Lecture at Voronezh State Univ.

Introduction to Automotive Embedded Systems

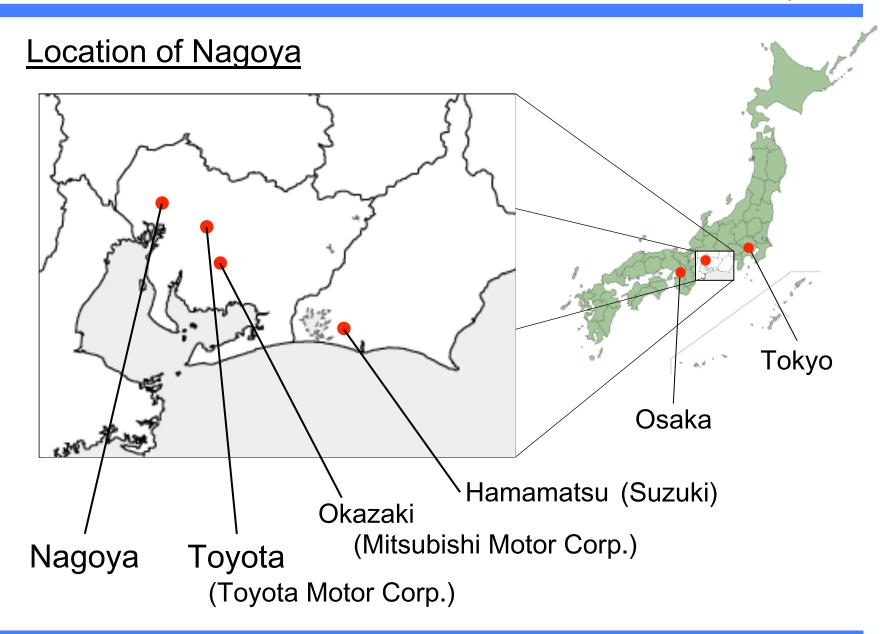
8-June-2012

Hiroaki TAKADA

Executive Director and Professor Center for Embedded Computing Systems, Nagoya Univ. Chairman, TOPPERS Project Email: hiro@ertl.jp URL: http://www.ertl.jp/~hiro/

Hiroaki Takada

Introduction of Nagoya and Nagoya Univ.


Nagoya

- Center city of third largest metropolitan area in Japan
 - Tokyo (incl. Yokohama), Osaka, Nagoya, …
- Located around the center of Japanese Main Island (between Tokyo and Osaka)
- Manufacturing industry center of Japan
- Automotive industries are concentrated, especially
 - The headquarters of Toyota Motor Corp. (located in Toyota City) is near to Nagoya.

Nagoya University

- National University located in Nagoya City
- Within top 10 (I hope top 5!) universities of Japan
- 4 Nobel Prize Winners

Automotive Embedded Systems

Hiroaki Takada

Self Introduction – Hiroaki Takada

Current Positions

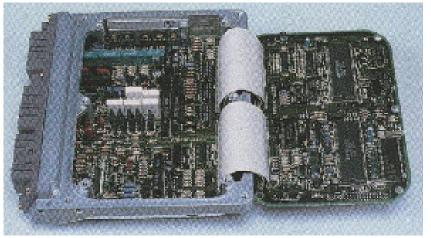
- Professor, Nagoya University
- Executive Director, Center for Embedded Computing Systems (NCES), Nagoya University
- Chairman, TOPPERS Project and several others
- Major Research Topics
 - Real-time operating systems for embedded systems
 - Real-time scheduling and analysis
 - Electronic system-level design
 - Automotive embedded systems
 - *! several joint projects with Toyota Motor Corp. and other Japanese automotive industries*

