Introduction to Biostatistics for Graduate and Medical Students

- Introduce fundamental statistical principles
- Cover a variety of topics used in biomedical publications
- Design of studies
- Analysis of data
- Focus on interpretation of statistical tests
- Less focus on mathematical formulas

Introduction to Biostatistics for Graduate and Medical Students

Descriptive Statistics and Graphically Visualizing Data

Beverley Adams Huet, MS
Assistant Professor
Department of Clinical Sciences, Division of Biostatistics

Files for today (June 25)

> Lecture and handout (2 files)
> Biostat_Huet1_25Jun2013.pdf (PPT presentation)
>Biostat_handout_Altman_BMJ2006.pdf (Read article)
>Homework -- either handwritten paper or email OK
>To be assigned Thursday

Contact information

beverley.huet@utsouthwestern.edu Office E5.506

Phone 214-648-2788
"The best thing about being a statistician is that you get to play in everyone else's backyard."

John Tukey, Princeton University

Today's Outline

$>$ Introduction
> Statistics in medical research
$>$ Types of data
> Categorical
> Continuous
> Censored
> Descriptive statistics
> Measures of Central Tendency

Statistics Information/Explanations

- The Little Handbook of Statistical Practice by Gerard E. Dallal, Ph.D http://www.tufts.edu/~gdallal/LHSP.HTM
- WISE: Web Interface for Statistical Education http://wise.cgu.edu/index.html
- New view of statistics http://www.sportsci.org/resource/stats/index.html

Links to on-line statistical calculators

For online (e.g., t-tests or chi-sq):

- GraphPad quick calcs
http://www.graphpad.com/quickcalcs/
- OpenEpi
http://www.openepi.com/OE2.3/Menu/OpenEpiMenu.htm
- SISA General simple statistics \& sample size http://www.quantitativeskills.com/sisa/

Statistical and Graphics software (download at UTSW IR)

http://www.utsouthwestern.net/intranet/administration/information-resources/
Statistics and graphics software GraphPad Prism and SigmaPlot can be downloaded from the UTSW Information Resources INTRAnet

GraphPad Prism (Mac and Windows)
$>$ SigmaPlot (Windows)

Statistics in the medical literature

"Medical papers now frequently contain statistical analyses, and sometimes these analyses are correct, but the writers violate quite as often as before, the fundamental principles of statistical or of general logical reasoning."

Greenwood M. (1932) Lancet, I, 1269-70.

Statistics

"Statistics may be defined as a body of methods for making wise decisions in the face of uncertainty."
(W.A. Wallis)

Use data from sample to make inferences about a population

- Statistics is not just an extension of mathematics
- Not akin to a cookbook.
- Involves logic and judgment.
- Key concepts
- variability
- bias

June 25, 2013

Sources of Bias

> Wrong sample size
> Selection of study participants
> Non-responders
> Withdrawal
> Missing data
> Compliance
$>$ Repeated peeks at accumulating data

Steps in a research study

Planning
Design
Execution (data collection)
Data management \& processing
Data analysis
Presentation
Interpretation
Publication

Biostatistics

Applicable to

- Clinical research
- Basic science and laboratory research
- Epidemiological research

Role of a Biostatistician when planning a study

> Assess study design integrity, validity, biases, blinding
$>$ Is it analyzable?
> Power and sample size estimates
> Randomization schemas
> Analysis plans
> Data safety and monitoring
> Interim analyses, stopping rules?
June 25, 2013

When to choose the statistical test? When to contact a Biostatistician?

BEFORE data is collected

The study design, sample size, and statistical analysis must be able to properly evaluate the research hypothesis set forth by the investigator

Why learn statistics?

Myth
"You can prove anything with statistics"

Fact

You cannot PROVE anything with statistics, just put limits on uncertainty

Why learn statistics?

Statistics pervades the medical literature (Colton, 1974).

