# Introduction to Algebraic Number Theory Part III

A. S. Mosunov

University of Waterloo Math Circles

November 21st, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# RECALL

- We learned how to generalize rational integers and today we will look at the generalization of rational numbers.
- We looked at quadratic rings, like Z[√2] or Z [<sup>-1+√-3</sup>/<sub>2</sub>], and today we will look at more general rings, like Z[<sup>3</sup>√2].
- ► Also, we learned that in certain algebraic rings the unique factorization can fail. For example, in Z[√-5]:

$$2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

Today we will see how the unique factorization can be fixed with the **theory of ideals**.

# GENERALIZING RATIONAL INTEGERS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Algebraic Numbers and Their Minimal Polynomials

- A number α is called algebraic if there exists a non-zero polynomial f(x) with rational coefficients such that f(α) = 0. Otherwise it is called transcendental.
- For each algebraic number α there exists the unique minimal polynomial

$$f(x) = c_d x^d + c_{d-1} x^{d-1} + \ldots + c_1 x + c_0.$$

This polynomial satisfies the following five properties:

1. 
$$f(\alpha) = 0;$$

2. 
$$c_0, c_1, \ldots, c_d \in \mathbb{Z};$$

- 3.  $c_d > 0;$
- 4.  $gcd(c_0, c_1, \dots, c_d) = 1;$
- 5. f(x) has the smallest degree d among all polynomials satisfying the conditions 1), 2), 3) and 4).
- We say that an algebraic number α has degree d, denoted deg α, if its minimal polynomial has degree d.

Algebraic Numbers and Their Minimal Polynomials

**Example.** Consider the number  $\sqrt{2}$ . This number is algebraic, since  $\sqrt{2}$  is a root of the polynomial  $f(x) = x^2 - 2$ . In fact, f(x) is the minimal polynomial of  $\sqrt{2}$ . Note that it is also a root of

$$f_1(x) = 0,$$
  

$$f_2(x) = \frac{1}{2}x^2 - 1,$$
  

$$f_3(x) = -x^2 + 2,$$
  

$$f_4(x) = x^3 + 3x^2 - 2x - 6,$$
  

$$f_5(x) = 6x^2 - 12.$$

However, none of these polynomials satisfy the definition of a minimal polynomial.

# EXERCISES

### Exercises

- Exercise 1. For each  $\alpha \in \left\{0, 1/2, i, \sqrt{\sqrt{2} + \sqrt{3}}\right\}$  find a non-zero polynomial such that  $f(\alpha) = 0$  and then determine an upper bound on deg  $\alpha$ .
- **Exercise 2.** Prove that every rational number has degree 1.
- **Exercise 3.** Prove that every quadratic irrational has degree 2. In other words, show that every number  $\alpha$  of the form  $a + b\sqrt{d}$ , where  $a, b, d \in \mathbb{Q}$  and  $d \neq r^2$  for any  $r \in \mathbb{Q}$ , satisfies some non-zero polynomial  $f(\alpha) = 0$  of degree 2 and does not satisfy any polynomial of degree 1.

### Number Fields

• Let  $\alpha$  be an algebraic number of degree d. The set

 $\mathbb{Q}(\alpha) = \{a_{d-1}\alpha^{d-1} + \ldots a_1\alpha + a_0 \colon a_{d-1}, \ldots, a_1, a_0 \in \mathbb{Q}\}$ 

is called a **number field** generated by  $\alpha$ .

Example. Gaussian rationals:

$$\mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\},\$$

where *i* is a root of  $x^2 + 1 = 0$ .

**Example.** Here is the first example of a **cubic field**:

$$\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4}: a, b, c \in \mathbb{Q}\}.$$

Every field is also a ring: you can add, subtract and multiply there. However, the division by a non-zero element is now allowed as well.

### Number Fields

Example. In order to divide two Gaussian rationals, we use the trick called multiplication by a conjugate. For example,

$$\frac{8+i}{1+i} = \frac{(8+i)(1-i)}{(1+i)(1-i)} = \frac{9-7i}{N(1+i)} = \frac{9}{2} - \frac{7}{2}i.$$

In particular, we see that this number is not a Gaussian integer, so 1+i does not divide 8+i.

• **Exercise 4.** Consider the ring of Eisenstein rationals  $\mathbb{Q}(\omega)$ , where  $\omega^2 + \omega + 1 = 0$ . The number  $a - b - b\omega$  is called a **conjugate** of  $a + b\omega$ . Note that

$$N(a+b\omega) = a^2 - ab + b^2 = (a+b\omega)(a-b-b\omega).$$

Use multiplication by a conjugate to compute  $\frac{4+5\omega}{1+2\omega}$  and  $\frac{1-4\omega}{1-2\omega}$ . Determine whether  $1+2\omega \mid 4+5\omega$  or  $1-2\omega \mid 1-4\omega$ .