Table of Contents

Introduction to Automotive Embedded Systems

- Automotive Embedded Systems and their Features
- Classification of Automotive Embedded Systems
- Example Systems Engine Management, ...
- Evolution Steps of Automotive Control Systems
- Current Problems of Automotive Embedded Systems
- Platform-base Development, AUTOSAR, JASPAR
- ISO 26262 Functional Safety Standard
- Brief Introduction to Our Activities NCES and TOPPERS
 - Introduction to NCES
 - Introduction to TOPPERS Project

INTRODUCTION TO AUTOMOTIVE EMBEDDED SYSTEMS


Automotive Embedded (Computing) Systems

Embedded (Computing) Systems

- A computer system that is embedded into an piece of equipment or a machine to control it.
- Embedded systems are applied to most electric/ electronic equipment, recently.

Automotive Embedded (Computing) System

- A computer system that is embedded into a car to control it.
- An embedded computer unit is called an ECU (Electronic Control Unit).

Engine Management ECU

Example: LEXUS LS-460

- ▶ released in Sep., 2006.
- more than 100 ECUs embedded when all optional equipments are installed.
- about 7,000,000 lines of software embedded.

(from different news media)

http://www.lexus.jp/

Automotive Embedded Systems and Networks

Hiroaki Takada

General Features of Automotive Embedded Systems

- Many (as many as 100) ECUs are used for the following purposes:
 - energy saving & low emission
 - safety (active & passive)
 - comfortableness, convenience, entertainment
 - cost & weight reduction
- ECUs are connected with several in-vehicle networks.
- High reliability and safety requirements
- Strict real-time property required
- Severe environmental conditions (temperature, EMC)
- Severe production cost restriction
- ! ECUs for different systems/services have different requirements and require different technologies.

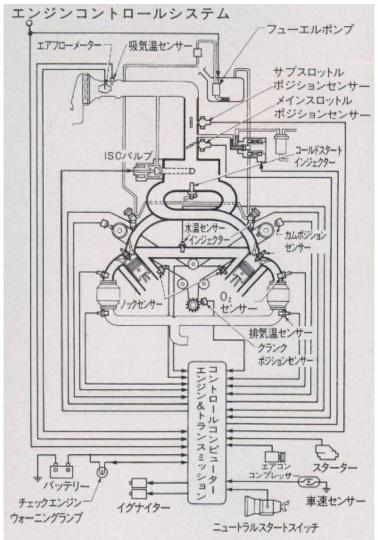
Classification of Automotive Embedded Systems

Powertrain and Chassis Control

- engine, automatic transmission, hybrid control, ...
- steering, brake, suspension, ...
- **Body Electronics**
 - instrument panel, key, door, window, lighting, ...
 - ▶ air bag, seat belt, ...
- Multimedia (Infortainment) Applications
 - car audio, car navigation, traffic information, ...
 - electronic toll collection (ETC), backguide monitor, ...

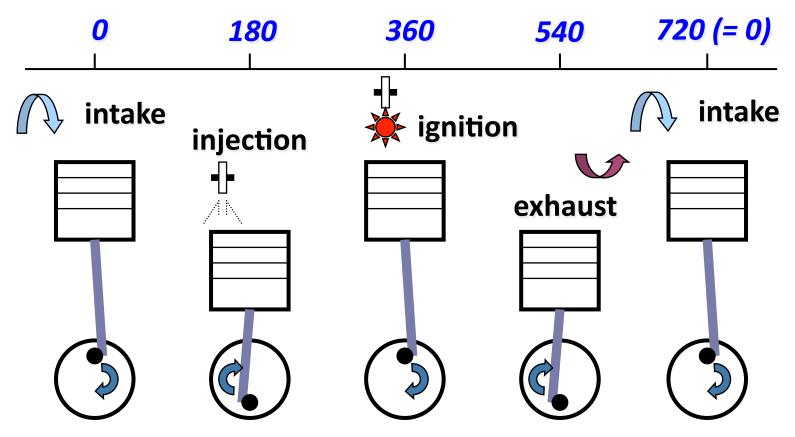
Integrated Systems/Services

- electronic stability control, pre-crash safety, …
- ► parking assistance, lane keeping assistance, ...


