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RECALL

I We learned how to generalize rational integers and today we
will look at the generalization of rational numbers.

I We looked at quadratic rings, like Z[
√

2] or Z
[
−1+

√
−3

2

]
,

and today we will look at more general rings, like Z[ 3
√

2].

I Also, we learned that in certain algebraic rings the unique
factorization can fail. For example, in Z[

√
−5]:

2 ·3 = (1 +
√
−5)(1−

√
−5).

Today we will see how the unique factorization can be fixed
with the theory of ideals.



GENERALIZING RATIONAL INTEGERS



Algebraic Numbers and Their Minimal Polynomials

I A number α is called algebraic if there exists a non-zero
polynomial f (x) with rational coefficients such that f (α) = 0.
Otherwise it is called transcendental.

I For each algebraic number α there exists the unique minimal
polynomial

f (x) = cdx
d + cd−1x

d−1 + . . .+ c1x + c0.

This polynomial satisfies the following five properties:

1. f (α) = 0;
2. c0,c1, . . . ,cd ∈ Z;
3. cd > 0;
4. gcd(c0,c1, . . . ,cd ) = 1;
5. f (x) has the smallest degree d among all polynomials

satisfying the conditions 1), 2), 3) and 4).

I We say that an algebraic number α has degree d , denoted
deg α, if its minimal polynomial has degree d .



Algebraic Numbers and Their Minimal Polynomials

I Example. Consider the number
√

2. This number is
algebraic, since

√
2 is a root of the polynomial f (x) = x2−2.

In fact, f (x) is the minimal polynomial of
√

2. Note that it is
also a root of

f1(x) = 0,
f2(x) = 1

2x
2−1,

f3(x) =−x2 + 2,
f4(x) = x3 + 3x2−2x−6,
f5(x) = 6x2−12.

However, none of these polynomials satisfy the definition of a
minimal polynomial.



EXERCISES



Exercises

I Exercise 1. For each α ∈
{

0,1/2, i ,
√√

2 +
√

3
}

find a

non-zero polynomial such that f (α) = 0 and then determine
an upper bound on deg α.

I Exercise 2. Prove that every rational number has degree 1.

I Exercise 3. Prove that every quadratic irrational has degree
2. In other words, show that every number α of the form
a+b

√
d , where a,b,d ∈Q and d 6= r2 for any r ∈Q, satisfies

some non-zero polynomial f (α) = 0 of degree 2 and does not
satisfy any polynomial of degree 1.



Number Fields

I Let α be an algebraic number of degree d . The set

Q(α) = {ad−1α
d−1 + . . .a1α +a0 : ad−1, . . . ,a1,a0 ∈Q}

is called a number field generated by α.

I Example. Gaussian rationals:

Q(i) = {a+bi : a,b ∈Q},

where i is a root of x2 + 1 = 0.

I Example. Here is the first example of a cubic field:

Q(
3
√

2) = {a+b
3
√

2 + c
3
√

4: a,b,c ∈Q}.

I Every field is also a ring: you can add, subtract and multiply
there. However, the division by a non-zero element is now
allowed as well.



Number Fields

I Example. In order to divide two Gaussian rationals, we use
the trick called multiplication by a conjugate. For example,

8 + i

1 + i
=

(8 + i)(1− i)

(1 + i)(1− i)
=

9−7i

N(1 + i)
=

9

2
− 7

2
i .

In particular, we see that this number is not a Gaussian
integer, so 1 + i does not divide 8 + i .

I Exercise 4. Consider the ring of Eisenstein rationals Q(ω),
where ω2 + ω + 1 = 0. The number a−b−bω is called a
conjugate of a+bω. Note that

N(a+bω) = a2−ab+b2 = (a+bω)(a−b−bω).

Use multiplication by a conjugate to compute 4+5ω

1+2ω
and 1−4ω

1−2ω
.