# **Rings of Integers**

- An algebraic number α is an algebraic integer if the leading coefficient of its minimal polynomial is equal to 1.
- **Example.** The numbers  $\sqrt{2}, \frac{-1+\sqrt{-3}}{2}$  are algebraic integers because their minimal polynomials are  $x^2 2$  and  $x^2 + x + 1$ , respectively.
- **Example.** The number  $\cos\left(\frac{2\pi}{7}\right)$  is not an algebraic integer because its minimal polynomial is  $8x^3 + 4x^2 4x 1$ .
- ► Fact: The set of all algebraic numbers forms a field, denoted by Q. The set of all algebraic integers forms a ring.
- Let α be an algebraic integer. Then the set of all algebraic integers of Q(α) is called the ring of integers of Q(α). It is denoted by 𝒪.
- ► The ring 𝒪 inside a number field Q(α) is a natural generalization of the ring Z inside the field Q.

# **Rings of Integers**

**Exercise 5.** Show that  $\mathbb{Q}(\sqrt{5}) = \mathbb{Q}(\sqrt{5}+k)$  for any integer k.

- ► Exercise 6. Show that Z[√2] is the ring of integers of Q(√2) by proving that every a + b√2, where either a or b is not an integer, necessarily has a minimal polynomial whose leading coefficient is greater than 1.
- Exercise 7. Show that Z[√5] is not the ring of integers of Q(√5) by finding a + b√5 ∈ Q(√5), where either a or b is not an integer, whose minimal polynomial has leading coefficient equal to 1.
- ▶ Conclusion. The ring of integers Ø always contains

$$\mathbb{Z}[\alpha] = \{a_{d-1}\alpha^{d-1} + \ldots a_1\alpha + a_0 \colon a_{d-1}, \ldots, a_1, a_0 \in \mathbb{Z}\}$$

but need not be equal to it. Determining the ring of integers of a given number field can be quite difficult.

## The Norm Map

- Every number field  $\mathbb{Q}(\alpha)$  admits a multiplicative norm.
- Example. For n a positive rational number, consider z = a + b√-n ∈ Q(√-n). Then z = a + b√ni is a complex number and its conjugate is

$$\overline{z} = a - b\sqrt{-n}.$$

We define  $N(z) = |z|^2 = z\overline{z}$ . Then the multiplicativity of N follows from the properties of an absolute value.

► Example. Consider the ring of Gaussian integers Z[i]. Then the conjugate of a + bi is a - bi, and so

$$N(a+bi) = |a+bi|^2 = (a+bi)(a-bi) = a^2 + b^2.$$

• **Exercise 8.** Let  $\mu = \frac{1+\sqrt{-7}}{2}$ . Determine the conjugate of  $a + b\mu$  in  $\mathbb{Z}[\mu]$ . Write down the norm map on  $\mathbb{Z}[\mu]$ .

### General Fields and Norms

• More generally, if  $\alpha$  is an algebraic number and

$$f(x) = c_d x^d + \ldots + c_1 x + c_0$$

its minimal polynomial, then the number  $c_0/c_d$  is precisely the norm of  $\alpha$ .

- Example. If a, b are integers, the minimal polynomial of a number a + b√2 is x<sup>2</sup> − 2ax − (a<sup>2</sup> − 2b<sup>2</sup>). Therefore the norm on Z[√2] is N(a+b√2) = a<sup>2</sup> − 2b<sup>2</sup>.
- Example. The norm on

$$\mathbb{Z}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c\sqrt[3]{4}: a, b, c, \in \mathbb{Z}\}$$

is

$$N(a+b\sqrt[3]{2}+c\sqrt[3]{4}) = a^3 - 6abc + 2b^3 + 4c^3$$

# DETOUR

### Detour: Abel-Rufini Theorem

- So far, we have been working with algebraic numbers like 0, <sup>3</sup>/<sub>2</sub>, *i*, <sup>1+√-3</sup>/<sub>2</sub>, etc. These numbers can be **expressed in** radicals, i.e. they can be written in terms of addition, subtraction, multiplication, division and root extraction.
- **Degree 2.** The solutions to  $ax^2 + bx + c = 0$  are

$$rac{-b+\sqrt{b^2-4ac}}{2a}$$
 and  $rac{-b-\sqrt{b^2-4ac}}{2a}$ 

▶ Degree 3. Cardano's formula (1545): one of the roots of x<sup>3</sup> + px + q is

$$x = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}.$$

- Degree 4. There is an analogous formula for degree 4, see the Wikipedia article on "Quartic function".
- ► Question. Can all algebraic numbers be expressed in radicals?

