Introduction to Algebraic Number Theory Part III

A. S. Mosunov
University of Waterloo
Math Circles

November 21st, 2018

RECALL

- We learned how to generalize rational integers and today we will look at the generalization of rational numbers.
- We looked at quadratic rings, like $\mathbb{Z}[\sqrt{2}]$ or $\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right]$, and today we will look at more general rings, like $\mathbb{Z}[\sqrt[3]{2}]$.
- Also, we learned that in certain algebraic rings the unique factorization can fail. For example, in $\mathbb{Z}[\sqrt{-5}]$:

$$
2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5}) .
$$

Today we will see how the unique factorization can be fixed with the theory of ideals.

GENERALIZING RATIONAL INTEGERS

Algebraic Numbers and Their Minimal Polynomials

- A number α is called algebraic if there exists a non-zero polynomial $f(x)$ with rational coefficients such that $f(\alpha)=0$. Otherwise it is called transcendental.
- For each algebraic number α there exists the unique minimal polynomial

$$
f(x)=c_{d} x^{d}+c_{d-1} x^{d-1}+\ldots+c_{1} x+c_{0}
$$

This polynomial satisfies the following five properties:

1. $f(\alpha)=0$;
2. $c_{0}, c_{1}, \ldots, c_{d} \in \mathbb{Z}$;
3. $c_{d}>0$;
4. $\operatorname{gcd}\left(c_{0}, c_{1}, \ldots, c_{d}\right)=1$;
5. $f(x)$ has the smallest degree d among all polynomials satisfying the conditions 1$), 2$), 3) and 4).

- We say that an algebraic number α has degree d, denoted $\operatorname{deg} \alpha$, if its minimal polynomial has degree d.

Algebraic Numbers and Their Minimal Polynomials

- Example. Consider the number $\sqrt{2}$. This number is algebraic, since $\sqrt{2}$ is a root of the polynomial $f(x)=x^{2}-2$. In fact, $f(x)$ is the minimal polynomial of $\sqrt{2}$. Note that it is also a root of

$$
\begin{aligned}
& f_{1}(x)=0, \\
& f_{2}(x)=\frac{1}{2} x^{2}-1, \\
& f_{3}(x)=-x^{2}+2, \\
& f_{4}(x)=x^{3}+3 x^{2}-2 x-6, \\
& f_{5}(x)=6 x^{2}-12 .
\end{aligned}
$$

However, none of these polynomials satisfy the definition of a minimal polynomial.

EXERCISES

Exercises

- Exercise 1. For each $\alpha \in\{0,1 / 2, i, \sqrt{\sqrt{2}+\sqrt{3}}\}$ find a non-zero polynomial such that $f(\alpha)=0$ and then determine an upper bound on $\operatorname{deg} \alpha$.
- Exercise 2. Prove that every rational number has degree 1.
- Exercise 3. Prove that every quadratic irrational has degree 2. In other words, show that every number α of the form $a+b \sqrt{d}$, where $a, b, d \in \mathbb{Q}$ and $d \neq r^{2}$ for any $r \in \mathbb{Q}$, satisfies some non-zero polynomial $f(\alpha)=0$ of degree 2 and does not satisfy any polynomial of degree 1 .

Number Fields

- Let α be an algebraic number of degree d. The set

$$
\mathbb{Q}(\alpha)=\left\{a_{d-1} \alpha^{d-1}+\ldots a_{1} \alpha+a_{0}: a_{d-1}, \ldots, a_{1}, a_{0} \in \mathbb{Q}\right\}
$$

is called a number field generated by α.

- Example. Gaussian rationals:

$$
\mathbb{Q}(i)=\{a+b i: a, b \in \mathbb{Q}\},
$$

where i is a root of $x^{2}+1=0$.

- Example. Here is the first example of a cubic field:

$$
\mathbb{Q}(\sqrt[3]{2})=\{a+b \sqrt[3]{2}+c \sqrt[3]{4}: a, b, c \in \mathbb{Q}\}
$$

- Every field is also a ring: you can add, subtract and multiply there. However, the division by a non-zero element is now allowed as well.

