Introduction to Assembly Language and RISC-V Instruction Set Architecture

Outline

Computer Science 61C Spring 2019

- Assembly Language
- RISC-V Architecture
- Registers vs. Variables
- RISC-V Instructions
- C-to-RISC-V Patterns
- And in Conclusion ...

2

Weaver

Outline

- Assembly Language
- RISC-V Architecture
- Registers vs. Variables
- RISC-V Instructions
- C-to-RISC-V Patterns
- And in Conclusion ...

Levels of Representation/Interpretation

Instruction Set Architecture (ISA)

- Job of a CPU (Central Processing Unit, aka Core): execute instructions
- Instructions: CPU's primitives operations
 - Instructions performed one after another in sequence
 - Each instruction does a small amount of work (a tiny part of a larger program).
 - Each instruction has an operation applied to operands,
 - and might be used change the sequence of instruction.
- CPUs belong to "families," each implementing its own set of instructions
- CPU's particular set of instructions implements an Instruction Set Architecture (ISA)
- Examples: ARM, Intel x86, MIPS, RISC-V, IBM/Motorola PowerPC (old Mac), Intel IA64, ... Berkeley EECS

Assembly Language Programming

ARM LDR r0,[p_a] LDR r1,[p_b] ADD r3,r0,r1 STR r3,[p_w] LDR r2,[p_c] ADD r0,r2,r3 STR r0,[p_x] LDR r0,[p_d] ADD r3,r2,r0

STR r3, [p_y]

Computer Science 61C Spring 2019

Berkeley EECS

- Each assembly language is tied to a particular ISA (its just a human readable version of machine language).
- Why program in assembly language versus a high-level language?
 - Back in the day, when ISAs where complex and compilers where immature hand optimized assembly code could beat what the compiler could generate.
- These days ISAs are simple and compilers beat humans
 - Assembly language still used in small parts of the OS kernel to access special hardware resources
- For us ... learn to program in assembly language
 - Best way to understand what compilers do to generate machine code
 - Best way to understand what the CPU hardware does

x86

1
5)

And

Roadmap To Future Classes...

- CS164: Compilers
 - All the processes in going from source code to assembly
- CS162: O/S
 - OS often needs a small amount of assembly for doing things the "high level" language doesn't support
 - Such as accessing special resources
- CS152: Computer Architecture
 - How to build the computer that supports the assembly
- CS161: Security
- Exploit code ("shell code") is often in assembly and exploitation often requires understanding the assembly language of the target.
 Berkeley EECS

