

1

Introduction to Algorithmic Composition and Pure Data

R. Yagiz Mungan

yagiz@purdue.edu

1) Algorithmic Composition

Algorithmic composition is creating music by using a set of steps. In a way, algorithmic composition is

meta-composition, where you create a system, a set of rules or a function that creates music for you.

Algorithmic composition can be deterministic or indeterminate, which it may or may not produce the

same result.

One of the first examples of algorithmic composition belongs to Mozart and his “Musikalisches

Würfelspiel”, which is a dice game. In this game, dices determine instruments and music parts from a

pool1. These music parts create the piece that will be performed.

Mostly, algorithmic composition is a field that combines computer science and music. However, in
general algorithmic composition is an example of generative art. Instead of music, one can create text,
images, videos, anything using a similar approach. In addition, the creation method can vary greatly and
can be based on mathematics (statistics, probability and chaos theory), artificial intelligence, purely
music theory or even chess2.

The aim of algorithmic composition is not only to copy or mimic human behavior and tastes. But it also

includes experimentation and the search for alternative approaches and tastes as well to find a deeper

understanding of the existing theories. Algorithmic composition can be split into following types:

 Rule-based models

 Mathematical models

 Grammar-based models

 Evolutionary models

 AI-based models

 Hybrid models

The method that we will use today will be a part of the mathematical models. You will find algorithmic

composition works in these fields: Music (both academic and popular), computer science, video games,

art and cinema.

1 http://sunsite.univie.ac.at/Mozart/dice/

2 http://www.dada-companion.com/duchamp/music.php

mailto:yagiz@purdue.edu

2

2) Pure Data

Pure Data is a visual programming language. In Pure Data, instead of writing lines of code, one connects

objects by wires. Pure Data is created for working with multimedia creation, editing, interaction and live

performances in mind.

It is a free, open-source program that is used by many professionals. Pure Data can be downloaded from

http://puredata.info/.

Pure Data operates with the idea of data flow, an object is triggered when it receives a signal and by

wiring/patching objects together you create a data flow. An output of an object travels through the

wires and triggers another object as a part of the data flow.

3) Pure Data Patches

Within the file package that you have found this document, you will also some files with .pd extension.

These are Pure Data patches or codes. With this tutorial, I will show you how to create those patches. To

start Pure Data in a Purdue University lab in Windows:

 Click on Start.

 Click on All Programs.

 Click on Course Software folder.

 Click on technology folder.

 Click on cnit folder.

 Click on PureData 0.43.2

 Let Pure Data load its libraries.

3.1 Setting up Pure Data

The first thing, we would like to do would be checking that the audio is set correctly.

 Start Pure Data.

 Go to Media tab.

 Click on MIDI setting…

 Click on none on the right of output device 1:

 Select Microsoft GS Wavetable Synth.

 Click OK.

Now, we have set a device for the MIDI output, if you have your own MIDI equipment you can select it

there. The next step would be testing the MIDI connection.

http://puredata.info/

3

 Go to Media tab.

 Click on Test Audio and MIDI.

 A new window will open; this is in fact a Pure Data patch.

 On the new window, click on the square under the MIDI OUT (see Figure 1).

Figure 1: Testing MIDI

 Now you should be able to hear sound, otherwise make sure that the computer is not

muted. For Purdue University computers you might need to plug-in your head phones as

the external speakers are disabled.

 IMPORTANT: Whenever you open a new Pure Data instance you need to set the output

MIDI device again.

3.2 Creating Our First Note

Now, we will create our first MIDI not with Pure Data.

 After the steps in 3.1 are completed, go to File tab and click on New.

o Shortcut for creating a new patch is ctrl+n.

 An empty Pure Data window should appear.

 Go to Put tab and click on Object

o Shortcut for object is ctrl+1

 Click on the patcher screen to put “object”.

4

 Now we need to define what the object is. You will see that the object is blinking (if not

double click on it) and write makenote and click an empty space.

 So far So far you should have something like in Figure 2.

Figure 2: Makenote object

 You will see that makenote object has 5 nodes (the rectangles). Three on top and two at

the bottom. The nodes on the top are the inputs; the nodes at the bottom are the

outputs of the object.

 Now press ctrl+1 to create another object. Put the second object slightly below the

makenote object and label it as noteout.

