
Introduction to bond
graph theory

First part: basic concepts
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Network description of systems
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[ei][fi] = power, i = 1, . . . ,N

f =

⎛⎜⎝ f1
...
fN

⎞⎟⎠ ∈ Vflows

e = (e1, . . . , eN ) ∈ V ∗efforts

A power orientation stroke sets the way
in which power flows when eifi > 0. We adopt

an input power convention, except when indicated.

e(f) ≡ he, fi =
NX
i=1

eifi ∈ K (R or C)
The network is power continuous
if it establishes relations such that

he, f i = 0



Example: Tellegen’s theorem
Circuit with b branches and n nodes

To each node we assign a voltage uj , j = 1, . . . , n
u1

u2

u3

un

i1

i2

ib

i3
To each branch we assign
a current iα, α = 1, . . . , b,

and this gives an orientation to the branch

uj

ul
iα

For each branch we define
the voltage drop vα, α = 1, . . . , b:

vα = uj − ul
This is KVL!



Mathematically, the circuit, with the orientation induced
by the currents, is a digraph (directed graph)

We can define its n× b adjacency matrix A by

Aiα =

⎧⎨⎩ −1 if branch α is incident on node i
+1 if branch α is anti-incident on node i
0 otherwise

Then, KCL states that

bX
α=1

Aiαi
α = 0, ∀ i = 1, . . . , n

In fact, KVL can also be stated in terms of A:

vα =
nX
i=1

Aiαui
The sum contains only two terms, because
each branch connects only two nodes



Tellegen‘s theorem. Let {v(1)α(t1)}α=1,...,b be a set of branch voltages
satisfying KVL at time t1, and let {iα(2)(t2)}α=1,...,b be a set of currents satisfying
KCL at time t2. Then

bX
α=1

v(1)α(t1)i
α
(2)(t2) ≡ hv(1)(t1), i(2)(t2)i = 0

KVLProof:

bX
α=1

Ã
nX
i=1

Aiαu(1)i(t1)

!
iα(2)(t2)

Pb
α=1 v(1)α(t1)i

α
(2)(t2) =

=
nX
i=1

Ã
bX

α=1

Aiαi
α
(2)(t2)

!
u(1)i(t1)

nX
i=1

0 · u(1)i(t1) = 0=

KCL



Notice that {v(1)α(t1)} and {iα(2)(t2)} may correspond to different times
and they may even correspond to different elements

for the branches of the circuit.

The only invariant element is the topology
of the circuit i.e. the adjacency matrix.

Corollary. Under the same conditions as for Tellegen‘s theorem,¿
dr

dtr1
v(1)(t1),

ds

dts2
i(2)(t2)

À
= 0

for any r, s ∈ N.

In fact, even duality products between voltages and currents
in different domains (time or frequency) can be taken

and the result is still zero.



In terms of abstract network theory, a circuit can be represented as follows

Network: KVL+KCL

Element in branch 1

Element in branch 2

Element in branch b

v1

i1

v2 i2

vb

ib

The kth branch element
imposes a

constitutive relation
between vk and i

k.

May be linear or nonlinear,
algebraic or differential, . . .



Basic bond graph elements 
In bond graph theory, every element,

power continuous or not, is represented by a multiport.

Ports are connected by bonds.

The basic blocs of standard bond graph theory are

Integral relation between f and e

Integral relation between e and f

Algebraic relation between f and e

Fixes f independently of e

Fixes e independently of f

C-type elements1-ports:
I-type elements

power
discontinuousR-type elements

Effort sources
Flow sources

2-ports: Transformers
Gyrators

power continuous, make up the network
3-ports: 0-junctions

1-junctions



C
e

f

input power
convention

Constitutive relation through
a state variable q
called displacement.

q̇ = f

e = Φ−1C (q)

..
ΦC

sometimes indicated this way

C-type elements

C-type elements have a preferred computational direction, from f to e:

e(t) = (e(t0)− Φ−1C (0)) + Φ−1C

µZ t

t0

f(τ) dτ

¶
Examples: mechanical springs and electric capacitors

Φ−1C (q) =
q

C
Linear case:



I

Constitutive relation through
a state variable p
called momentum.

f = Φ−1I (p)
input power
convention

..
ΦI

e

f

sometimes indicated this way

ṗ = e

I-type elements

I-type elements have a preferred computational direction, from e to f :

f(t) = (f(t0)− Φ−1I (0)) +Φ−1I

µZ t

t0

e(τ) dτ

¶
Examples: mechanical masses and electric inductors

Φ−1I (p) =
p

I
Linear case:



R-type elements Direct algebraic constitutive relation
between e and f .

