
© 2006 Wouter Verkerke, NIKHEF

Introduction to C++
and Object Oriented Programming

Wouter Verkerke (NIKHEF)

v60 – Edition for 2018 Master Course

© 2006 Wouter Verkerke, NIKHEF

Introduction and Overview

Introduction
& Overview 0

© 2006 Wouter Verkerke, NIKHEF

Programming, design and complexity

•  The goal of software – to solve a particular problem
–  E.g. computation of numeric problems, maintaining an organized

database of information, finding the Higgs etc..

•  Growing computational power in the last decades has
allowed us to tackle more and more complex problems

•  As a consequence software has also grown more
powerful and complex
–  For example Microsoft Windows OS, last generation video games,

often well over 1.000.000 lines of source code
–  Growth also occurs in physics: e.g. collection of software packages

for reconstruction/analysis of the BaBar experiment is ~6.4M lines
of C++

•  How do we deal with such increasing complexity?

© 2006 Wouter Verkerke, NIKHEF

Programming philosophies

•  Key to successfully coding complex systems is break
down code into smaller modules and minimize the
dependencies between these modules

•  Traditional programming languages (C, Fortran, Pascal)
achieve this through procedure orientation
–  Modularity and structure of software revolves around ‘functions’

encapsulate (sub) algorithms
–  Functions are a major tool in software structuring but leave a few

major design headaches

•  Object-oriented languages (C++, Java,…) take this
several steps further
–  Grouping data and associated functions into objects
–  Profound implications for modularity and dependency reduction

© 2006 Wouter Verkerke, NIKHEF

What are objects

•  ‘Software objects’ are often found naturally in real-life
problems

•  Object oriented programming à Finding these objects
and their role in your problem

Button object Check box object

Drop box object

Dialog box
object

© 2006 Wouter Verkerke, NIKHEF

What are objects

•  An object has
–  Properties : position, shape, text label

–  Behavior : if you click on the ‘Cancel button’ a defined action occurs

Button object Check box object

Drop box object

Dialog box
object

© 2006 Wouter Verkerke, NIKHEF

Relating objects

•  Object-Oriented Analysis and Design seeks the relation
between objects
–  ‘Is-A’ relationship (a PushButton Is-A ClickableObject)

–  ‘Has-A’ relationship (a DialogBox Has-A CheckBox)

Button object Check box object

Drop box object

Dialog box
object

© 2006 Wouter Verkerke, NIKHEF

Benefits of Object-Oriented programming

•  Benefits of Object-oriented programming
–  Reuse of existing code – objects can represent generic problems

–  Improved maintainability – objects are more self contained than
‘subroutines’ so code is less entangled

–  Often a ‘natural’ way to describe a system – see preceding
example of dialog box

•  But…
–  Object oriented modeling does not substitute for sound thinking

–  OO programming does not guarantee high performance, but it
doesn’t stand in its way either

•  Nevertheless

–  OO programming is currently the best way we know
to describe complex systems

© 2006 Wouter Verkerke, NIKHEF

Basic concept of OOAD

•  Object-oriented programming revolves around
abstraction of your problem.
–  Separate what you do from how you do it

•  Example – PushButton object

PushButton is a complicated
piece of software – Handling
of mouse input, drawing
of graphics etc..

Nevertheless you can use a
PushButton object and don’t
need to know anything about
that. Its public interface can
be very simple: My name is
‘cancel’ and I will call function
doTheCancel() when I get
clicked

© 2006 Wouter Verkerke, NIKHEF

Techniques to achieve abstraction

•  Abstraction is achieved through

1.   Modularity

2.   Encapsulation

3.   Inheritance

4.   Polymorphism

© 2006 Wouter Verkerke, NIKHEF

Modularity

•  Decompose your problem logically in independent units
–  Minimize dependencies between units – Loose coupling

–  Group things together that have logical connection – Strong cohesion

•  Example
–  Grouping actions and properties of a bank account together

long getBalance()
void print()
void calculateInterest()

char* ownersName
long accountNumber
long accountBalance

Account

© 2006 Wouter Verkerke, NIKHEF

Encapsulation

•  Separate interface and implementation and shield
implementation from object ‘users’

long getBalance()
void print()
void calculateInterest()

char* ownersName
long accountNumber
long accountBalance

Account

interface

implementation
(not visible from outside)

© 2006 Wouter Verkerke, NIKHEF

Inheritance

•  Describe new objects in terms of existing objects

•  Example of mortgage account

long getBalance()
void print()
void calculateInterest()

char* ownersName
long accountNumber
long accountBalance

Account

interface

implementation
(not visible from outside)

char* collateralObject
long collateralValue

MortgageAccount

© 2006 Wouter Verkerke, NIKHEF

Polymorphism

•  Polymorphism is the ability to treat objects of different
types the same way
–  You don’t know exactly what object you’re dealing with but you

know that you can interact with it through a standardized
interface

–  Requires some function call decisions to be taken at run time

•  Example with trajectories
–  Retrieve position at a flight length of 5 cm

–  Same interface works for different objects with identical interface

Point p = Traj->getPos(5.0)

LineTrajectory HelixTrajectory

© 2006 Wouter Verkerke, NIKHEF

Introduction to C++

•  Wide choice of OO-languages – why program in C++?
–  It depends on what you need…

•  Advantage of C++ – It is a compiled language
–  When used right the fastest of all OO languages
–  Because OO techniques in C++ are resolved and implemented at compile

time rather than runtime so
•  Maximizes run-time performance
•  You don’t pay for what you don’t use

•  Disadvantage of C++ – syntax more complex
–  Also, realizing performance advantage not always trivial

•  C++ best used for large scale projects where performance
matters
–  C++ rapidly becoming standard in High Energy Physics for mainstream data

processing, online data acquisition etc…
–  Nevertheless, if your program code will be O(100) lines and performance is

not critical C, Python, Java may be more efficient

Versions of C++

•  C++ is a ‘living language’ that evolves over time.

•  This course is largely based on the 2003 standard of C++

•  LHC experiments are now largely adopting C++ compilers
that implement the 2011 standard of C++, which brings
useful new features
–  E.g. Auto types, range-based for loops, lambdas, constructor

delegation, tuples, hash tables and pointer memory management

–  I will cover a subset of these C++2011 features in this course,
and explicitly point out the features that are only available in C+
+2011

•  For the GNU compilers (gcc/g++) some of the C++2011
features are implement starting in version 4.4, with
almost all features implemented in 4.7
–  In gcc 4.[3456] must add flag ‘-std=c++0x’ to activate

–  In gcc 4.[78] must add flag ‘-std=c++11’ to activate

© 2006 Wouter Verkerke, NIKHEF

© 2006 Wouter Verkerke, NIKHEF

Outline of the course

1.  Introduction and overview

2.  Basics of C++

3.  Modularity and Encapsulation – Files and Functions

4.  Class Basics

5.  Object Analysis and Design

6.  The Standard Library I – Using IOstreams

7.  Generic Programming – Templates

8.  The Standard Library II – The template library

9.  Object Orientation – Inheritance & Polymorphism

10. Robust programming – Exception handling

11. Where to go from here

© 2006 Wouter Verkerke, NIKHEF

The basics of C++

The basics
of C++ 1

© 2006 Wouter Verkerke, NIKHEF

“Hello world” in C++

•  Lets start with a very simple C++ program

// my first program in C++
#include <iostream>

int main () {
 std::cout << "Hello World!“ << std::endl;
 return 0;
}

© 2006 Wouter Verkerke, NIKHEF

“Hello world” in C++

•  Lets start with a very simple C++ program

// my first program in C++
#include <iostream>

int main () {
 std::cout << "Hello World!“ << std::endl;
 return 0;
} Anything on line after // in C++ is

considered a comment

© 2006 Wouter Verkerke, NIKHEF

“Hello world” in C++

•  Lets start with a very simple C++ program

•  The preprocessor of a C(++) compiler processes the
source code before it is passed to the compiler. It can:
–  Include other source files (using the #include directive)