### Detour: Abel-Rufini Theorem

- Answer: No. This is asserted by the Abel-Ruffini Theorem. In 1799 Paolo Ruffini made an incomplete proof and in 1824 Niels Henrik Abel provided a complete proof.
- **Example.** The roots of  $x^5 x + 1$ , such as

 $\alpha \approx -1.1673039782614...,$ 

are not expressible in radicals.

It also follows from the Abel-Ruffini Theorem that for every rational number r the numbers sin(rπ) and cos(rπ) are expressible in radicals.

Example.

$$\cos\left(\frac{\pi}{48}\right) = \frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}$$

## Detour: Abel-Rufini Theorem



#### Figure: Paolo Ruffini (left) and Niels Henrik Abel (right)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# FIXING UNIQUE FACTORIZATION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Ideals

- ► Recall how the unique factorization fails in Z[√-5]. We will explain how to fix it by introducing ideals.
- Let Q(α) be a number field and let 𝒪 be its ring of integers. A subset *I* of 𝒪 is called an **ideal** if
  - **1**.  $0 \in I$ ;
  - 2. If  $\alpha, \beta \in I$  then  $\alpha \beta \in I$ ;
  - 3. If  $\alpha \in I$  and  $\beta \in \mathscr{O}$  then  $\alpha \beta \in I$ .
- ► The most important property is 3: an ideal *I* absorbs multiplication by the elements of *O*.
- If there exists α ∈ Ø such that I = {αβ : β ∈ Ø} then I is called a principal ideal and it is denoted by I = (α). The number α is called the generator of I.
- Example. Consider an ideal (2) in Z. We have (2) = {2n: n ∈ Z}, so the ideal (2) consists of all even numbers. Further, for any 2k ∈ (2) and any n ∈ Z we have 2kn even, so 2kn ∈ (2). Therefore (2) absorbs multiplication by the elements of Z.

## Ideals

- ▶ Let *I* and *J* be ideals of  $\mathcal{O}$ . We say that *I* **divides** *J*, denoted  $I \mid J$ , if  $I \supseteq J$ .
- An ideal I is called prime if
  - 1.  $I \neq \mathcal{O}$ ;
  - 2. For any  $\alpha, \beta \in \mathscr{O}$  such that  $\alpha\beta \in I$  either  $\alpha \in I$  or  $\beta \in I$ .
- **Exercise 9.** Prove that (0) and  $\mathcal{O}$  are ideals of  $\mathcal{O}$ .
- Exercise 10. Show that (3),(5) and (6) are ideals in Z. Prove that (3) | (6) and (5) ∤ (6). Prove that (3) and (5) are prime ideals and (6) is not a prime ideal.
- ► A ring Ø where every ideal is principal is called the Principal Ideal Domain (PID).
- For rings of integers of number fields, the Unique
   Factorization Domain and the Principal Ideal Domain is the same thing.

### Ideal Arithmetic

Every ideal has generators and there are finitely many of them. For α<sub>1</sub>,..., α<sub>n</sub> ∈ 𝒪, we use the notation

$$(\alpha_1,\ldots,\alpha_n) = \{a_1\alpha_1 + \ldots + a_n\alpha_n: a_1,\ldots,a_n \in \mathcal{O}\}$$

to denote the ideal generated by  $\alpha_1, \ldots, \alpha_n$ .

- **Example.** Note that in  $\mathbb{Z}$  we have (4,6) = (2).
- ► Example. In Z[√-5] there is an ideal (2,1+√-5), which is not a principal ideal.
- ► Addition. If I, J are ideals in Ø then we can compute their sum, which is also an ideal:

$$I+J=\{\alpha+\beta: \alpha\in I, \beta\in J\}.$$

Multiplication. If I = (α<sub>1</sub>,...,α<sub>m</sub>), J = (β<sub>1</sub>,...,β<sub>n</sub>) are ideals in 𝒪 then we can compute their product, which is an ideal:

$$IJ = (\alpha_1 \beta_1, \alpha_1 \beta_2, \dots, \alpha_m \beta_{n-1}, \alpha_m \beta_n).$$

### Unique Factorization of Ideals

- (Special case of) Dedekind's Theorem. Every ideal *I* of *O* can be written uniquely (up to reordering) as the product of prime ideals.
- **Example.** In  $\mathbb{Z}$  we have (6) = (2)(3).
- **Example.** Though in  $\mathbb{Z}[\sqrt{-5}]$  we have