Number Fields

- Example. In order to divide two Gaussian rationals, we use the trick called multiplication by a conjugate. For example,

$$
\frac{8+i}{1+i}=\frac{(8+i)(1-i)}{(1+i)(1-i)}=\frac{9-7 i}{N(1+i)}=\frac{9}{2}-\frac{7}{2} i .
$$

In particular, we see that this number is not a Gaussian integer, so $1+i$ does not divide $8+i$.

- Exercise 4. Consider the ring of Eisenstein rationals $\mathbb{Q}(\omega)$, where $\omega^{2}+\omega+1=0$. The number $a-b-b \omega$ is called a conjugate of $a+b \omega$. Note that

$$
N(a+b \omega)=a^{2}-a b+b^{2}=(a+b \omega)(a-b-b \omega) .
$$

Use multiplication by a conjugate to compute $\frac{4+5 \omega}{1+2 \omega}$ and $\frac{1-4 \omega}{1-2 \omega}$. Determine whether $1+2 \omega \mid 4+5 \omega$ or $1-2 \omega \mid 1-4 \omega$.

Rings of Integers

- An algebraic number α is an algebraic integer if the leading coefficient of its minimal polynomial is equal to 1 .
- Example. The numbers $\sqrt{2}, \frac{-1+\sqrt{-3}}{2}$ are algebraic integers because their minimal polynomials are $x^{2}-2$ and $x^{2}+x+1$, respectively.
- Example. The number $\cos \left(\frac{2 \pi}{7}\right)$ is not an algebraic integer because its minimal polynomial is $8 x^{3}+4 x^{2}-4 x-1$.
- Fact: The set of all algebraic numbers forms a field, denoted by $\overline{\mathbb{Q}}$. The set of all algebraic integers forms a ring.
- Let α be an algebraic integer. Then the set of all algebraic integers of $\mathbb{Q}(\alpha)$ is called the ring of integers of $\mathbb{Q}(\alpha)$. It is denoted by \mathscr{O}.
- The ring \mathscr{O} inside a number field $\mathbb{Q}(\alpha)$ is a natural generalization of the ring \mathbb{Z} inside the field \mathbb{Q}.

Rings of Integers

- Exercise 5. Show that $\mathbb{Q}(\sqrt{5})=\mathbb{Q}(\sqrt{5}+k)$ for any integer k.
- Exercise 6. Show that $\mathbb{Z}[\sqrt{2}]$ is the ring of integers of $\mathbb{Q}(\sqrt{2})$ by proving that every $a+b \sqrt{2}$, where either a or b is not an integer, necessarily has a minimal polynomial whose leading coefficient is greater than 1.
- Exercise 7. Show that $\mathbb{Z}[\sqrt{5}]$ is not the ring of integers of $\mathbb{Q}(\sqrt{5})$ by finding $a+b \sqrt{5} \in \mathbb{Q}(\sqrt{5})$, where either a or b is not an integer, whose minimal polynomial has leading coefficient equal to 1 .
- Conclusion. The ring of integers \mathscr{O} always contains

$$
\mathbb{Z}[\alpha]=\left\{a_{d-1} \alpha^{d-1}+\ldots a_{1} \alpha+a_{0}: a_{d-1}, \ldots, a_{1}, a_{0} \in \mathbb{Z}\right\}
$$

but need not be equal to it. Determining the ring of integers of a given number field can be quite difficult.

The Norm Map

- Every number field $\mathbb{Q}(\alpha)$ admits a multiplicative norm.
- Example. For n a positive rational number, consider $z=a+b \sqrt{-n} \in \mathbb{Q}(\sqrt{-n})$. Then $z=a+b \sqrt{n} i$ is a complex number and its conjugate is

$$
\bar{z}=a-b \sqrt{-n} .
$$

We define $N(z)=|z|^{2}=z \bar{z}$. Then the multiplicativity of N follows from the properties of an absolute value.