- For properly conducting your own research
- Evaluate others' research
- Many statistical design flaws and errors are still found in the medical literature

Clinical Trials: WHI

WOMEN'S HEALTH INITIATIVE)
-15 year \$735 million study sponsored by the NIH
-161,000 women ages 50-79, and is one of the largest programs of research on women's health ever undertaken in the U.S.

The NEW ENGLAND JOURNAL of MEDICINE

Calcium plus Vitamin D Supplementation and the Risk of Fractures

Rebecca D. Jackson, M.D., Andrea Z. LaCroix, Ph.D., Margery Gass. M. Reit B. Wallace, M.D. John Robbins, M.D., Cora E. Lewis, M.D., Tamsen Bassford, M.D., Shirley A. Sesford, Ph.D., Henry R. Black, M.D.

Patricia Blanchette, M.D., Denise E. Bonds, M.D., Robert L Per, Ph.D., Robert G. Brzyski, M.D.,
Bette Cain, Dr.P.H., Jane A. Cauley, Dr.P.H., Rowan T. Cowski, M.D., Steven R. Cummings, M.D.,
Iris Granek, M.D., Jennifer Hays, Ph.D., Gerardo Heist. Susan L. Hendrix, D.O., Barbara V. Howard, Ph.D., Judith Hsia, M.D., F. Allan Hubbell, M.D., Karen ${ }^{\text {hin, M.D., Howard Judd, M.D., Jane Morley Kotchen, M.D. }}$ Lewis H. Kuller, M.D., Robert D. Langer, M.D NV. L. Lasser, M.D., Marian C. Limacher, M.D., Shari Ludlam, M.P.H., JoAnn E. Manson, M.D., Kara argolis, M.D., Joan McGowan, Ph.D., Judith K. Ockene, Ph.D., Mary Jo O'Sullivan, M cLarence Phillips, M.D., Ross L. Prentice, Ph.D., Gloria E. Sarto, M.D.,
Marcia L. Stefanick, Ph M. Van Horn, Ph.D., Jean Wactawski-Wende, Ph.D., Evelyn Whitlock, M.D., derson, Ph.D., Annlouise R. Assaf, Ph.D., and David Barad, M.D., for the Women's Health Initiative Investigators*

WHI (Women's Health Initiative)

15 year, \$735 million study sponsored by the NIH

Inadequate design left many questions unanswered

- Significant limitations to the study including*
- low dose of vitamin D
- allowance of calcium and vitamin D supplements, and antiosteoporotic medications (Study of calcium and vitamin D versus MORE Calcium and vitamin D?)
- The women enrolled were not at risk for fracture!!
- Lower rate (about half) of hip fractures than expected and this decreased study power to $<50 \%$ to show a significant finding.
- low rates could be due to a number of factors
- high BMD and BMI of participants
- inclusion of relatively few women age > 70 years
- many participants were already using calcium \& vit D supplements, or were on HRT
* Courtesy of Naim Maalouf, MD, Dept Internal Medicine, UT Southwestern Medical Center

WHI (Women's Health Initiative)

n P r [4) Listen]

Untangling Results of Women's Health Study

- Newspapers Examine Confusion Over Results Of Recent Women's Health Initiative Studies
- "toss out the calcium pills"
-"The Worrisome Calcium Lie..."

Statistics in the medical literature

> Errors in design and execution
> Errors in analysis
> Errors in presentation

- Errors in interpretation
> Errors in omission

Statistics - notation

Statistics

A sample is a set of observations drawn from a larger population.

> The sample is the numbers (data) collected.
> The population is the larger set from which the sample was taken; contains all the subjects of interest.

Types of Statistics

Descriptive statistics

Inferential statistics

Results From baseline to 18 weeks, dark chocolate intake reduced mean (SD) systolic BP by -2.9 (1.6) $\mathrm{mm} \mathrm{Hg}(P<.001)$ and diastolic BP by -1.9 (1.0) $\mathrm{mm} \mathrm{Hg}(\mathrm{P}<.001)$

JAMA. 2007; 298: 49-60.

