Introduction to bond graph theory

First part: basic concepts

References

- D.C. Karnopp, D.L. Margolis \& R.C. Rosenberg, System Dynamics. Modeling and Simulation of Mechatronic Systems (3rd edition). Wiley (2000). ISBN: 0-471-33301-8.
- B.M. Maschke, A.J. van der Schaft \& P.C. Breedveld, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circ. \& Systems I 42, pp. 73-82 (1995).
- G. Golo, P.C. Breedveld, B.M. Maschke \& A.J. van der Schaft, Input output representations of Dirac structures and junction structures in bond graphs. Proc. of the 14th Int. Symp. of Mathematical Theory of Networks and Systems (MTNS2000), Perpignan, June 19-23 (2000):
http://www.univ-perp.fr/mtns2000/articles/B01.pdf

$e(f) \equiv\langle e, f\rangle=\sum_{i=1}^{N} e_{i} f_{i} \in K \quad(\mathbb{R}$ or $\mathbb{C})$
The network is power continuous if it establishes relations such that

$$
\langle e, f\rangle=0
$$

Example: Tellegen's theorem

Circuit with b branches and n nodes

To each node we assign a voltage $u_{j}, j=1, \ldots, n$
To each branch we assign a current $i^{\alpha}, \alpha=1, \ldots, b$, and this gives an orientation to the branch

For each branch we define the voltage drop $v_{\alpha}, \alpha=1, \ldots, b$:

$$
v_{\alpha}=u_{j}-u_{l}
$$

Mathematically, the circuit, with the orientation induced by the currents, is a digraph (directed graph)

We can define its $n \times b$ adjacency matrix A by

$$
A_{\alpha}^{i}=\left\{\begin{array}{cl}
-1 & \text { if branch } \alpha \text { is incident on node } i \\
+1 & \text { if branch } \alpha \text { is anti-incident on node } i \\
0 & \text { otherwise }
\end{array}\right.
$$

Then, KCL states that

$$
\sum_{\alpha=1}^{b} A_{\alpha}^{i} i^{\alpha}=0, \quad \forall i=1, \ldots, n
$$

In fact, KVL can also be stated in terms of A :

Tellegen's theorem. Let $\left\{v_{(1) \alpha}\left(t_{1}\right)\right\}_{\alpha=1, \ldots, b}$ be a set of branch voltages satisfying KVL at time t_{1}, and let $\left\{i_{(2)}^{\alpha}\left(t_{2}\right)\right\}_{\alpha=1, \ldots, b}$ be a set of currents satisfying KCL at time t_{2}. Then

$$
\sum_{\alpha=1}^{b} v_{(1) \alpha}\left(t_{1}\right) i_{(2)}^{\alpha}\left(t_{2}\right) \equiv\left\langle v_{(1)}\left(t_{1}\right), i_{(2)}\left(t_{2}\right)\right\rangle=0
$$

Proof:

$$
\begin{aligned}
& \sum_{\alpha=1}^{b} v_{(1) \alpha}\left(t_{1}\right) i_{(2)}^{\alpha}\left(t_{2}\right) \stackrel{\text { KVL }}{=} \sum_{\alpha=1}^{b}\left(\sum_{i=1}^{n} A_{\alpha}^{i} u_{(1) i}\left(t_{1}\right)\right) i_{(2)}^{\alpha}\left(t_{2}\right) \\
& =\sum_{i=1}^{n}\left(\sum_{\alpha=1}^{b} A_{\alpha}^{i} i_{(2)}^{\alpha}\left(t_{2}\right)\right) u_{(1) i}\left(t_{1}\right)=\sum_{i=1}^{n} 0 \cdot u_{(1) i}\left(t_{1}\right)=0
\end{aligned}
$$

Notice that $\left\{v_{(1) \alpha}\left(t_{1}\right)\right\}$ and $\left\{i_{(2)}^{\alpha}\left(t_{2}\right)\right\}$ may correspond to different times and they may even correspond to different elements for the branches of the circuit.

