
Computer Science 61C Spring 2019 Weaver

Introduction to Assembly Language
and RISC-V Instruction Set

Architecture

 1

Computer Science 61C Spring 2019 Weaver

Outline

• Assembly Language

• RISC-V Architecture

• Registers vs. Variables

• RISC-V Instructions

• C-to-RISC-V Patterns

• And in Conclusion …

 2

Computer Science 61C Spring 2019 Weaver

Outline

• Assembly Language

• RISC-V Architecture

• Registers vs. Variables

• RISC-V Instructions

• C-to-RISC-V Patterns

• And in Conclusion …

 3

Computer Science 61C Spring 2019 Weaver

Levels of Representation/Interpretation

lw $t0, 0($2)

lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language 
Program (e.g., C)

Assembly Language
Program (e.g., MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description 
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture
Implementation

Anything can be represented 
as a number,  

i.e., data or instructions

 4

Logic Circuit Description 
(Circuit Schematic Diagrams)

Computer Science 61C Spring 2019 Weaver

Instruction Set Architecture (ISA)

• Job of a CPU (Central Processing Unit, aka Core): execute instructions

• Instructions: CPU’s primitives operations

• Instructions performed one after another in sequence

• Each instruction does a small amount of work (a tiny part of a larger program).

• Each instruction has an operation applied to operands,

• and might be used change the sequence of instruction.

• CPUs belong to “families,” each implementing its own set of
instructions

• CPU’s particular set of instructions implements an Instruction Set
Architecture (ISA)

• Examples: ARM, Intel x86, MIPS, RISC-V, IBM/Motorola PowerPC (old Mac), Intel IA64, ...

 5

Computer Science 61C Spring 2019 Weaver

Assembly Language Programming

• Each assembly language is tied to a particular ISA (its
just a human readable version of machine language).

• Why program in assembly language versus a high-level
language?

• Back in the day, when ISAs where complex and compilers where

immature …. hand optimized assembly code could beat what the
compiler could generate.

• These days ISAs are simple and compilers beat humans

• Assembly language still used in small parts of the OS kernel to access

special hardware resources

• For us … learn to program in assembly language

• Best way to understand what compilers do to generate machine code

• Best way to understand what the CPU hardware does

 6

x86

ARM

Computer Science 61C Spring 2019 Weaver

And 
Roadmap To Future Classes...

• CS164: Compilers

• All the processes in going from source code to assembly

• CS162: O/S

• OS often needs a small amount of assembly for doing things the "high level"

language doesn't support

• Such as accessing special resources

• CS152: Computer Architecture

• How to build the computer that supports the assembly

• CS161: Security

• Exploit code ("shell code") is often in assembly and exploitation often requires

understanding the assembly language of the target.
 7

Computer Science 61C Spring 2019 Weaver

RISC-V 
Green Card

 8
1/26/18http://inst.eecs.berkeley.edu/~cs61c/resources/RISCV_Green_Sheet.pdf

Computer Science 61C Spring 2019 Weaver

Inspired by the IBM 360  
“Green Card”

 9

Computer Science 61C Spring 2019 Weaver

Outline

• Assembly Language

• RISC-V Architecture

• Registers vs. Variables

• RISC-V Instructions

• C-to-RISC-V Patterns

• And in Conclusion …

 10

Computer Science 61C Spring 2019 Weaver

What is RISC-V?

• Fifth generation of RISC design from UC Berkeley

• A high-quality, license-free, royalty-free RISC ISA specification

• Implementors do not pay any royalties

• But see Amdahl's Law: 

A decent 180 MHz 32b ARM chip costs $6 in quantity 
A Raspberry Pi (with a 1.2 GHz, quad core ARM and everything else) is $35: 
Licensing cost for the ISA can be in the noise

• Experiencing rapid uptake in both industry and academia

• Supported by growing shared software ecosystem

• Appropriate for all levels of computing system, from micro-controllers to

supercomputers

• 32-bit, 64-bit, and 128-bit variants

• (we’re using 32-bit in class, textbook uses 64-bit)

• Standard maintained by non-profit RISC-V Foundation
 11

Computer Science 61C Spring 2019 Weaver

Foundation Members (60+)

 12

Rumble

Platinum:

Gold, Silver, Auditors:

Computer Science 61C Spring 2019 Weaver

Outline

• Assembly Language

• RISC-V Architecture

• Registers vs. Variables

• RISC-V Instructions

• C-to-RISC-V Patterns

• And in Conclusion …

 13

Computer Science 61C Spring 2019 Weaver

Assembly Variables: Registers

• Unlike HLL like C or Java, assembly does not have variables
as you know and love them

• More primitive, instead what simple CPU hardware can directly support

• Assembly language operands are objects called registers

• Limited number of special places to hold values, built directly into the hardware

• Arithmetic operations can only be performed on these in a RISC!

