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13.012 Hydrodynamics for Ocean Engineers 
Prof. A.H. Techet 

 
 
Introduction to basic principles of fluid mechanics 
 

1. Flow Descriptions 

1. Lagrangian: 

 
In rigid body mechanics the motion of a body is described in terms of the body’s position 
in time. This body can be translating and possibly rotating, but not deforming. This 
description, following a particle in time, is a Lagrangian description.  
 
 
 V u i v j w z= + +  (4.1)  
 

Thus we can describe a particle located at point ( , , )o o o ox x y z=  for some time t = to, 
such that  

 

 ( )ox xV
t

∂ −
=

∂
 (4.2) 

 
and 
 

 Va
t

∂
=
∂

. (4.3) 

 
 

1. Eulerian: 

 
In a fluid there are many particles and, unlike rigid bodies, parcels of fluid and tend to 
deform continuously as they move. In order to fully describe the flow we must account 
for these deformations. Thus it is useful to use the Eulerian description, or control 
volume approach, and describe the flow at every fixed point in space ( )x y z, ,  as a 
function of time, t .  
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Figure 1: An Eulerian description gives a velocity vector at every point in x,y,z as a 
function of time.  
 
 
 
 
Eulerian velocity field at any time, t, at any position, ( , , , )p x y z t , such that velocity is a 
function of the position vector and time:  ( , )V x t . 

 

 eg: 2 2( , ) 6 3 10V x t tx i zy j xyt z= + +  

 

2. Description of Motion:  
 
Streamlines:  Line everywhere tangent to velocity (Eulerian) (No velocity exists 
perpendicular to the streamline!) 
 
 
 
 
 
Streaklines: instantaneous loci of all fluid particles that pass through a given point xo. 
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Particle Pathlines: Trajectory of fluid particles (“more” lagrangian) 

 
 
 
 

In steady flow stream, streak, and pathlines are identical!! (Steady flow has no time 
dependence.) 

 

2. Governing Laws 
 
The governing laws of fluid motion can be derived in multiple forms using a simple 
control volume approach. This is equivalent to a “fluidic black box” where all we know 
is what is going in and coming out of the volume (mass, momentum, energy, work, etc). 
The control volume (CV) can be fixed or move with the fluid.  For simplicity it is often 
ideal to fix the CV.  For most of this class the CV will be fixed. In an ideal situation we 
will pick the control volume that makes our lives easier mathematically.  
 
 
When analyzing a control volume problem there are three laws that MUST be followed:  
 

1. Conservation of Mass 
2. Conservation of Momentum 
3. Conservation of Energy  

 

1. Conservation of Mass: 

  
Basic fluid mechanics laws dictate that mass is conserved within a control volume for 
constant density fluids. Thus the total mass entering the control volume must equal the 
total mass exiting the control volume. Using figure 2 we can write a 2D mass balance 
equation for the fluid entering and exiting the control volume x zδ δ .  
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Figure 2. Control volume x zδ δ . 

 
 
In the x-direction the mass balance equation is shown in equation 1,  
 
 
 

 
1 1
2 2

u u u uu z z u x z z x z
z x z x
δ δ δ δ δ δ δ∂ ∂ ∂ ∂⎧ ⎫ ⎧ ⎫ ⎧ ⎫+ − + + = − .⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (4.4) 

     
 
 
The first term on the LHS of eq. 1 represents the mass entering the control volume and 
the second term (on the LHS) the fluid exiting the control volume. A similar equation can 
be written for the mass balance in the z direction resulting in a net vertical fluid flux of  
 
 

 
w x z
z
δ δ∂

− .
∂

 (4.5) 

  
 
For an incompressible fluid, the sum of these two balances must be zero for mass to be 
conserved. Therefore  
 

 0u w x z
x z

δ δ∂ ∂⎛ ⎞− + = .⎜ ⎟∂ ∂⎝ ⎠
 (4.6) 

  
 
This equation is valid for all xδ  and zδ  and can be simplified to arrive at the two-
dimensional equation for conservation of mass:  
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 0u w
x z
∂ ∂

+ =
∂ ∂

 . (4.7) 

  
 
 
Similarly in three-dimensions, the equation for mass conservation can be written as:  
 
 

 0u v w
x y z
∂ ∂ ∂

+ + = .
∂ ∂ ∂

 (4.8) 

 
 
Recalling the gradient operator from vector calculus: ( )x y z

∂ ∂ ∂
∂ ∂ ∂∇ = , , , we can abbreviate 

equation 5 as  
 
 0∇⋅ = .V  (4.9) 
  
 

2. Conservation of Momentum: 

  
Newton’s second law is simply the law of conservation of momentum.  
 