 You will see that noteout only has three inputs and no outputs.

 Now hover the mouse over the first (left) output of makenote object, the cursor should

become a circle.

 Click left mouse button and move the mouse around while keeping the left button

clicked. You will see that a line (wire) appears.

 Now, move the wire to the first (left) node of noteout, and when the mouse icon

becomes a circle release the left button.

 Now, you should see that the objects are connected (see Figure 3).

 Now, connect makenote’s second (middle) output to noteout’s second input.

 The makenote object takes three inputs and creates a MIDI note out of them. The

noteout object takes the note and sends it to the MIDI device we set earlier at 3.1.

 Now we will configure the inputs for the makenote.

 Go to Put tab and click on Number2.

o Shortcut for number2 is ctrl+shift+n.

 Place the number object above the makenote object.

 Put two more number2 objects.

5

o Alternately you can copy paste the one we have just put. You can use ctrl+c and

ctrl+v as you normally do.

 Connect the outputs of the number objects to each input of the makenote object (see

Figure 4).

Figure 3: Makenote and noteout connected

Figure 4: Three number objects connected

6

 The first input for the makenote is the pitch in MIDI (not actual frequency).

o This can be a number between 0 and 255, where 0 is the lowest in frequency

also.

 The second input for the makenote is the velocity in MIDI, which is the loudness of the

volume.

o This can be a number between 0 and 127, where 0 is silent.

 The third input for the makenote is the duration expressed in milliseconds (thousandth

of a second).

So far our patch has been in the edit mode, where we could put new objects but could not activate

anything.

 Click on ctrl+e to leave the edit mode. The cursor should change from the hand to an

arrow.

 Click on the third number (the duration) and move the mouse up while holding the click

you should see that the value in the number box is increasing.

 Repeat this process till you reach around 250.

 With the same technique increase the second number to around 100.

 Now, apply the same to the first one and you will hear the sound.

Press ctrl+shift+s or go to File tab and click on Save As to save as your patch. Choose a folder (your

“Home Directory” is a good choice at Purdue University computers) and name it as 3_2.

 IMPORTANT: To learn what an object does, in the edit mode, right click on the object

and select Help. You can also go to properties and make changes (such as you can put a

limit to the number inputs) by right clicking on an object.

3.3 Random Music

Our first algorithmic composition will be playing random notes with fixed loudness and duration

(somebody hitting random keys mindlessly/mechanically on a piano). You can continue on the patch you

have created for 3.2.

 Press ctrl+shift+s or go to File tab and click on Save As to save as your patch. Choose a

folder and name it as 3_3.

o Do not forget to save your patch frequently.

 Enter edit mode by pressing ctrl+e. In edit mode, the mouse cursor is a hand.

 Press ctrl+1 to put a new object above makenote. Label the object as random.

 Random object creates a random number.

o It has two inputs. With the right input, you can set the maximum limit for the

random number. The left input, you can send a trigger signal that activates the

random object.

7

In Pure Data, the general, default trigger signal is “Bang”. Now we will put an object that sends a bang.

 Go to Put tab and click on Bang.

o Shortcut for Bang is ctrl+shift+b.

 Put the bang object just above the random object.

 Select the wire that connects the first number object to the makenote’s leftmost input.

The icon should become an “x”. Now hit “delete” to remove that wire.

 Connect the number’s output to the right input of the random object.

 Connect the output of the bang object to the left input of the random object.

 Connect the output of the random to the left most input of the makenote object.

 Press ctrl+e to leave the edit mode.

 Set the first number to 200, second to 100 and the third to 250 approximately (see

Figure 5).

Figure 5: Random and Bang connected.

 Click on bang multiple times to hear different sound each time.

 Press ctrl+e to enter the edit mode.

 Press ctrl+1 to put a new object just under random. Label the object as print.

 Connect the output of the random to input of print, while leaving the other connection

intact.

o There can be multiple connections within a node.

 Press ctrl+e to leave the edit mode.

 Click on bang multiple times.

 Now go to the main Pure Data window (You can press ctrl+r if you can not find it).

8

 On the console you will see “print: “ followed by some random number. That number is

the result of the number object. You can and should use print object for tracing,

debugging and fixing the patch and the signals.

So far our system is still not automated. We need something that produces bang signals automatically.

 Press ctrl+e to enter the edit mode.