R

input power
convention

e

f e = ΦR(f)..
ΦR

sometimes indicated this way

Examples: electric resistor, viscous mechanical
damping, static torque-velocity relationships

Linear case: ΦR(f) = Rf



Effort sources
e does not depend on f

Se

output power
convention

e

f
e = E(t)

..
E

f is given by the system
to which the source is connected

Flow sources
f does not depend on e

Sf

output power
convention

e

f f = F (t)..
F

e is given by the system
to which the source is connected



Transformers

TF

input power convention

output power convention

e1 e2

f1 f2

e1 = τ · e2
τ · f1 = f2

transformer modulus τ > 0

It is power continuous: e1f1 − e2f2 = 0

..
τ

GY
input power convention

output power convention

e1 e2

f1 f2

e1 = τ · f2
τ · f1 = e2

gyrator modulus τ > 0

It is power continuous: e1f1 − e2f2 = 0

Gyrators

..
τ



0-junctions
e1 = e2 = e3

0
e1

e2

e3

f1

f2

f3

f1 + f2 + f3 = 0

It is power continuous:

−e1f1 − e2f2 − e3f3 = 0

Signs depend on power convention!

For instance, if
would still be

e1 = e2 = e3

0

but
f1 − f2 + f3 = 0

e1

e2

e3

f1

f2

f3

and

−e1f1 + e2f2 − e3f3 = 0



1-junctions 1-junction relations are dual to those of 0-junctions:

f1 = f2 = f3

1
e1

e2

e3

f1

f2

f3

e1 + e2 + e3 = 0

Again, this is power continuous:

−e1f1 − e2f2 − e3f3 = 0

0- and 1-junctions with an arbitrary number of bonds can be considered.

Notice that something like

can be simplified to0

but

cannot be simplified0



Some elements can be modulated.

This means that their parameters or constitutive relations
may depend on an external signal, carrying no power.

In bond graph theory, this is represented by an activated bond.

For instance, a modulated transformer is represented by

MTF

τ

Activated bonds appear frequently in 2D and 3D mechanical
systems, and when representing instruments.

Special values of the modulus are represented with special symbols.
For instance, a gyrator with τ = 1 is represented by

SGY



Flow sources, transformers and I-type elements
can be replaced by combinations of the other elements,

given rise to generalized bond graphs.

For instance,

GY C..
ΦC

..
τ

I..
ΦI

is equivalent to

with
Φ−1C (q) = τΦ−1I (τq)τq = p

Nevertheless, we will use them to keep things simpler.

Generalized bond graphs are, however, necessary
in order to make contact with port-Hamiltonian theory.



Energy relations
For any element with a bond with power

variables e and f , the energy variation from t0 to t is

H(t)−H(t0) =
Z t

t0

e(τ)f(τ) dτ

For C-type elements, e is a function of q and q̇ = f .

H(q)−H(q0) =
Z q

q0

Φ−1C (q̃) dq̃Changing variables from t to q,

H(q)−H(q0) =
1

2C
q2 − 1

2C
q20In the linear case,



For I-type elements, f is a function of p and ṗ = e.

H(p)−H(p0) =
Z p

p0

Φ−1I (p̃) dp̃Changing variables from t to p,

H(p)−H(p0) =
1

2I
p2 − 1

2I
p20In the linear case,

For R-type elements, e = ΦR(f) or f = Φ
−1
R (e). Then

H(t)−H(t0) =
Z t

t0

ΦR(f(τ))f(τ) dτ =

Z t

t0

e(τ)Φ−1R (e(τ)) dτ

If the R-element is a true dissipator, H(t)−H(t0) ≤ 0, ∀ t ≥ t0.

This means that the graph of ΦR must be
completely contained in the first and third quadrant.



Causality
A bond links two elements, one of which
sets the effort and the other one the flow.

The causality assigment procedure chooses who sets what for each bond.

Causality assigment is necessary to transform
the bond graph into computable code.

For each bond, causality is indicated by the causal stroke.

+A B

+A B

means that A sets e and B sets f

means that B sets e and A sets f



Elements with fixed causality

Sources set either the effort or the flow, so only a causality is possible:

Se Sf

In gyrators and transformers, the variable
relations allow only two causalities:

orTF TF

or GYGY



For 0-junctions, one of the bonds sets the effort
for the rest, so only one causal stroke is on the junction, while

the others are away from it:

0

00 0

0

For 1-junctions, one of the bonds sets the flow
for the rest, and its effort is computed from them, so all but one

of the causal strokes are on the junction, while
the remaining one is away from it:

1

0 1

1 1

TF



Elements with preferred causality
Energy-storing elements, I or C, have a preferred causality, associated

to the computation involving integrals instead of derivatives.

IC
This is called integral causality.

C-elements are given the flow and return the effort.

I-elements are given the effort and return the flow.

Differential causality is possible but not desirable:

Differentiation with respect to time implies knowledge of the future.

With differential causality, the response to an step input is unbounded.