 
It states that the time rate of change of momentum of a system of particles is equal to the 
sum of external forces acting on that body.  
 
 

 { }d M
dt

Σ =iF V  (4.10) 

 
where M x zρδ δ=  is the mass of the fluid parcel (in two dimensions, ie mass per unit 
length) and MV  is the linear momentum of the system (V is the velocity vector). Since 
the fluid density is constant, the time-rate of change of linear momentum can be written 
as  
 

 { }d dM x z
dt dt

ρδ δ= .
VV  (4.11) 
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The rate of change of velocity of the fluid parcel can be found, for small tδ , as  
 
 

 { }1 ( ) ( )
0 p p p

d lim x x z z t t x z t
dt t t

δ δ δ
δ δ

= + , + , + − , ,
→

V V V  (4.12) 

 
 
We can substitute, px u tδ δ= , and, pz w tδ δ= , into equation 9 and cancel terms to arrive 
at a more familiar form of the momentum equation.  
 
 
The total derivative of the velocity is written as: 
 
 D u wDt t x z

∂ ∂ ∂= + +
∂ ∂ ∂

V V V V  (4.13) 

 
which can be simplified using the vector identity,  
 
 
 u v wx y z

∂ ∂ ∂⋅∇ = + +
∂ ∂ ∂

V  (4.14) 

 
 
The total (material) derivative of the velocity is the sum of the conventional 
acceleration, V

t
∂
∂

, and the advection term, ( )⋅∇V V : 
 

 ( )D
Dt t

∂
= + ⋅∇ .
∂

V V V V  (4.15) 

 
 Finally, the momentum equation, from equation 7, can be rewritten in two dimensions as  
 
 

 
D x z
Dt

ρ δ δΣ =i
VF . (4.16) 

    
 
 

3. Forces 

  
 
The LHS of equation 7 is the sum of the forces acting on the control volume. 
Contributions from gravity and pressure both play a role in this term as well as any 
applied external forces.  
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1. Force on a fluid volume due to gravity:  

 
 
 ˆ( )g x z kρ δ δ= −gF  (4.17) 
 

2. Pressure Forces: 

 PF P A= ⋅ . (4.18) 
 
 
Pressure force in x-direction:  
 

 1 1
2 2

p p p pp z z p z x z x z
z z x x
δ δ δ δ δ δ δ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + − + + = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

PxF  (4.19) 

 
Pressure force in z-direction:  
 

 p x z
z
δ δ∂

= −
∂PzF   

 
Total pressure force in two dimensions:  
 

 ( )P
p pF x z p x z
x z

δ δ δ δ∂ ∂
= − , = −∇ .

∂ ∂
 (4.20) 

 
 
     

4. Euler Equation 

  
Substituting relations 14 and 17 for the gravity and pressure forces acting on the body, 
into the momentum equation 13 we arrive at  
 
 

 ˆ( ) ( )x z g x z k p x z
t

ρ δ δ ρ δ δ δ δ∂⎧ ⎫+ ⋅∇ = − −∇⎨ ⎬∂⎩ ⎭
V V V  (4.21) 

 
 
for any x zδ δ, . The final result is the Euler equation in vector form:  
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 ˆ( ) gk p
t

ρ ρ∂⎧ ⎫+ ⋅∇ = − −∇ .⎨ ⎬∂⎩ ⎭
V V V  (4.22) 

 
 
We can further manipulate this equation with the vector identity  
 
 
 1

2( ) ( )⋅∇ = ∇ ⋅V V V V ,  (4.23) 
 
 
such that the Euler equation becomes  
 
 

 1 ˆ( )
2

gk p
t

ρ ρ∂⎧ ⎫+ ∇ ⋅ = − −∇ .⎨ ⎬∂⎩ ⎭
V V V  (4.24) 

      

5. Bernoulli’s Equation: 
 
Application of Newton’s Second Law along a streamline:  
 
 2 21 1

2 21 1 1 2 2 2p V gz p V gz Cρ ρ ρ ρ+ + = + + =  (4.25)  
 
 
 Assuming the following conditions: 
 

1) Points 1 and 2 are on the same streamline! 
2) Fluid density is constant  

3) Flow is steady: 0dV
dt

=  (no time dependence or turbulence) 

4) Fluid is “inviscid” or can be approximated as inviscid. No frictional 
effects 

5) No Work Added! 
 
We can derive this through a Lagrangian derivation: 
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Looking at a small elemental volume along a streamline d dndsdx∀ =  (dx is the depth 
into the paper).  
 