Example (1) – Engine Management System

System Components

- control computer (ECU)
- many sensors
 - crank position sensor
 - air flow meter
 - intake temperature sensor
 - throttle sensor
- some actuators


Basic Functions of the Control System

 to calculate fuel injection volume and ignition timing, and to control the actuators in every rotation cycle

Timing Behavior of Engine Management System

- When rotation speed is 6000*rpm*, one cycle is 20*msec.*
- Timing precision of the ignition is $10\mu sec.$ order.

Hiroaki Takada

Required Real-Time Property (Example)

- The calculation of the fuel injection volume *must be finished* before the injection timing.
- The calculation of the ignition timing *must be finished* before the ignition timing.
- Calculating too early has no additional value.

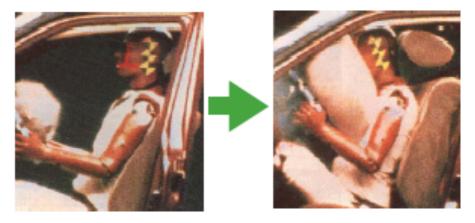
Safety Requirement (Example)

- Missing an ignition *must not happen*, because inflammable gas is emitted outside of the engine and can lead to a fire (because catalyst burns).
- If the ignition plug of a cylinder is broken, fuel *must not be injected* to the cylinder.
- The engine management system monitors the ignition plug and stops the injection if the plug is broken.

Example (2) – ABS

<u>Function of ABS</u> ABS = Anti-lock Breaking System

- The speed of the car and the rotational speed of the wheel are monitored, and a skid is detected.
- When a skid is detected, hydraulic pressure to the brake is reduced to stop the skid.
- The system is relatively simple, but is becoming more complex, recently.


Safety Requirement (Example) and Fail-Safe Design

- Continuous reduction of hydraulic pressure causes non-braking.
- If some fault is detected, ABS stops functioning. Then, the brake works though a skid cannot be avoided.
 - ➔ fail-safe design

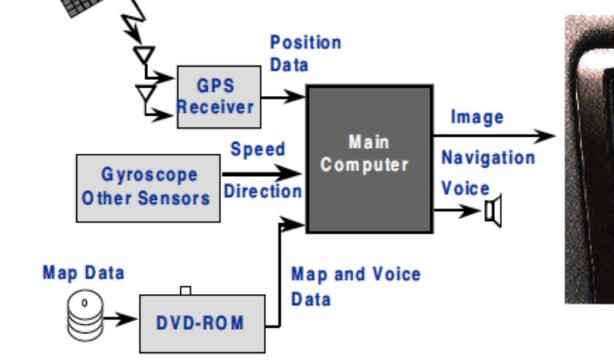
Example (3) – Airbag Control

Function of Airbag Control

 Airbag control system monitors various sensors including accelerometers and detects a collision.

If a collision is detected, the ignition of a gas generator propellant is triggered to inflate a bag.

Real-Time Constraint


The trigger must be within 10-20*msec*. after the collision.

Safety Requirements

- Fail-safe design cannot be applied.
- ! even harder than ABS

Example (4) – Car Navigation System

- The current position of the car obtained from GPS, gyroscope, and others is displayed with the map.
 - Route navigation service
 - Traffic information is also displayed.

Sattelite

Specific Requirements on Example Systems

Engine Management

- ► very short response time (10 or 100µsec. order)
- Iarge software and high computing power required
- high reliability

<u>Air Bag</u>

- a kind of signal processing application
- short response time (10*msec*. order)
- very high reliability
- Car Navigation System
 - Iargest and most complicated software in a car
 - Iarge computing power required
 - moderate reliability, real-time property still required

Requirements on In-Vehicle Networks

- **Chassis Network**
 - short and guaranteed response time
 - small data size
 - high reliability
- Body Electronics Network
 - a large number of network nodes and data
 - moderate reliability, low power consumption

Multimedia Network

- high bandwidth for multimedia data
- moderate reliability

(True) By-Wire Network ... in future

very high reliability

→ low-speed CAN, LIN

→ high-speed CAN, FlexRay

Evolution Steps of Automotive Control Systems

I Evolution of automotive control systems and networks is well understood with the following 4 stages.