The only invariant element is the topology of the circuit i.e. the adjacency matrix.

Corollary. Under the same conditions as for Tellegen's theorem,

$$
\left\langle\frac{\mathrm{d}^{r}}{\mathrm{~d} t_{1}^{r}} v_{(1)}\left(t_{1}\right), \frac{\mathrm{d}^{s}}{\mathrm{~d} t_{2}^{s}} i_{(2)}\left(t_{2}\right)\right\rangle=0
$$

for any $r, s \in \mathbb{N}$.
In fact, even duality products between voltages and currents in different domains (time or frequency) can be taken and the result is still zero.

In terms of abstract network theory, a circuit can be represented as follows

Element in branch b
Element in branch 1

Basic bond graph elements

In bond graph theory, every element, power continuous or not, is represented by a multiport.

Ports are connected by bonds.
The basic blocs of standard bond graph theory are

2-ports: Transformers Gyrators

3-ports: 0-junctions 1-junctions

C-type elements

Constitutive relation through a state variable q called displacement.

$$
\dot{q}=f
$$

C-type elements have a preferred computational direction, from f to e :

$$
e(t)=\left(e\left(t_{0}\right)-\Phi_{C}^{-1}(0)\right)+\Phi_{C}^{-1}\left(\int_{t_{0}}^{t} f(\tau) \mathrm{d} \tau\right)
$$

Examples: mechanical springs and electric capacitors

Linear case:

$$
\Phi_{C}^{-1}(q)=\frac{q}{C}
$$

I-type elements

Constitutive relation through a state variable p called momentum.

$$
\begin{gathered}
\dot{p}=e \\
f=\Phi_{I}^{-1}(p)
\end{gathered}
$$

I-type elements have a preferred computational direction, from e to f :

$$
f(t)=\left(f\left(t_{0}\right)-\Phi_{I}^{-1}(0)\right)+\Phi_{I}^{-1}\left(\int_{t_{0}}^{t} e(\tau) \mathrm{d} \tau\right)
$$

Examples: mechanical masses and electric inductors

Linear case:

$$
\Phi_{I}^{-1}(p)=\frac{p}{I}
$$

R-type elements

Direct algebraic constitutive relation between e and f.

Examples: electric resistor, viscous mechanical damping, static torque-velocity relationships

Linear case:

$$
\Phi_{R}(f)=R f
$$

Effort sources

e does not depend on f

Flow sources

f does not depend on e

to which the source is connected

Transformers

Gyrators

input power convention τ

It is power continuous:

$$
e_{1} f_{1} \Leftrightarrow e_{2} f_{2}=0
$$

0-junctions

It is poner continuous:
$\circlearrowleft e_{1} f_{1} \ominus e_{2} f_{2} \ominus e_{3} f_{3}=0$
Signs depend on power convention!
For instance, if
would still be

$$
e_{1}=e_{2}=e_{3}
$$

but

$$
f_{1}-f_{2}+f_{3}=0
$$

and

$$
-e_{1} f_{1}+e_{2} f_{2}-e_{3} f_{3}=0
$$

1-junctions

1 -junction relations are dual to those of 0 -junctions:

$$
\begin{gathered}
f_{1}=f_{2}=f_{3} \\
e_{1}+e_{2}+e_{3}=0
\end{gathered}
$$

Again, this is power continuous:

$$
-e_{1} f_{1}-e_{2} f_{2}-e_{3} f_{3}=0
$$

0 - and 1-junctions with an arbitrary number of bonds can be considered.
Notice that something like

but

Some elements can be modulated.
This means that their parameters or constitutive relations may depend on an external signal, carrying no power.

In bond graph theory, this is represented by an activated bond.
For instance, a modulated transformer is fepresented by

Activated bonds appear frequently in 2D and 3D mechanical systems, and when representing instruments.