 Press ctrl+1 to put a new object above random. Label the object as metro.

o Metro is a metronome that sends bang signals periodically.

 Delete the wire between bang and random.

 Move bang above metro.

 Press ctrl+shift+n to create another number object. Put the object above metro.

 Now connect bang to metro’s left input and the new number to metro’s right input.

Connect metro’s output to random’s left input (see Figure 6).

 IMPORTANT: As you might realize, things can easily get messy so take some time to

order your patch.

Figure 6: Metro connected

 Press ctrl+e to leave the edit mode.

 Increase the new number value to around 250.

 Click on bang once and it will go on forever.

o Feel free to play with the metro period, velocity and duration.

9

 Now, we need something to stop the metro.

 Press ctrl+e to enter the edit mode.

 Go to Put tab and click on message.

o Shortcut for message is ctrl+2.

 Put it somewhere above the metro, and label it as stop.

 IMPORTANT: Observe that it has a slightly different shape than the other objects

because it is a message. In Pure Data, messages are used to set the objects or send

commands to the objects.

 Connect the output of stop to metro’s left input.

 Press ctrl+e to leave the edit mode.

 Click on the stop message to stop the metro object.

You have successfully created your first algorithmic composition. Do you like music?

3.4 Random within Limited Frequency

One quick and simple upgrade, we can make to the patch in 3.3, is to limit the frequency. In general,

human ears can hear 20 Hz to 20000 Hz. However, not all the regions are heard with the same perceived

loudness.

Now we will limit the random number so that it does not create very high or very low notes. Figure 7

shows the MIDI notes and the actual note they correspond. Looking at the Figure, let’s limit our

frequency from C2 to C6. The corresponding MIDI values are 48 and 96.

 Press ctrl+shift+s to save as your patch. Name it as 3_4.

 Press ctrl+e to enter the edit mode.

 Click or double-click on random and change it to random 48.

o This gives us a random object with an upper limit of 48 as the default value.

o We could use the same approach to give metro a default value.

 Press ctrl+1 to put a new object. Label that object + 48. Put it below random.

o This is a + object with default value of 48 for the second input.

o + object does addition.

 Delete the wire between random and makenote.

 Connect random’s output to + 48’s left input.

 Connect + 48’s output to makenote (see Figure 8).

 Delete the wire between random and print.

 Connect the output from + 48 to print.

 Press ctrl+e to leave edit mode.

 Click on bang to start. Now, all the notes should be in the easily hearable region. You

can also observe the values from the console by pressing ctrl+r.

o Feel free to experiment with other values.

10

Figure 7: MIDI notes

11

Figure 8: Random within limited frequency

3.5 Random with Limited Step Size

You will realize that the random music just jumps around and most people does not like it. The reason is

because it is not natural, for humans it is hard to make large pitch leaps while singing and same is true

for most instruments.

This time we will limit the change so that the next note can only be certain distance away from the

current one. For this setup, we will use an object named drunk. Drunk object gives us a random number

that is within a defined distance around a starting point.

 Press ctrl+shift+s to save as your patch. Name it as 3_5.

 Press ctrl+e to enter edit mode if you are not in edit mode.

 Click on random and rename it as drunk.

o This removes the random object and replaces it with drunk

 Drunk has three inputs. Instead of sending each input independent values we will send

all the three together.

 Delete the number connected to drunk.

12

 Press ctrl+2 to put a message above drunk.

 Inside the message write 24 48 4.

o Remember for the random we have chosen the MIDI note range 48-96. We will

use the same range.

o 24 is our starting point, which is also the middle value.

o 48 is the maximum number.

o 4 is the maximum step size. The step can be either positive or negative. So

drunk will output numbers within plus/minus 4 range starting with 24.

 Connect the output of the message to drunk’s left most input (see Figure 9).

Figure 9: Drunk connected

 Now press ctrl+e to leave edit mode.

 Adjust the metro period, makenote velocity and makenote duration as we did before.

 IMPORTANT: Connecting a message object does not send the message to its target. You

also have to send a bang to the message object. To send a bang:

o You can put a bang object and use it.

o You can click on the message (when not in edit mode).

o You can also use loadbang which sends a bang when a patch is open. However,

putting a loadbang does not bang (it only and only sends the bang when a patch

is opened).

