

Introduction to aluminium structures

František Wald

Czech Technical University in Prague

Introduction **Mechanical material properties** Pros and cones History Stages Steel – reference material Mobile roofing $E = 70\ 000\ \text{N/mm}^2$ • Modulus of elasticity Material Production $G = 27\ 000\ \text{N/mm}^2$ Shear modulus Properties HAZ •Poisson's ratio v = 0.3Buckling Coefficient of linear thermal expansion Welding α = 23 × 10⁻⁶ per °C; Bolting • Unit mass $\rho = 2~700 \text{ kg/m}^3$ Summary • Min elongation from 0,1 % till 14 % Structural alloys more than 4 % European Erasmus Mundus Master Course Steel min 15 %, mostly 40 % and more Sustainable Constructions under Natural Hazards and Catastrophic Events

Pros and cones History

> Stages Mobile roofing

> > Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Material properties at elevated temp.

For service temperatures between 80°C and 100°C reduction of the strength should be taken in account.

All characteristic aluminium resistance values (f_0 , f_u , $f_{0,haz}$ and $f_{u,haz}$) may be reduced according to

$$X_{\rm kT} = [1 - k_{100}(T - 80) / 20] X_{\rm k}$$

where:

Т

 $X_{\rm k}$ is the characteristic value of a strength property of a material

 $X_{\rm kT}$ is the characteristic strength value for the material at temperature *T* between 80°C and 100 °C

is the highest temperature the structure is operating

 k_{100} = 0,1 for strain hardening alloys (3xxx-alloys, 5xxx-alloys and EN AW 8011A)

 k_{100} = 0,2 for precipitation hardening material (6xxx-alloys and EN AW-7020)

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Pros and cones

- + Low weight 2700 kg m^3 mobile str.
- Unlimited choice of cross sections
- Corrosion resistant
- + Low transition temperature
- + Toughness at low temperatures
- Low modulus of elasticity
 - Round 70 000 MPa
 - Low fire resistance
 - Melting point about 530 °C

> Stages Mobile roofing

> > Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Criteria for Selecting Aluminium

- Weight reduction
- Maintenance aspects
- Product costs
- Load criteria

History as material

16th cent. BC mentions in Egypt

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

1808 - Sir Humpry Davy (England), extra insulation aluminum, aluminum named

- 1821 Frenchman P. Berthier, near the town of Les Baux, hard reddish and clayey material containing 52 percent aluminum oxide, named as Bauxit.
- 1825 Dane Hans Christian Oersted, metal dust grains
- 1827 German chemist Friedrich Wohler's first aluminum nugget
- 1854 Henri Sainte-Claire (France) improved Wöhler method for initial procurement, Napoleon III flagship spear tip
- 1870 Sainte-Clare Deville melting furnace
- 1886 electrolytic production process Hall-Heroult, Paul Louis

Civil Engineering Industry

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events roof structures, building systems, stairs, stairtowers, gangways, masts, silos, cranes, pylons, towers, pedestrian bridges

1940s

1930s

road bridges, particularly in the USA

1963

20 road bridges in the USA

the longest 100 m

Stages Mobile roofing

Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

for Pope John Paul II. in Hradec Králové in 1997

Stage backdrop

for Carmen at the National Theatre Brno

Sustainable Constructions under Natural Hazards and Catastrophic Events

European Erasmus Mundus Master Course

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Movable roof on the second courtyard in castel <u>Litomyšl</u>

Stages Mobile roofing Material Production Properties HAZ Buckling Welding Bolting Summary

European Erasmus Mundus Master Course

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Structural diagram of sliding aluminum parts

Stages Mobile roofing

> Material Production

rain

and

sun

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

Eaves moment connection

and Catastrophic Events

22

Introduction Pros and cones History	Classification of comm			
Stages Mobile roofing		EN573	ISO	
Material Production	1050A	AI 99,5		
Properties	1070A	AI 99,7		
HAZ Buckling	2017A	AlCu4MgSi		
Welding	3103	AlMn1		
Summary	5052	AIMg2,5		
	5454	AIMg2,7Mn		
European Erasmus Mundus Master Course	5083	AIMg4,5Mn		
	6060	AIMgSi		
under Natural Hazards and Catastrophic Events	6063	AlMa0 5Si		25