–  Define and substitute symbolic names (using the #define directive)

–  Conditionally include source code (using the #ifdef, #else, #endif
directives)

// my first program in C++
#include <iostream>

int main () {
 std::cout << "Hello World!“ << std::endl;
 return 0;
}

Lines starting with # are directives for the
preprocessor

Here we include some standard function

and type declarations of objects defined by
the ‘iostream’ library

© 2006 Wouter Verkerke, NIKHEF

“Hello world” in C++

•  Let start with a very simple C++ program

•  The main() function is the default function where all C++
programs begin their execution.
–  In this case the main function takes no input arguments and returns

an integer value

–  You can also declare the main function to take arguments which will
be filled with the command line options given to the program

// my first program in C++
#include <iostream>

int main () {
 std::cout << "Hello World!“ << std::endl;
 return 0;
}

Beginning of the main()
function declaration.

© 2006 Wouter Verkerke, NIKHEF

“Hello world” in C++

•  Lets start with a very simple C++ program

•  The names std::cout and std::endl are declared in the
‘header file’ included through the ‘#include <iostream>’
preprocessor directive.

•  The std::endl directive represents the ‘carriage return / line
feed’ operation on the terminal

// my first program in C++
#include <iostream>

int main () {
 std::cout << "Hello World!“ << std::endl;
 return 0;
}

Use iostream library objects
to print string to standard

output

© 2006 Wouter Verkerke, NIKHEF

“Hello world” in C++

•  Lets start with a very simple C++ program

•  The return value of the main() function is passed back to
the operating system as the ‘process exit code’

// my first program in C++
#include <iostream>

int main () {
 std::cout << "Hello World!“ << std::endl;
 return 0;
} The return statement passes

the return value back to the
calling function

© 2006 Wouter Verkerke, NIKHEF

Compiling and running ‘Hello World’

•  Example using Linux, (t)csh and g++ compiler

unix> g++ -o hello hello.cc

unix> ./hello
Hello World!

unix> echo $status
0

Run executable ‘hello’

Convert c++ source code
into executable

Print exit code of last
run process (=hello)

© 2006 Wouter Verkerke, NIKHEF

Outline of this section

•  Jumping in: the ‘hello world’ application

•  Review of the basics
–  Built-in data types

–  Operators on built-in types

–  Control flow constructs

–  More on block {} structures

–  Dynamic Memory allocation

int main() {
 int a = 3 ;
 float b = 5 ;

 float c = a * b + 5 ;

 if (c > 10) {
 return 1 ;
 }

 return 0 ;
}

© 2006 Wouter Verkerke, NIKHEF

Review of the basics – built-in data types

•  C++ has only few built-in data types

•  More complex types are available in the ‘Standard Library’
–  A standard collection of tools that is available with every compiler

–  But these types are not fundamental as they're implement using standard C++

–  We will get to this soon

type name type description
char ASCII character, 1 byte
int,
signed int, unsigned int,
short int, long int

Integer. Can be signed, unsigned, long or
short. Size varies and depends on CPU
architecture (2,4,8 bytes)

float, double Floating point number, single and double
precision

bool Boolean, can be true or false (1 byte)
enum Integer with limited set of named states

enum fruit { apple,pear,citrus }, or
enum fruit { apple=0,pear=1,citrus}

© 2006 Wouter Verkerke, NIKHEF

Defining data objects – variables

•  Defining a data object can be done in several ways

•  Data objects declared can also be declared constant

int main() {
 int j ; // definition – initial value undefined
 int k = 0 ; // definition with assignment initialization
 int l(0) ; // definition with constructor initialization

 int m = k + l ; // initializer can be any valid C++ expression

 int a,b=0,c(b+5); // multiple declaration – a,b,c all integers
}

int main() {
 const float pi = 3.14159268 ; // constant data object
 pi = 2 ; // ERROR – doesn’t compile
}

Auto declaration type (C++ 2011)

•  In C++ 2011, you can also omit an explicit type in
declarations of objects that are immediately initialized

•  In these cases the type is deduced from the initializer

© 2006 Wouter Verkerke, NIKHEF

auto j = 16 ; // j is integer
auto j = 2.3 ; // j is double
auto j = true ; // j is bool

© 2006 Wouter Verkerke, NIKHEF

Arrays

•  C++ supports 1-dimensional and N-dimensional arrays
–  Definition

–  Array dimensions in definition must be constants

–  First element’s index is always 0

–  Assignment initialization possible

Type name[size] ;
Type name[size1][size2]…[sizeN] ;

float x[3] ; // OK

const int n=3 ;
float x[n] ; // OK

int k=5 ;
float x[k] ; // ERROR!

float x[3] = { 0.0, 5.7 , 2.3 } ;
float y[2][2] = { 0.0, 1.0, 2.0, 3.0 } ;
float y[3] = { 1.0 } ; // Incomplete initialization OK

© 2006 Wouter Verkerke, NIKHEF

Declaration versus definition of data

•  Important fine point: definition of a variable is two actions
1.  Allocation of memory for object
2.  Assigning a symbolic name to that memory space

–  C++ symbolic name is a way for programs to give understandable
names to segments of memory

–  But it is an artifact: no longer exists once the program is compiled

Memory layout C++ symbol name space

int myArray[5]

float x

char name[256]

© 2006 Wouter Verkerke, NIKHEF

References

•  C++ allows to create ‘alias names’, a different symbolic
name referencing an already allocated data object
–  Syntax: ‘Type& name = othername’

–  References do not necessarily allocate memory

•  Example

–  Concept of references will become more interesting when we’ll
talk about functions

int x ; // Allocation of memory for int
 // and declaration of name ‘x’
int& y = x ; // Declaration of alias name ‘y’
 // for memory referenced by ‘x’

x = 3 ;
cout << x << endl ; // prints ‘3’
cout << y << endl ; // also prints ‘3’

© 2006 Wouter Verkerke, NIKHEF

References

•  Illustration C++ of reference concept
–  Reference is symbolic name that points to same memory as

initializer symbol

Memory layout C++ symbol name space

int myArray[5]

float x

char name[256]

float& y = x

© 2006 Wouter Verkerke, NIKHEF

Pointers

•  Pointer is a variable that contains a memory address
–  Somewhat similar to a reference in functionality, but fundamentally

different in nature: a pointer is always an object in memory itself

–  Definition: ‘TYPE* name’ makes pointer to data of type TYPE

Memory layout C++ symbol name space

int myArray[5]

float x

char name[256]

float* y = &x

float& y = x

© 2006 Wouter Verkerke, NIKHEF

Pointers

•  Working with pointers
–  Operator & takes memory address of symbol object (=pointer value)