13

o Whenever you open a patch the message objects needs to be reinitialized, thus

putting loadbang objects will help you a lot in the long run.

 Click on the message to send it to drunk.

 Activate the metro object.

3.6 Random/Drunk within a scale

Next step, in enhancing the melody would be limiting the notes that we use. A scale is a set of notes that

follow a certain distance pattern. The first two examples for scales are the major and the minor scale.

Here we will limit our notes to C major scale (which is the white keys of the piano). In C major scale the

notes are: C – D – E – F – G – A – B

Looking at Figure 7, we see that within our range (48-96) the C major notes are: 48 50 52 53 55 57 59 60

62 64 65 67 69 71 72 74 76 77 79 81 83 84 86 88 89 91 93 95 96.

The plan is to create an array with these values and use our random or drunk object to choose a

number from that array.

 Press ctrl+shift+s to save as your patch. Name it as 3_6.

 Now press ctrl+e to enter edit mode.

 Press ctrl+1 to create an object, and write table Cmajor 27.

o Here we are creating a table object. Table is a type of array in Pure Data.

o The name of the table is Cmajor.

o The length of the table is 27.

 Now we will fill the table. Press ctrl+2 to create a message and copy paste the following

into the message:

;

Cmajor 0 48 50 52 53 55 57 59 60 62 64 65 67 69 71 72 74 76 77 79 81 83 84 86 88

89 91 93 95 96

 The format of the message is as follows:

o “;” (semicolon) followed by return button “enter”

o Name of the array/table

o The index of the array/table that you want to start writing

o The values that you want to write.

 Thus the 0th element will be 48, the 1st will be 50 and so on.

 Since this is a message you need to send it. You do not need to connect it but you need

to leave the edit mode via ctrl+e click on the message and enter the edit mode again via

ctrl+e.

 Now, the patch should look like Figure 10 if you are continuing from the previous

section.

14

Figure 10: Cmajor table

 Now press ctrl+e to enter edit mode.

 Now if we want to use the drunk object we need to change its parameters. So click on

the message that says “24 48 4” and change it to “13 27 4” since our table has 27

elements.

 Since this is a message you need to send it. Leave the edit mode via ctrl+e click on the

message and enter the edit mode again via ctrl+e.

 Delete + 48 since the data we will use is already raised to 48.

 We will use tabread object to read from the table. Press ctrl+1 to create an object, put

it where + 48 was and name it tabread.

o Tabread needs a message to define, which table/array it will read.

o Tabread takes a numerical input which will be the index of the item that it will

output.

 Press ctrl+2 to create a message, put it above tabread and write set Cmajor inside it.

 Connect the output of the set Cmajor message to the input of the tabread object.

 Since this is a message you need to send it. Leave the edit mode via ctrl+e click on the

message (set Cmajor) and enter the edit mode again via ctrl+e.

 Connect the output of the tabread to the input of the first input of makenote and print

object.

 Connect the output of the drunk object to the input of the tabread object. Your patch

should look like Figure 11.

 Set up the metronome period, velocity and duration as usual and start via the bang.

15

 Instead of drunk you can use random 27 as in Figure 12, for a random melody within C

major scale.

Figure 11: Tabread connected

Figure 12: Random within C major

16

3.7 Dynamics

So far we focused on only melody. Dynamics, the change of loudness, adds a lot to music. In the

previous sections the loudness/velocity was constant unless you changed it on the fly. We will use a very

simple trick to add some imperfection, expression, feel to our music. Since we did not plan any intense

or soft parts algorithmically, just adding some fluctuations to our velocity will be a great improvement.

To do this we will use the random object again.

 Press ctrl+shift+s to save as your patch. Name it as 3_7.

 Press ctrl+e to enter the edit mode.

 Remember the maximum velocity was 127. So let’s say we want the velocity to change

between 90 and 127.

 Press ctrl+1 to create an object and put it above makenote. Label it random 37.

 Press ctrl+1 to create an object and put it below random 37. Label it + 90.

 Connect the output of + 90 to the second input of makenote.

 Delete the number object connected to the second input of makenote.

 Connect the output of the metro object to the input of random 37 to have a patch like

in Figure 13.

 Set up the metronome period, velocity and duration as usual and start the patch via the

bang.