Mobile roofing

Stages

Material

Production

Properties

Buckling

Welding

Bolting

Summary

HAZ

Wall thickness

Min. possible wall thickness for extrusion presses 10 - 80 MN. Profile Alloy 25 50 75 100 150 200 250 300 350 400 450 type 2,5 AI 99-99,9 0,8 1,2 1,5 2 2,5 3 5 а 1 4 4 0.8 1,5 2 2,5 2,5 3 1,2 5 AIMgSi 0,5 4 4 b 1 1,5 2.5 2.5 2.5 2 4 5 5 AIMn 1 1 1 6 С AIMg 1 AlMaSi 1 1,2 1,2 1,5 2 2,5 3 4 4 5 6 1 а 1,2 1,5 2 2,5 1 2 3 4 5 b 4 6 2 1.5 2 2 3 4 5 5 6 6 С 4 AIMg 3 2,5 1 1,2 1,5 2 3 4 5 6 1 4 а 1.2 1.5 AIMa 5 b 1 1 2 2.5 3 4 4 5 6 AlCuMg 1 1,2 1,2 1,2 1,5 2 3 5 5 7 8 6 а AICuMg 2 12 ALZnMaCu 2 2 2.5 3 3 5 6 8 12 14 а 25 Press capacity (MN) 10 50 -80 35 a: Solid / semi-hollow sections b: Hollow sections with equal wall thicknesses c: Hollow sections with unequal wall thicknesses

Sustainable Constructions under Natural Hazards and Catastrophic Events

European Erasmus Mundus Master Course

Stages Mobile roofing

> Material Production

Properties HAZ **Buckling**

> Welding Bolting

European Erasmus Mundus Master Course JJCOJ

Sustainable Constructions under Natural Hazards and Catastrophic Events

0,2% proof strength f and ultimate tensile strength f_{μ}

EN 1999-1-1 Table 3.2

Alloy EN-AW	Product form	Temper	Thick- ness <i>t</i>	f _o 1)	f _u ¹⁾	A ^{5) 2)}	f _{o,haz} 4)	f _{u,haz} 4)	HAZ-fa	HAZ-factor ⁴⁾		n _p
			mm 1)3)	N/n	nm²	%	N/n	nm²	r _{o,haz} r _{u,haz}		• /	()
6061	EP,ET,ER/B,DT	T4	t< 25	110	180	50	95	150	0,86	0,83	В	8
0001	EP,ET,ER/B,DT	Т6	<i>t</i> ≤ 20	240	260	8	115	175	0,48	0,67	А	55

Characteristic values of

0,2% proof strength f_{0}

and ultimate tensile strength f_{μ} (unwelded and for HAZ),

min elongation A,

reduction factors $\rho_{o,haz}$ and $\rho_{u,haz}$ in HAZ,

buckling class and exponent $n_{\rm p}$ for wrought aluminium alloys - Extruded profiles, extruded tube, extruded rod/bar and drawn tube

EP	 Extruded profiles 	EP/O	 Extruded open profiles
EP/H	 Extruded hollow profiles 	ET	 Extruded tube
ER/B	- Extruded rod and bar	DT	- Drawn tube

Stages Mobile roofing

Material Production

Properties HAZ

Buckling

Welding Bolting

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Material properties up to 80°C

- Characteristic values of
 - the 0,2% proof strength f_{o}
 - the ultimate tensile strength $f_{\rm u}$
 - are applicable for structures subject to service temperatures up to 80°C

Heat affected zone HAZ Introduction Pros and cones softening adjacent to welds b_{haz} History Stages The extent of heat-affected zones softening Mobile roofing adjacent to welds b_{haz} Material Production b_{haz} b_{haz} Properties HAZ b_{haz} b_{haz} Buckling b_{haz} b_{haz} b_{haz} Welding Bolting b_{haz} **Summary** b_{haz} bhaz b_{haz} European Erasmus Mundus Master Course b_{haz} JJCOJ Sustainable Constructions under Natural Hazards