Special values of the modulus are represented with special symbols. For instance, a gyrator with $\tau=1$ is represented by

Flow sources, transformers and I-type elements can be replaced by combinations of the other elements, given rise to generalized bond graphs.

For instance,

with

$$
\tau q=p \quad \Phi_{C}^{-1}(q)=\tau \Phi_{I}^{-1}(\tau q)
$$

Nevertheless, we will use them to keep things simpler.

Generalized bond graphs are, however, necessary in order to make contact with port-Hamiltonian theory.

Energy relations

For any element with a bond with power variables e and f, the energy variation from t_{0} to t is

$$
H(t)-H\left(t_{0}\right)=\int_{t_{0}}^{t} e(\tau) f(\tau) \mathrm{d} \tau
$$

For C-type elements, e is a function of q and $\dot{q}=f$.
Changing variables from t to $q, \quad H(q)-H\left(q_{0}\right)=\int_{q_{0}}^{q} \Phi_{C}^{-1}(\tilde{q}) \mathrm{d} \tilde{q}$
In the linear case, $\quad H(q)-H\left(q_{0}\right)=\frac{1}{2 C} q^{2}-\frac{1}{2 C} q_{0}^{2}$

For I-type elements, f is a function of p and $\dot{p}=e$.
Changing variables from t to $p, \quad H(p)-H\left(p_{0}\right)=\int_{p_{0}}^{p} \Phi_{I}^{-1}(\tilde{p}) \mathrm{d} \tilde{p}$
In the linear case, $\quad H(p)-H\left(p_{0}\right)=\frac{1}{2 I} p^{2}-\frac{1}{2 I} p_{0}^{2}$
For R-type elements, $e=\Phi_{R}(f)$ or $f=\Phi_{R}^{-1}(e)$. Then

$$
H(t)-H\left(t_{0}\right)=\int_{t_{0}}^{t} \Phi_{R}(f(\tau)) f(\tau) \mathrm{d} \tau=\int_{t_{0}}^{t} e(\tau) \Phi_{R}^{-1}(e(\tau)) \mathrm{d} \tau
$$

If the R-element is a true dissipator, $H(t)-H\left(t_{0}\right) \leq 0, \forall t \geq t_{0}$.
This means that the graph of Φ_{R} must be completely contained in the first and third quadrant.

Causality

A bond links two elements, one of which sets the effort and the other one the flow.

The causality assigment procedure chooses who sets what for each bond.
Causality assigment is necessary to transform the bond graph into computable code.

For each bond, causality is indicated by the causal stroke.
$A \longrightarrow B$ means that A sets e and B sets f
$\mathrm{A} \longmapsto \mathrm{B}$ means that B sets e and A sets f

Elements with fixed causality

Sources set either the effort or the flow, so only a causality is possible:

In gyrators and transformers, the variable relations allow only two causalities:

or

Or

For 0 -junctions, one of the bonds sets the effort for the rest, so only one causal stroke is on the junction, while the others are away from it:

For 1-junctions, one of the bonds sets the flow for the rest, and its effort is computed from them, so all but one of the causal strokes are on the junction, while the remaining one is away from it:

Elements with preferred causality

Energy-storing elements, I or C, have a preferred causality, associated to the computation involving integrals instead of derivatives.

This is called integral causality.
C-elements are given the flow and return the effort.
I-elements are given the effort and return the flow.

Differential causality is possible but not desirable:
$\{$ Differentiation with respect to time implies knowledge of the future. With differential causality, the response to an step input is unbounded.

Sometimes it is unavoidable and implies a reduction of state variables.

Elements with indifferent causality

R-type elements have, in principle, a causality which can be set by the rest of the system:

$$
f=\Phi_{R}^{-1}(e)
$$

$$
e=\Phi_{R}(f)
$$

However, difficulty in writting either Φ_{R} or Φ_{R}^{-1} may favor one of the two causalities.

For instance, in mechanical ideal Coulomb friction, F can be expressed as a function of v, but not the other way around.