Stage 1

- Computer control (ECU) is applied to various component (engine, brake, steering, and so on), independently.
- In-vehicle network is not used.

<u>Stage 2</u>

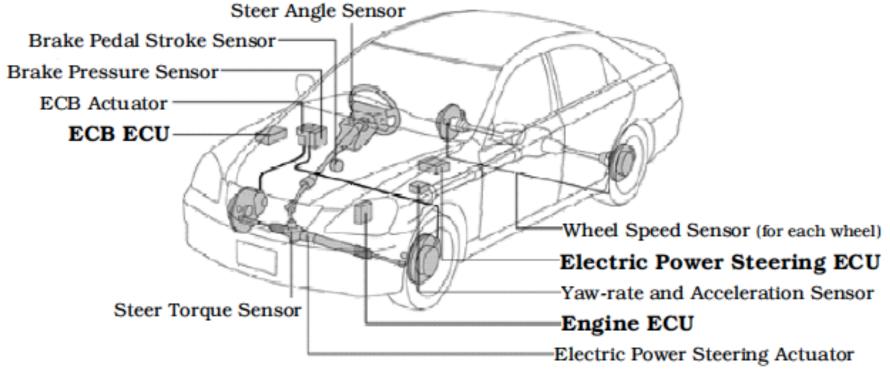
- Each control system (ECU) exchanges useful data for improving the quality of the control system.
- Each system operates almost independently, and timing constraints on networks are loose.

Stage 3 (Current) *integrated systems/services*

- Each system still operates autonomously, and some services are provided with multiple ECUs connected with in-vehicle networks.
- Mechanical backup system still exists, thus the basic functions of a car are preserved even if an electronic system fails.

Stage 4.A (Future)

Networks with outside of the car (communication with another car and the road) are intensively used.

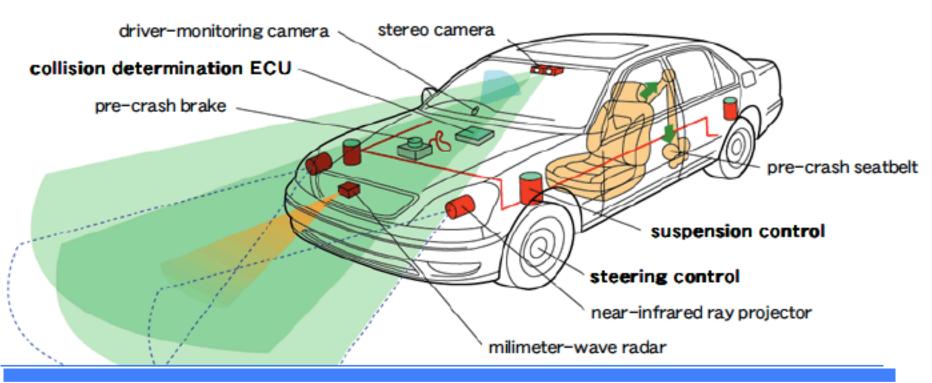

Stage 4.B (Future) *(true) by-wire systems*

- Mechanical systems (incl. backups) are replaced with ECUs and networks.
- A failure of electronic systems is life-critical.

Integrated System/Service Examples

Vehicle Dynamics Integrated Management (VDIM)

 Control brake, steering, and engine for avoiding slip and spin.