Stages Mobile roofing

Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Extent of heat-affected zones softening adjacent to welds b_{haz}

- For a MIG weld laid on unheated material, and with interpass cooling to 60°C or less when multi-pass welds are laid, values of are as follows:
- 0 < *t* 6 mm = 20 mm
- 6 < *t* 12 mm = 30 mm
- 12 < *t* 25 mm = 35 mm
- *t* > 25 mm = 40 mm

> Stages Mobile roofing

> > Material Production

Properties HAZ

Buckling

Welding Bolting

European Erasmus Mundus Master Course

JJCOJ

Sustainable Constructions under Natural Hazards and Catastrophic Events

Severity of softening ρ_{haz}

Reduction factor in the heat affected zone for • the characteristic value of the 0,2 % proof strengths **f**.

$$\rho_{\rm o,haz} = \frac{r_{\rm o,haz}}{f_{\rm o}}$$

Reduction factor for the ultimate strength •

Introduction Reduction factor in the heat affected zone Pros and cones EN 1999-1-1 Table 3.2 History Stages Mobile roofing Thickf_o $f_{\rm H}$ Α f_{0.haz} f_{u.haz} HAZ-factor Allov Product BC Material ness t Temper EN-AW form mm Production % N/mm² N/mm² r_{o.haz} r_{u,haz} 95 150 0,86 0.83 В EP,ET,ER/B,DT Τ4 t<25 110 180 50 6061 Properties 0.48 EP.ET.ER/B.DT T6 240 260 8 115 175 0.67 А *t* < **20** HAZ Buckling Characteristic values of 0,2% proof strength f_0 and ultimate tensile strength f_{μ} (unwelded and Welding for HAZ), min elongation A, reduction factors $\rho_{o,haz}$ and $\rho_{u,haz}$ in HAZ, Bolting Summary buckling class and exponent n_{p} for wrought aluminium alloys – Extruded profiles, extruded tube, extruded rod/bar and drawn tube European Erasmus Mundus Master Course EΡ - Extruded profiles EP/O - Extruded open profiles EP/H - Extruded hollow profiles ET Extruded tube ER/B - Extruded rod and bar DT Drawn tube Sustainable Constructions under Natural Hazards

and Catastrophic Events

n_p

8

55

Stages Mobile roofing

Material

Production

Properties

Buckling

HAZ

 $N_{\rm b,Rd} = \kappa \ \chi \ A_{\rm eff} \ f_{\rm o} \ / \ \gamma_{\rm M1}$

where:

χ

K

is the reduction factor for the relevant buckling mode

is a factor to allow for the weakening effects of welding

 $A_{\rm eff}$ is the effective area allowing for local buckling for class 4 cross-section

 $A_{\rm eff} = A$

for class 1, 2 or 3 cross-section

Welding Bolting Summary

> European Erasmus Mundus Master Course

> Stages Mobile roofing

> > Material Production Properties

> > > Buckling

α

 λ_0

N_{cr}

HAZ

Welding Bolting

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Buckling curves

- Two buckling curves
- Formulas as for steel

$$\phi = 0,5 (1 + \alpha (\overline{\lambda} - \overline{\lambda}_0) + \overline{\lambda}^2)$$

where:
$$\overline{\lambda} = \sqrt{\frac{A_{\text{eff}} f_{\text{o}}}{N_{\text{cr}}}}$$

- is an imperfection factor
- is the limit of the horizontal plateau
- is the elastic critical force for the relevant buckling mode based on the gross crosssectional properties

Stages Mobile roofing

Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Imperfection factor and limit of the horizontal plateau

Material buckling class	α	$\overline{\lambda}_{0}$
Class A	0,20	0,10
Class B	0,32	0,00

- Class A usually
 - T6 solution heat treated and then artificially aged
- Class B usually
 - T5 cooled from an elevated temperature shaping process and then artificially aged
 - T4 solution heat treated and naturally aged to a substantially table condition