RISC-V Green Card

RAF	X		Reference	Data	MNE	MONIC	FAG	-NAI	ME			
THE RASE IN	TE	GER INSTRUCTIONS, in al	DESCRIPTION (in Variloo)	NOTE	mul.m	wiw	R	MUL	tiply (Word)		DESCRIPTION	(in Ver
NONEMONIC I	M	NAME	Rfrdl = Rfrs11 + Rfrs21	NOTE	mulh		R	MUL	tiply upper Half		Rini = (Rini + Ri	2714122
add, addx	R	ADD (word)	R[rd] = R[rs1] + imm	n	malhs		R	MUL	Siply upper Half	Sign/Uns	R[n] = (R[m1] * R]	
addi, addiw	1	AND	R[rd] = R[rs1] & R[rs2]		marne		R	MUL	tiply upper Half		R[nd] = (R[m1] * R[x2D(127
and	K	AND Immediate	R[rd] = R[rs1] & imm		div, c	LIVW	R	DIV	de (Word)		Riefl = (Rie11/Ri-	-
andi	ů.	Add Upper Immediate to PC	R[rd] = PC + {imm, 12'b0}		divu		R	DIVI	de Unsigned		R[rd] = (Rin11/ Rin	
P01bc	SB	Branch EQual	if(R[rs1]==R[rs2] PC=PC+fimm 1503		rem, 1	Nume:	R	REM	lainder (Word)		R[rd] = (R[rs1] % R]	m2])
Dave		a considere or Court	iffPles12=ples2)		remu,	ready	R	REN	lainder Unsignod	(Word)	R[nd] = (R[151] % R	n2])
200	SB	Branch Greater than or Equal	PC=PC+{imm,1b'0}		RV64	F and RV64D Fh	oating	Poin	t Extensions			
	CD	Branch > Unsigned	if(R[rs1]>=R[rs2)	2)			1	Load	(Word)		F[rd] = M[R[rs1]+in	um)
Půsn	30		PC=PC+{imm,1b'0}		fadd.	s, fadd.d	p	ADC	(worz)		M[R]es1]+imm] = F]	nd]
	SB	Branch Less Than	if(R[rs1] <r[rs2) pc="PC+{imm,1b'0}</td"><td></td><td>faub.</td><td>s,fsub.d</td><td>R</td><td>SUB</td><td>tried</td><td></td><td>Fiel = Field = Field</td><td>2)</td></r[rs2)>		faub.	s,fsub.d	R	SUB	tried		Fiel = Field = Field	2)
	SB	Branch Less Than Unsigned	id(R[rs1] <r[rs2) pc="PC+{imm,150}</td"><td>2)</td><td>fmul.</td><td>s,fmul.d</td><td>R</td><td>MU</td><td>tiply</td><td></td><td>F[s4] = F[ss1] * First</td><td>21</td></r[rs2)>	2)	fmul.	s,fmul.d	R	MU	tiply		F[s4] = F[ss1] * First	21
bre	SB	Branch Not Equal	$d(R[rs1]!=R[rs2]) = CSP + {mm, 160}$		fdiv.	s,fdiv.d	R	DIV	de		F[#] = F[m1] / F[oc	1
CSTEC	1	Cont./Stat.RegReactor.rem	$P[rd] = CSR_{*}CSR = CSR_{*}C^{*}R_{*}^{*}ram$		faqrt	.s,fsqrt.d	R	SQu	ire RooT		F[ed] = sqm(F[es1])	
csrrci	1	ConL/Stift.RegReadoccieat	Rhol - context - contex - min		fmade	i.s,fmadd.d	R	Mala	iply-ADD		F[sd] = F[cs1] * F[cs	2] + F[cs.
	1	Cont /Stat RegRead&Set	R[rd] = CSR; CSR = CSR R[rs1]		Emsul	o.s,fmsub.d	R	Melt	iply-SUBtract		F[ed] = F[es1] * F[es	2) - F(m3
Carla	i	Cont/Stat.RegRead&Set	R[rd] = CSR; CSR = CSR imm		fans.	ao.s, fmnsub.d	R	Neg	rive Mahiply-SL	Btract	F[rd] = -(F[rs1] * F[m2]-F[
		Imm			form	star, innad.d	R	Neg	inve Maluply-Al	n)	s[it] = -(F[m]) = F[n2] + F
CSTIN	1	Cont/Stat.RegRead&Write	R[rd] = CSR; CSR = R[rs1]		Esqui	in.a.faqnin d	R	New	tive SiGN server		r(m) = (F(m2)-053)	2[6]
carrwi	1	Cont/Stat.Reg Read&Write	R[rd] = CSR; CSR = imm		- bigti		R		NAME OF A DESCRIPTION O		F[61]-62:0>)	art
		Transmost DPEAK	Transfer control to debugger		fagn;	x.s,fsgnjx.d	R	Xor	SIGN source		F[rd] = (F[rs2]<63>	*F[e1]-9
ebreak	1	Environment CALL	Transfer control to operating system		fmin.	s,fmin.d	R	MIN	inun		F[rd] = (F[ra1] < Fin	20710
ecali feace	1	Synch thread	Synchronizes threads		lugar	a frank d	-	Mar			F[m2]	
fence.i	1	Synch Instr & Data	Synchronizes writes to instruction		angX.	OT ABOATO	R	MAG	main		r(ro) = (r(rot) > F[rot] > F[rot])	a prefe
			stream		fog.	s,feq.d	R	Corr	pare Float EQual		R[nd] = (F[rs1]== F]	02021
jal	UJ	Jump & Link	R[rd] = PC+4; PC = PC + {imm,1b'0}		flt.s	,flt.d	R	Corr	pare Float Less 1	Than	R[rd] = (F[rs1] < F[r	2D?1:
jalr	I	Jump & Link Register	R[rd] = PC+4; PC = R[rs1]+imm	3)	fle.	s,fle.d	R	Corr	pare Float Less t	han or =	R[rd] = (F[rs1] == F	[n2]) 7 1
16	1	Lond Byte	K[td] =	4)	ICIAS	a.s, tclass.d	R	Clas	uny Type		Re[ro] = class(F[rs1]	
		Lond Bute Unsigned	Rfrdl = (56b0 MIRIrs1)+imml(7:0)		Enver. 8	a.fmr.a.k	R	Mos	e from Integer		rite] = K[m1]	
1d	í.	Load Doubleword	Rird] = M[R[rs1]+imm](63:0)				P	Cov	rert from DP to S	2	Findl - single/First	D
lh	i.	Load Halfword	R[rd] =	4)		.d.s	P	Con	vert from SP to D	P	F[rd] = doubletFirs	D .
