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RECALL

> We learned how to generalize rational integers and today we
will look at the generalization of rational numbers.

» We looked at quadratic rings, like Z[v/2] or Z [’1%@}
and today we will look at more general rings, like Z[v/2].

> Also, we learned that in certain algebraic rings the unique
factorization can fail. For example, in Z[\/—5]:

2:3=(1+v-5)(1-V-5).

Today we will see how the unique factorization can be fixed
with the theory of ideals.



GENERALIZING RATIONAL INTEGERS



Algebraic Numbers and Their Minimal Polynomials

» A number a is called algebraic if there exists a non-zero
polynomial f(x) with rational coefficients such that f(a) = 0.
Otherwise it is called transcendental.

» For each algebraic number & there exists the unique minimal
polynomial

f(X) = CdXd + Cd,1Xd_1 +...+cax+ .

This polynomial satisfies the following five properties:

1. f(o)=0;

2. €y,Cl,-..,Cd € Z;

3. ¢g>0;

4. ged(eg,cay--.5¢q) =1,

5. f(x) has the smallest degree d among all polynomials

satisfying the conditions 1), 2), 3) and 4).

» We say that an algebraic number a has degree d, denoted
deg a, if its minimal polynomial has degree d.



Algebraic Numbers and Their Minimal Polynomials

» Example. Consider the number /2. This number is
algebraic, since /2 is a root of the polynomial f(x) = x? —2.
In fact, f(x) is the minimal polynomial of v/2. Note that it is
also a root of

However, none of these polynomials satisfy the definition of a
minimal polynomial.



EXERCISES



Exercises

» Exercise 1. For each a € {0,1/2,/, VV2+ \@} find a

non-zero polynomial such that f(a) =0 and then determine
an upper bound on dega.
» Exercise 2. Prove that every rational number has degree 1.
» Exercise 3. Prove that every quadratic irrational has degree
2. In other words, show that every number o of the form
a+ bvVd, where a,b,d € Q and d # r? for any r € Q, satisfies
some non-zero polynomial (o) =0 of degree 2 and does not
satisfy any polynomial of degree 1.



Number Fields

» Let a be an algebraic number of degree d. The set
Q) = {ad,locd’l—i—...aloc—i—ao: ag-1,...,a1,a0 € Q}

is called a number field generated by «.

» Example. Gaussian rationals:
Q(i)={a+bi: a,bcQ},

where i is a root of x2+1=0.

» Example. Here is the first example of a cubic field:
Q(V2) ={a+bV2+cV4: a,b,c €Q}.

» Every field is also a ring: you can add, subtract and multiply
there. However, the division by a non-zero element is now
allowed as well.



Number Fields

» Example. In order to divide two Gaussian rationals, we use
the trick called multiplication by a conjugate. For example,

8+i (8+i)(1—i) 9-7i 9 7.

1+i (1+)1—-i) NI+i) 2 2"

In particular, we see that this number is not a Gaussian
integer, so 14/ does not divide 841/.

» Exercise 4. Consider the ring of Eisenstein rationals Q(),
where ®?> 4+ ®+1=0. The number a— b— b is called a
conjugate of a+ b®. Note that

N(a+bw) = a®>—ab+ b*> = (a+ bw)(a— b— bw).

Use multiplication by a conjugate to compute ﬁgg)’ and i= =59,

Determine whether 142 |4+5w or 1 —2w |1 —4@.




Rings of Integers

» An algebraic number « is an algebraic integer if the leading
coefficient of its minimal polynomial is equal to 1.

» Example. The numbers \@,_1%‘/?3 are algebraic integers
because their minimal polynomials are x2—2and x24+x+1,

respectively.

» Example. The number cos(27”) is not an algebraic integer

because its minimal polynomial is 8x3 +4x% —4x — 1.
» Fact: The set of all algebraic numbers forms a field, denoted
by Q. The set of all algebraic integers forms a ring.

» Let o be an algebraic integer. Then the set of all algebraic
integers of Q(c) is called the ring of integers of Q(«). It is
denoted by &.

» The ring & inside a number field Q() is a natural
generalization of the ring Z inside the field Q.



Rings of Integers

» Exercise 5. Show that Q(v/5) = Q(v/5+ k) for any integer k.

» Exercise 6. Show that Z[\/2] is the ring of integers of Q(v/2)
by proving that every a+ bv/2, where either a or b is not an
integer, necessarily has a minimal polynomial whose leading
coefficient is greater than 1.

» Exercise 7. Show that Z[v/5] is not the ring of integers of
Q(v/5) by finding a+ bv/5 € Q(+/5), where either a or b is
not an integer, whose minimal polynomial has leading
coefficient equal to 1.