Determine whether 1 + 2ω | 4 + 5ω or 1−2ω | 1−4ω.



Rings of Integers

I An algebraic number α is an algebraic integer if the leading
coefficient of its minimal polynomial is equal to 1.

I Example. The numbers
√

2, −1+
√
−3

2 are algebraic integers
because their minimal polynomials are x2−2 and x2 + x + 1,
respectively.

I Example. The number cos
(
2π

7

)
is not an algebraic integer

because its minimal polynomial is 8x3 + 4x2−4x−1.

I Fact: The set of all algebraic numbers forms a field, denoted
by Q. The set of all algebraic integers forms a ring.

I Let α be an algebraic integer. Then the set of all algebraic
integers of Q(α) is called the ring of integers of Q(α). It is
denoted by O.

I The ring O inside a number field Q(α) is a natural
generalization of the ring Z inside the field Q.



Rings of Integers

I Exercise 5. Show that Q(
√

5) = Q(
√

5 +k) for any integer k .

I Exercise 6. Show that Z[
√

2] is the ring of integers of Q(
√

2)
by proving that every a+b

√
2, where either a or b is not an

integer, necessarily has a minimal polynomial whose leading
coefficient is greater than 1.

I Exercise 7. Show that Z[
√

5] is not the ring of integers of
Q(
√

5) by finding a+b
√

5 ∈Q(
√

5), where either a or b is
not an integer, whose minimal polynomial has leading
coefficient equal to 1.

I Conclusion. The ring of integers O always contains

Z[α] = {ad−1α
d−1 + . . .a1α +a0 : ad−1, . . . ,a1,a0 ∈ Z}

but need not be equal to it. Determining the ring of integers
of a given number field can be quite difficult.



The Norm Map

I Every number field Q(α) admits a multiplicative norm.

I Example. For n a positive rational number, consider
z = a+b

√
−n ∈Q(

√
−n). Then z = a+b

√
ni is a complex

number and its conjugate is

z = a−b
√
−n.

We define N(z) = |z |2 = zz . Then the multiplicativity of N
follows from the properties of an absolute value.

I Example. Consider the ring of Gaussian integers Z[i ]. Then
the conjugate of a+bi is a−bi , and so

N(a+bi) = |a+bi |2 = (a+bi)(a−bi) = a2 +b2.

I Exercise 8. Let µ = 1+
√
−7

2 . Determine the conjugate of
a+bµ in Z[µ]. Write down the norm map on Z [µ].



General Fields and Norms

I More generally, if α is an algebraic number and

f (x) = cdx
d + . . .+ c1x + c0

its minimal polynomial, then the number c0/cd is precisely the
norm of α.

I Example. If a,b are integers, the minimal polynomial of a
number a+b

√
2 is x2−2ax− (a2−2b2). Therefore the norm

on Z[
√

2] is N(a+b
√

2) = a2−2b2.

I Example. The norm on

Z[
3
√

2] = {a+b
3
√

2 + c
3
√

4: a,b,c ,∈ Z}

is
N(a+b

3
√

2 + c
3
√

4) = a3−6abc + 2b3 + 4c3.



DETOUR



Detour: Abel-Rufini Theorem

I So far, we have been working with algebraic numbers like

0, 32 , i ,
1+
√
−3

2 , etc. These numbers can be expressed in
radicals, i.e. they can be written in terms of addition,
subtraction, multiplication, division and root extraction.

I Degree 2. The solutions to ax2 +bx + c = 0 are

−b+
√
b2−4ac

2a
and
−b−

√
b2−4ac

2a
.

I Degree 3. Cardano’s formula (1545): one of the roots of
x3 +px +q is

x =
3

√
−q

2
+

√
q2

4
+

p3

27
+

3

√
−q

2
−
√

q2

4
+

p3

27
.

I Degree 4. There is an analogous formula for degree 4, see
the Wikipedia article on “Quartic function”.

I Question. Can all algebraic numbers be expressed in radicals?