Fluid weight in the (-z) direction.:   
 
 g dn ds dxρ    (4.26) 
 
 
Component of weight acting in the s-direction:  
 
 
 sing dn ds dxρ β−  (4.27) 
 

Where sin dz
ds

β =  so that the weight in the s-direction is: 

 

 dzg dn ds dx
ds

ρ− . (4.28) 

 
The force due to pressure in the s-direction is found similarly:  
 

 
2s

p p ds p zF p dn dx p dn dx g dn ds dx
s s s s

ρ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − + = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.29) 

 
The force accelerates the fluid along the streamline such that the rate of change in 
momentum, per unit volume, is  
 

 

VV ds V Vs V
dt s

ρ ρ

∂⎛ ⎞+ −⎜ ⎟ ∂∂ =⎜ ⎟ ∂⎜ ⎟
⎝ ⎠

 (4.30) 
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where sV
t
∂

=
∂

. 

 
So Euler’s equation in one dimension along a streamline becomes: 
 

 0V p zV g
s s s

ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
. (4.31) 

 

Change in Pressure along a streamline:  pdp ds
s
∂

=
∂

 

Change in Velocity along a streamline: VdV ds
s

∂
=
∂

 

Change in height along a streamline: zdz ds
s
∂

=
∂

 

 
Multiplying equation 23 through by ds gives us  
 
 
 0V dV dp g dzρ ρ+ + =  (4.32) 
 

 0dp V dV g dz
ρ
+ + =  (4.33) 

 
 

If density is constant along the streamline then we can integrate along the streamline to 
get:   
 

 21
2

p V g z C
ρ
+ + =   

 
 

 
 
 
Along a streamline Bernoulli’s equation relates pressure, height and velocity at two 
points: 
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 2 21 21 1
2 21 1 2 2

p pV g z V g z C
ρ ρ
+ + = + + =  (4.34)  

 
 
This equation also assumes that NO additional heat or work is added to the system along 
the streamline.   
 
 
 
1. Irrotational flow 
 
  
For irrotational flow the curl of the velocity must be zero.  
 

 

ˆˆ ˆ

0

i j k

x y z
u v w

ω ∂ ∂ ∂
= ∇× = =

∂ ∂ ∂
V  (4.35)  

 
 

 ˆˆ ˆ( ) ( ) ( ) 0w v u w v ui j k
y z z x x y

ω ∂ ∂ ∂ ∂ ∂ ∂
= − + − + − = .

∂ ∂ ∂ ∂ ∂ ∂
 (4.36) 

  
 
For 2D flow this reduces to u w

z x
∂ ∂=
∂ ∂

. 

  
 

2. Potential Flow 

  
Define a potential function, ( )x z tφ , , , as a continuous function that satisfies the basic laws 
of fluid mechanics: conservation of mass and momentum, assuming incompressible and 
irrotational flow.  Such that 
 
 

 u
dx
φ∂

=  and w
dz
φ∂

=  (4.37) 

 
which satisfy the irrotational condition.   
 
Since  
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 u
z z x

φ∂∂ ∂=
∂ ∂ ∂

 ,   (4.38) 

 w
x x z

φ∂∂ ∂=
∂ ∂ ∂

 (4.39) 

 
 
andφ  is continuous we can prove that the potential function also satisfies conservation of 
mass (derivative in x and z are interchangeable).  So 
  
 u w

z x
∂ ∂=
∂ ∂

. (4.40) 

3. Unsteady Bernoulli’s Equation 

  
The potential function can be substituted into equation 20 resulting in the unsteady 
Bernoulli Equation.   
 

 { }21 02 V p g ztρ φ ρ∂ ∇ + ∇ +∇ + ∇ =
∂

 (4.41) 

 
 

 { }21 02 V p gzt
φρ ρ ρ∂∇ + + + =
∂

 (4.42) 

 

 21 ( )2UnsteadyBernoulli V p gz c tt
φρ ρ ρ∂⇒ + + + =
∂

     (4.43) 

 

4. Laplace Equation 

  
Returning to the conservation of mass equation, we can substitute in the relationship 
between potential and velocity and arrive at a new form for the equation of mass 
conservation. This equation is the Laplace Equation which we will revisit in our 
discussion on linear waves.  
 
  0u w

x z
∂ ∂+ =
∂ ∂

 (4.44) 

 

 
2 2

2 2 0
x z
φ φ∂ ∂+ =

∂ ∂
 (4.45) 

 
 2 0LaplaceEquation φ⇒∇ =      