» Conclusion. The ring of integers & always contains
Z[Ot] = {ad,locd’l +...a100+ap: ag—1,-..,31,d0 € Z}

but need not be equal to it. Determining the ring of integers
of a given number field can be quite difficult.



The Norm Map

» Every number field Q(a) admits a multiplicative norm.

» Example. For n a positive rational number, consider

z=a+by/—ne€Q(v/—n). Then z=a+ by/ni is a complex

number and its conjugate is

Z=a—byv—n.

We define N(z) = |z|?> = zz. Then the multiplicativity of N
follows from the properties of an absolute value.

» Example. Consider the ring of Gaussian integers Z[i]. Then
the conjugate of a+ bi is a— bi, and so

N(a+ bi) = |a+ bi|> = (a+ bi)(a— bi) = a° + b,

» Exercise 8. Let u = H2£ Determine the conjugate of
a+ bu in Z[u]. Write down the norm map on Z[u].



General Fields and Norms

» More generally, if @ is an algebraic number and
f(x):cdxd+...+c1x+c0

its minimal polynomial, then the number ¢y/cy is precisely the
norm of .

» Example. If a, b are integers, the minimal polynomial of a
number a+ bv/2 is x2 —2ax — (a® — 2b?). Therefore the norm
on Z[v2] is N(a+ b\/2) = a> — 2b°.

» Example. The norm on

Z[V2] = {a+bV2+cV4: a,b,c,e 7}

N(a+ bv2+ C\S/Z) = a% —6abc+2b> +4c5.



DETOUR



Detour: Abel-Rufini Theorem

>

So far, we have been working with algebraic numbers like
0, 2,i, lJ” , etc. These numbers can be expressed in
radicals, | e. they can be written in terms of addition,

subtraction, multiplication, division and root extraction.
Degree 2. The solutions to ax?+ bx+4c =0 are
—b++Vb%—4ac —b—+/b%—4ac

2a and 2a

Degree 3. Cardano’s formula (1545): one of the roots of
xX3+px+qis

2 3 2 3
_¢_4a . P 3_a_ /9 P
X‘¢ 2+\/4+27+\/ > Vot

Degree 4. There is an analogous formula for degree 4, see
the Wikipedia article on “Quartic function”.

Question. Can all algebraic numbers be expressed in radicals?



Detour: Abel-Rufini Theorem

» Answer: No. This is asserted by the Abel-Ruffini Theorem.
In 1799 Paolo Ruffini made an incomplete proof and in 1824
Niels Henrik Abel provided a complete proof.

» Example. The roots of x> —x+1, such as
o~ —1.1673039782614.. .,

are not expressible in radicals.

> It also follows from the Abel-Ruffini Theorem that for every
rational number r the numbers sin(rx) and cos(rrx) are
expressible in radicals.

cos<4—n8> :;\/2—% \/2+\/2+\ﬁ.

» Example.




Detour: Abel-Rufini Theorem

Figure: Paolo Ruffini (left) and Niels Henrik Abel (right)



FIXING UNIQUE FACTORIZATION



Ideals

>

Recall how the unique factorization fails in Z[v/—5]. We will
explain how to fix it by introducing ideals.

Let Q(a) be a number field and let & be its ring of integers.
A subset | of & is called an ideal if

1. 0el;

2. Ifa,Bel thenax—B el

3. Ifaeland B then af €.
The most important property is 3: an ideal | absorbs
multiplication by the elements of &.
If there exists o € & such that | = {af: B € O} then | is
called a principal ideal and it is denoted by / = (@). The
number ¢ is called the generator of /.
Example. Consider an ideal (2) in Z. We have
(2) ={2n: n € Z}, so the ideal (2) consists of all even
numbers. Further, for any 2k € (2) and any n € Z we have
2kn even, so 2kn € (2). Therefore (2) absorbs multiplication
by the elements of Z.



Ideals

Let / and J be ideals of &'. We say that / divides J, denoted
I J,ifI2J.
An ideal | is called prime if

1. 140,

2. For any o, 3 € O such that aff € | either a €/ or B € 1.
Exercise 9. Prove that (0) and & are ideals of 0.

Exercise 10. Show that (3),(5) and (6) are ideals in Z.
Prove that (3) | (6) and (5)(6). Prove that (3) and (5) are
prime ideals and (6) is not a prime ideal.

A ring O where every ideal is principal is called the Principal
Ideal Domain (PID).

For rings of integers of number fields, the Unique

Factorization Domain and the Principal Ideal Domain is
the same thing.



Ideal Arithmetic

> Every ideal has generators and there are finitely many of
them. For a,...,0, € €, we use the notation

(oa,...,00) ={a100+...+an0,: a1,...,an € O}

to denote the ideal generated by g,..., .
» Example. Note that in Z we have (4,6) = (2).