• Only memory actions are loads & stores

• CISC can also perform operations on things pointed to by registerst

• Benefit:

• Since registers are directly in hardware, they are very fast to access

 14

Computer Science 61C Spring 2019 Weaver

Processor
Control

Datapath

Registers live inside the Processor

 15

PC

Register
sArithmetic & Logic Unit

(ALU)

Memory Input

Output

Bytes

Enable?

Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Computer Science 61C Spring 2019 Weaver

Speed of Registers vs. Memory

• Given that

• Registers: 32 words (128 Bytes)

• Memory (DRAM): Billions of bytes (2 GB to 8 GB on laptop)

• and physics dictates…

• Smaller is faster

• How much faster are registers than DRAM??

• About 100-500 times faster!

• in terms of latency of one access

 16

Computer Science 61C Spring 2019 Weaver

Number of RISC-V Registers

• Drawback: Registers are in hardware. To keep them really fast, their
number is limited:

• Solution: RISC-V code must be carefully written to use registers efficiently

• 32 registers in RISC-V, referred to by number x0 – x31

• Registers are also given symbolic names, described later

• Why 32? Smaller is faster, but too small is bad.

• Plus need to be able to specify 3 registers in operations...

• Each RISC-V register is 32 bits wide (RV32 variant of RISC-V ISA)

• Groups of 32 bits called a word in RISC-V ISA

• P&H CoD textbook uses the 64-bit variant RV64 (explain differences later)

• x0 is special, always holds value zero

• So really only 31 registers able to hold variable values

 17

Computer Science 61C Spring 2019 Weaver

C, Java Variables vs. Registers

• In C (and most HLLs):

• Variables declared and given a type

• Example: 
int fahr, celsius;  
char a, b, c, d, e;

• Each variable can ONLY represent a value of the type it was declared (e.g., cannot
mix and match int and char variables)

• If types are not declared, the object carries around the type with it. EG in python: 

a = "fubar" # now a is a string  
a = 121 # now a is an integer

• In Assembly Language:

• Registers have no type;

• Operation determines how register contents are interpreted

 18

Computer Science 61C Spring 2019 Weaver

RISC-V Memory Alignment...

• RISC-V does not require that integers be word aligned...

• But it is very very bad if you don't make sure they are...

• Consequences of unaligned integers

• Slowdown: The processor is allowed to be a lot slower when it happens

• In fact, a RISC-V processor may natively only support aligned accesses, and do
unaligned-access in software! 
An unaligned load could take hundreds of times longer!

• Lack of atomicity: The whole thing doesn't happen at once... 
can introduce lots of very subtle bugs

 19

Computer Science 61C Spring 2019 Weaver

RISC-V Instructions

• Instructions are fixed, 32b long

• Must be word aligned, or half-word aligned if the 16b optional (C) instruction set is also

enabled

• Only a few formats (we'll go into detail later)...

 20

Computer Science 61C Spring 2019 Weaver

Outline

• Assembly Language

• RISC-V Architecture

• Registers vs. Variables

• RISC-V Instructions

• C-to-RISC-V Patterns

• And in Conclusion …

 21

Computer Science 61C Spring 2019 Weaver

RISC-V Instruction Assembly Syntax

• Instructions have an opcode and operands

 E.g., add x1, x2, x3 # x1 = x2 + x3

 22

Operation code (opcode)
Destination register Second operand register

First operand register

is assembly comment syntax

Computer Science 61C Spring 2019 Weaver

Addition and Subtraction of Integers

• Addition in Assembly

•Example:		 	 add x1,x2,x3 (in RISC-V)

•Equivalent to:	 a = b + c 	 	 	 (in C)

 where C variables ⇔ RISC-V registers are:

	 	 	 a ⇔ x1, b ⇔ x2, c ⇔ x3

• Subtraction in Assembly

•Example:		 	 sub x3,x4,x5 (in RISC-V)

•Equivalent to:	 d = e - f 	 	 	 (in C)

 where C variables ⇔ RISC-V registers are: 
 d ⇔ x3, e ⇔ x4, f ⇔ x5

 23

Computer Science 61C Spring 2019 Weaver

No-Op

• A No-op is an instruction that does nothing...