			{48'bM[](15),M[R[rs1]+imm](15:0)}			s.w,fovt.d.w	R	Cor	vert from 32b Int	eger	F[rd] = flow(R[rs1])	(31.0))
lbs	1	Load Halfword Unsigned	R[rd] = {48*b0,M[R[rs1]+imm](15:0)}		fort	s.l,fcvt.d.l	R	Con	vert from 64b Int	eger	F[rd] = float(R[rs1])	(63:0))
101	U	Load Upper Immediate	R[rd] = {32b'imm<31>, imm, 12'b0}		fevt	s.wu,fovt.d.>	wu R	Cos	vert from 32b Int	Unsigned	iF[ed] = float(R[es1])	(31:0))
14	I	Load Word	R[rd] =	4)		s.lu,fovt.d.l	lu R	Cos	vert from 64b Int	Unsigned	dF[rd] = float(R[rs1]	(63:0))
Iwu		Load Word Hosioned	Rfrdl = 132%0 MiR[rs1]+immi/(31-03)			w.s.fevt.w.d	R	Con	vert to 32b Integr	H	R[rd](31:0) = integr	H[F[61]
	R	OR	Rindl = Rirs11 Rirs21			.1.s,fcvt.1.d	R	Cen	ven to 64b intege	ar	n(rd)(0330) = integ	mrini]
ori I		OR Immediate	R[rd] = R[rs1] imm			Nu.S. COVE. NU.	d R	Con	very to 64b fet 1h	nimed	R(a((6) 0) = integ	
sb	s	Store Byte	M[R[rs1]+imm](7:0) = R[rs2](7:0)		PV4	A Atomic Exton	slon				oderWarra) - and	
sd	S	Store Doubleword	M[R[rs1]+imm](63:0) = R[rs2](63:0)		80006	id.w, amoadd.d	R	AD)		R[n] = M[R[n1]].	
ab	S	Store Halfword	M[R[rs1]+imm](15:0) = R[rs2](15:0)			th branne w br	P	ANI	2		M[8[:s1]] = M[8]: E[rd] = M[8]:s1]]	s1]] + R
sll,sllw	R	Shift Left (Word)	$R[rd] = R[rs1] \le R[rs2]$	1)	019331		R				M[R[es1]] = M[R]e	a1]] & B
sili, siliw	1	Shift Left Immediate (Word)	$R[rd] = R[rs1] \iff imm$	1)	020024	sx.w,amomax.d	R	MA	Xanan		K[rd] = M[R[rs1]], if (R[rs2] > M[R]rs1	D MIRER
510	R	Set Less Than	$R[rd] = (R[rs1] \le R[rs2])?1:0$		anona	in	I R	MA	Ximum Unsigne	ł	R[rd] = M[R[rs1]].	ID MIRA
	1	Set Less Than Immediate	$R[rd] = (R[rs1] \le imm) ? 1 : 0$	~	anon	in.w, amonin.d	R	MD	Simurt		R[n]=M[R[n1]].	Th arthfic
ltn	I	Set < immediate Unsigned	R[rd] = (R[rs1] < imm) 71:0	2)				Ma	Secon Dealers		$if(R]\alpha_2] \le M[R]\alpha_1$ Rfedl = M[R]\alpha_1 Ti	DWIR
TO. STAN	K D	Set Less Than Unsigned	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0	2)	anoni	ing. w, amonahu.c	R	mil			if (R[n2] < M[R[n]	DMR
rai, sraiw	1	Shift Right Arith Imm. (Word)	R[ru] = R[rs1] >> R[rs2]	1.5)	amoor	r.w,amoor.d	R	OR			K[M] = M[R[m1]], M[R[m1]] = M[R]	51]] 8]
irl,srlw	R	Shift Right (Word)	R[rd] = R[rd] > R[rd]	1)	anosa	мар.м, апознар.	d R	SW.	AP		R[rd] = M[R[rs1]]	MIRIO
reli,arliw	I	Shift Right Immediate (Word)	R[rd] = R[rs1] >> imm	D	amox	or.w,amoxor.d	R	xo	R		R[rd] = M[R[rs1]] M[R[rs1]] = M[R]	at II a
rub, subw	R	SUBtract (Word)	R[rd] = R[rs1] - R[rs2]	1)	lr.w.	lr.d	R	Los	d Reserved		R[nJ] = M[R[ns1]]	Inte
W I	S	Store Word	MIR[rs1]+imm](31:0) = R[rs2](31:0)			en d	P	Stee			reservation on M[I if onserved, M[R]r.	1]]=R
	R	XOR	$R[rd] = R[rs1] \wedge R[rs2]$		ec.N		R	Cor	ditional		R[nd] = 0; else R[e	d] = 1
ori	1	XOR Immediate	R[rd] = R[rs1] ^ imm					0.				
over: 1) The We	vrd 1	version only operates on the ri	ghtmost 32 bits of a 64-bit registers		COR	EINSTRUCT	ION F	OR	24 20	19	15 14 12	11
3) The Lea	CWI .	arranes unsigned integers (in.	stead of 2's complement)			31 27	20	2.5	-1 20		funct3	1
4) (signed	Lo	and instructions extend the sion	wess in just is set to 0 + hit of data to fill the fidshit revisiter		R	runct		01	10.0	141	funct3	-
5) Replica	tes .	the sign bit to fill in the leftmo	st bits of the result during right shift		1	in Inc.	-61	~1		rsl	funct3	im
0) Multipl	P WS	th one operand signed and on	e wisigned		S	11 mmi	0.5		152	rsl	functa	imm
bit F re	gre	versson does a single-precisio.	n operation using the rightmost 32 bits	010.04-	SB	imm[12]1	0:01	1.	am[3]:12]	1.01	Tunet	
8) Classify	wy	ites a 10-bit mask to show whi	ch properties are true (c.g., -inf +0.+0	+inf,	U		in	200124	310-111110-1	21		
denorm		1	in proper title and in the (e.g., 10), 10, 10,		w		10	ant 2	and and and and	~]		-
9) Atomic	anes.	nory operation; nothing else c	an interpose itself between the read and	i the								
The immedia	the	memory location										
		and a sign-entended in RISC-	r									