- Example. Consider the ring of Gaussian integers $\mathbb{Z}[i]$. Then the conjugate of $a+b i$ is $a-b i$, and so

$$
N(a+b i)=|a+b i|^{2}=(a+b i)(a-b i)=a^{2}+b^{2} .
$$

- Exercise 8. Let $\mu=\frac{1+\sqrt{-7}}{2}$. Determine the conjugate of $a+b \mu$ in $\mathbb{Z}[\mu]$. Write down the norm map on $\mathbb{Z}[\mu]$.

General Fields and Norms

- More generally, if α is an algebraic number and

$$
f(x)=c_{d} x^{d}+\ldots+c_{1} x+c_{0}
$$

its minimal polynomial, then the number c_{0} / c_{d} is precisely the norm of α.

- Example. If a, b are integers, the minimal polynomial of a number $a+b \sqrt{2}$ is $x^{2}-2 a x-\left(a^{2}-2 b^{2}\right)$. Therefore the norm on $\mathbb{Z}[\sqrt{2}]$ is $N(a+b \sqrt{2})=a^{2}-2 b^{2}$.
- Example. The norm on

$$
\mathbb{Z}[\sqrt[3]{2}]=\{a+b \sqrt[3]{2}+c \sqrt[3]{4}: a, b, c, \in \mathbb{Z}\}
$$

is

$$
N(a+b \sqrt[3]{2}+c \sqrt[3]{4})=a^{3}-6 a b c+2 b^{3}+4 c^{3}
$$

DETOUR

Detour: Abel-Rufini Theorem

- So far, we have been working with algebraic numbers like $0, \frac{3}{2}, i, \frac{1+\sqrt{-3}}{2}$, etc. These numbers can be expressed in radicals, i.e. they can be written in terms of addition, subtraction, multiplication, division and root extraction.
- Degree 2. The solutions to $a x^{2}+b x+c=0$ are

$$
\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } \frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

- Degree 3. Cardano's formula (1545): one of the roots of $x^{3}+p x+q$ is

$$
x=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

- Degree 4. There is an analogous formula for degree 4, see the Wikipedia article on "Quartic function".
- Question. Can all algebraic numbers be expressed in radicals?

Detour: Abel-Rufini Theorem

- Answer: No. This is asserted by the Abel-Ruffini Theorem. In 1799 Paolo Ruffini made an incomplete proof and in 1824 Niels Henrik Abel provided a complete proof.
- Example. The roots of $x^{5}-x+1$, such as

$$
\alpha \approx-1.1673039782614 \ldots,
$$

are not expressible in radicals.

- It also follows from the Abel-Ruffini Theorem that for every rational number r the numbers $\sin (r \pi)$ and $\cos (r \pi)$ are expressible in radicals.
- Example.

$$
\cos \left(\frac{\pi}{48}\right)=\frac{1}{2} \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}
$$

Detour: Abel-Rufini Theorem

Gado growtmo

Figure: Paolo Ruffini (left) and Niels Henrik Abel (right)

FIXING UNIQUE FACTORIZATION

Ideals

- Recall how the unique factorization fails in $\mathbb{Z}[\sqrt{-5}]$. We will explain how to fix it by introducing ideals.
- Let $\mathbb{Q}(\alpha)$ be a number field and let \mathscr{O} be its ring of integers. A subset l of \mathscr{O} is called an ideal if

1. $0 \in I$;
2. If $\alpha, \beta \in I$ then $\alpha-\beta \in I$;
3. If $\alpha \in I$ and $\beta \in \mathscr{O}$ then $\alpha \beta \in I$.

- The most important property is 3: an ideal I absorbs multiplication by the elements of \mathscr{O}.
- If there exists $\alpha \in \mathscr{O}$ such that $I=\{\alpha \beta: \beta \in \mathscr{O}\}$ then I is called a principal ideal and it is denoted by $I=(\alpha)$. The number α is called the generator of I.
- Example. Consider an ideal (2) in \mathbb{Z}. We have (2) $=\{2 n: n \in \mathbb{Z}\}$, so the ideal (2) consists of all even numbers. Further, for any $2 k \in(2)$ and any $n \in \mathbb{Z}$ we have $2 k n$ even, so $2 k n \in$ (2). Therefore (2) absorbs multiplication by the elements of \mathbb{Z}.