• Why? 

You may need to replace code later: No-ops can fill space, align data, and perform
other options

• By convention RISC-V has a specific no-op instruction...

• add x0 x0 x0

• Why?

• Writes to x0 are always ignored... 

RISC-V uses that a lot as we will see in the jump-and-link operations

• Making a "standard" no-op improves the disassembler and can potentially improve the

processor

• Special case the particular conventional no-op.

 24

Computer Science 61C Spring 2019 Weaver

Addition and Subtraction of Integers
Example 1
• How to do the following C statement?

	 a = b + c + d - e;

• Break into multiple instructions

add x1, x2, x3 # temp = b + c
add x1, x1, x4 # temp = temp + d
sub x1, x1, x5 # a = temp - e

• A single line of C may turn into several RISC-V instructions

 25

add x3,x4,x0 (in RISC-V) same
f = g 	 	 	 	 (in C)

Computer Science 61C Spring 2019 Weaver

Immediates

• Immediates are used to provide numerical constants
• Constants appear often in code, so there are special instructions

for them:

• Ex: Add Immediate:

	 	 addi x3,x4,-10 	(in RISC-V)

	 	 f = g - 10 	 	 	 (in C)

where RISC-V registers x3,x4 are associated with C variables f, g

• Syntax similar to add instruction, except that last argument is a
number instead of a register

 26

addi x3,x4,0 (in RISC-V) same as
f = g 	 	 	 	 (in C)

Computer Science 61C Spring 2019 Weaver

Immediates & Sign Extension...

• Immediates are necessarily small

• An I-type instruction can only have 12 bits of immediate

• In RISC-V immediates are "sign extended"

• So the upper bits are the same as the largest bit

• So for a 12b immediate...

• Bits 31:12 get the same value as Bit 11

 27

Computer Science 61C Spring 2019 Weaver

Processor

Control

Datapath

Data Transfer: 
Load from and Store to memory

PC

Registers
Arithmetic & Logic Unit

(ALU)

Memory Input

Output

Bytes

Enable?

Read/Write

Address

Write Data =
Store to memory

Read Data =
Load from
memory

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

 28

Much larger place

To hold values, but

slower than registers!

Fast but limited place

To hold values

Computer Science 61C Spring 2019 Weaver

Memory Addresses are in Bytes

• Data typically smaller than 32 bits, but
rarely smaller than 8 bits (e.g., char type)

• So everything is a multiple of 8 bits

• Remember, 8 bit chunk is called a byte 
(1 word = 4 bytes)

• Memory addresses are really 
in bytes, not words

• Word addresses are 4 bytes  
apart

• Word address is same as address of  

rightmost byte – least-significant byte 
(i.e. Little-endian convention)

 29

0
4
8

12

1
5
9

13

2
6

10
14

3
7

11
15

31 24 23 16 15 8 7 0

Least-significant byte in word

Least-significant byte 
gets the smallest address

Computer Science 61C Spring 2019 Weaver

Transfer from Memory to Register

• C code

 int A[100];

g = h + A[3];

• Using Load Word (lw) in RISC-V:

 lw x10,12(x13) # Reg x10 gets A[3]
 add x11,x12,x10 # g = h + A[3]

Assume: 	 x13 – base register (pointer to A[0])

Note:		 12 – offset in bytes

Offset must be a constant known at assembly time

 30

Computer Science 61C Spring 2019 Weaver

Transfer from Register to Memory

• C code

 int A[100];

A[10] = h + A[3];

• Using Store Word (sw) in RISC-V:

 lw x10,12(x13) # Temp reg x10 gets A[3]
 add x10,x12,x10 # Temp reg x10 gets h + A[3]

sw x10,40(x13) # A[10] = h + A[3]

Assume: 		 x13 – base register (pointer)

Note:	 	 12,40 – offsets in bytes

x13+12 and x13+40 must be multiples of 4
 31

Computer Science 61C Spring 2019 Weaver

Loading and Storing Bytes

• In addition to word data transfers  
(lw, sw), RISC-V has byte data transfers:

• load byte: lb
• store byte: sb

• Same format as lw, sw
• E.g., lb x10,3(x11)

• contents of memory location with address = sum of “3” + contents of
register x11 is copied to the low byte position of register x10.