0

http://inst.eecs.berkeley.edu/~cs61c/resources/RISCV_Green_Sheet.pdf

Weaver

Inspired by the IBM 360 "Green Card"

Computer Science 61C Spring 2019

MACHINE INSTRUCTIONS

A-181 A.34 Add Actes 1.04 Auto

AN ANE AND Bear (Bear Bear Bear Bear Brar Bran

Divi Edit Edit East End End End Erm Halt 1 mas 1mag Los Low Low Low Low Low Low Low

Los Los Movies M

CMI I

BARE .	BACKING.	0008	MAT.	OPERANDS
field -	AR	1.4	100	R1,R2
Scl .		SA	RK.	R1,D2(X2,82)
Decimal Sc.dt	AF	P.A.	56	D10L1.818,D20L2.838
mattword (c)	A15	44	N.K.	H1,020(2,82)
Logical las	AL. 11	10.		HILH2
Logical tax	200	14		81.87
3.643	N	54	R.R.	81.02(82.82)
2 640	NO.	54	51	D10813.12
) fail	NC	04	55	D10L.810.D2(82)
ch and Link.	BALR	05	100	81,82
ch and Link	BAL	45	ROK.	R1,02(X2,83)
sch and Store fell	BASR	00	RR	R1,R2
ich and Store fail	BAS	40	PCK .	H1,D20(2,83)
ch on Condition	BCR.	47	22	MIL DOUGH BOD
which can Convert	BCTR	05		81.82
wh on Court	BCT	40	RX	R1.02(X2.83)
oth on Index High	BICH	86	RS	R1.R3.02(82)
ch on Index Low or Equal	BXLE	87	PUS .	R1_R3_021835
gare (c)	CR	19	RR	R1,R2
ware but	C	59	FOX.	H1,D2(X2,805
giare Decimal Ic.,#1	0	19	- 50	D91L1,810,D20L2,829
gare Halfword Iss	CO. P	100	1.4	H1,02042,823
many Longical for	GLA	- 10		B1 D2(X2 87)
man Lopical Iri	CLC	DA	100	D101 810 D20820
mare Logical (c)	CLI	95	100	D10811.12
ert to Binary	CVB	45	FOX.	H1.02(K2,82)
vert to Decimal	CVD	46	FOX.	R1,D2(K2,871
Prose (p)		83	52	
(her	Des	10	808	R1,R2
de .	D	50	RX	R1,02(K2,83)
de Decenarist	UP-	10	- 22	DISCUSSION DISCUSSION
south Street, South	Erner	DE		PARTY BAS FYRANTS
union COR dol	XB	17		81.82
valve OR Ict	x	57	RX.	R1.D2(X2.82)
usive Off (c)	203	.97	52	D11810.12
usi e OR (c)	XC.	07	55	D10L,819,D20820
who -	EX	- 44	RX	R1,D2082,823
N/O Nc.all	HIO	96	54	D110810
t Ch Macher	IC	43		H11,D2(0(2,02)
a per rada was rada	100			H1,H2
			20	P1 02/V2 821
Address	LA	41	HX I	R1.02(X2.82)
and Test Ici	LTR	12		81,82
Complement (z)	LCR	13	10.01	R1,R2
Halfwoord	1.04	48	IRX.	R1,02082,821
1 Multiple	LM	.98	RS	R1,R3,D2(82)
Multiple Control (a.p.)	LMC		RS	R11,R3,D21821
I Negative (c)	LIVE	11		R1,R2
Postine Sci	LPTR			PURIS
Fland Address in a pi	LRA	-	in a	#1.020X7.#21
	MPVY	82	- 14	010810.02
	MVC	02	55	011L.811.02(82)
• Numerics	MVN	Dt	55	D111,811,021829
with Offset	MVO	F1	55	D10,1,811,020,2,821
e Zones	MVZ	DIS	55	D111,811,024809
ioly .	MOR	10	nn	81,82
	100	SC	RX.	H1,001(82,82)
forthe blindformer (d)	Arres	PC AC	505	011111011001129.001
and realitioned	OR	14	D.D.	#1.82
ich.	0	141	R.Y.	#1 DOINT #21
14.0	01	100	-04	COLUMN 1 17