–  Operator * turns memory address (=pointer value) into symbol object

•  Creating and reading through pointers

•  Modifying pointers and objects pointed to

int x = 3, y = 4 ;
int* px ; // allocate px of type ‘pointer to integer’
px = &x ; // assign ‘memory address of x’ to pointer px

cout << px << endl ; // Prints 0x3564353, memory address of x
cout << *px << endl ;// Prints 3, value of x, object pointed to by px

*px = 5 ; // Change value of object pointed to by px (=x) ;
cout << x << endl ; // Prints 5 (since changed through px)
px = &y ; // Reseat pointer to point to symbol named ‘y’

cout << px << endl ; // Prints 0x4863813, memory address of y
cout << *px << endl ;// Prints 4, value of y, object pointed to by px

© 2006 Wouter Verkerke, NIKHEF

Pointers continued

•  Pointers are also fundamentally related to arrays

•  Pointer (pa+1) points to next element of an array
–  This works regardless of the type in the array

–  In fact a itself is a pointer of type int* pointing to a[0]

•  The Basic Rule for arrays and pointers
–  a[i] is equivalent to *(a+i)

int a[3] = { 1,2,3} ; // Allocates array of 3 integers
int* pa = &a[0] ; // Pointer pa now points to a[0]

cout << *pa << endl ; // Prints ‘1’
cout << *(pa+1) << endl ; // Prints ‘2’

© 2006 Wouter Verkerke, NIKHEF

Some details on the block {} statements

•  Be sure to understand all consequences of a block {}
–  The lifetime of automatic variables inside the block is limited to

the end of the block (i.e up to the point where the } is
encountered)

–  A block introduces a new scope : it is a separate namespace in
which you can define new symbols, even if those names already
existed in the enclosing block

int main() {
 int i = 1 ;

 if (x>0) {
 int i = 0 ;
 // code
 } else {
 // code
 }
}

Memory for
‘int i’ allocated

Memory for
‘int i’ released

© 2006 Wouter Verkerke, NIKHEF

Dynamic memory allocation

•  Allocating memory at run-time
–  When you design programs you cannot always determine how

much memory you need

–  You can allocate objects of unknown size at compile time using
the ‘free store’ of the C++ run time environment

•  Basic syntax of runtime memory allocation
–  Operator new allocates single object, returns pointer

–  Operator new[] allocates array of objects, returns pointer

// Single object
Type* ptr = new Type ;
Type* ptr = new Type(initValue) ;

// Arrays of objects
Type* ptr = new Type[size] ;
Type* ptr = new Type[size1][size2]…[sizeN] ;

Releasing dynamic memory allocation

•  Operator delete releases dynamic memory previously
allocated with new

–  Be sure to use delete[] for allocated arrays. A mismatch will
result in an incomplete memory release

–  The delete operator only deletes memory that the pointer
points to, not pointer itself

–  Every call to new must be matched with a call to a delete

•  How much memory is available in the free store?
–  As much as the operating system lets you have
–  If you ask for more than is available your program will terminate

in the new operator
–  It is possible to intercept this condition and continue the program

using ‘exception handling’ (we’ll discuss this later)

// Single object
delete ptr ;

// Arrays of objects
delete[] ptr ;

© 2006 Wouter Verkerke, NIKHEF

Dynamic memory and leaks

•  A common problem in programs are memory leaks
–  Memory is allocated but never released even when it is not used

anymore

–  Example of leaking code

void leakFunc() {
 int* array = new int[1000] ;
 // do stuff with array
}

int main() {
 int i ;
 for (i=0 ; i<1000 ; i++) {
 leakFunc() ; // we leak 4K at every call
 }
}

Leak happens right here
we loose the pointer array
here and with that our only
possibility to release its memory
in future

© 2006 Wouter Verkerke, NIKHEF

Dynamic memory and leaks

•  Another scenario to leak memory
–  Misunderstanding between two functions

int* allocFunc() {
 int* array = new int[1000] ;
 // do stuff with array
 return array ;
}

int main() {
 int i ;
 for (i=0 ; i<1000 ; i++) {
 allocFunc() ;
 }
}

allocFunc() allocates memory
but pointer as return value
memory is not leaked yet

Author of main() doesn’t know
that it is supposed to delete
array returned by allocFunc()

Leak occurs here, pointer to dynamically
allocated memory is lost before memory
is released

© 2006 Wouter Verkerke, NIKHEF

Dynamic memory and ownership

•  Avoiding leaks is a matter of good bookkeeping
–  All memory allocated should be released after use

•  Memory handling logistics usually described in terms of
ownership
–  The ‘owner’ of dynamically allocated memory is responsible for

releasing the memory again

–  Ownership is a ‘moral concept’, not a C++ syntax rule. Code
that never releases memory it allocated is legal, but may not work
well as program size will increase in an uncontrolled way over
time

–  Document your memory management code in terms of ownership

© 2006 Wouter Verkerke, NIKHEF

Dynamic memory allocation

•  Example of dynamic memory allocation with ownership
semantics
–  Less confusion about division of responsabilities

 int* makearray(int size) {
 // NOTE: caller takes ownership of memory
 int* array = new int[size] ;

 int i ;
 for (i=0 ; i<size ; i++) {
 array[i] = 0 ;
 }
 return array;
}

int main() {
 // Note: We own array
 int* array = makearray(1000) ;

 delete[] array ;
}

© 2006 Wouter Verkerke, NIKHEF

Files and Functions

Files and
Functions 2

© 2006 Wouter Verkerke, NIKHEF

Structured programming – Functions

•  Functions group statements into logical units
–  Functions encapsulate algorithms

•  Declaration

•  Definition:

•  Ability to declare function separate from definition important
–  Allows to separate implementation and interface
–  But also solves certain otherwise intractable problems

TYPE function_name(TYPE arg1, TYPE arg2, …, TYPE argN) ;

TYPE function_name(TYPE arg1, TYPE arg2, …, TYPE argN) {
 // body
 statements ;
 return arg ;
}

© 2006 Wouter Verkerke, NIKHEF

Forward declaration of functions

•  Example of trouble using function definitions only

–  Reversing order of definition doesn’t solve problem

–  But forward declaration does solve it:

int g() {
 f() ; // g calls f – ERROR, f not known yet
}

int f() {
 g() ; // f calls g – OK g is defined
}

int f(int x) ;

int g() {
 f(x*2) ; // g calls f – OK f declared now
}

int f(int x) {
 g() ; // f calls g – OK g defined by now
}

© 2006 Wouter Verkerke, NIKHEF

Function arguments – values

•  By default all functions arguments are passed by value
–  Function is passed copies of input arguments

–  Allows function to freely modify inputs without consequences

–  Note: potentially expensive, because passing large objects
(arrays) by value is expensive!

a and b in swap() are copies of
a and b in main()

void swap(int a, int b) ;

int main() {
 int a=3, b=5 ;
 swap(a,b) ;
 cout << “a=“ << a << “, b=“ << b << endl ;
}

void swap(int a, int b) {
 int tmp ;
 tmp = a ;
 a = b ;
 b = tmp ;
}
// outputs: “a=3, b=5”

© 2006 Wouter Verkerke, NIKHEF

Function arguments – references

•  You can change this behavior by passing references as
input arguments

–  Passing by reference is inexpensive, regardless of size of object
–  But allows functions to modify input arguments which may have

potentially further consequences

a and b in swap() are references to
original a and b in main(). Any operation
affects originals

void swap(int& a, int& b) ;

int main() {
 int a=3, b=5 ;
 swap(a,b) ;
 cout << “a=“ << a << “, b=“ << b << endl ;
}

void swap(int& a, int& b) {
 int tmp ;
 tmp = a ;
 a = b ;
 b = tmp ;
}
// outputs: “a=5, b=3”