» Example. In Z[\/=5] there is an ideal (2,1 ++/=5), which is
not a principal ideal.

» Addition. If /,J are ideals in & then we can compute their
sum, which is also an ideal:

I+J={a+B:acl, BelJ}.

» Multiplication. If | = (o4,...,0m),J = (B1,...,Bn) are ideals
in O then we can compute their product, which is an ideal:

1= (alﬁla alﬁ27 [ERE) amBn—ly amBn)'



Unique Factorization of Ideals

» (Special case of) Dedekind’s Theorem. Every ideal |/ of &
can be written uniquely (up to reordering) as the product of
prime ideals.

» Example. In Z we have (6) = (2)(3).
» Example. Though in Z[/—5] we have

6=2-3=(1++/-5)(1—-+-5),

so unique factorization fails, the unique factorization of ideals

holds:
(6) =(2,1++/-5)%(3,1++/-5)(3,1—+/-5)
(2) =(2,14/-5)
(3) =(3,1++/-5)(3,1—v/-5)
(1+v=5) =(2,1+v=5)(3,1+/-5)
(1-+v/=5) =(2,14++v/=5)(3,1—v/-5).



Open Problems in Algebraic Number Theory

» There are many big open problems in algebraic number
theory, but we will present only two of them.

> An integer d is squarefree if it is not divisible by a perfect
square > 1. For example, 6 is squarefree but 12 is not because
4112.

» Gauss’s class number problem. There are infinitely many

squarefree integers d > 0 such that the ring of integers of a
real quadratic field Q(v/d) is a UFD.

» The Cohen-Lenstra Heuristics. In 1993-84, Cohen and
Lenstra gave a heuristic argument that “approximately”
75.446% of real quadratic fields are UFD’s. There is a lot of
computational evidence that their conjecture is true, but why
it is true is still unknown.



DETOUR



Detour: Kummer's Progress on Fermat's Last Theorem

» Fermat’s Last Theorem. For every n > 3 the equation
x"4+y™ = z" has no solutions in positive integers x,y, z.

» This “theorem” was stated without proof by Fermat in 1670
and proved by Andrew Wiles and Richard Taylor in 1995.

» It is sufficient to prove the theorem for n =4 (done by
Fermat) and for every n that is an odd prime.

» If pis an odd prime, then there exists an algebraic integer {,
of degree p—1 whose minimal polynomial is

xPlpxP24 x4l

The roots of this polynomial are Cp,Cg,..., ,’,’_1.

» This number is called the primitive p-th roof of unity, as it
satisfies {5 = 1.



Detour: Kummer's Progress on Fermat's Last Theorem

» Note that for every prime p we can write

I
-

P .
2P =xP+yP=(x+y) | |(x+Ey).

i

Il
M

Therefore we factored xP + yP over Z[(,].

» This reminds us of Euler’s idea for solving y? = x3 — 2! If
Z[&p) is a UFD then each number

x+y, x+8&y, ..., x—i—{,ﬁ’*ly

is a perfect p-th power.

» In 1847 Gabriel Lamé outlined the proof of Fermat's Last
Theorem based on this method. Liouville pointed out that his
premise that Z[{,] is a UFD is false.

» Using this method, in 1850 Ernst Kummer proved that FLT is
true for all regular primes.



Detour: Kummer's Progress on Fermat's Last Theorem

» To understand the statement of Kummer's Theorem we need
to introduce just two more definitions.

» Two ideals |/ and J of & are equivalent, written [ ~ J, if
there are o, € 0 such that (a)l = (B)J.

> ldeals that are equivalent to each other form an equivalence
class. The number of equivalence classes of & is always finite
and it is called the class number, denoted by h(&).

» The ring of integers ¢ is a UFD if and only if h(0) = 1.

» Example. In Z we have (2) ~ (3) because (3)(2) = (2)(3).
The class number of Z is 1.

» Example. In Z[\/—5] we have (2,14 +/=5) ~ (3,1++/—5).
The class number of Z[v/—5] is 2, so it is not a UFD.



Detour: Kummer's Progress on Fermat's Last Theorem

» An odd prime p is regular if it does not divide h(Z[p]). It is
called irregular otherwise.

» Kummer’s Theorem. (1850) FLT is true for regular primes.

> The first 10 irregular primes are
37,59,67,101,103,131,149,157,233,257.

> In 1915, Jensen proved that there are infinitely many irregular
primes.

» Siegel’s Conjecture. (1964) “Approximately” 60.65% of all
primes are regular. (BIG OPEN PROBLEM!)



Detour: Kummer's Progress on Fermat's Last Theorem

Figure: Ernst Kummer (left) and Carl Ludwig Siegel (right)



THANK YOU FOR COMING!
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