Outline

- Assembly Language
- RISC-V Architecture
- Registers vs. Variables
- RISC-V Instructions
- C-to-RISC-V Patterns
- And in Conclusion ...

What is RISC-V?

Computer Science 61C Spring 2019

Berkeley EECS

- Fifth generation of RISC design from UC Berkeley
- A high-quality, license-free, royalty-free RISC ISA specification
 - Implementors do not pay any royalties
 - But see Amdahl's Law:

A decent 180 MHz 32b ARM chip costs \$6 in quantity A Raspberry Pi (with a 1.2 GHz, quad core ARM and everything else) is \$35: Licensing cost for the ISA can be in the noise

- Experiencing rapid uptake in both industry and academia
- Supported by growing shared software ecosystem
- Appropriate for all levels of computing system, from micro-controllers to supercomputers
 - 32-bit, 64-bit, and 128-bit variants
 - (we're using 32-bit in class, textbook uses 64-bit)
- Standard maintained by non-profit RISC-V Foundation

Foundation Members (60+)

Outline

- Assembly Language
- RISC-V Architecture
- Registers vs. Variables
- RISC-V Instructions
- C-to-RISC-V Patterns
- And in Conclusion ...

Assembly Variables: Registers

- Unlike HLL like C or Java, assembly does not have variables as you know and love them
 - More primitive, instead what simple CPU hardware can directly support
- Assembly language operands are objects called registers
 - Limited number of special places to hold values, built directly into the hardware
 - Arithmetic operations can only be performed on these in a RISC!
 - Only memory actions are loads & stores
 - CISC can also perform operations on things *pointed to* by registerst
- Benefit:
 - Since registers are directly in hardware, they are very fast to access

Registers live inside the Processor

Speed of Registers vs. Memory

Computer Science 61C Spring 2019

Given that

- Registers: 32 words (128 Bytes)
- Memory (DRAM): Billions of bytes (2 GB to 8 GB on laptop)
- and physics dictates...
 - Smaller is faster
- How much faster are registers than DRAM??
- About 100-500 times faster!
 - in terms of *latency* of one access

Weave

Number of RISC-V Registers

- Drawback: Registers are in hardware. To keep them really fast, their number is limited:
 - Solution: RISC-V code must be carefully written to use registers efficiently
- 32 registers in RISC-V, referred to by number x0 x31
 - Registers are also given symbolic names, described later
 - Why 32? Smaller is faster, but too small is bad.
 - Plus need to be able to specify 3 registers in operations...
 - Each RISC-V register is 32 bits wide (RV32 variant of RISC-V ISA)
 - Groups of 32 bits called a word in RISC-V ISA
 - P&H CoD textbook uses the 64-bit variant RV64 (explain differences later)
- x0 is special, always holds value zero
- So really only 31 registers able to hold variable values Berkeley EECS

C, Java Variables vs. Registers

Computer Science 61C Spring 2019

• In C (and most HLLs):

- Variables declared and given a type
 - Example: int fahr, celsius; char a, b, c, d, e;
- Each variable can ONLY represent a value of the type it was declared (e.g., cannot mix and match int and char variables)
 - If types are not declared, the object carries around the type with it. EG in python:
 a = "fubar" # now a is a string
 a = 121 # now a is an integer
- In Assembly Language:
 - Registers have *no type*;
- Operation determines how register contents are interpreted Berkeley EECS

RISC-V Memory Alignment...