© 2006 Wouter Verkerke, NIKHEF

Function arguments – const references

•  Functions with ‘const references’ take references but
promise not to change the object

•  Use const references instead of ‘pass-by-value’ when
you are dealing with large objects that will not be
changed
–  Low overhead (no copying of large objects)

–  Input value remains unchanged (thanks to const promise)

void swap(const int& a, const int& b) {
 int tmp ;
 tmp = a ; // OK – does not modify a
 a = b ; // COMPILER ERROR – Not allowed
 b = tmp ; // COMPILER ERROR – Not allowed
}

© 2006 Wouter Verkerke, NIKHEF

Function arguments – pointers

•  You can of course also pass pointers as arguments

–  Syntax more cumbersome, use references when you can, pointers
only when you have to

a and b in swap() are pointers to
original a and b in main(). Any operation
affects originals

void swap(int* a, int* b) ;

int main() {
 int a=3, b=5 ;
 swap(&a,&b) ;
 cout << “a=“ << a << “, b=“ << b << endl ;
}

void swap(int* a, int* b) {
 int tmp ;
 tmp = *a ;
 *a = *b ;
 *b = tmp ;
}

// outputs: “a=5, b=3”

© 2006 Wouter Verkerke, NIKHEF

Function arguments – main() and the command line

•  If you want to access command line arguments you can
declare main() as follows

–  Second argument is array of pointers

•  Output of example program

int main(int argc, const char* argv[]) {
 int i ;
 for (i=0 ; i<argc ; i++) {
 // argv[i] is ‘char *’
 cout << “arg #” << i << “ = “ << argv[i] << endl ;
 }
}

unix> cc –o foo foo.cc
unix> foo Hello World
arg #0 = foo
arg #1 = Hello
arg #2 = World

Array of (char*)

© 2006 Wouter Verkerke, NIKHEF

Functions – default arguments

•  Often algorithms have optional parameters with default values
–  How to deal with these in your programs?

•  Simple: in C++ functions, arguments can have default values

•  Rules for arguments with default values
–  Default values can be literals, constants, enumerations or statics

–  Positional rule: all arguments without default values must appear to the left
of all arguments with default values

void f(double x = 5.0) ;
void g(double x, double y=3.0) ;
const int defval=3 ;
void h(int i=defval) ;

int main() {
 double x(0.) ;

 f() ; // calls f(5.0) ;
 g(x) ; // calls g(x,3.0) ;
 g(x,5.0) ; // calls g(x,5.0) ;
 h() ; // calls h(3) ;
}

© 2006 Wouter Verkerke, NIKHEF

Function overloading

•  Often algorithms have different implementations with
the same functionality

–  The minimum3 algorithm would be easier to use if both
implementations had the same name and the compiler would
automatically select the proper implementation with each use

int minimum3_int(int a, int b, int c) {
 return (a < b ? (a < c ? a : c) : (b < c ? b : c)) ;
}

float minimum3_float(float a, float b, float c) {
 return (a < b ? (a < c ? a : c) : (b < c ? b : c)) ;
}

int main() {
 int a=3,b=5,c=1 ;
 float x=4.5,y=1.2,z=-3.0 ;

 int d = minimum3_int(a,b,c) ;
 float w = minimum3_float(x,y,z) ;
}

© 2006 Wouter Verkerke, NIKHEF

Function overloading

•  C++ function overloading does exactly that
–  Reimplementation of example with function overloading

int minimum3(int a, int b, int c) {
 return (a < b ? (a < c ? a : c)
 : (b < c ? b : c)) ;
}

float minimum3 (float a, float b, float c) {
 return (a < b ? (a < c ? a : c)
 : (b < c ? b : c)) ;
}

int main() {
 int a=3,b=5,c=1 ;
 float x=4.5,y=1.2,z=-3.0 ;

 int d = minimum3(a,b,c) ;
 float w = minimum3(x,y,z) ;
}

Overloaded
functions have
same name,
but different
signature
(list of arguments)

Code calls same function name
twice. Compiler selects appropriate
overloaded function based on
argument list

© 2006 Wouter Verkerke, NIKHEF

Organizing your code into modules

•  For all but the most trivial programs it is not convenient
to keep all C++ source code in a single file
–  Split source code into multiple files

•  Module: unit of source code offered to the compiler
–  Usually module = file

•  How to split your code into files and modules
1.  Group functions with related functionality into a single file

•  Follow guide line ‘strong cohesion’, ‘loose coupling’

•  Example: a collection of char* string manipulation functions go together in a single
module

2.  Separate declaration and definition in separate files
•  Declaration part to be used by other modules that interact with given module

•  Definition part only offered once to compiler for compilation

© 2006 Wouter Verkerke, NIKHEF

Typical layout of a module

•  Declarations file

•  Definitions file

// capitalize.hh
void convertUpper(char* str) ;
void convertLower(char* str) ;

// capitalize.cc
#include “capitalize.hh”
void convertUpper(char* ptr) {
 while(*ptr) {
 if (*ptr>=‘a’&&*ptr<=‘z’) *ptr -= ‘a’-’A’ ;
 ptr++ ;
 }
}
void convertLower(char* ptr) {
 while(*ptr) {
 if (*ptr>=‘A’&&*ptr<=‘Z’) *ptr += ‘a’-’A’ ;
 ptr++ ;
 }
}

Declarations

Definitions

© 2006 Wouter Verkerke, NIKHEF

Using the preprocessor to include declarations

•  The C++ preprocessor #include directive can be used
to include declarations from an external module

•  But watch out for multiple inclusion of same source file
–  Multiple inclusion can have unwanted effects or lead to errors

–  Preferred solution: add safeguard in .hh file that gracefully
handles multiple inclusions

•  rather than rely on cumbersome bookkeeping by module programming

// demo.cc

#include “capitalize.hh”

int main(int argc, const char* argv[]) {
 if (argc!=2) return 0 ;
 convertUpper(argv[1]) ;
 cout << argv[1] << endl ;
}

© 2006 Wouter Verkerke, NIKHEF

Safeguarding against multiple inclusion

•  Automatic safeguard against multiple inclusion
–  Use preprocessor conditional inclusion feature

#ifndef NAME
(#else)
#endif

–  NAME can be defined with #define

•  Application in capitalize.hh example
–  If already included, CAPITALIZE_HH is set and future inclusion will

be blank

// capitalize.hh
#ifndef CAPITALIZE_HH
#define CAPITALIZE_HH

void convertUpper(char* str) ;
void convertLower(char* str) ;

#endif

© 2006 Wouter Verkerke, NIKHEF

Namespaces

•  Single global namespace often bad idea
–  Possibility for conflict: someone else (or even you inadvertently)

may have used the name want you use in your new piece of code
elsewhere à Linking and runtime errors may result

–  Solution: make separate ‘namespaces’ for unrelated modules of
code

•  The namespace feature in C++ allows you to explicitly
control the scope of your symbols
–  Syntax: namespace name {

 int global = 0 ;

 void func() {
 // code
 cout << global << endl ;
 }

}

Code can access symbols
inside same namespace
without further qualifications

© 2006 Wouter Verkerke, NIKHEF

Namespaces

•  But code outside namespace must explicitly use scope
operator with namespace name to resolve symbol

namespace foo {

 int global = 0 ;

 void func() {
 // code
 cout << global << endl ;
 }

}

void bar() {
 cout << foo::global << endl ;

 foo::func() ;
}

Namespace applies to functions too!