Ideals

- Let I and J be ideals of \mathscr{O}. We say that I divides J, denoted $I \mid J$, if $I \supseteq J$.
- An ideal l is called prime if

1. $I \neq \mathscr{O}$;
2. For any $\alpha, \beta \in \mathscr{O}$ such that $\alpha \beta \in I$ either $\alpha \in I$ or $\beta \in I$.

- Exercise 9. Prove that (0) and \mathscr{O} are ideals of \mathscr{O}.
- Exercise 10. Show that (3), (5) and (6) are ideals in \mathbb{Z}. Prove that (3) | (6) and (5) $\dagger(6)$. Prove that (3) and (5) are prime ideals and (6) is not a prime ideal.
- A ring \mathscr{O} where every ideal is principal is called the Principal Ideal Domain (PID).
- For rings of integers of number fields, the Unique Factorization Domain and the Principal Ideal Domain is the same thing.

Ideal Arithmetic

- Every ideal has generators and there are finitely many of them. For $\alpha_{1}, \ldots, \alpha_{n} \in \mathscr{O}$, we use the notation

$$
\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left\{a_{1} \alpha_{1}+\ldots+a_{n} \alpha_{n}: a_{1}, \ldots, a_{n} \in \mathscr{O}\right\}
$$

to denote the ideal generated by $\alpha_{1}, \ldots, \alpha_{n}$.

- Example. Note that in \mathbb{Z} we have $(4,6)=(2)$.
- Example. In $\mathbb{Z}[\sqrt{-5}]$ there is an ideal $(2,1+\sqrt{-5})$, which is not a principal ideal.
- Addition. If I, J are ideals in \mathscr{O} then we can compute their sum, which is also an ideal:

$$
I+J=\{\alpha+\beta: \alpha \in I, \beta \in J\}
$$

- Multiplication. If $I=\left(\alpha_{1}, \ldots, \alpha_{m}\right), J=\left(\beta_{1}, \ldots, \beta_{n}\right)$ are ideals in \mathscr{O} then we can compute their product, which is an ideal:

$$
I J=\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \ldots, \alpha_{m} \beta_{n-1}, \alpha_{m} \beta_{n}\right)
$$

Unique Factorization of Ideals

- (Special case of) Dedekind's Theorem. Every ideal I of \mathscr{O} can be written uniquely (up to reordering) as the product of prime ideals.
- Example. In \mathbb{Z} we have (6) $=(2)(3)$.
- Example. Though in $\mathbb{Z}[\sqrt{-5}]$ we have

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

so unique factorization fails, the unique factorization of ideals holds:

$$
\begin{aligned}
(6) & =(2,1+\sqrt{-5})^{2}(3,1+\sqrt{-5})(3,1-\sqrt{-5}) \\
(2) & =(2,1+\sqrt{-5})^{2} \\
(3) & =(3,1+\sqrt{-5})(3,1-\sqrt{-5}) \\
(1+\sqrt{-5}) & =(2,1+\sqrt{-5})(3,1+\sqrt{-5}) \\
(1-\sqrt{-5}) & =(2,1+\sqrt{-5})(3,1-\sqrt{-5}) .
\end{aligned}
$$

Open Problems in Algebraic Number Theory

- There are many big open problems in algebraic number theory, but we will present only two of them.
- An integer d is squarefree if it is not divisible by a perfect square >1. For example, 6 is squarefree but 12 is not because $4 \mid 12$.
- Gauss's class number problem. There are infinitely many squarefree integers $d>0$ such that the ring of integers of a real quadratic field $\mathbb{Q}(\sqrt{d})$ is a UFD.
- The Cohen-Lenstra Heuristics. In 1993-84, Cohen and Lenstra gave a heuristic argument that "approximately" 75.446% of real quadratic fields are UFD's. There is a lot of computational evidence that their conjecture is true, but why it is true is still unknown.