Figure 13: Fluctuating loudness/velocity

17

3.8 Duration

Again, as you might have noticed, we never bothered to have notes with different durations. To do that

we will create another table/array and put some values inside it.

 Press ctrl+shift+s to save as your patch. Name it as 3_8.

 Now press ctrl+e to enter edit mode.

 Press ctrl+1 to create an object, and write table Times 5.

o Here we are creating a table object. Table is a type of array in Pure Data.

o The name of the table is Time.

o The length of the table is 5.

 Now we will fill the table. Press ctrl+2 to create a message and copy paste the following

into the message:

;

Times 0 500 1000 2000 1000 500

 The format of the message is as follows:

o “;” (semicolon) followed by return button “enter”

o Name of the array/table

o The index of the array/table that you want to start writing

o The values that you want to write.

 Thus the 0th element will be 500; the 1st will be 1000 and so on.

 Since this is a message you need to send it. You do not need to connect it but you need

to leave the edit mode via ctrl+e click on the message and enter the edit mode again via

ctrl+e.

 Now, the patch should look like Figure 14 if you are continuing from the previous

section.

 Press ctrl+1 to put the object above and right of makenote and label it tabread.

o As you usual feel free to arrange the location of the objects.

 Press ctrl+2 to create a message, put it above tabread and write set Times inside it.

 Connect the output of the set Times message to the input of the tabread object.

 Since this is a message you need to send it. Leave the edit mode via ctrl+e click on the

message (set Times) and enter the edit mode again via ctrl+e.

 Press ctrl+1 to put the object above of tabread and label it random 5.

 Connect the output of the metro to the input of random 5.

 Connect the output of the random 5 to the input of tabread.

 Delete the number object that is the connected to the third input of makenote.

 Connect the output of the tabread to rightmost input of makenote as in Figure 15.

18

 Set up the metronome period, velocity and duration as usual and start the patch via the

bang.

Figure 14: Times table

Figure 15: Fluctuating duration

19

3.9 Polyphony

The next thing that we will add in this tutorial is introducing polyphony. We will have another

instrument, albeit in a very simple way. If we limit both instruments to play in the same key, they will

not sound great but they will not sound bad.

 Press ctrl+shift+s to save as your patch. Name it as 3_9.

 Let’s say we will add a bass line. We need to create a table with lower notes.

 Now press ctrl+e to enter edit mode.

 Press ctrl+1 to create an object, and write table CmajorBass 22.

o Here we are creating a table object. Table is a type of array in Pure Data.

o The name of the table is CmajorBass.

o The length of the table is 22.

 Now we will fill the table. Press ctrl+2 to create a message and copy paste the following

into the message:

;

CmajorBass 0 36 38 40 41 43 45 47 48 50 52 53 55 57 59 60

 The format of the message is as follows:

o “;” (semicolon) followed by return button “enter”

o Name of the array/table

o The index of the array/table that you want to start writing

o The values that you want to write.

 Thus the 0th element will be 36, the 1st will be 38 and so on.

 Since this is a message you need to send it. You do not need to connect it but you need

to leave the edit mode via ctrl+e click on the message and enter the edit mode again via

ctrl+e.

 Move these somewhere empty.

 Press ctrl+1, put the object somewhere and label it drunk.

 Press ctrl+2 to create the message for drunk. Put it above drunk and write “11 22 4”

inside.

 Connect the message to the drunk object.

 Leave the edit mode, send the message and enter the edit mode.

 Press ctrl+1, put the object under drunk and label it tabread.

 Press ctrl+2 to create a message, put it above tabread and write set CmajorBass inside.

 Connect the output of the set CmajorBass message to the input of the tabread object.

 Since this is a message you need to send it. Leave the edit mode via ctrl+e click on the

message (set CmajorBass) and enter the edit mode again via ctrl+e.

 Connect the output of the drunk object to the input of the tabread object.

 Press ctrl+1, put the object below and label it makenote.

20

 Press ctrl+1, put the object below and label it noteout 2.

o This will send the output to the 2nd channel.

 Connect the output of the drunk to the input of tabread.

 Connect the output of tabread to the first input of makenote.

 Connect the first output of makenote to the first input of noteout 2 and connect the

second output of makenote to the second input of noteout 2.

 Connect the output of metro to the input of drunk.

o By this time probably you need a very long wire. So we will use something

different.

 Delete the wire you just connected.