Stages Mobile roofing

> Material Production

Properties HAZ

. HAZ Buckling

Welding Bolting

Summary

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Material buckling class

EN 1999-1-1 Table 3.2

Alloy EN-AW	Product	Temper	Thick- ness <i>t</i>	$\begin{array}{c c} f_{0} & f_{u} & A^{\dagger} & f_{o,haz} \end{array} f_{t}$		f _{u,haz}	HAZ-	factor	вс	n _p		
	form		mm	N/n	nm²	%	% N/mm ²		r _{o,haz}	r _{u,haz}		٢
6061	EP,ET,ER/B,DT	T4	t< 25	110	180	50	95	150	0,86	0,83	В	8
0001	EP,ET,ER/B,DT	Т6	<i>t</i> ≤ 20	240	260	8	115	175	0,48	0,67	А	55

Characteristic values of

0,2% proof strength f_{o}

and ultimate tensile strength $f_{\rm u}$ (unwelded and for HAZ),

min elongation A,

reduction factors $\rho_{o,haz}$ and $\rho_{u,haz}$ in HAZ,

buckling class

and exponent $n_{\rm p}$

for wrought aluminium alloys - Extruded profiles, extruded tube, extruded rod/bar and drawn tube

EP	 Extruded profiles 	EP/O	 Extruded open profiles
EP/H	 Extruded hollow profiles 	ET	 Extruded tube
ER/B	 Extruded rod and bar 	DT	- Drawn tube

Stages Mobile roofing

Material

Production

Properties

Buckling

Welding

Bolting

HAZ

Buckling resistance of member with longitudinal welds

$$N_{\rm b,Rd} = \frac{\kappa}{\chi} \chi A_{\rm eff} f_{\rm o} / \gamma_{\rm M}$$

 $\begin{array}{|c|c|c|c|c|} \hline \text{Class A material} & \text{Class B material} \\ \hline \kappa = 1 - \left(1 - \frac{A_1}{A}\right) 10^{-\overline{\lambda}} - \left(0,05 + 0,1\frac{A_1}{A}\right) \overline{\lambda}^{1,3(1-\overline{\lambda})} & \kappa = 1 \quad \text{if} \quad \overline{\lambda} \leq 0,2 \\ \hline \kappa = 1 + 0,04(4\overline{\lambda})^{(0,5-\overline{\lambda})} - 0,22\overline{\lambda}^{1,4(1-\overline{\lambda})} & \text{if} \quad \overline{\lambda} > 0,2 \\ \hline \text{in which} \quad A_{\text{haz}} = \text{area of HAZ} & \text{if} \quad \overline{\lambda} > 0,2 \end{array}$

Summary

European Erasmus Mundus Master Course

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

Welding Bolting

European Erasmus Mundus Master Course

JJCOJ

Sustainable Constructions under Natural Hazards and Catastrophic Events

Buckling resistance of member with localized welds

 Member subject to HAZ softening, should generally be based on the *ultimate* strength of the HAZ softened material

 $N_{\rm b,Rd} = \frac{\kappa}{\chi} \chi A_{\rm eff} f_{\rm o} / \gamma_{\rm M1}$

- In case of transversally welded member $\kappa = \omega_{x}$
- The reduction factors

$$\omega_0 = \omega_x = \omega_{xLT} = \frac{\rho_{u,haz} f_u / \gamma_{M2}}{f_0 / \gamma_{M1}} \quad \text{but} \le 1,00$$

Introduction Members containing localized welds Pros and cones History Stages HAZ softening occurs close to the ends of the bay Mobile roofing N N $\omega_0 = \frac{\rho_{u,haz} f_u / \gamma_{M2}}{f_0 / \gamma_{M1}}$ Material but $\omega_0 \leq$ 1,00 x_s Production x_{s} $\frac{\omega_0}{\chi + (1 - \chi) \sin \frac{\pi x_s}{I_c}}$ Properties l_c l_c HAZ $\omega_x =$ Buckling Welding Bolting Summary where is depending on buckling direction χ is the distance from the localized weld to a support or point X of contra flexure for the deflection curve for elastic buckling of axial European Erasmus Mundus force only Master Course