Computer Science 61C Spring 2019

- RISC-V does not *require* that integers be word aligned...
 - But it is very *very bad* if you don't make sure they are...
- Consequences of unaligned integers
 - Slowdown: The processor is allowed to be a lot slower when it happens
 - In fact, a RISC-V processor may natively only support aligned accesses, and do unaligned-access in *software*!

An unaligned load could take *hundreds of times longer*!

 Lack of *atomicity*: The whole thing doesn't happen at once... can introduce lots of very subtle bugs

RISC-V Instructions

Computer Science 61C Spring 2019

Instructions are fixed, 32b long

- Must be word aligned, or half-word aligned if the 16b optional (C) instruction set is also enabled
- Only a few formats (we'll go into detail later)...

20

Outline

- Assembly Language
- RISC-V Architecture
- Registers vs. Variables
- RISC-V Instructions
- C-to-RISC-V Patterns
- And in Conclusion ...

RISC-V Instruction Assembly Syntax

Instructions have an opcode and operands

E.g., add x1, x2, x3
$$\#$$
 x1 = x2 + x3

Destination register
Operation code (opcode)

E.g., add x1, x2, x3 $\#$ x1 = x2 + x3
 $\#$ is assembly comment syntax
Second operand register
First operand register

Addition and Subtraction of Integers

Computer Science 61C Spring 2019

Berkeley EECS

- Addition in Assembly
 - Example: add x1,x2,x3 (in RISC-V)
 - Equivalent to: $\mathbf{a} = \mathbf{b} + \mathbf{c}$ (in C)

where C variables \Leftrightarrow RISC-V registers are:

$$a \Leftrightarrow x1, b \Leftrightarrow x2, c \Leftrightarrow x3$$

- Subtraction in Assembly
 - Example: **sub x3, x4, x5** (in RISC-V)
 - Equivalent to: **d** = **e f** (in C) where C variables ⇔ RISC-V registers are:

 $d \Leftrightarrow x3, e \Leftrightarrow x4, f \Leftrightarrow x5$

Weave

No-Op

Computer Science 61C Spring 2019

- A No-op is an instruction that does nothing...
 - Why?

You may need to replace code later: No-ops can fill space, align data, and perform other options

- By convention RISC-V has a specific no-op instruction...
 - add x0 x0 x0
- Why?
 - Writes to x0 are always ignored...
 RISC-V uses that a lot as we will see in the jump-and-link operations
 - Making a "standard" no-op improves the disassembler and can potentially improve the processor
- Special case the particular conventional no-op. Berkeley EECS

Addition and Subtraction of Integers Example 1

Computer Science 61C Spring 2019

• How to do the following C statement?

a = b + c + d - e;

- Break into multiple instructions
 add x1, x2, x3 # temp = b + c
 add x1, x1, x4 # temp = temp + d
 sub x1, x1, x5 # a = temp e
- A single line of C may turn into several RISC-V instructions

add
$$x3, x4, x0$$
 (in RISC-V) same
 $f = g$ (in C)

Weaver

Immediates

Computer Science 61C Spring 2019

Berkeley EE

- Immediates are used to provide numerical constants
- Constants appear often in code, so there are special instructions for them:
- Ex: Add Immediate:

addi x3,x4,-10 (in RISC-V)

f = g - 10 (in C)

where RISC-V registers x3 , x4 $\,$ are associated with C variables f, g

• Syntax similar to add instruction, except that last argument is a number instead of a register

addi
$$x3, x4, 0$$
 (in RISC-V) same as
 $f = g$ (in C)

Immediates & Sign Extension...

- Immediates are necessarily small
 - An I-type instruction can only have 12 bits of immediate
- In RISC-V immediates are "sign extended"
 - So the upper bits are the same as the largest bit
- So for a 12b immediate...
 - Bits 31:12 get the same value as Bit 11

Data Transfer: Load from and Store to memory

Memory Addresses are in Bytes

Computer Science 61C Spring 2019

- Data typically smaller than 32 bits, but rarely smaller than 8 bits (e.g., char type)
 - So everything is a multiple of 8 bits
- Remember, 8 bit chunk is called a byte (1 word = 4 bytes)
- Memory addresses are really in *bytes*, not words
- Word addresses are 4 bytes apart
 - Word address is same as address of rightmost byte – least-significant byte (i.e. Little-endian convention)