Types of Statistics

Descriptive statistics

- Which summary statistics to use to organize and describe the data?
- Proportion, mean, median, SD, percentiles
- Descriptive statistics do not generalize beyond the available data

Types of Statistics

Inferential statistics

- Generalize from the sample.
- Hypothesis testing, confidence intervals
- t-test, Fisher's Exact, ANOVA, survival analysis
- Bayesian approaches
- Making decisions in the face of uncertainty

Types of Data

Variable - anything that varies within a set of data

- Mortality rates
- Survival time
- LDL cholesterol
- Surgery type
- Biopsy stage
- Compliance
- Marital status
- Age
- Weight
- Smoking status
- Adverse drug reaction
- Energy intake
- Parity
- Drug dose

Types of Data

Important in deciding which analysis methods will be appropriate

Categorical (qualitative) variables

- Sex, ethnicity, smoker/non-smoker, blood type

Numerical (quantitative) variables are measured

- Age, weight, parity, triglycerides, tumor size

Types of variables

Variable

Categorical (qualitative)

Nominal

Ordinal

Numerical (quantitative)

Discrete Continuous

Categorical variables

Sex, race, compliance, adverse events, family history of diabetes, hypertension diagnosis, genotype

- Summarized as
- Frequency counts, fractions, proportions, and/or percentages
- Graphically displayed as
- Bar charts

Categorical variable

Nominal data - no natural ordering

- Gender
- Race/ethnicity
- Religion
- Yes/no
- Zip code, SSN

Summarizing categorical variables

ENPP1/PC1 Q Allele Frequency
(\% of ethnic group population)
Chi-square $p<0.0001$

Bar Graph

Fig. 1. ENPP1 121Q allele frequency for non-Hispanic Whites, Hispanics, and African-Americans.

Ordered categorical variable

Ordinal data - can be ranked

- Attitudes (strongly disagree, disagree, neutral, agree, strongly agree)
- Education (grade school, high school, college)
- Cancer stage I, II, III, IV
- Coffee - tall, grande, venti

Summarizing categorical variables

Calcium plus Vitamin D Supplementation and the Risk of Fractures. NEJM 2006;354:669-83

Categorical data Software output from SAS program

The FREQ Procedure

Sex	Frequency	Percent	Cumulative Frequency	uumulative Percent
M	39	48.15	39	48.15
F	42	51.85	81	100.00

RaceEth	Frequency	Percent	cumulative Frequency	Cumulative Percent
AmerInd	2	2.47	2	2.47
Black	25	30.86	27	33.33
Hisp	42	51.85	69	85.19
White-NH	12	14.81	81	100.00

Numerical data Discrete numerical variables

Discrete - cannot take on all values within the limits of the variable

- Parity, gravidity ($0,1,2, \ldots$)
- Number of deaths
- Number of abnormal cells

Numerical data Continuous variables

Usually a measurement

- Age, weight, BMI, \%body fat
- Cholesterol, glucose, insulin
- Prices, \$
- Time of day or time of sample collection
- Temperature
- In degrees Kelvin - ratio scale
- in C or F - interval scale

Types of Data

ID	Sex	Ethnicity	Age_yrs	Height_ cm	Wt_kg	BMI	Heart Rate	Pain	Pain code
62401	F	Hisp	32	162.56	56.82	21.50	71	Mild	1
62402	F	AA	45	182.88	90.91	27.18	74	Moderate	2
62403	F	NHW	29	149.86	81.82	36.43	86	Severe	3
62404	M	AA	36	139.70	47.73	24.46	86	Severe	3
62405	M	NHW	41	187.96	88.64	25.09	62	Mild	1
62406	M	Hisp	52	180.34	106.82	32.84	76	Moderate	2