 $I_{\rm c}$ is the buckling length

Sustainable Constructions under Natural Hazards

Introduction Pros and cones History	Cha of w	Characteristic strength values of weld metal <i>f</i> _w											
Stages Mobile roofing	Characte- ristic	Filler metal	Alloy										
Material Production	strength		3103	5052	5083	5454	6060	6005A	6061	6082	7020		
Properties	f _w [N/mm²]	5356	-	170	240	220	160	180	190	210	260		
HAZ Buckling		4043A	95	-	-	-	150	160	170	190	210		
Welding Bolting	o Com	nbinatio Approx	ons o [.] kimate	f pare elly <i>f</i> _w	nt me <i>≅</i> (2 f	tal and $(1 + f_f)/2$	d filler 3	metal					
Summary	1	<i>f</i> _u stre	ength	of bas	sic ma	iterial							
	J	<i>f</i> _f stre	ngth	of fille	r meta	al							
European Erasmus Mundus Master Course	 Stre stre 	ngth of ngth of	f the v the p	weld r parent	netal i meta	is usu I exce	ally lo pt for	wer tha the str	an the ength	e ⊨in the	e		
Sustainable Constructions under Natural Hazards and Catastrophic Events	HAZ	-									47		

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

Welding Bolting

European Erasmus Mundus Master Course

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Full Penetration Butt Welds

- normal stress, tension or compression, perpendicular to the weld axis

 $\sigma_{\perp \mathsf{Ed}} \leq \frac{f_{\mathsf{W}}}{\gamma_{\mathsf{MW}}}$

- shear stress

$$\tau_{\rm Ed} \leq 0.6 \frac{f_{\rm W}}{\gamma_{\rm Mw}}$$

- combined normal and shear stresses:

$$\sqrt{\sigma_{\perp Ed}^2 + 3\tau_{Ed}^2} \le \frac{f_W}{\gamma_{MW}}$$

where:

- characteristic strength weld metal
- σ_{LEd} normal stress, perpendicular to the weld axis
- τ_{Ed} shear stress, parallel to the weld axis
- Mw partial safety factor for welded joints

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

Welding Bolting

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Design resistance in HAZ

Tensile force perpendicular to the failure plane

- HAZ butt welds:

 $\sigma_{haz,Ed} \leq f_{u,haz} / \gamma_{Mw}$ at the toe of the weld (full cross section)

- HAZ fillet welds: $\sigma_{haz,Ed} \leq f_{u,haz} / \gamma_{Mw}$ at the fusion boundary

and at the toe of the weld (full cross section)

where:

 $\sigma_{haz,Ed}$ design normal stress perpendicular to the weld axis; t thickness connected member $f_{u,haz}$ characteristic strength HAZ γ_{Mw} material factor for welded joints

Design resistance in HAZ Introduction Pros and cones Shear force in failure plane History Stages Mobile roofing - HAZ butt welds: $\tau_{\rm haz,Ed} \leq f_{\rm v,haz} / \gamma_{\rm Mw}$ Material Production at the toe of the weld (full cross section) Properties - HAZ fillet welds: HAZ Buckling $\tau_{\rm haz,Ed} \leq f_{\rm v,haz} / \gamma_{\rm Mw}$ at the toe of the weld (full cross section) Welding Bolting where: Summary shear stress parallel to the weld axis $\tau_{haz,Ed}$ f_{v,haz} characteristic shear strength HAZ material factor for welded joints European Erasmus Mundus γMw Master Course JJCCOJ Sustainable Constructions under Natural Hazards

