
Introduction to Artificial Intelligence

State Space Search

Gregory Adam

Contents

• Intro

• Theory

– State Space Search

• Blind State Space Search (3 algorithms)

• Heuristic State Space Search (2 algorithms)

• Example

Most of the material used (except the examples) comes from

“The Handbook of Artificial Intelligence – Volume I”

(Avron Barr & Edward A Feigenbaum)

Introduction to Artificial Intelligence 2

What

• Part of Computer Science concerned with

designing intelligent computer systems

• Systems exibiting the characteristics we

associate with intelligence in human

behaviour

Introduction to Artificial Intelligence 3

Areas

• The areas are not distinct – most are interrelated

• Problem Solving
– Puzzles

– Play games, eg chess

– Symbolic integration of mathematical formulas

– Some programs can improve their performance with experience

• Logical reasoning
– Prove assertions (theorems) by manipulating a database of facts

• Language
– Understanding of natural language

– Translation

– Eg Spelling checker

• Programming
– Write computer programs based on a description

Introduction to Artificial Intelligence 4

Areas – cont’d

• Learning

– Learning from examples

• Expertise (aka Expert Systems)

– User interacts with an Expert System via a dialogue

– Expert feeds knowledge

• Robotics and vision

– Manipulate robot devices (mostly in industrial applications to perform
repetitive tasks)

– Recognize objects and shadows in visual scenes

• Systems and languages

– Time-sharing, list processing, and interactive debugging were
developed in the AI research

Introduction to Artificial Intelligence 5

Search

• Components of search systems

– Database : describes the current task domain and the goal

– Set of operators: transform one state to another

– Eg in the 8 puzzle: UP, DOWN, LEFT, RIGHT

– Control strategy : decides what to do next

• Definition

– Find a finite sequence of operators transforming the initial state to a

goal state

• Reasoning

– Forward : Transform original state to a goal state

– Backward: Transform a goal state to the original state

Introduction to Artificial Intelligence 6

Search

• State Space and Problem Reduction

– State space

• An operator produces exactly one new state

– Problem reduction

• An operator produces a set of subproblems, each of which have to be solved

• Eg

– Tower of Hanoi

– Integrate (f(x) + g(x)) dx

» Integrate f(x) dx

» Integrate g(x) dx

» Add the results

Introduction to Artificial Intelligence 7

Search - problem representation

• State Space: State space graph

Introduction to Artificial Intelligence 8

Search - problem representation

• AND/OR Graph

– Horizontally connected edges (here marked in red)

represent AND nodes

– For AND nodes, each of the nodes have to be

solved

– Eg

• problem reduction

• Games (eg chess)

Introduction to Artificial Intelligence 9

Search – Blind Search

• The Blind search algorithms following

• Breadth First Search

• Depth First Search

• Uniform Cost Search

– Assume the State Space graph is a Directed Tree

• The Heuristic search algorithms following

• Ordered Search

• A* An optimal search for an optimal solution

– Assume the State Space graph is a General Graph

Introduction to Artificial Intelligence 10

Search

• General graph consists of

– Nodes or points

– Arcs or edges connecting two nodes

Introduction to Artificial Intelligence 11

Search

• Arcs can be

– Undirected

or

– Directed

Introduction to Artificial Intelligence 12

Search

• Undirected graph

– Contains only undirected arcs

• Directed graph or digraph

– Contains only directed arcs

• Mixed graph

– Contains both directed and undirected arcs

Introduction to Artificial Intelligence 13

Search

• In a directed graph (containing only directed arcs)

• The indegree of a node

– Is the number of arcs terminating in that node

• The outdegree of a node

– Is the number of arcs starting in that node

Introduction to Artificial Intelligence 14

Search

• A Directed tree

– Is an acyclic digraph

• Which has one node called the root

– The root node has indegree zero, and

• All other nodes have indegree one

Introduction to Artificial Intelligence 15

Search – Blind State Space Search

Breadth-First Search

• Expands nodes in their proximity from the

root (or start) node

• Expands all nodes of depth n before

expanding nodes of depth n+1

• Guaranteed to find the shortest possible

solution

Introduction to Artificial Intelligence 16

Search – Blind State Space Search

Breadth-First Search

Introduction to Artificial Intelligence 17

Search – Blind State Space Search

Breadth-First Search - Algorithm

1. Put the start node on a list, called OPEN, of unexpanded

nodes

2. If OPEN is empty, no solution exists

3. Remove the first node, n, from OPEN and put it in a list,

called CLOSED, of expanded nodes

4. Expand node n. If it has no successors, go to (2)

5. Place all successors of n at the end of the OPEN list

6. If any of the successors of n is a goal node, a solution has

been found. Otherwise go to (2)