Nominal Nominal Nominal Continuous* Continuous
*Though age at last birthday is discrete, treat age as a continuous variable

June 25, 2013

Continuous variables

Data entry note - height

ID	Height		Height_in	Height_cm
101	$5^{\prime} 4^{\prime \prime}$		64.00	162.56
102	6^{\prime}		72.00	182.88
103	$4^{\prime \prime} 9^{\prime \prime}$		59.00	149.86
104	$5^{\prime} 5$		55.00	139.70
105	62		74.00	187.96
106	$5 ' 11 "$		71.00	180.34
n			6	6
Mean			65.83	167.22
SD			7.73	19.64

Continuous variables

Data entry note

ID	Height＿in	Height＿cm	Wt＿lb	Wt＿kg	BMI
101	64.00	162.56	125.00	56.82	21.50
102	72.00	182.88	200.00	90.91	27.18
103	59.00	149.86	180.00	81.82	36.43
104	55.00	139.70	105.00	47.73	24.46
105	74.00	187.96	195.00	88.64	25.09
106	71.00	180.34	235.00	106.82	32.84
n	6	6	6	6	6
Mean	65.83	167.22	173.33	78.79	27.92
SD	7.73	19.64	49.06	22.30	5.63

BMI（body mass index）$=$ weight $(k g) /$ height $\left(\mathrm{m}^{2}\right)$

Continuous variables

Data entry note－blood pressure

ID	BP	SBP	DBP
101	130／90	130	90
102	145108	145	98
103	1770	110	70
104	－ $218{ }^{7}$	120	80
105	116／82	116	82
106	128／85	128	85
n	0	6	6
Mean	\＃D／0！	124.83	84.17
SD	\＃『パ，	12.37	9.47

Continuous variables

Use the actual data, avoid reducing continuous data to categorical data

Always record the actual value not a category

- Example
record age $\underline{26}$ instead of a category such as
$\square 20-30$ years

Statistical analysis with continuous data is
more powerful and often easier

June 25, 2013

Comparing two groups: BMI analyzed two ways

Continuous variables

Use the actual data, avoid reducing continuous data to categorical data

- Information is lost when a continuous variable is reduced to a categorical (dichotomous or ordinal)

See handout:

Douglas G Altman and Patrick Royston.
The cost of dichotomising continuous variables.
BMJ, May 2006; 332:1080.

Describing Continuous variables

- Summarize with
- Means, medians, ranges, percentiles, standard deviation
- Numerous graphical approaches
- Scatterplots, dot plots, box and whisker plots
HDL-C in control subjects and subjects with Type 2 diabetes (raw data)
SAS code for descriptive statistics
proc means n mean std median min max maxdec=5 data= BIOSTAT.ancova ;
title3 'Descriptive statistics';
class group;
var hdl;
run;

ID	Group	HDL
732001	Control	51
732002	Control	46
732003	Control	47
732004	Control	48
732005	Control	54
732006	Control	47
732007	Control	45
732008	Control	52
732009	Control	50
732010	Control	52
732011	Control	46
732012	Control	42
732013	Control	50
732014	Control	47
732015	Control	44
732016	Control	40
732017	Control	49
732018	Control	40
732019	Control	45
732020	Control	45
732021	Control	45
732022	Control	42
732023	Control	46
732024	Control	40
732025	Control	37
732026	Control	43
732027	Control	35
732028	Control	40
732029	Control	39
732030	Control	43
732031	Control	35
732032	Control	37

ID	Group	HDL
732033	DM	42
732034	DM	40
732035	DM	44
732036	DM	45
732037	DM	38
732038	DM	41
732039	DM	40
732040	DM	43
732041	DM	36
732042	DM	41
732043	DM	38
732044	DM	40
732045	DM	35
732046	DM	38
732047	DM	41
732048	DM	40
732049	DM	42
732050	DM	36
732051	DM	40
732052	DM	38
732053	DM	33
732054	DM	36
732055	DM	37
732056	DM	37
732057	DM	33
732058	DM	32
732059	DM	35
732060	DM	29
732061	DM	35
732062	DM	33
732063	DM	29
732064	DM	27
732065	DM	32