*ECB= Electronically Controlled Brake system

Hiroaki Takada

Pre-crash Safety System (PCS)

- When an obstacle is detected with stereo camera and milimeter-wave radar, the system retracts the seatbelts, warns the driver, and applies the brake.
- Driver's condition (eg. face direction) is monitored.

Hiroaki Takada

Current Problems of Automotive Embedded Systems

Complicated system design

- Increasing development cost and time
- How to achieve high reliability and safety?

Large-scale and complicated software

- How to achieve high reliability and safety?
- How to effectively reuse existing software?

Too large number of ECUs

- Increasing cost
- Insufficient space (in a car) for ECUs

Complicated network architecture

Increasing design complexity

Platform-base Development

Conventional Component-base Development

- Each ECU (component) is developed (usually independently) at first.
 - An automotive component supplier develops both of the hardware and software of ECU.
- Car (system) is designed by integrating the ECUs developed by different suppliers.

Platform-base Development

- Platform (PF) should be developed at first.
 - PF = Hardware PF + Software PF + Network
 - Software PF = OS + middleware
- Application software should be developed on the PF.

<u>AUTOSAR</u> (Automotive Open System Architecture)

- A global partnership of carmakers, car component, electronics, semiconductor, and software industries founded in 2003.
 - defines a methodology that supports a distributed, function-driven development process.
 - standardizes the software-architecture for ECU.

Core partners:

► BMW

Bosch

- Daimler
- Ford
- Continental
 GM

- PSA Peugeot Citroen
 - Toyota Motor
 - Volkswagen

Results and Current Status

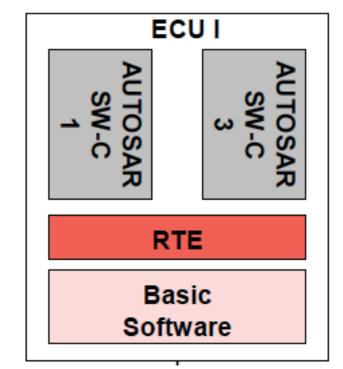
- Recent version (Release 4.0-REV 3) consists of about 100 specifications and 80 related documents.
- Phase III activity was started in 2010.

Overview of AUTOSAR Framework

AUTOSAR Approach

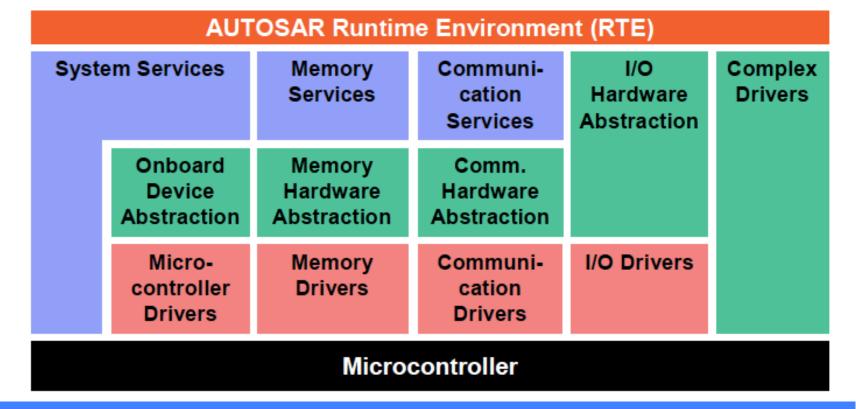
- Describe a system as a set of software components (SW-C) connected with virtual function bus, logically.
- Map the system to ECUs connected with in-vehicle network by a tool.
- ECU and system constraint descriptions are inputs to the tool.
- The software platform consists of RTE and BSW.