© 2006 Wouter Verkerke, NIKHEF

Namespace rules

•  Namespace declaration must occur at the global level

•  Namespaces are extensible

void function foo() {
 namespace bar {
 statements ;
 }
}

ERROR!

namespace foo {
 int bar = 0 ;
}

// other code

namespace foo {
 int foobar = 0 ;
}

Legal

© 2006 Wouter Verkerke, NIKHEF

Namespace rules

•  Namespaces can nest

namespace foo {
 int zap = 0 ;

 namespace bar {
 int foobar = 0 ;
 }

}

int main() {
 cout << foo::zap << endl ;
 cout << foo::bar::foobar << endl ;
}

Legal

Recursively use :: operator to resolve nested namespaces

© 2006 Wouter Verkerke, NIKHEF

Namespace rules

•  Namespaces can be unnamed!
–  Primary purpose: to avoid ‘leakage’ of private global symbols from

module of code

namespace {
 int bar = 0 ;
}

void func() {
 cout << bar << endl ;
}

Code in same module outside unnamed namespace
can access symbols inside unnamed namespace

© 2006 Wouter Verkerke, NIKHEF

Namespaces and the Standard Library

•  All symbols in the Standard library are wrapped in the
namespace ‘std’

•  The ‘Hello world’ program revisited:

// my first program in C++
#include <iostream>

int main () {
 std::cout << "Hello World!“ << std::endl;
 return 0;
}

© 2006 Wouter Verkerke, NIKHEF

Using namespaces conveniently

•  It is possible to import symbols from a given
namespace into the current scope
–  To avoid excessive typing and confusing due to repeated lengthy

notation

–  Can also import symbols in a local scope. In that case import valid
only inside local scope

// my first program in C++
#include <iostream>
using std::cout ;
using std::endl ;

int main () {
 cout << "Hello World!“ << endl;
 return 0;
}

Import selected symbols into global namespace

Imported symbols can now be used
without qualification in this module

© 2006 Wouter Verkerke, NIKHEF

Using namespaces conveniently

•  You can also import the symbol contents of an entire
namespace

•  Style tip: If possible only import symbols you need

// my first program in C++
#include <iostream>
using namespace std ;

int main () {
 cout << "Hello World!“ << endl;
 return 0;
}

© 2006 Wouter Verkerke, NIKHEF

The standard library as example

•  Each C++ compiler comes with a standard suite of
libraries that provide additional functionality
–  <math> -- Math routines sin(),cos(),exp(),pow(),…

–  <stdlib> -- Standard utilities strlen(),strcat(),…

–  <stdio> -- File manipulation utilities open(),write(),close(),…

•  Nice example of modularity and use of namespaces
–  All Standard Library routines are contained in namespace std

Debugging tips – Crashes etc...

•  Your program crashes – How do you analyze this
–  Recompile your program with the ‘-g’ flag

(i.e. g++ -g –o blah blah.c).
•  This will preserve source code line-number information in the executable

–  Rerun your program in the debugger:
unix> gdb blah
gdb> run <command line args for blah, if any, go here>

(wait for crash)

gdb> where
(shows line of code where crash occurred)

 gdb> quit
(exits the debugger)

© 2006 Wouter Verkerke, NIKHEF

Debugging tips – Memory leaks, corruption etc

•  You want to check that no memory leaks occur, no
memory corruption occurs (e.g. writing beyond
boundaries of arrays etc...)
–  Recompile your program with the ‘-g’ flag

(i.e. g++ -g –o blah blah.c).
•  This will preserve source code line-number information in the executable

–  Rerun your problem with valgrind
unix> valgrind blah

–  If memory corruption occurs, ERRORs will be printed in report
(along with line numbers in code)

–  If memory leakage occurs, only total amount leaked is shown. To
show report with details (where memory was allocated that was
not deleted), rerun
unix> valgrind –-leak-check=full blah

© 2006 Wouter Verkerke, NIKHEF

© 2006 Wouter Verkerke, NIKHEF

Object-based programming – Classes

Class
Basics 3

© 2006 Wouter Verkerke, NIKHEF

Encapsulation

•  OO languages like C++ enable you to create your own
data types. This is important because
–  New data types make program easier to visualize and implement

new designs

–  User-defined data types are reusable

–  You may modify and enhance new data types as programs evolve
and specifications change

–  New data types let you create objects with simple declarations

•  Example

Window w ; // Window object
Database ood ; // Database object
Device d ; // Device object

© 2006 Wouter Verkerke, NIKHEF

Evolving code design through use of C++ classes

•  Illustration of utility of C++ classes – Designing and
building a FIFO queue
–  FIFO = ‘First In First Out’

•  Graphical illustration of a FIFO queue

‘A’ ‘Q’ ‘W’ ‘Z’
write read

‘S’ ‘L’

© 2006 Wouter Verkerke, NIKHEF

Evolving code design through use of C++ classes

•  First step in design is to write down the interface
–  How will ‘external’ code interact with our FIFO code?

•  List the essential interface tasks
1.   Create and initialize a FIFO

2.   Write a character in a FIFO

3.   Read a character from a FIFO

–  Support tasks
1.  How many characters are currently in the FIFO

2.  Is a FIFO empty

3.  Is a FIFO full

‘A’ ‘Q’ ‘W’ ‘Z’
write read

‘S’ ‘L’

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ class FIFO – interface

 // Interface
 void init() ;
 void write(char c) ;
 char read() ;

 int nitems() ;
 bool full() ;
 bool empty() ;

•  List of interface tasks
1.   Create and initialize a FIFO

2.   Write a character in a FIFO

3.   Read a character from a FIFO

•  List desired support tasks
1.  How many characters are

currently in the FIFO

2.  Is a FIFO empty

3.  Is a FIFO full

‘A’ ‘Q’ ‘W’ ‘Z’
write read

‘S’ ‘L’

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

•  Implement FIFO with array of elements
–  Use index integers to keep track of front and rear, size of queue

 // Implementation
 char s[LEN] ;
 int rear ;
 int front ;
 int count ;

‘A’

‘Z’

‘Q’

‘W’

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

•  Implement FIFO with array of elements
–  Use index integers to keep track of front and rear, size of queue

–  Indices revolve: if they reach end of array, they go back to 0

‘A’

‘Z’

‘Q’

‘W’

 // Implementation
void init() { front = rear = count = 0 ; }

void write(char c) { count++ ;
 if(rear==LEN) rear=0 ;
 s[rear++] = c ; }

char read() { count-- ;
 if (front==LEN) front=0 ;
 return s[front++] ; }

int nitems() { return count ; }
bool full() { return (count==LEN) ; }
bool empty() { return (count==0) ; }

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

•  Animation of FIFO write operation

‘A’

‘Z’

‘Q’

‘W’

void write(char c) { count++ ;
 if(rear==LEN) rear=0 ;
 s[rear++] = c ; }

front=1

rear=4

count=4

‘X’

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=4

count=5

‘X’

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=5

count=5

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

•  Animation of FIFO read operation

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=5

count=5

‘X’