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}),$$

so unique factorization fails, the unique factorization of ideals holds:

$$\begin{array}{rl} (6) &= (2,1+\sqrt{-5})^2(3,1+\sqrt{-5})(3,1-\sqrt{-5})\\ (2) &= (2,1+\sqrt{-5})^2\\ (3) &= (3,1+\sqrt{-5})(3,1-\sqrt{-5})\\ (1+\sqrt{-5}) &= (2,1+\sqrt{-5})(3,1+\sqrt{-5})\\ (1-\sqrt{-5}) &= (2,1+\sqrt{-5})(3,1-\sqrt{-5}). \end{array}$$

## Open Problems in Algebraic Number Theory

- There are many big open problems in algebraic number theory, but we will present only two of them.
- An integer d is squarefree if it is not divisible by a perfect square > 1. For example, 6 is squarefree but 12 is not because 4 | 12.
- Gauss's class number problem. There are infinitely many squarefree integers d > 0 such that the ring of integers of a real quadratic field  $\mathbb{Q}(\sqrt{d})$  is a UFD.
- The Cohen-Lenstra Heuristics. In 1993–84, Cohen and Lenstra gave a heuristic argument that "approximately" 75.446% of real quadratic fields are UFD's. There is a lot of computational evidence that their conjecture is true, but why it is true is still unknown.

# DETOUR

- ▶ Fermat's Last Theorem. For every  $n \ge 3$  the equation  $x^n + y^n = z^n$  has no solutions in positive integers x, y, z.
- This "theorem" was stated without proof by Fermat in 1670 and proved by Andrew Wiles and Richard Taylor in 1995.
- It is sufficient to prove the theorem for n = 4 (done by Fermat) and for every n that is an odd prime.
- If p is an odd prime, then there exists an algebraic integer ζ<sub>p</sub> of degree p−1 whose minimal polynomial is

$$x^{p-1} + x^{p-2} + \ldots + x + 1.$$

The roots of this polynomial are  $\zeta_p, \zeta_p^2, \ldots, \zeta_p^{p-1}$ .

This number is called the primitive *p*-th roof of unity, as it satisfies ζ<sup>p</sup><sub>p</sub> = 1.

Note that for every prime p we can write

$$z^{p} = x^{p} + y^{p} = (x + y) \prod_{i=1}^{p-1} (x + \zeta_{p}^{i} y).$$

Therefore we factored  $x^p + y^p$  over  $\mathbb{Z}[\zeta_p]$ .

► This reminds us of Euler's idea for solving y<sup>2</sup> = x<sup>3</sup> - 2! If ℤ[ζ<sub>p</sub>] is a UFD then each number

$$x+y, x+\zeta_p y, \ldots, x+\zeta_p^{p-1} y$$

is a perfect *p*-th power.

- In 1847 Gabriel Lamé outlined the proof of Fermat's Last Theorem based on this method. Liouville pointed out that his premise that ℤ[ζ<sub>ρ</sub>] is a UFD is false.
- Using this method, in 1850 Ernst Kummer proved that FLT is true for all regular primes.

- To understand the statement of Kummer's Theorem we need to introduce just two more definitions.
- Two ideals *I* and *J* of *O* are equivalent, written *I* ~ *J*, if there are α, β ∈ *O* such that (α)*I* = (β)*J*.
- Ideals that are equivalent to each other form an equivalence class. The number of equivalence classes of 𝒪 is always finite and it is called the class number, denoted by h(𝒪).
- The ring of integers  $\mathcal{O}$  is a UFD if and only if  $h(\mathcal{O}) = 1$ .
- ► Example. In Z we have (2) ~ (3) because (3)(2) = (2)(3). The class number of Z is 1.
- ▶ **Example.** In  $\mathbb{Z}[\sqrt{-5}]$  we have  $(2, 1 + \sqrt{-5}) \sim (3, 1 + \sqrt{-5})$ . The class number of  $\mathbb{Z}[\sqrt{-5}]$  is 2, so it is not a UFD.

- An odd prime *p* is regular if it does not divide h(ℤ[ζ<sub>p</sub>]). It is called irregular otherwise.
- Kummer's Theorem. (1850) FLT is true for regular primes.
- The first 10 irregular primes are

37, 59, 67, 101, 103, 131, 149, 157, 233, 257.

- In 1915, Jensen proved that there are infinitely many irregular primes.
- Siegel's Conjecture. (1964) "Approximately" 60.65% of all primes are regular. (BIG OPEN PROBLEM!)



#### Figure: Ernst Kummer (left) and Carl Ludwig Siegel (right)

ъ

(日)

#### THANK YOU FOR COMING!