Structure of AUTOSAR Software Platform


Run-Time Environment (RTE)

- Provides interfaces between SW-Cs and between SW-C and BSW.
- Provides the BSW services to SW-C (API abstraction)
- Source code of RTE is generated by a tool from the description of communication interfaces

! the most distinctive feature of AUTOSAR platform


Basic Software (BSW)

- operating system (OS)
- device drivers
- middleware

Structure of Basic Software (BSW)

- 4 function groups (system, memory, communication, I/ O) are organized in 3 layers (service, ECU abstraction, microcontroller abstraction)
- complex drivers (to shortcut the layers)

JasPar (Japan Automotive Software Platform Architecture)

Car makers and other companies jointly develop network technology, middleware, software platform for automotive control systems (founded in 2004).

Board Members

- Toyota MotorHondaDENSO
- Nissan

Toyota Tsusho Electronics

<u>Members</u>

 about 100 carmakers, car component suppliers, semiconductor companies, and software companies

Major Activities and Results

- Standardization related to FlexRay (wiring rule, ...)
- Development of software platform based on AUTOSAR Standard.
- Development of design guidelines for ISO 26262.

ISO 26262 – Functional Safety Standard

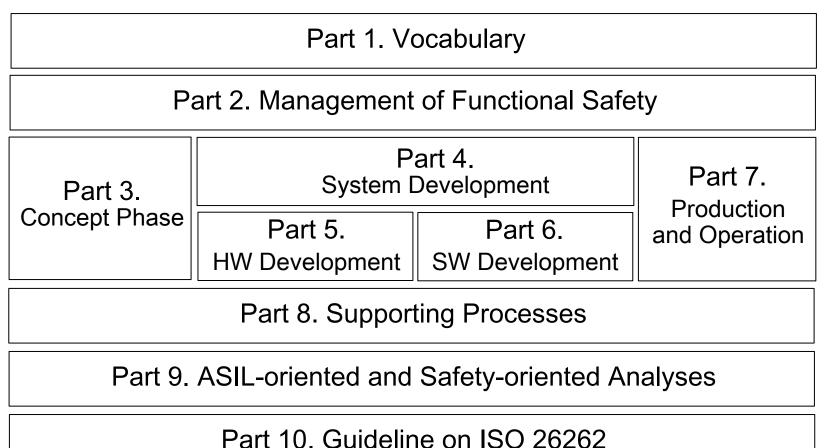
What is Safety?

- Safety : "freedom from those conditions that can cause death, injury, occupational illness, or damage to or loss of equipment or property, or damage to the environment"
- Reliability : "the ability of a system or component to per- form its required functions under stated conditions for a specified period of time"
- A safe system is not necessarily reliable and vice versa.

What is Functional Safety?

- Original meaning: safety achieved by functions
- "absence of unreasonable risk due to hazards caused by malfunctioning behavior of E/E systems" (ISO 26262-1)

What is ISO 26262?


- "Road vehicles Functional safety –"
- published in Nov. 2011.

Characteristics of ISO 26262

- A compilation of best practice for developing a safetyrelated system.
 - In the standard, many development techniques of safe systems are listed and required depending on the safety level (ASIL).
- Reliability of hardware is calculated from the failure rate of each component consisting the system.
- Reliability of software is achieved with software development process.
 - A software that is developed with a process satisfying the requirements of the standard is considered to be enough reliable.

Overall Structure of ISO 26262

 ISO 26262 consists of 10 parts (Part 10 has not been published yet).

ASIL (Automotive Safety Integrity Level)

- requirement level of safety measures to be applied for avoiding an unreasonable residual risk
- four (+ one) levels
 - ASIL D ... most stringent level
 - ASIL C
 - ASIL B
 - ASIL A ... least stringent level
 - QM (quality management) ... non-safety-related
- ASIL is determined for each hazardous event based on its severity, exposure, and controllability.