DETOUR

Detour: Kummer's Progress on Fermat's Last Theorem

- Fermat's Last Theorem. For every $n \geq 3$ the equation $x^{n}+y^{n}=z^{n}$ has no solutions in positive integers x, y, z.
- This "theorem" was stated without proof by Fermat in 1670 and proved by Andrew Wiles and Richard Taylor in 1995.
- It is sufficient to prove the theorem for $n=4$ (done by Fermat) and for every n that is an odd prime.
- If p is an odd prime, then there exists an algebraic integer ζ_{p} of degree $p-1$ whose minimal polynomial is

$$
x^{p-1}+x^{p-2}+\ldots+x+1 .
$$

The roots of this polynomial are $\zeta_{p}, \zeta_{p}^{2}, \ldots, \zeta_{p}^{p-1}$.

- This number is called the primitive p-th roof of unity, as it satisfies $\zeta_{p}^{p}=1$.

Detour: Kummer's Progress on Fermat's Last Theorem

- Note that for every prime p we can write

$$
z^{p}=x^{p}+y^{p}=(x+y) \prod_{i=1}^{p-1}\left(x+\zeta_{p}^{i} y\right)
$$

Therefore we factored $x^{p}+y^{p}$ over $\mathbb{Z}\left[\zeta_{p}\right]$.

- This reminds us of Euler's idea for solving $y^{2}=x^{3}-2$! If $\mathbb{Z}\left[\zeta_{p}\right]$ is a UFD then each number

$$
x+y, x+\zeta_{p} y, \ldots, x+\zeta_{p}^{p-1} y
$$

is a perfect p-th power.

- In 1847 Gabriel Lamé outlined the proof of Fermat's Last Theorem based on this method. Liouville pointed out that his premise that $\mathbb{Z}\left[\zeta_{p}\right]$ is a UFD is false.
- Using this method, in 1850 Ernst Kummer proved that FLT is true for all regular primes.

Detour: Kummer's Progress on Fermat's Last Theorem

- To understand the statement of Kummer's Theorem we need to introduce just two more definitions.
- Two ideals I and J of \mathscr{O} are equivalent, written $I \sim J$, if there are $\alpha, \beta \in \mathscr{O}$ such that $(\alpha) I=(\beta) \mathrm{J}$.
- Ideals that are equivalent to each other form an equivalence class. The number of equivalence classes of \mathscr{O} is always finite and it is called the class number, denoted by $h(\mathscr{O})$.
- The ring of integers \mathscr{O} is a UFD if and only if $h(\mathscr{O})=1$.
- Example. In \mathbb{Z} we have (2) $\sim(3)$ because (3)(2)=(2)(3). The class number of \mathbb{Z} is 1 .
- Example. In $\mathbb{Z}[\sqrt{-5}]$ we have $(2,1+\sqrt{-5}) \sim(3,1+\sqrt{-5})$. The class number of $\mathbb{Z}[\sqrt{-5}]$ is 2 , so it is not a UFD.

Detour: Kummer's Progress on Fermat's Last Theorem

- An odd prime p is regular if it does not divide $h\left(\mathbb{Z}\left[\zeta_{p}\right]\right)$. It is called irregular otherwise.
- Kummer's Theorem. (1850) FLT is true for regular primes.
- The first 10 irregular primes are

$$
37,59,67,101,103,131,149,157,233,257 .
$$

- In 1915, Jensen proved that there are infinitely many irregular primes.
- Siegel's Conjecture. (1964) "Approximately" 60.65% of all primes are regular. (BIG OPEN PROBLEM!)

Detour: Kummer's Progress on Fermat's Last Theorem

Figure: Ernst Kummer (left) and Carl Ludwig Siegel (right)

THANK YOU FOR COMING!