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=5

count=4

‘X’

‘A’

‘Z’

‘Q’

‘W’

front=2

rear=5

count=4

char read() { count-- ;
 if (front==LEN) front=0 ;
 return s[front++] ; }

‘X’

© 2006 Wouter Verkerke, NIKHEF

Putting the FIFO together – the struct concept

•  The finishing touch: putting it all together in a struct
const int LEN = 80 ; // default fifo length

struct Fifo {
 // Implementation
 char s[LEN] ;
 int front ;
 int rear ;
 int count ;

 // Interface
 void init() { front = rear = count = 0 ; }
 int nitems() { return count ; }
 bool full() { return (count==LEN) ; }
 bool empty() { return (count==0) ; }
 void write(char c) { count++ ;
 if(rear==LEN) rear=0 ;
 s[rear++] = c ; }
 char read() { count-- ;
 if (front==LEN) front=0 ;
 return s[front++] ; }
} ;

© 2006 Wouter Verkerke, NIKHEF

Characteristics of the ‘struct’ construct

•  Grouping of data members facilitates storage allocation
–  Single statement allocates all data members

•  A struct organizes access to data members and
functions through a common symbolic name

 // Allocate struct data type ‘Fifo’
 Fifo f ;

 // Access function through name ‘f’
 f.init() ;

 // Access data member through name ‘f’
 cout << f.count << endl ;

Type names vs. instance names

•  Note important distinction between
type name and instance name

•  Compare to basic types

© 2006 Wouter Verkerke, NIKHEF

 // Allocate struct data type ‘Fifo’
 Fifo f ;

 // Allocate struct data type ‘Fifo’
 Fifo f2 ;

Type name (Fifo)

Instance name (f,f2)

 int i ;
 int i2 ;

Type names vs. instance names

•  Instance name (f1,f2) maps to address in memory

•  Type name (Fifo) controls size of memory allocation,
interpretation of memory in allocated block

© 2006 Wouter Verkerke, NIKHEF

Memory layout C++ symbol name space

Fifo f1

Fifo f2

char name[256]

char s[80]

int front
int rear
int count

Member access operator

•  The dot (.) and arrow (->) operators implements
access to members of composite object like struct’s
–  Syntax: TypeName.MemberName

© 2006 Wouter Verkerke, NIKHEF

 // Allocate struct
 // data type ‘Fifo’
 Fifo f ;

 // Access data member
 // through name ‘f’
 cout << f.count << endl ;

 // Access data member
 // through pointer to f
 Fifo* pf = &f ;
 cout << (*pf).count << endl ;
 cout << pf->count << endl ;

Memory layout C++ symbol
name space

Fifo f1

f1.count

char s[80]

int front
int rear
int count

© 2006 Wouter Verkerke, NIKHEF

Characteristics of the ‘struct’ construct

•  Concept of ‘member functions’ automatically ties
manipulator functions to their data
–  No need to pass data member operated on to interface function

// Solution without
// member functions

struct fifo {
 int front, rear, count ;
} ;

char read_fifo(fifo& f) {
 f.count-- ;
 …
}

fifo f1,f2 ;
read_fifo(f1) ;
read_fifo(f2) ;

// Solution with
// member functions

struct fifo {
 int front, rear, count ;
 char read() {
 count-- ;
 …
 }
} ;

fifo f1,f2 ;
f1.read() ; // does f1.count--
f2.read() ; // does f2.count--

© 2006 Wouter Verkerke, NIKHEF

Using the FIFO example code

•  Example code using the FIFO struct

const char* data = “data bytes” ;
int i, nc = strlen(data) ;

Fifo f ;
f.init() ; // initialize FIFO

// Write chars into fifo
const char* p = data ;
for (i=0 ; i<nc && !f.full() ; i++) {
 f.write(*p++) ;
}

// Count chars in fifo
cout << f.nitems() << “ characters in fifo” << endl ;

// Read chars back from fifo
for (i=0 ; i<nc && !f.empty() ; i++) {
 cout << f.read() << endl ;
}

10 chars
in fifo
d
a
t
a

b
y
t
e
s

Program Output

© 2006 Wouter Verkerke, NIKHEF

Characteristics of the FIFO code

•  Grouping data, function members into a struct promotes
encapsulation
–  All data members needed for fifo operation allocated in a single

statement
–  All data objects, functions needed for fifo operation have

implementation contained within the namespace of the FIFO
object

–  Interface functions associated with struct allow implementation
of a controlled interface functionality of FIFO

•  For example can check in read(), write() if FIFO is full or empty and
take appropriate action depending on status

•  Problems with current implementation
–  User needs to explicitly initialize fifo prior to use
–  User needs to check explicitly if fifo is not full/empty when

writing/reading
–  Data objects used in implementation are visible to user and

subject to external modification/corruption

© 2006 Wouter Verkerke, NIKHEF

Controlled interface

•  Improving encapsulation
–  We improve encapsulation of the FIFO implementation by

restricting access to the member functions and data members that
are needed for the implementation

•  Objective – a controlled interface
–  With a controlled interface, i.e. designated member functions that

perform operations on the FIFO, we can catch error conditions on
the fly and validate offered input before processing it

–  With a controlled interface there is no ‘back door’ to the data
members that implement the fifo thus guaranteeing that no
corruption through external sources can take place

•  NB: This also improves performance since you can afford to be less paranoid.

© 2006 Wouter Verkerke, NIKHEF

Private and public

•  C++ access control keyword: ‘public’ and ‘private’

•  Public data
–  Access is unrestricted. Situation identical to no access control declaration

•  Private data
–  Data objects and member functions in the private section can only be

accessed by member functions of the struct (which themselves can be
either private or public)

struct Name {
private:

… members … // Implementation

public:

… members … // Interface

} ;

© 2006 Wouter Verkerke, NIKHEF

Redesign of Fifo class with access restrictions

const int LEN = 80 ; // default fifo length

struct Fifo {
 private: // Implementation
 char s[LEN] ;
 int front ;
 int rear ;
 int count ;

 public: // Interface
 void init() { front = rear = count = 0 ; }
 int nitems() { return count ; }
 bool full() { return (count==LEN) ; }
 bool empty() { return (count==0) ; }
 void write(char c) { count++ ;
 if(rear==LEN) rear=0 ;
 s[rear++] = c ; }
 char read() { count-- ;
 if (front==LEN) front=0 ;
 return s[front++] ; }
} ;

© 2006 Wouter Verkerke, NIKHEF

Using the redesigned FIFO struct

•  Effects of access control in improved fifo struct

Fifo f ;
f.init() ; // initialize FIFO

f.front = 5 ; // COMPILER ERROR – not allowed
cout << f.count << endl ; // COMPILER ERROR – not allowed

cout << f.nitems() << endl ; // OK – through
 // designated interface

front is an implementation detail that’s not part of the
abstract FIFO concept. Hiding this detail promotes encapsulation
as we are now able to change the implementation later
with the certainty that we will not break existing code

‘A’ ‘Q’ ‘W’ ‘Z’
write read

‘S’ ‘L’

© 2006 Wouter Verkerke, NIKHEF

Class – a better struct

•  In addition to ‘struct’ C++ also defines ‘class’ as a
method to group data and functions
–  In structs members are by default public,

In classes member functions are by default private

–  Classes have several additional features that we’ll cover shortly

struct Name {
private:

… members …

public:

… members …

} ;

class Name {

… members …

public:

… members …

} ;

Equivalent

© 2006 Wouter Verkerke, NIKHEF

Classes and namespaces

•  Classes (and structs) also define their own namespace
–  Allows to separate interface and implementation even further by

separating declaration and definition of member functions

class Fifo {
public: // Interface
char read() {
 count-- ;
 if (front==len) front=0 ;
 return s[front++] ;
 }
} ;

class Fifo {
public: // Interface
char read() ;
} ;

#include “fifo.hh”
char Fifo::read() {
 count-- ;
 if (front==len) front=0 ;
 return s[front++] ;
}

Declaration and definition Declaration only

Definition

Use of scope operator ::
to specify read() function
of Fifo class when outside
class declaration

© 2006 Wouter Verkerke, NIKHEF

Classes and namespaces

•  Scope resolution operator can also be used in class
member function to resolve ambiguities

class Fifo {
public: // Interface
char read() {
 …
 std::read() ;
 …
 }
} ; Use scope operator to specify that you want

to call the read() function in the std namespace
rather than yourself

© 2006 Wouter Verkerke, NIKHEF

Classes and files

•  Class declarations and definitions have a natural
separation into separate files
–  A header file with the class declaration

To be included by everybody that uses the class

–  A definition file with definition
that is only offered once
to the compiler

–  Advantage: You do not need to
recompile code using
class fifo if only implementation
(file fifo.cc) changes

#ifndef FIFO_HH
#define FIFO_HH
class Fifo {
public: // Interface
char read() ;
} ;
#endif

#include “fifo.hh”
char Fifo::read() {
 count-- ;
 if (front==len) front=0 ;
 return s[front++] ;
}

fifo.hh

fifo.cc

© 2006 Wouter Verkerke, NIKHEF

Constructors

•  Abstraction of FIFO data type can be further enhanced
by letting it take care of its own initialization
–  User should not need to know if and how initialization should

occur

–  Self-initialization makes objects easier to use and gives less
chances for user mistakes

•  C++ approach to self-initialization – the Constructor
member function
–  Syntax: member function with function name identical to class

name

class ClassName {
…
ClassName() ;
…
} ;

© 2006 Wouter Verkerke, NIKHEF

Adding a Constructor to the FIFO example

•  Improved FIFO example

•  Simplified use of FIFO

class Fifo {
public:
 void init() ;
 …

class Fifo {
public:
 Fifo() { init() ; }

private:
 void init() ;
 …

Fifo f ; // creates raw FIFO
f.init() ; // initialize FIFO

Fifo f ; // creates initialized FIFO

© 2006 Wouter Verkerke, NIKHEF

Default constructors vs general constructors

•  The FIFO code is an example of a default constructor
–  A default constructor by definition takes no arguments

•  Sometimes an object requires user input to properly
initialize itself
–  Example: A class that represents an open file – Needs file name

–  Use ‘regular constructor’ syntax

–  Supply constructor arguments at construction

class ClassName {
…
ClassName(argument1,argument2,…argumentN) ;
…
} ;

ClassName obj(arg1,…,argN) ;
ClassName* ptr = new ClassName(Arg1,…,ArgN) ;

© 2006 Wouter Verkerke, NIKHEF

Constructor example – a File class

class File {

private:
 int fh ;

public:
 File(const char* name) {
 fh = open(name) ;
 }

 void read(char* p, int n) { ::read(fh,p,n) ; }
 void write(char* p, int n) { ::write(fh,p,n) ; }
 void close() { ::close(fh) ; }
} ;

File* f1 = new File(“dbase”) ;
File f2(“records”) ; Supply constructor arguments here

© 2006 Wouter Verkerke, NIKHEF

Multiple constructors

•  You can define multiple constructors with different
signatures
–  C++ function overloading concept applies to class member

functions as well, including the constructor function

class File {

private:
 int fh ;

public:
 File() {
 fh = open(“Default.txt”) ;
 }
 File(const char* name) {
 fh = open(name) ;
 }

 read(char* p, int n) { ::read(p,n) ; }
 write(char* p, int n) { ::write(p,n) ; }
 close() { ::close(fh) ; }
} ;

© 2006 Wouter Verkerke, NIKHEF

Default constructor and default arguments

•  Default values for function arguments can be applied to
all class member functions, including the constructor
–  If any constructor can be invoked with no arguments (i.e. it has

default values for all arguments) it is also the default constructor

class File {

private:
 int fh ;

public:
 File(const char* name=“Default.txt”) {
 fh = open(name) ;
 }

 read(char* p, int n) { ::read(p,n) ; }
 write(char* p, int n) { ::write(p,n) ; }
 close() { ::close(fh) ; }
} ;

© 2006 Wouter Verkerke, NIKHEF

Default constructors and arrays

•  Array allocation of objects does not allow for
specification of constructor arguments

•  You can only define arrays of classes that have a
default constructor
–  Be sure to define one if it is logically allowed
–  Workaround for arrays of objects that need constructor

arguments: allocate array of pointers ;

–  Don’t forget to delete elements in addition to array afterwards!

Fifo* fifoArray = new Fifo[100] ;

Fifo** fifoPtrArray = new (Fifo*)[100] ;
int i ;
for (i=0 ; i<100 ; i++) {
 fifoPtrArray[i] = new Fifo(arguments…) ;
}

Data members vs function arguments

•  Note that you can access two types of variables
in class member functions, including the constructor
–  Data members – Will live beyond function call,

 but not beyond object lifetime

–  Function arguments – Will only for duration of function call

© 2006 Wouter Verkerke, NIKHEF

class Fifo {
public:

 Fifo(int size) { _size = size ;}

private:
 int _size ;
 …

If you need to preserve information
given as function argument to constructor,
you must copy it to a data member

© 2006 Wouter Verkerke, NIKHEF

Classes contained in classes – member initialization

•  If classes have other classes w/o default constructor as
data member you need to initialize ‘inner class’ in
constructor of ‘outer class’

class File {
 public:
 File(const char* name) ;
 …
} ;

class Database {
 public:
 Database(const char* fileName) ;

 private:
 File f ;
} ;

Database::Database(const char* fileName) : f(fileName) {
 // Database constructor
}

© 2006 Wouter Verkerke, NIKHEF

Class member initialization

•  General constructor syntax with member initialization

–  Note that insofar order matters, data members are initialized in
the order they are declared in the class, not in the order they
are listed in the initialization list in the constructor

–  Also for basic types (and any class with default ctor) the member
initialization form can be used

–  Performance tip: for classes constructor initialization tends to be
faster than assignment initialization (more on this later)

ClassName::ClassName(args) :
 member1(args),
 member2(args), …
 memberN(args) {
 // constructor body
}

File(const char* name) {
 fh = open(name) ;
}

File(const char* name) :
fh(open(name)) {
}

Initialization through assignment Initialization through constructor

Class member initialization in C++2011

•  In C++2011 a new intuitive form of data member
initialization is supported: assignment in the class
declaration

–  Conceptually C++ compiler will translates assignments to
corresponding member initializations ‘front(0) etc’

•  If both assignment and ctor member initializer are
specified, latter takes precedence
–  I.e. Assignment can be used as the ‘default’ initializer than can be

overridden my member init in ctor

© 2006 Wouter Verkerke, NIKHEF

class Fifo {
 private: // Implementation
 char s[LEN] ;
 int front = 0;
 int rear = 0 ;
 int count = 0;

 public: // Interface
 …
} ;