Design resistance in HAZ Introduction Pros and cones Combined shear and tension History Stages Mobile roofing - HAZ butt welds: Material $\sqrt{\sigma_{\text{haz.Ed}}^2}$ + 3 $\tau_{\text{haz.Ed}}^2 \leq f_{\text{u.haz}} / \gamma_{\text{Mw}}$ Production at toe of the weld (full cross section) Properties HAZ **Buckling** - HAZ fillet welds: Welding Т Т Bolting $\sqrt{\sigma_{\text{haz.Ed}}^2}$ + 3 $\tau_{\text{haz.Ed}}^2 \leq f_{\text{u,haz}} / \gamma_{\text{Mw}}$ **Summary** at the toe of the weld (full cross section) European Erasmus Mundus Master Course JJCOJ

Sustainable Constructions under Natural Hazards

Introduction **Bolting** Pros and cones History Stages Mobile roofing Design of bolted joints • for dry and severe corrosive environments Material Production Properties Sealer Stainless Stee Stainless Steel HAZ I.O. Stainless Steel Buckling Welding **Bolting** Carbon Steel Summary Carbon Steel Stainless Steel Aluminium Aluminium Seale Aluminium European Erasmus Mundus Dry Conditions Saliferous Atmosphere Master Course JJCOJ Sustainable Constructions

under Natural Hazards

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

Welding Bolting

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

0,2 % proof strength f_0 and ultimate strength f_u for bolts and solid rivets

Material	Type of fastener	Alloy Numerical designation: EN AW	Temper or grade	Diameter	∫ _o N/mm²	f _u N/mm²	
		A2, A4	50	≤39	210	500	
Stainless Steel	Bolts	A2, A4	70	≤39	450	700	
		A2, A4	80	≤39	600	800	

Summary

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

Stages Mobile roofing

> Material Production

Properties HAZ Buckling

> Welding Bolting

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Summary

• Temper influences the HAZ

Alloy EN-AW	Product	Temper ness t		f_{0}	$f_{\rm u}$	A	f _{o,haz} ,	f _{u,haz}	HAZ-	HAZ-factor		n _n
	form	^	mm	N/n	nm ²	%	% N/mm ²		$ ho_{\rm o,haz}$	$\rho_{\rm u,haz}$	ų	р
	ET, EP,ER/B	O/H111, F, H112	<i>t</i> ≤ 200	110	270	12	110	270	1	1	В	5
5083	DT	H12/22/32	<i>t</i> ≤ 10	200	280	6	- 135	270	0,68	0,96	В	14
		H14/24/34	<i>t</i> ≤ 5	235	300	4		270	0,57	0,90	А	18

Thank you for your attention

František WALD

wald@fsv.cvut.cz

Notes to users of the lecture

• Text books

Hodlung T., Tindall P., Design guide to Eurocode 9: **Design to aluminium structures,** EN 1999-1-1 and -1-4, ICE Publishing, London, 2012, ISBN 978-0-72277-5737-1.

- Valtinat G., **Aluminium im Konstruktiven Ingenierbau**, Bauingeniering–Praxis, Ernst&Sohn, 2003. ISBN 3-433-01784-0.
- Bulson P.S.: Aluminium structural analysis: recent European advances, Elsevier, London, 1992, ISBN 1-85166-660-5.
- Mazzolani F. M.: Aluminium alloy structures (second edition), E & FN SPON, London, 1995.
- Mazzolani F. M.: Stability problems of aluminium alloys members, the ECCS methodology, Structural Stability and design, Balkema, Rotterdam, 1995.
- Kosteas D.: European Recommendation for fatigue design of Aluminium Structures, Proceeding of the 5th International conference on aluminium weldments, INACO, Munich, 1992.
- Bulson P. S.: The new British design code for aluminium BS 8118, Proceeding of the 5th International conference on aluminium weldments, INACO, Munich, 1992.
- **European recommendation** for aluminium alloy structures, ECCS publication, No. 26, Brusel, 1978.

European Erasmus Mundus Master Course

rurcor

Sources

- EN 1999-1-1 Design of Aluminium Structures: General structural rules, CEN, Brussels, 2008.
- Bulson P.S.: Aluminium structural analysis: recent European advances, Elsevier, London, 1992, ISBN 1-85166-660-5.
- Educational programme TALAT
 <u>www.eaa.net/eaa/education/TALAT</u>

European Erasmus Mundus Master Course

