
Introduction to boosted decision trees

Katherine Woodruff

Machine Learning Group Meeting

September 2017

1

Outline

1. Intro to BDTs
○ Decision trees
○ Boosting
○ Gradient boosting

2. When and how to use them
○ Common hyperparameters
○ Pros and cons

3. Hands-on tutorial
○ Uses xgboost library (python API)
○ See next slide

2

Before we start...

There are three options for following along:

1. Download the notebook from github and run it
○ You need Jupyter notebook, numpy, matplotlib, pandas installed
○ git clone https://github.com/k-woodruff/bdt-tutorial

○ The data used in the tutorial is included in the repository (only ~2MB)
○ Then just install xgboost (instructions are also in the notebook)

2. Copy the code from the notebook
○ If you don’t have Jupyter, but do have numpy, matplotlib, and pandas
○ Can install xgboost and copy the code directly from the notebook and execute it in an ipython session
○ https://github.com/k-woodruff/bdt-tutorial/blob/master/bdt_tutorial.ipynb
○ Can download the data here: https://github.com/k-woodruff/bdt-tutorial/tree/master/data

3. Just observe
○ If you don’t have and don’t want to install the python packages
○ You can follow along by eye from the link in option 2

3

The hands-on tutorial is in Jupyter notebook form and uses the XGBoost python API.

If you want to do 1 or 2 you should start the xgboost installation now.

https://github.com/k-woodruff/bdt-tutorial
http://xgboost.readthedocs.io/en/latest/build.html
https://github.com/k-woodruff/bdt-tutorial/blob/master/bdt_tutorial.ipynb
https://github.com/k-woodruff/bdt-tutorial/tree/master/data
http://jupyter.org/
http://xgboost.readthedocs.io/en/latest/python/python_api.html

Decision/regression trees

Structure:

● Nodes
○ The data is split based on a value of one of the input features at

each node
○ Sometime called “interior nodes”

● Leaves
○ Terminal nodes
○ Represent a class label or probability
○ If the outcome is a continuous variable it’s considered a “regression

tree”

4
[1] https://en.wikipedia.org/wiki/Decision_tree_learning

A decision tree takes a set of input features and splits input data
recursively based on those features.

https://en.wikipedia.org/wiki/Decision_tree_learning

Decision/regression trees

Learning:

● Each split at a node is chosen to maximize information gain or
minimize entropy
○ Information gain is the difference in entropy before and after the

potential split
○ Entropy is max for a 50/50 split and min for a 1/0 split

● The splits are created recursively
○ The process is repeated until some stop condition is met
○ Ex: depth of tree, no more information gain, etc...

5

A decision tree takes a set of input features and splits input data
recursively based on those features.

Tree boosting

Usually:

● Each tree is created iteratively
● The tree’s output (h(x)) is given a weight (w) relative to its accuracy
● The ensemble output is the weighted sum:

● After each iteration each data sample is given a weight based on its misclassification
○ The more often a data sample is misclassified, the more important it becomes

● The goal is to minimize an objective function

○ is the loss function --- the distance between the truth and the prediction of the ith sample
○ is the regularization function --- it penalizes the complexity of the tth tree

6

Boosting is a method of combining many weak learners (trees) into a strong classifier.

[1] https://en.wikipedia.org/wiki/Boosting_(machine_learning)

https://en.wikipedia.org/wiki/Boosting_(machine_learning)

Types of boosting
There are many different ways of iteratively adding learners to minimize a loss function.

Some of the most common:

● AdaBoost
○ “Adaptive Boosting”
○ One of the originals
○ Freund and Schapire: http://www.sciencedirect.com/science/article/pii/S002200009791504X

● Gradient Boosting
○ Uses gradient descent to create new learners
○ The loss function is differentiable
○ Friedman: https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

● XGBoost
○ “eXtreme Gradient Boosting”
○ Type of gradient boosting
○ Has become very popular in data science competitions
○ Chen and Guestrin: https://arxiv.org/abs/1603.02754

7

[1] https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting
[2] https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-boosting-algorithms-machine-learning/

http://www.sciencedirect.com/science/article/pii/S002200009791504X
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://arxiv.org/abs/1603.02754
https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting
https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-boosting-algorithms-machine-learning/

Tunable parameters
Common tree parameters:

These parameters define the end condition for building a new
tree. They are usually tuned to increase accuracy and prevent
overfitting.

● Max. depth: how tall a tree can grow
○ Usually want < 10
○ Sometimes defined by number of leaves

● Max. features: how many features can be used to build a
given tree
○ Features are randomly selected from total set
○ The tree doesn’t have to use all of the available features

● Min. samples per leaf: how many samples are required
to make a new leaf
○ Usually want < 1% of data
○ Sometimes defined by samples per split

8

de
pt

h
=

 3

Tunable parameters

9

Common boosting parameters:

● Loss function: How to define the distance between the
truth and the prediction
○ Use binary logistic when you have two classes

● Learning rate: how much to adjust data weights after
each iteration
○ Smaller is better but slower
○ Somewhere around 0.1

● Subsample size: How many samples to train each new
tree
○ Data samples are randomly selected each iteration

● Number of trees: How many total trees to create
○ This is the same as the number of iterations
○ Usually more is better, but could lead to overfitting

iterations

[1] https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/

https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/

Pros and cons of using boosted trees
Benefits:

● Fast
○ Both training and prediction is fast

● Easy to tune
● Not sensitive to scale

○ The features can be a mix of categorical and continuous data
● Good performance

○ Training on the residuals gives very good accuracy
● Lots of available software

○ Boosted tree algorithms are very commonly used
○ There is a lot of well supported, well tested software available.

Problems:

● Sensitive to overfitting and noise
○ Should always crossvalidate!
○ Modern software libraries have tools to avoid overfitting

10

Thanks!

11