Introduction to Artificial Intelligence 18

Search – Blind State Space Search

Breadth-First Search - Algorithm

Newly expanded nodes are added to the end of

the list

Introduction to Artificial Intelligence 19

Search – Blind State Space Search

Depth-First Search

• Expands most recent (deepest) nodes first

– Here abcdea first

Introduction to Artificial Intelligence 20

Search – Blind State Space Search

Depth-First Search - Algorithm

1. Put the start node on a list, called OPEN, of unexpanded
nodes

2. If OPEN is empty, no solution exists

3. Remove the first node, n, from OPEN and put it in a list,
called CLOSED, of expanded nodes

4. Expand node n. If it has no successors, go to (2)

5. If the depth of node n is greater than the maximum depth,
go to (2)

6. Place all successors of n at the beginning of OPEN list

7. If any of the successors of n is a goal node, a solution has
been found. Otherwise go to (2)

Introduction to Artificial Intelligence 21

Search – Blind State Space Search

Depth-First Search

• Newly expanded nodes are added at the

beginning of the list

Introduction to Artificial Intelligence 22

Search – Blind State Space Search

Uniform Cost Search

• The Breadth-First search can be generalized

slightly to solve to problem of finding the

cheapest path from a start node to a goal

state

• A non-negative cost is associated with each

arc joining two nodes

• The cost of a solution is then the sum of all

the costs along the path

Introduction to Artificial Intelligence 23

Search – Blind State Space Search

Uniform Cost Search

Introduction to Artificial Intelligence 24

Search – Blind State Space Search

Uniform Cost Search - Algorithm
1. Put the start node on a list, called OPEN, of unexpanded nodes

2. If OPEN is empty, no solution exists

3. Select from OPEN a node i such that TotalCost(i) is minimum. If several

nodes qualify choose i to be a goal node if there is one, otherwise

choose among them arbitrarily.

4. Remove node i from OPEN and place it on a list CLOSED of expanded

nodes

5. If node i is a goal node, a solution has been found

6. Expand node i, if it has no successors go to (2)

7. For each successor node j of I

– Compute TotalCost(j) = TotalCost(i) + Cost(j)

– Add node j to the OPEN list

8. Go to (2)

Introduction to Artificial Intelligence 25

Search – Blind State Space Search

Uniform Cost Search

• If we associate the cost of node i to node j

with

– -1

• the Uniform Cost Search becomes a Depth-First Search

• Since TotalCost of the node = - Depth of the node

– 1

• the Uniform Cost Search becomes a Breadth-First

Search

• Since TotalCost of the node = Depth of the node

Introduction to Artificial Intelligence 26

Search – Blind State Space Search

Bidirectional Search
• The algorithms so far use forward reasoning, ie moving from

the start node towards a goal node

• In some cases we could use backward reasoning, ie moving

from the goal state to the start state

Introduction to Artificial Intelligence 27

Search – Blind State Space Search

Bidirectional Search

• Forward and backward reasoning can be

combined into a technique called bidirectional

search

• The idea is to replace a single search graph –

which is likely to grow exponentially – by two

smaller graphs

– One starting from the initial state and searching forward

– One starting from the goal state and searching backward

The search terminates when the two graphs intersect

Introduction to Artificial Intelligence 28

Search – Blind State Space Search

Bidirectional Search

• A bidirectional version of the Uniform Cost

Search, guaranteed to find the shortest

solution path, is due to Pohl (1969, 1971)

• Empirical data for randomly generated graphs

expanded only ¼ as many nodes as

unidirectional search

Introduction to Artificial Intelligence 29

Search – Limiting the search

• The amount of time and space is critical to find a solution

– Heuristics

– Relaxing the requirement

• Any (fast) solution, but not necessarily the best

Introduction to Artificial Intelligence 30

Search - Heuristics

• In blind search the number of nodes can be

extremely large

– The order of expanding the nodes is arbitrary

– Blind search does not use any properties of the problem

being solved

– Result is the combinatorial explosion

• Information about a particular problem can help to

reduce the search

– The question then is: how to search the given space

efficiently

Introduction to Artificial Intelligence 31

Search - Heuristics

• Heuristic information

– Additional information beyond that which is built into the

state and operator definitions

• Heuristic search

– A search method using that heuristic information

– Whether or not the method is foolproof

• Most of the programs were written for a single

domain – heuristics were closely intertwined in the

program and not accessible for study and adaptation

to new problems

Introduction to Artificial Intelligence 32

Search - Heuristics

• Heuristic search
– Strategy to limit (drastically) the search for solutions in

large problem spaces

• Ways of using heuristic information
– Which node(s) to expand first instead of expanding is a

strictly depth-first or breadth-first manner

– When expanding a node, decide which successors to
generate instead of blindly generate all successors at one
time