Mechanical domain example

General rules:
Each velocity is associated with a 1-junction, including a reference (inertial) one.
Masses are linked as I-elements to the corresponding 1-junctions.
Springs and dissipative elements are linked to 0-junctions connecting appropriate 1 -junctions.

The rest of elements are inserted and power orientations are choosen.
The reference velocity is eliminated.
The bond graph is simplified.
Causality is propagated.

power orientation

The final (acausal) bond graph is thus

Finally, we assign numbers to the bonds.

For each storage element, the state variable will be designed with the same index as the bond.

$$
\begin{array}{rlrl}
f_{1} & =f_{2}=f_{3} & & e_{2}=-e_{1}-e_{3} \\
e_{3} & =e_{4}=e_{5} & & f_{4}=f_{3}-f_{5} \\
f_{5} & =f_{6}=f_{7} & & e_{6}=e_{5}+e_{7} \\
\dot{q}_{1} & =f_{1} & & e_{1}=k_{2} q_{1} \\
\dot{p}_{2}=e_{2} & f_{2}=\frac{1}{M_{2}} p_{2} \\
\dot{q}_{4}=f_{4} & & e_{4}=k_{1} q_{4} \\
\dot{p}_{6}=e_{6} & f_{6}=\frac{1}{M_{1}} p_{6}
\end{array}
$$

$$
e_{7}=F
$$

Energy balance

$$
\begin{aligned}
& H\left(q_{1}, p_{2}, q_{4}, p_{6}\right)=\frac{1}{2} k_{2} q_{1}^{2}+\frac{1}{2} k_{1} q_{4}^{2}+\frac{1}{2 M_{2}} p_{2}^{2}+\frac{1}{2 M_{1}} p_{6}^{2} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} H & =k_{2} q_{1} \dot{q}_{1}+k_{1} q_{4} \dot{q}_{4}+\frac{1}{M_{2}} p_{2} \dot{p}_{2}+\frac{1}{M_{1}} p_{6} \dot{p}_{6} \\
& =k_{2} q_{1}\left(\frac{1}{2_{2}} p_{2}\right)+k_{1} q_{4}\left(\frac{1}{L_{2}} p_{2}-\frac{1}{M_{1}} p_{6}\right) \quad \dot{H}=\frac{1}{M_{1}} p_{6} F=v_{1} F \\
& +\frac{1}{M_{2}} p_{2}\left(-k_{2} q_{1}-k^{\prime} / q_{4}\right)+\frac{1}{M_{1}} p_{6}\left(k_{1} q_{4}+F\right)
\end{aligned}
$$

Since the spring k_{2} is to the left of the mass M_{2}, it follows from $\dot{q}_{1}=v_{2}$ that v_{2} is positive to the right.
Similarly, since the spring k_{1} is to the left of M_{1}, it follows from $\dot{q}_{4}=v_{2}-v_{1}$ that v_{1} is positive to the left.
Finally, from the later and $\dot{p}_{6}=k_{1} q_{1}+F$ one deduces that F is positive to the left.
Hence, v_{1} and F have the same positive orientation and $v_{1} F$ is the power into the system.

Muntionerne exine

We will model the converter as a modulated transformer, and the dc motor as a gyrator.

In the electrical domain, a 0 -junction is introduced for each voltage, and everything is connected in between by means of 1 -junctions.

In the electrical domain $\left\{\begin{array}{l}0 \text {-junction } \equiv \text { parallel connection } \\ 1 \text {-junction } \equiv \text { series connection }\end{array}\right.$

We set to earth these two

After eliminating these three nodes and their bonds, several simplifications can be carried out.

The final bond graph, with causal assignment and bond naming, is

Exercise
Write all the network and constitutive relations
Obtain the state space equations
Write down the energy balance equation

Next seminar

- Storage and dissipation elements with several ports.
- Thermodynamic systems.
- Dirac structures and bond graphs.

■ Distributed systems.