Sometimes it is unavoidable and implies a reduction of state variables.



Elements with indifferent causality

R-type elements have, in principle, a causality
which can be set by the rest of the system:

R
e

f ..
ΦR

R
..
ΦR

e

f

f = Φ−1R (e) e = ΦR(f)

However, difficulty in writting either ΦR or Φ
−1
R

may favor one of the two causalities.

For instance, in mechanical ideal Coulomb friction, F can be
expressed as a function of v, but not the other way around.



Mechanical domain example
General rules:

Each velocity is associated with a 1-junction,
including a reference (inertial) one.

Masses are linked as I-elements to the corresponding 1-junctions.

Springs and dissipative elements are linked to 0-junctions
connecting appropriate 1-junctions.

The rest of elements are inserted and power orientations are choosen.

The reference velocity is eliminated.

The bond graph is simplified.

Causality is propagated.
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M1M2

k1k2

vref = 0

v2 v1

open port F

No friction

power orientation

C
..
1
k2

simplification

vref v2 v1

1 1 1

I :M2 I :M1

0 0

C : 1
k2

C : 1
k1

0-velocity reference

Sf
..
0

F



The final (acausal) bond graph is thus

C
..
1
k2

1

I :M2 I :M1

0

C : 1
k1

F
1

Causality propagation

Hence, all the storage elements get
an integral causality assignation.

1

2

3

4

5

6

7

Finally, we assign numbers to the bonds.

For each storage element, the state variable will be designed
with the same index as the bond.



e2 = −e1 − e3f1 = f2 = f3

C
..
1
k2

1

I :M2 I :M1

0

C : 1
k1

F
1

1

2

3

4

5

6

7

f4 = f3 − f5e3 = e4 = e5

e6 = e5 + e7f5 = f6 = f7

q̇1 = f1 e1 = k2q1
f2 =

1
M2
p2ṗ2 = e2

q̇4 = f4 e4 = k1q4
f6 =

1
M1
p6ṗ6 = e6

e7 = F

q̇1 = f1 = f2 =
1
M2
p2 (= v2)

ṗ2 = e2 = −e1 − e3 = −k2q1 − e4 = −k2q1 − k1q4
q̇4 = f4 = f3 − f5 = f2 − f6 = 1

M2
p2 − 1

M1
p6 (= v2 − v1)

ṗ6 = e6 = e5 + e7 = e4 + F = k1q4 + F

System of ODE
for analysis

and simulation



Energy balance

H(q1, p2, q4, p6) =
1
2k2q

2
1 +

1
2k1q

2
4 +

1
2M2

p22 +
1

2M1
p26

d

dt
H = k2q1q̇1 + k1q4q̇4 +

1

M2
p2ṗ2 +

1

M1
p6ṗ6

= k2q1

µ
1

M2
p2

¶
+ k1q4

µ
1

M2
p2 −

1

M1
p6

¶
+

1

M2
p2 (−k2q1 − k1q4) +

1

M1
p6 (k1q4 + F )

Ḣ = 1
M1
p6F = v1F

Since the spring k2 is to the left of the mass M2, it follows
from q̇1 = v2 that v2 is positive to the right.

Similarly, since the spring k1 is to the left of M1, it follows
from q̇4 = v2 − v1 that v1 is positive to the left.
Finally, from the later and ṗ6 = k1q1 + F one

deduces that F is positive to the left.

Hence, v1 and F have the same positive orientation
and v1F is the power into the system.



Multidomain example

xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx

dc/dc
r

dc motor

CI

bearings, γ

flywheel, J

command

We will model the converter as a modulated transformer,
and the dc motor as a gyrator.

In the electrical domain, a 0-junction is introduced for each voltage, and
everything is connected in between by means of 1-junctions.

0-junction ≡ parallel connection
In the electrical domain

1-junction ≡ series connection



Voltage nodes

xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx

Electric elements insertion
Velocities

FrictionFlywheel
Power convention

0

0

0 0

0

11 1 1

1

1C

R

Sf GY 1 1

Flywheel angular speed

Reference (= 0) angular speed

I

0

R

Reference voltage and velocity

zero velocity

MTF

We set to earth these two

After eliminating these three nodes and their bonds, several
simplifications can be carried out.



The final bond graph, with causal assignment and bond naming, is

R : r

0 11 GY..
g

5

6 7
Sf
..
I

C : C R : γ

I : J

τ(t)

MTF
1

2

3

4

8

9

e4 = e3
1

τ(t)

f3 = f4
1

τ(t)

e6 = gf7

e7 = gf6

Exercise

Write all the network and constitutive relations

Obtain the state space equations

Write down the energy balance equation



Next seminar

Storage and dissipation elements with
several ports.
Thermodynamic systems.
Dirac structures and bond graphs. 
Distributed systems.
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