– Which nodes not to expand at all (pruning)

Introduction to Artificial Intelligence 33

Search – Heuristics

Ordered or Best-Fit Search
• Addresses only the first point

– Which node to expand first

– Expands fully

– The idea is to expand the node that seems most promising

– The promise of a node can be defined in several ways

• Estimate its distance to the goal node

• Estimate the length of the entire path

– In all cases the measure of promise of a node is

estimated by calling an evaluation function

Introduction to Artificial Intelligence 34

Search – Heuristics

Ordered or Best-Fit Search

• The basic algorithm is given by Nilsson (1971)

• The evaluation function f* is defined so that

the more promising a node is, the smaller is

the value of f*
– Estimates its distance to the goal node

• The node selected for expansion is the one at

which f* is minimum

• The search space is assumed to be a general

graph

Introduction to Artificial Intelligence 35

Ordered or Best-Fit Search - Algorithm

1. Put the start node s on a list called OPEN of unexpanded nodes.

Calculate f*(s) and associate its value with node s

2. If OPEN is empty, exit with failure; no solution exists

3. Select from OPEN a node i such that f*(i) is minimum. If several nodes

qualify choose i to be a goal node if there is one, otherwise choose

among them arbitrarily.

4. Remove node i from OPEN and place it on a list CLOSED of expanded

nodes

5. If i is a goal node, exit with success; a solution has been found

(continued on next slide)

Introduction to Artificial Intelligence 36

Ordered or Best-Fit Search - Algorithm

6. Expand node i

7. For each successor node j of i

a. Calculate f*(j)

b. If j is neither in list OPEN or list CLOSED, add it to OPEN. Attach a

pointer back from j to its predecessor i

c. If j was already on OPEN or CLOSED, compare the f* value just

calculated with the previously calculated value

d. If the new value is lower

i. Substitute it for the old value

ii. Point j back to i instead of to its previously found predecessor

iii. If j was on the CLOSED list, move it back to OPEN

8. Go to (2)

Introduction to Artificial Intelligence 37

A* Optimal search for an optimal solution

• Ordered search looked only at the promise of the node, not

necessarily at the minimum cost or path

• We can change f* slightly to find a minimum cost solution

• f*(n) = g*(n) + h*(n)

– g*(n) estimates the minimum cost of the start node to n

– h*(n) estimates the minimum cost of n to the goal

• h*

– is the carrier of heuristic information

– Should never overestimate the cost

• h*(n) <= h(n)

Introduction to Artificial Intelligence 38

Example – Breadth-First Search

• Given a number of amounts, try to find a

combination of amounts that matches

another amount

• Example

– We have 10, 20, 30, 40, ….., 100

– Find all combinations that produce eg 120

• We use Breadth-First search, ie find first those

with a minimum of depth – more likely

Introduction to Artificial Intelligence 39

Total number of combinations

Introduction to Artificial Intelligence 40

Heuristics

• Heuristic information

– Sort amounts in ascending sequence

– For each index

• Calculate minimum sum ahead

• Calculate maximum sum ahead

• Heuristic search

– Prune as soon as possible

Introduction to Artificial Intelligence 41

Heuristics

• Construction of Min/Max sum ahead

Introduction to Artificial Intelligence 42

Heuristics

Introduction to Artificial Intelligence 43

Heuristics

• Formula to calculate how many nodes are going to be pruned

Introduction to Artificial Intelligence 44

Heuristics

• Sign Reversal : try to prune as early as possible

• Decrease the gaps between minimum sum ahead

and maximum sum ahead as soon as possible

• Make sure the number with the highest absolute

value is at the front

• Reverse the sign of all amounts + the amount to

search if necessary

Introduction to Artificial Intelligence 45

Heuristics

Introduction to Artificial Intelligence 46

Heuristics