 32

byte 
loaded

 zzz zzzzx

…is copied to “sign-extend”
This bit

xxxx xxxx xxxx xxxx xxxx xxxxx10:

RISC-V also has “unsigned

byte” loads (lbu) which zero

extend to fill register. Why

no unsigned store byte sbu?

Computer Science 61C Spring 2019 Weaver

Your turn - clickers

 33

Answer x12

A 0x5

B 0xf

C 0x3

D 0xffffffff

addi x11,x0,0x3f5
sw x11,0(x5)
lb x12,1(x5)

What’s the value in x12?

Computer Science 61C Spring 2019 Weaver

Your turn - clickers

 34

Answer x12

A 0x5

B 0xf

C 0x3

D 0xffffffff

addi x11,x0,0x3f5
sw x11,0(x5)
lb x12,1(x5)

What’s the value in x12?

Computer Science 61C Spring 2019 Weaver

Your turn - clickers

 35

Answer x12

A 0x8

B 0xf8

C 0x3

D 0xfffffff8

addi x11,x0,0x8f5
sw x11,0(x5)
lb x12,1(x5)

What’s the value in x12?

Computer Science 61C Spring 2019 Weaver

Your turn - clickers

 36

Answer x12

A 0x8

B 0xf8

C 0x3

D 0xfffffff8

addi x11,x0,0x8f5
sw x11,0(x5)
lb x12,1(x5)

What’s the value in x12?

Computer Science 61C Spring 2019 Weaver

Administrivia

• Load Balancing for labs:

• When the new lab starts, all those in the room from the previous lab have to

leave

• Can then come back if there is more space left

• Tutoring (and lots of it!)

• Can sign up for CS 370 tutoring now

• Link on Piazza

• CSM tutoring starts next week

• As soon as you think you are starting to struggle, get help!

 37

Computer Science 61C Spring 2019 Weaver

RISC-V Logical Instructions

Logical operations
C

operators
Java

operators RISC-V instructions
Bit-by-bit AND & & and
Bit-by-bit OR | | or
Bit-by-bit XOR ^ ^ xor
Shift left logical << << sll
Shift right >> >> srl/sra

 Useful to operate on fields of bits within a word

 e.g., characters within a word (8 bits)

 Operations to pack /unpack bits into words

 Called logical operations

 38

Computer Science 61C Spring 2019 Weaver

Logical Shifting

• Shift Left Logical: slli x11,x12,2 # x11 = x12<<2

• Store in x11 the value from x12 shifted 2 bits to the left (they fall

off end), inserting 0’s on right; << in C

Before: 0000 0002hex 
0000 0000 0000 0000 0000 0000 0000 0010two

	 After: 	 0000 0008hex 
	 0000 0000 0000 0000 0000 0000 0000 1000two

What arithmetic effect does shift left have?

• Shift Right Logical: srli is opposite shift; >>

•Zero bits inserted at left of word, right bits shifted off end

 39

Computer Science 61C Spring 2019 Weaver

Arithmetic Shifting

• Shift right arithmetic (srai) moves n bits to the right (insert
high-order sign bit into empty bits)

• For example, if register x10 contained

1111 1111 1111 1111 1111 1111 1110 0111two= -25ten

• If execute sra x10, x10, 4, result is:

	 1111 1111 1111 1111 1111 1111 1111 1110two= -2ten

• Unfortunately, this is NOT same as dividing by 2n

− Fails for odd negative numbers

− C arithmetic semantics is that division should round towards 0

 40

Computer Science 61C Spring 2019 Weaver

Computer Decision Making

• Based on computation, do something different

• Normal operation on CPU is to execute instructions in sequence

• Need special instructions for programming languages: if-statement

• RISC-V: if-statement instruction is

	 	 	 beq register1,register2,L1

	 means: go to instruction labeled L1  

if (value in register1) == (value in register2)

	 ….otherwise, go to next instruction

• beq stands for branch if equal
• Other instruction: bne for branch if not equal

 41

Computer Science 61C Spring 2019 Weaver

Types of Branches

• Branch – change of control flow

• Conditional Branch – change control flow depending on
outcome of comparison
• branch if equal (beq) or branch if not equal (bne)

• Also branch if less than (blt) and branch if greater than or equal (bge)

• Unconditional Branch – always branch
• a RISC-V instruction for this: jump (j)