Least-significant byte gets the smallest address

Transfer from Memory to Register

Assume: x13 – base register (pointer to A[0]) Note: 12 – offset in <u>bytes</u> Offset must be a constant known at assembly time

Transfer from Register to Memory

```
Computer Science 61C Spring 2019
                                                                                       Weaver
    C code
    int A[100];
       A[10] = h + A[3];
    Using Store Word (sw) in RISC-V:
 •
         x10, 12(x13) # Temp reg x10 gets A[3]
     lw
     add x10, x12, x10 # Temp reg x10 gets h + A[3]
     sw x10, 40(x13) \# A[10] = h + A[3]
 Assume: x13 – base register (pointer)
 Note: 12, 40 – offsets in bytes
```

x13+12 and x13+40 must be multiples of 4 Berkeley EECS

Loading and Storing Bytes

- In addition to word data transfers (lw, sw), RISC-V has byte data transfers;
 - load byte: lb
 - store byte: sb
- Same format as lw, sw
- E.g., lb x10,3(x11)

 contents of memory location with address = sum of "3" + contents of register x11 is copied to the low byte position of register x10.

Computer Science 61C Spring 2019

ado	li	x11,x0,0x	3f5
SW	x1	L1,0(x5)	
lb	\mathbf{x}	L2,1(x5)	

Answer	x12
А	0x5
В	Oxf
С	0x3
D	Oxffffffff

Computer Science 61C Spring 2019

ado	li	x1	1,	x 0	,0x3f5
SW	x 1	L1,() (x 5))
lb	\mathbf{x}	L2,:	1 (x 5))

Answer	x12
А	0x5
В	Oxf
С	0x3
D	Oxffffffff

Computer Science	61C Spring 2	019
------------------	--------------	-----

ado	di x11,x0,0x8f5
SW	x11,0(x5)
lb	x12,1(x5)

Answer	x12
А	0x8
В	0xf8
С	0x3
D	0xfffffff8

Computer Science 61C Spring 2019

ado	li	x 11	, x 0,	0x8f5
SW	x 1	L1,0	(x5)	
lb	\mathbf{x}	L2,1	(x5)	

Answer	x12
А	0x8
В	0xf8
С	0x3
D	0xfffffff8

Administrivia

Computer Science 61C Spring 2019

• Load Balancing for labs:

- When the new lab starts, all those in the room from the previous lab have to leave
- Can then come back if there is more space left
- Tutoring (and lots of it!)
 - Can sign up for CS 370 tutoring now
 - Link on Piazza
 - CSM tutoring starts next week
 - As soon as you think you are starting to struggle, get help!

RISC-V Logical Instructions

Computer Science 61C Spring 2019

Useful to operate on fields of bits within a word e.g., characters within a word (8 bits) Operations to pack /unpack bits into words Called logical operations

		С	Java	
	Logical operations	operators	operators	RISC-V instructions
	Bit-by-bit AND	&	&	and
	Bit-by-bit OR			or
	Bit-by-bit XOR	^	Λ	xor
	Shift left logical	<<	<<	sll
	Shift right	>>	>>	srl/sra
Berkeley	EECS			

Logical Shifting

Computer Science 61C Spring 2019

- Shift Left Logical: slli x11, x12, 2 # x11 = x12<<2
 - Store in x11 the value from x12 shifted 2 bits to the left (they fall off end), inserting 0's on right; << in C
 - Before: 0000 0002_{hex} 0000 0000 0000 0000 0000 0000 0010_{two}
 - After: 0000 0008_{hex} 0000 0000 0000 0000 0000 0000 10<u>00_{two}</u>
- What arithmetic effect does shift left have?
- Shift Right Logical: srli is opposite shift; >>

•Zero bits inserted at left of word, right bits shifted off end Berkeley EECS

Arithmetic Shifting

Computer Science 61C Spring 2019

- Shift right arithmetic (srai) moves n bits to the right (insert high-order sign bit into empty bits)
- For example, if register x10 contained
 1111 1111 1111 1111 1111 1111 1110 0111_{two}= -25_{ten}
- If execute sra x10, x10, 4, result is:

- Unfortunately, this is NOT same as dividing by 2ⁿ
 - Fails for odd negative numbers
 - C arithmetic semantics is that division should round towards 0

Computer Decision Making

Computer Science 61C Spring 2019

Berkeley EEC

- Based on computation, do something different
- Normal operation on CPU is to execute instructions in sequence
- Need special instructions for programming languages: *if*-statement
- RISC-V: *if*-statement instruction is beq register1, register2, L1

means: go to instruction labeled L1 if (value in register1) == (value in register2)otherwise, go to next instruction