June 25, 2013

Descriptive statistics

Two groups: control subjects and subjects with Type 2 diabetes

Endpoint: HDL-C
Descriptive statistics
The MEANS Procedure

Analysis Variable : HDL								
Group	\mathbf{N} Obs	\mathbf{N}	Mean	Std Dev	Median	Minimum	Maximum	
Controls	32	32	44.43750	5.03496	45.00000	35.00000	54.00000	
DM	33	33	37.15152	4.45899	38.00000	27.00000	45.00000	

Present the individual data whenever possible

HDL-C in control subjects and subjects with Type 2 diabetes

Endpoint: HDL-C

Endpoint: Triglycerides
Design is a crossover study - each subject was given both diets in a randomized order

Graph paired data so that the relationship between pairs is preserved

Data adapted from Garg et. al., NEJM 319:829-834, 1988.

[^0]
Bar graphs for continuous data?

Censored data

Cannot be measured beyond some limit

- Left censoring
- Right censoring

Left Censored data

Cannot be measured beyond some limit

- Lab data - "undetectable", "below lower limit"
- Example CRP "<0.2 mg/dL"

Censored at the limit of detectability

Subject	CRP
001	0.7
002	1.6
003	<0.2
004	3.8

Right Censored data

Cannot be measured beyond some limit

- Right censoring
- "Survival" data - the period of observation was cut off before the event of interest occurred.

Note - an event in a ‘survival' analysis may be infection, fracture, transplant, metastasis

Right censored survival data

June 25, 2013

Descriptive statistics

- Measures of Central Tendency
- Measures of Dispersion

Measures of Central Tendency*

*or Measures of Location

- Mean
- Median
- Geometric mean
- Mode

June 25, 2013

Measures of Central Tendency*

*or Measures of Location

- Mean
- Arithmetic average or balance point
- Discrete/continuous data; symmetric distribution
- May be sensitive to outliers
- Sample mean symbol is denoted as 'x-bar'

$$
\bar{X}=\frac{\sum X}{N}
$$

	SubjectID	
Flucose $\mathrm{mg} / \mathrm{dL}$		
Fasting plasma	0204	145
	0205	126
	0206	136
0210	97	
0211	264	
0212	144	
	Mean	152

Measures of Central Tendency

Median

- Middle value when the data are ranked in order (if the sample size is an even number then the median is the average of the two middle values)
- $50^{\text {th }}$ percentile
- Ordinal/discrete/continuous data
- Useful with highly skewed discrete or continuous data
- Relatively insensitive to outliers

Measures of Central Tendency

The median of $13,11,17$ is 13
The median of $13,11,568$ is 13
The median of $14,12,11,568$ is 13

Measures of Central Tendency

SubjectID	Glucose mg/dil	
0204	145	
0205	126	
0206	136	
0210	97	
0211	264	
0212	144	
Mean	152	
Median	140	

June 25, 2013

The median is often better than the mean for describing the center of the data

Gonick \& Smith (1993) The Cartoon Guide to Statistics.

Geometric mean: Back-transform (antilog) the mean of the log transformed data

Measures of Central Tendency

Mode

- Most frequently occurring value in the distribution
- Nominal/ordinal/discrete/continuous data

The mode of $13,11,22,11,17$ is 11

Measures of Central Tendency (Mode)

Bimodal distribution

The mode is not necessarily unique

Next class - Thursday, June 27 Room D1.602

$>$ Describing data
>Descriptive statistics - measures of dispersion
>Variance, standard deviation
$>$ Other statistics
>Coefficient of variation
> Standard error of the mean
Histograms and other graphs
> Transformations

[^0]: June 25, 2013