Future Trends of Automotive Embedded Systems

Advancement of Integrated Systems/Services

- communication with another car and the road
- using various information (surrounding situation and map information) for controlling a car
- emergence of true by-wire systems??
- Changes in System Architecture
 - ECU integration (or reduction)
 - platform-base development
 - separation into two types of ECUs
- Changes in Software Development
 - model-base design
 - component-base software development
 - virtual platform for software development

BRIEF INTRODUCTION TO OUR ACTIVITIES – NCES AND TOPPERS –

Overview of Our Activities

ERTL (Embedded and Real-Time Systems Laboratory)

- Takada Laboratory
- several joint projects with car makers, semi-conductor makers, and software companies

NCES (Center for Embedded Computing Systems)

- several (relatively) large-scale joint projects with car makers and car component suppliers
- projects for educating embedded system engineers <u>TOPPERS</u> ... independent non-profit organization
 - development of open-source real-time operating system (RTOS) and middleware for embedded systems
 - cooperation of academia, industry, public research institutes, and individual engineers

Introduction to NCES

NCES (Center for Embedded Computing Systems)

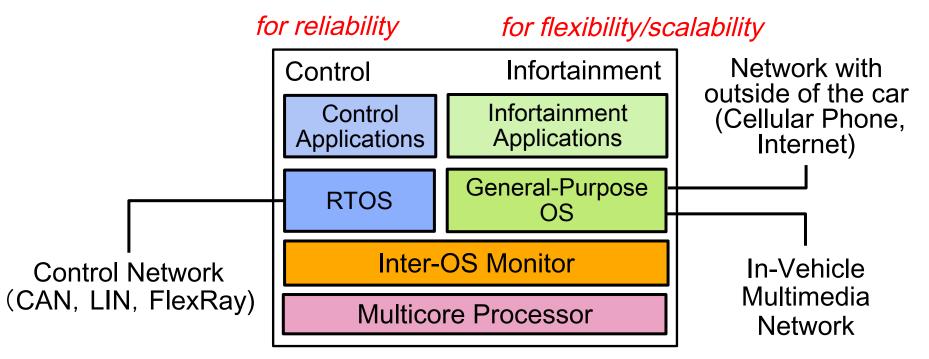
- a research center focused on embedded computing systems
 - automotive application is the main focus
 - several (relatively) large-scale joint projects with car makers and car component suppliers
- established in 2006 to form a hub for collaborative research and education of embedded systems technologies

Scope of NCES

- research aiming at practical use in industry
- development of prototype system/software
- education and human resource development

Major Research Projects of NCES

Projects funded by Industries


- OS for in-vehicle multimedia systems (TMC)
- Next-generation automotive network (AutoNetworks Technologies, Ltd.)
- Next-generation real-time operating system for automotive control systems (consortium type)
- Automotive data integration platform (consortium type)
- Studies on functional safety standard (JarPar)
- Software PF for Space Application (JAXA)

Projects funded by Government

- Energy Consumption optimization of embedded systems (JST CREST)
- Automotive software platform conforming to the functional safety standard (METI)

OS for In-vehicle Multimedia Systems

- ► joint project with Toyota Motor Corp. started in 2006
- a hybrid OS for in-vehicle multimedia systems to achieve both reliability and flexibility/scalability
- SafeG, the most important result, is distributed as an open-source software from TOPPERS Project.

Next-Generation Automotive Network

 joint project with AutoNetworks Technologies, Ltd. (a subsidiary of Sumitomo Electric Industries) started in April, 2006

Concept of Scalable CAN

- Scalable CAN is compatible with conventional CAN from software point of view and achieves higher bandwidth.
- Scalable CAN and conventional CAN can be connected with a gateway.

10Mbit/s CAN

 star topology, in which each node is connected to a central hub (gateway).

5Mbit/s CAN

bus topology with limited number of nodes on a bus.

Next-Generation RTOS for Automotive Systems

- consortium-type project with NCES and 12 companies started in Apr. 2011
- 12 engineers from these companies are staying at NCES and engaged in the development.
- What is to be developed
 - specification of next-generation RTOS for automotive control systems based on AUTOSAR OS
 - RTOS implementation based on the specification
 - test suite for the RTOS
- Release plan of the developed software
 - Developed RTOS will be released as an open source software from TOPPERS Project.
 - Test suite is shared only by the consortium members.