 Press ctrl+1, put the object just below metro, and label it send m.

o Here, we created a send object with the identifier m.

o Send object works with receive object to have a wireless connection between

Pure Data objects.

o Send and receive objects are linked through their identifiers.

 Connect the output of metro to input of send m.

 Press ctrl+1, put the object just below + 90 of fluctuating velocity, and label it send v.

 Connect the output of + 90 to the input of send v.

 Press ctrl+1, put the object just below tabread of fluctuating duration, and label it send

t.

 Connect the output of tabread to the input of send t.

 Press ctrl+1, put the object just above drunk of the 2nd instrument (the one we added in

3.8), and label it receive m.

 Connect the output of receive m to the input of drunk.

 Press ctrl+1, put the object just above makenote of the 2nd instrument, and label it

receive v.

 Connect the output of receive v to the second input of makenote.

 Press ctrl+1, put the object just above makenote of the 2nd instrument, and label it

receive t.

 Connect the output of receive t to the third input of makenote.

 Now it should look like Figure 15.

21

Figure 15: Added polyphony

4) Discussions

With the last patch we are able to create a two-instrument music that is in C major scale with some

dynamics and rhythm. As you can guess, there still unlimited amount of changes we can make. However,

first of all you must not forget that experimentation is an important aspect here and there is no right or

wrong. Below are some suggestions and ideas for further changes.

4.1 Indeterminacy

So far we have never used a deterministic approach, which means whenever we clicked our bangs we

get something different. You can use some rules in addition to random numbers to achieve a different

style. One basic concept in music theory is leading tone, where the last tone of a scale needs to be

followed by the first tone of the scale.

To whom that are interested in music, Pure Data or algorithmic composition; I advise you to try to

implement that capability. However, you can also find an implementation of it in file package.

4.2 Timbre

Timbre is defined as the property of sound that causes the difference between the same notes, in same

loudness played from two different instruments (say a guitar and a piano). In our patches we did not

have change in timbres (no sound effects kicking in) and our second instrument was also again a MIDI

22

piano, but do not forget that timbre is also another variable you can program and create an algorithm

for.

4.3 Silence

Silence is generally much underrated in today’s music with the record companies trying to make their

music as loud as possible3. However, good usage of silence or empty space adds to music and makes the

sound more valuable.

4.4 Dissonance

Our music was in the end very consonant: everything was in C major scale. Dissonance does not mean

ugly or bad music. Again good usage of dissonance improves the music while the pure random music

sounds cacophonic. You may experiment with giving the instrument different scales and try to find you

own sweet spot about the amount of common notes in two scales.

4.5 Imperfection

If you are after computer perfection, feel free to keep everything synchronized perfectly. However,

humans are used small degrees timing errors and changes. For example, you can introduce small

amount of random errors to durations, metro period. This is especially more important in a piece with

multiple instruments as those tiny timing variations open up windows, where you can hear an

instrument clearer. Imagine that there is a string quartet and all of them are hitting notes at the same

time, to most people it will sound like a just one big sound. But if they are not perfectly synchronized

(but still synchronized) you can hear the individual tones easier.

4.6 Rhythmic and Musical Structure

In our Times array we had 500, 1000, 2000, 1000 and 500 ms. This was giving us a weighted distribution

with 500 and 1000 having more chance to be randomly chosen. Yet, our piece did not have any structure

even a simple one such as a bar. With structure it will be easy to direct the music to a point you like.

4.7 Progression

Again, progress was another element that our music lacked. A simple way to do a progress is to defining

starting and ending points, and after that filling in between. This might be a chord progression or a

melodic progression but it will give music some resolution and more meaningful tension.

3 http://www.npr.org/templates/story/story.php?storyId=122114058

23

5) Files

The files that accompany this tutorial can be matched with the chapters of the tutorial as follows:

File Name Chapter No / Explanation

MIDI_basics.pd 3.2

Random_1.pd 3.3

Random_2.pd 3.4

Drunk_1.pd Drunk without frequency limit

Drunk_2.pd 3.5

Scale_1.pd 3.6 Random within C major

Scale_2.pd 3.6 Drunk within C major

Dynamics.pd 3.7

Duration.pd 3.8

Polyphony.pd 3.9

Determinacy.pd 4.1

MasterPatch.pd Includes all above and more in a single patch