- **beq** stands for *branch if equal*
- Other instruction: **bne** for *branch if not equal*

Types of Branches

- **Branch** change of control flow
- Conditional Branch change control flow depending on outcome of comparison
 - branch if equal (beq) or branch if not equal (bne)
 - Also branch if less than (blt) and branch if greater than or equal (bge)
- Unconditional Branch always branch
 - a RISC-V instruction for this: jump (j)
 - We will see later than j doesn't exist (its a "pseudo-instruction")

Outline

- Assembly Language
- RISC-V Architecture
- Registers vs. Variables
- RISC-V Instructions
- C-to-RISC-V Patterns
- And in Conclusion ...

Example *if* Statement

Computer Science 61C Spring 2019

• Assuming assignments below, compile *if* block

$$f \rightarrow x10 \quad g \rightarrow x11 \quad h \rightarrow x12$$

$$i \rightarrow x13 \quad j \rightarrow x14$$

if (i == j) bne x13,x14,done
f = g + h; add x10,x11,x12
done:

Example *if-else* Statement

- Assuming assignments below, compile
 - $f \rightarrow x10$ $g \rightarrow x11$ $h \rightarrow x12$ $i \rightarrow x13$ $j \rightarrow x14$

if (i == j) bne x13,x14,else
 f = g + h; add x10,x11,x12
else j done
 f = g - h; else: sub x10,x11,x12
 done:

Magnitude Compares in RISC-V

Computer Science 61C Spring 2019

- Until now, we've only tested equalities (== and != in C);
 General programs need to test < and > as well.
- RISC-V magnitude-compare branches:

"Branch on Less Than"

Syntax: blt reg1, reg2, label

Meaning: if (reg1 < reg2) // Registers are signed goto label;

"Branch on Less Than Unsigned"

Syntax: bltu reg1, reg2, label

Meaning: if (reg1 < reg2) // treat registers as unsigned integers goto label; Berkeley EECS "Branch on Greater Than or Equal" (and it's unsigned version) also exists.

But RISC philosophy...

- A CISC might also have "branch if greater than"...
 - But RISC-V doesn't.
- Instead you can switch the argument
 - branch if greater then reg1 reg2...
 - branch if less than reg2 reg1

C Loop Mapped to RISC-V Assembly

Computer Science 61C Spring 2019

```
int A[20];
int sum = 0;
for (int i=0; i<20; i++)
   sum += A[i];
```

```
# Assume x8 holds pointer to A
# Assign x10=sum, x11=i
add x10, x0, x0 # sum=0
add x11, x0, x0 \# i=0
addi x12,x0,20 # x12=20
Loop:
bge x11, x12, exit:
sll x13, x11, 2 # i * 4
add x13, x13, x8 # & of A + i
lw x13, 0(x13) # *(A + i)
add x10, x10, x13 # increment sum
addi x11, x11, 1 # i++
j Loop
              # Iterate
exit:
```


Weaver

Comments...

Berkeley EEC

- The simple translation is suboptimal!
 - A more efficient way:
- Inner loop is now 4 instructions rather than 7
 - And only 1 branch/jump rather than two:

Because first time through is always true so can move check to the end!

- The compiler will often do this automatically for optimization
 - See that i is only used as an index in a loop

Assume x8 holds pointer to A # Assign x10=sum add x10, x0, x0# sum=0 add x11, x8, x8 # Copy of A addi x12,x11, 80 # x12=80 + A Loop: lw x13, 0(x11)add x10, x10, x13 addi x11, x11, 4 x11, x12, loop: blt

And Premature Optimization...

- In general we want correct translations of C to RISC-V
- It is *not* necessary to optimize
 - Just translate each C statement on its own
- Why?
 - Correctness first, performance second
 - Getting the wrong answer fast is not what we want from you...
 - We're going to need to read your assembly to grade it!
 - Multiple ways to optimize, but the straightforward translation is mostly unique-ish.

Outline

- Assembly Language
- RISC-V Architecture
- Registers vs. Variables
- RISC-V Instructions
- C-to-RISC-V Patterns
- And in Conclusion ...

In Conclusion,...

- Instruction set architecture (ISA) specifies the set of commands (instructions) a computer can execute
- Hardware registers provide a few very fast variables for instructions to operate on
- RISC-V ISA requires software to break complex operations into a string of simple instructions, but enables faster, simple hardware
- Assembly code is human-readable version of computer's native machine code, converted to binary by an assembler