• We will see later than j doesn't exist (its a "pseudo-instruction")

 42

Computer Science 61C Spring 2019 Weaver

Outline

• Assembly Language

• RISC-V Architecture

• Registers vs. Variables

• RISC-V Instructions

• C-to-RISC-V Patterns

• And in Conclusion …

 43

Computer Science 61C Spring 2019 Weaver

Example if Statement

• Assuming assignments below, compile if block

	 f → x10		 g → x11	 h → x12

	 i → x13 	 j → x14

if (i == j) bne x13,x14,done
 f = g + h; add x10,x11,x12
 done:

 44

Computer Science 61C Spring 2019 Weaver

Example if-else Statement

• Assuming assignments below, compile

	 f → x10	 	 g → x11	 h → x12 i → x13 	 j → x14

if (i == j) bne x13,x14,else
 f = g + h; add x10,x11,x12
else j done
 f = g – h; else: sub x10,x11,x12
 done:

 45

Computer Science 61C Spring 2019 Weaver

Magnitude Compares in RISC-V

• Until now, we’ve only tested equalities (== and != in C);  
General programs need to test < and > as well.

• RISC-V magnitude-compare branches:

	 “Branch on Less Than”

	 Syntax: blt reg1,reg2, label
	 Meaning:	 	 if (reg1 < reg2) // Registers are signed 
	 	 	 	 	 	 	 	 goto label;

• “Branch on Less Than Unsigned”

	 Syntax: bltu reg1,reg2, label
	 Meaning:	 	 if (reg1 < reg2) // treat registers as unsigned integers	 	 	 	 	 	
	 	 goto label;	

 46“Branch on Greater Than or Equal” (and it’s unsigned version) also exists.

Computer Science 61C Spring 2019 Weaver

But RISC philosophy...

• A CISC might also have "branch if greater than"...

• But RISC-V doesn't.

• Instead you can switch the argument

• branch if greater then reg1 reg2...

• branch if less than reg2 reg1

 47

Computer Science 61C Spring 2019 Weaver

C Loop Mapped to RISC-V Assembly
int A[20];
int sum = 0;
for (int i=0; i<20; i++)
 sum += A[i];

Assume x8 holds pointer to A
Assign x10=sum, x11=i
add x10, x0, x0 # sum=0
add x11, x0, x0 # i=0
addi x12,x0,20 # x12=20
Loop:  
bge x11, x12, exit:
sll x13, x11, 2 # i * 4
add x13, x13, x8 # & of A + i
lw x13, 0(x13) # *(A + i)
add x10, x10, x13 # increment sum
addi x11, x11, 1 # i++
j Loop # Iterate
exit:

 48

Computer Science 61C Spring 2019 Weaver

Comments...

• The simple translation is
suboptimal!

• A more efficient way:

• Inner loop is now 4 instructions
rather than 7

• And only 1 branch/jump rather than

two: 
Because first time through is always
true so can move check to the end!

• The compiler will often do this
automatically for optimization

• See that i is only used as an index in a

loop
 49

Assume x8 holds pointer to A
Assign x10=sum
add x10, x0, x0 # sum=0
add x11, x8, x8 # Copy of A
addi x12,x11, 80 # x12=80 + A
Loop:
lw x13, 0(x11)
add x10, x10, x13
addi x11, x11, 4
blt x11, x12, loop:

Computer Science 61C Spring 2019 Weaver

And Premature Optimization...

• In general we want correct translations of C to RISC-V

• It is not necessary to optimize

• Just translate each C statement on its own

• Why?

• Correctness first, performance second

• Getting the wrong answer fast is not what we want from you...

• We're going to need to read your assembly to grade it!

• Multiple ways to optimize, but the straightforward translation is mostly unique-ish.

 50

Computer Science 61C Spring 2019 Weaver

Outline

• Assembly Language

• RISC-V Architecture

• Registers vs. Variables

• RISC-V Instructions

• C-to-RISC-V Patterns

• And in Conclusion …

 51

Computer Science 61C Spring 2019 Weaver

In Conclusion,…

• Instruction set architecture (ISA) specifies the set of
commands (instructions) a computer can execute

• Hardware registers provide a few very fast variables for
instructions to operate on

• RISC-V ISA requires software to break complex operations
into a string of simple instructions, but enables faster, simple
hardware

• Assembly code is human-readable version of computer’s
native machine code, converted to binary by an assembler

 52