Detour: Abel-Rufini Theorem

I Answer: No. This is asserted by the Abel-Ruffini Theorem.
In 1799 Paolo Ruffini made an incomplete proof and in 1824
Niels Henrik Abel provided a complete proof.

I Example. The roots of x5−x + 1, such as

α ≈−1.1673039782614 . . . ,

are not expressible in radicals.

I It also follows from the Abel-Ruffini Theorem that for every
rational number r the numbers sin(rπ) and cos(rπ) are
expressible in radicals.

I Example.

cos
(

π

48

)
=

1

2

√
2 +

√
2 +

√
2 +
√

3.



Detour: Abel-Rufini Theorem

Figure: Paolo Ruffini (left) and Niels Henrik Abel (right)



FIXING UNIQUE FACTORIZATION



Ideals

I Recall how the unique factorization fails in Z[
√
−5]. We will

explain how to fix it by introducing ideals.
I Let Q(α) be a number field and let O be its ring of integers.

A subset I of O is called an ideal if
1. 0 ∈ I ;
2. If α,β ∈ I then α−β ∈ I ;
3. If α ∈ I and β ∈ O then αβ ∈ I .

I The most important property is 3: an ideal I absorbs
multiplication by the elements of O.

I If there exists α ∈ O such that I = {αβ : β ∈ O} then I is
called a principal ideal and it is denoted by I = (α). The
number α is called the generator of I .

I Example. Consider an ideal (2) in Z. We have
(2) = {2n : n ∈ Z}, so the ideal (2) consists of all even
numbers. Further, for any 2k ∈ (2) and any n ∈ Z we have
2kn even, so 2kn ∈ (2). Therefore (2) absorbs multiplication
by the elements of Z.



Ideals

I Let I and J be ideals of O. We say that I divides J, denoted
I | J, if I ⊇ J.

I An ideal I is called prime if

1. I 6= O;
2. For any α,β ∈ O such that αβ ∈ I either α ∈ I or β ∈ I .

I Exercise 9. Prove that (0) and O are ideals of O.

I Exercise 10. Show that (3),(5) and (6) are ideals in Z.
Prove that (3) | (6) and (5) - (6). Prove that (3) and (5) are
prime ideals and (6) is not a prime ideal.

I A ring O where every ideal is principal is called the Principal
Ideal Domain (PID).

I For rings of integers of number fields, the Unique
Factorization Domain and the Principal Ideal Domain is
the same thing.



Ideal Arithmetic

I Every ideal has generators and there are finitely many of
them. For α1, . . . ,αn ∈ O, we use the notation

(α1, . . . ,αn) = {a1α1 + . . .+anαn : a1, . . . ,an ∈ O}

to denote the ideal generated by α1, . . . ,αn.

I Example. Note that in Z we have (4,6) = (2).

I Example. In Z[
√
−5] there is an ideal (2,1 +

√
−5), which is

not a principal ideal.

I Addition. If I ,J are ideals in O then we can compute their
sum, which is also an ideal:

I +J = {α + β : α ∈ I , β ∈ J}.

I Multiplication. If I = (α1, . . . ,αm),J = (β1, . . . ,βn) are ideals
in O then we can compute their product, which is an ideal:

IJ = (α1β1,α1β2, . . . ,αmβn−1,αmβn).



Unique Factorization of Ideals

I (Special case of) Dedekind’s Theorem. Every ideal I of O
can be written uniquely (up to reordering) as the product of
prime ideals.

I Example. In Z we have (6) = (2)(3).

I Example. Though in Z[
√
−5] we have

6 = 2 ·3 = (1 +
√
−5)(1−

√
−5),

so unique factorization fails, the unique factorization of ideals
holds:

(6) = (2,1 +
√
−5)2(3,1 +

√
−5)(3,1−

√
−5)

(2) = (2,1 +
√
−5)2

(3) = (3,1 +
√
−5)(3,1−

√
−5)

(1 +
√
−5) = (2,1 +

√
−5)(3,1 +

√
−5)

(1−
√
−5) = (2,1 +

√
−5)(3,1−

√
−5).



