ...
analyzing Inc, 0 checks
analyzing Inc.Inc, 1 checks
inc.adb:7:14: info: range check proved

Tools in Action: Prove
Pre-condition is contractual:
•  Inc has the right to assume

–  No RTE at entery
–  X < T’Last at entry

•  Inc has responsibility to
guarantee no RTE

CSE 814 SPARK - Introduction 43

type T is range -128 .. 128;
procedure Inc(…) with

 Pre => (X < T’Last);
procedure Inc (X : in out T) is

begin X := X + 1; end;

VC’s:
 H1: x >= -128
 H2: x < 128
 ->
 C1: x + 1 >= -128
 C2: x + 1 <= 128

VC’s:
 H1: x >= -128
 H2: x <= 128
 ->
 C1: true
 C2: true

GNATProve

Acknowledgements & references
•  Design By Contract articulated in “Object-Oriented Software

Construction,” B. Meyer. Prentice-Hall, 1997.
•  Many slides adapted from

–  P. Dewar and A. Pneuli: Overheads for GS22.3033-007, New York University.
2001. Posted at http://cs.nyu.edu/courses/fall01/G22.3033-007/.

–  M. Dwyer, J. Hatcliff and R. Howell. Overheads for CIS 771: Software
Specifications. Kansas State University. 2001. Posted at
http://santos.cis.ksu.edu/771-Distribution/

•  Web-site for ACM’s Special Interest Group for Ada (SIGAda)
http://www.sigada.org/

•  Historical Information on Ada
–  Robert daCosta, "History of Ada", from an article in Defense Science, March 1984.
–  David A. Fisher, "DoD's common programming language effort," IEEE Computer, volume 11, number 3, pages 24-33, March 1978.

Reprinted in Wasserman.
–  William A. Whitaker, "Ada - The Project, The DoD High Order Language Working Group", ACM SIGPLAN Notices, volume 28,

number 3, March 1993.

•  Slides 16-18 from Altran Tutorial on Spark 2014.

CSE 814 44 SPARK - Introduction