Introduction to TOPPERS Project

TOPPERS = Toyohashi Open Platform for Embedded and Real-Time Systems

Objectives of the Project

- TOPPERS
- To develop various open-source software for embedded systems including RTOS and to promote their use.

Building a widely used open-source OS as Linux in the area of embedded systems!

Main Activities of the Project

- Building a definitive µITRON-conformant RTOS
- Developing a next generation RTOS technology
- Developing software development technology and tools for embedded systems
- Fostering Embedded System Engineers

Major Products (Software) of TOPPERS

! All SW listed below can be downloaded from the TOPPERS website at http://www.toppers.jp/.

<u>TOPPERS/JSP Kernel (JSP = Just Standard Profile)</u>

- RTOS conformant to the standard profile of µITRON4.0 specification
- TOPPERS/ATK1 (ATK = Automotive Kernel)
 - RTOS conformant to OSEK/VDX OS specification

<u>TOPPER/ASP Kernel (ASP = Advanced Standard Profile)</u>

- Improvement of JSP kernel
- Basis of TOPPERS new generation kernels

<u>TOPPERS/FMP Kernel (FMP = Flexible Multiprocessing)</u>

 Extension of ASP kernel to various types of multiprocessor systems

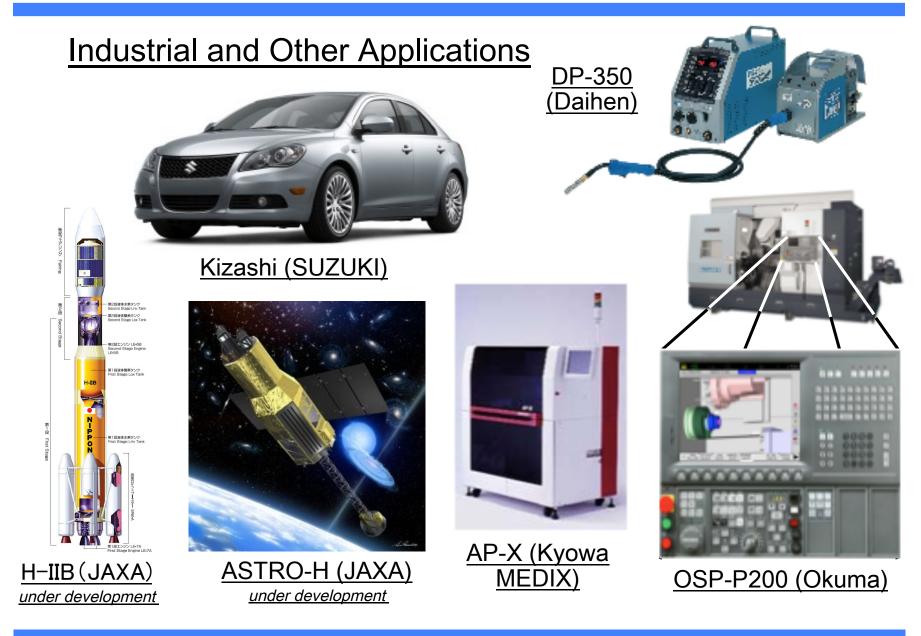
TECS (TOPPERS Embedded Component System)

 Specification and tools for component-based development of embedded software.

<u>TINET</u>

- Compact TCP/IP protocol stack conformant to ITRON TCP/IP API specification.
- Both IPv4 and IPv6 are supported.
- TLV (TraceLogVisualizer)
 - Customizable tool to visualize various trace logs, including the trace log of RTOS
- Several Open Educational Materials
 - Educational materials including presentation slides, software, and so on.

Automotive Embedded Systems


Application Example of TOPPERS OS

Consumer Applications

Hiroaki Takada

Automotive Embedded Systems