Open Problems in Algebraic Number Theory

I There are many big open problems in algebraic number
theory, but we will present only two of them.

I An integer d is squarefree if it is not divisible by a perfect
square > 1. For example, 6 is squarefree but 12 is not because
4 | 12.

I Gauss’s class number problem. There are infinitely many
squarefree integers d > 0 such that the ring of integers of a
real quadratic field Q(

√
d) is a UFD.

I The Cohen-Lenstra Heuristics. In 1993–84, Cohen and
Lenstra gave a heuristic argument that “approximately”
75.446% of real quadratic fields are UFD’s. There is a lot of
computational evidence that their conjecture is true, but why
it is true is still unknown.



DETOUR



Detour: Kummer’s Progress on Fermat’s Last Theorem

I Fermat’s Last Theorem. For every n ≥ 3 the equation
xn + yn = zn has no solutions in positive integers x ,y ,z .

I This “theorem” was stated without proof by Fermat in 1670
and proved by Andrew Wiles and Richard Taylor in 1995.

I It is sufficient to prove the theorem for n = 4 (done by
Fermat) and for every n that is an odd prime.

I If p is an odd prime, then there exists an algebraic integer ζp

of degree p−1 whose minimal polynomial is

xp−1 + xp−2 + . . .+ x + 1.

The roots of this polynomial are ζp,ζ
2
p , . . . ,ζ

p−1
p .

I This number is called the primitive p-th roof of unity, as it
satisfies ζ

p
p = 1.



Detour: Kummer’s Progress on Fermat’s Last Theorem

I Note that for every prime p we can write

zp = xp + yp = (x + y)
p−1

∏
i=1

(x + ζ
i
py).

Therefore we factored xp + yp over Z[ζp].

I This reminds us of Euler’s idea for solving y2 = x3−2! If
Z[ζp] is a UFD then each number

x + y , x + ζpy , . . . , x + ζ
p−1
p y

is a perfect p-th power.

I In 1847 Gabriel Lamé outlined the proof of Fermat’s Last
Theorem based on this method. Liouville pointed out that his
premise that Z[ζp] is a UFD is false.

I Using this method, in 1850 Ernst Kummer proved that FLT is
true for all regular primes.



Detour: Kummer’s Progress on Fermat’s Last Theorem

I To understand the statement of Kummer’s Theorem we need
to introduce just two more definitions.

I Two ideals I and J of O are equivalent, written I ∼ J, if
there are α,β ∈ O such that (α)I = (β )J.

I Ideals that are equivalent to each other form an equivalence
class. The number of equivalence classes of O is always finite
and it is called the class number, denoted by h(O).

I The ring of integers O is a UFD if and only if h(O) = 1.

I Example. In Z we have (2)∼ (3) because (3)(2) = (2)(3).
The class number of Z is 1.

I Example. In Z[
√
−5] we have (2,1 +

√
−5)∼ (3,1 +

√
−5).

The class number of Z[
√
−5] is 2, so it is not a UFD.



Detour: Kummer’s Progress on Fermat’s Last Theorem

I An odd prime p is regular if it does not divide h (Z[ζp]). It is
called irregular otherwise.

I Kummer’s Theorem. (1850) FLT is true for regular primes.

I The first 10 irregular primes are

37,59,67,101,103,131,149,157,233,257.

I In 1915, Jensen proved that there are infinitely many irregular
primes.

I Siegel’s Conjecture. (1964) “Approximately” 60.65% of all
primes are regular. (BIG OPEN PROBLEM!)



Detour: Kummer’s Progress on Fermat’s Last Theorem

Figure: Ernst Kummer (left) and Carl Ludwig Siegel (right)
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