© 2006 Wouter Verkerke, NIKHEF

Destructors

•  Classes that define constructors often allocate dynamic
memory or acquire resources
–  Example: File class acquires open file handles, any other class

that allocates dynamic memory as working space

•  C++ defines Destructor function for each class to be
called at end of lifetime of object
–  Can be used to release memory, resources before death

•  Class destructor syntax:

class ClassName {
…
~ClassName() ;
…
} ;

© 2006 Wouter Verkerke, NIKHEF

Example of destructor in File class

class File {

private:
 int fh ;
 void close() { ::close(fh) ; }

public:
 File(const char* name) { fh = open(name) ; }
 ~File() { close() ; }
 …
} ;

File is automatically closed
when object is deleted

void readFromFile() {
 File *f = new File(“theFile.txt”) ;
 // read something from file
 delete f ;
}

Opens file automatically

Closes file automatically

© 2006 Wouter Verkerke, NIKHEF

Automatic resource control

•  Destructor calls can take care of automatic resource
control
–  Example with dynamically allocated File object

–  Example with automatic File object

–  Great example of abstraction of
file concept and of encapsulation
of resource control

void readFromFile() {
 File *f = new File(“theFile.txt”) ;
 // read something from file
 delete f ;
}

Opens file automatically

Closes file automatically

void readFromFile() {
 File f(“theFile.txt”) ;
 // read something from file
}

Opens file automatically

Deletion of automatic
variable f calls destructor
& closes file automatically

© 2006 Wouter Verkerke, NIKHEF

Copy constructor – a special constructor

•  The copy constructor is the constructor with the
signature

•  It is used to make a clone of your object

•  It exists for all objects because the C++ compiler
provides a default implementation if you don’t supply
one
–  The default copy constructor calls the copy constructor for all data

members. Basic type data members are simply copied
–  The default implementation is not always right for your class, we’ll

return to this shortly

ClassA::ClassA(const ClassA&) ;

ClassA a ;
ClassA aclone(a) ; // aclone is an identical copy of a

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

•  Use ‘ownership’ semantics in classes as well
–  Keep track of who is responsible for resources allocated by your

object

–  The constructor and destructor of a class allow you to
automatically manage your initialization/cleanup

–  All private resources are always owned by the class so make sure
that the destructor always releases those

•  Be careful what happens to ‘owned’ objects when you
make a copy of an object
–  Remember: default copy constructor calls copy ctor on all class

data member and copies values of all basic types

–  Pointers are basic types

–  If an ‘owned’ pointer is copied by the copy constructor it is no
longer clear which instance owns the object à danger ahead!

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

•  Example of default copy constructor wreaking havoc

class Array {
public:
 Array(int size) {
 initialize(size) ;
 }
 ~Array() {
 delete[] _x ;
 }

private:
 void initialize(int size) {
 _size = size ;
 _x = new double[size] ;
 }
 int _size ;
 double* _x ;
};

Watch out! Pointer data member

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

•  Example of default copy constructor wreaking havoc

void example {

Array a(10) ;
// ‘a’ Constructor allocates _x ;

if (some_condition)
 Array b(a) ;
 // ‘b’ Copy Constructor does
 // b._x = a._x ;

 // b appears to be copy of a
}
// ‘b’ Destructor does:
// delete[] _b.x ;

// BUT _b.x == _a.x à Memory
// allocated by ‘Array a’ has
// been released by ~b() ;

<Do something with Array>
// You are dead!
}

Array a

_x

Array b

_x

double[]

Array a

_x
 û Problem is here:

b._x points to
same array

as a._x!

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

•  Example of default copy constructor wreaking havoc

class Array {
public:
 Array(int size) {
 initialize(size) ;
 }
 ~Array() {
 delete[] _x ;
 }

private:
 void initialize(int size) {
 _size = size ;
 _x = new double[size] ;
 }
 int _size ;
 double* _x ;
};

void example {

Array a(10) ;
// ‘a’ Constructor allocates _x ;

if (some_condition)
 Array b(a) ;
 // ‘b’ Copy Constructor does
 // b._x = a._x ;

 // b appears to be copy of a
}
// ‘b’ Destructor does
// delete[] _b.x

// BUT _b.x == _a.x à Memory
// allocated by ‘Array a’ has
// been released by ~b() ;

<Do something with Array>
// You are dead!
}

Whenever your class owns dynamically allocated
memory or similar resources you need to implement

your own copy constructor!

© 2006 Wouter Verkerke, NIKHEF

Example of a custom copy constructor
class Array {
public:
 Array(int size) {
 initialize(size) ;
 }

 Array(const double* input, int size) {
 initialize(size) ;
 int i ;
 for (i=0 ; i<size ; i++) _x[i] = input[i] ;
 }

 Array(const Array& other) {
 initialize(other._size) ;
 int i ;
 for (i=0 ; i<_size ; i++) _x[i] = other._x[i] ;
 }

private:
 void initialize(int size) {
 _size = size ;
 _x = new double[size] ;
 }
 int _size ;
 double* _x ;
};

Symbol _x refers
to data member
of this instance

Symbol other._x
refers to data
member of other
instance

Classes vs Instances
Here we are dealing
explicitly with one
class and two instances

© 2006 Wouter Verkerke, NIKHEF

Another solution to copy constructor problems

•  You can disallow objects being copied by declaring their
copy constructor as ‘private’
–  Use for classes that should not copied because they own non-

clonable resources or have a unique role

–  Example: class File – logistically and resource-wise tied to a
single file so a clone of a File instance tied to the same file
makes no sense

class File {

private:
 int fh ;
 close() { ::close(fh) ; }
 File(const File&) ; // disallow copying

public:
 File(const char* name) { fh = open(name) ; }
 ~File() { close() ; }
 …
} ;

© 2006 Wouter Verkerke, NIKHEF

Deleting default constructors in C++2011

•  In C++2011 new language feature allows to delete
default implementations of constructors explicitly as
follows

class File {

private:
 int fh ;
 close() { ::close(fh) ; }

public:
 File(const char* name) { fh = open(name) ; }

 File(const File&) = delete ; // disallow copying

 ~File() { close() ; }
 …
} ;

© 2006 Wouter Verkerke, NIKHEF

Class Analysis and Design

Class Analysis
& Design 4

© 2006 Wouter Verkerke, NIKHEF

Class Analysis and Design

•  We now understand the basics of writing classes
–  Now it’s time to think about how to decompose your problem into

classes

•  Writing good OO software involves 3 separate steps
1.   Analysis
2.   Design

3.   Programming
–  You can do them formally or informally, well or poorly, but you

can’t avoid them

•  Analysis
–  How to divide up your problem in classes
–  What should be the functionality of each class

•  Design
–  What should the interface of your class look like?

© 2006 Wouter Verkerke, NIKHEF

Analysis – Find the class

•  OO Analysis subject of many text books, many different
approaches
–  Here some basic guidelines

1.  Try to describe briefly in plain English (or Dutch) what you intend
your software to do

•  Rationale – This naturally makes you think about your software in a high abstraction
level

2.  Associate software objects with natural objects (‘objects in the
application domain’)

•  Actions translate to member functions

•  Attributes translate to data members

3.  Make hierarchical ranking of objects using ‘has-a’ relationships
•  Example: a ‘BankAccount’ has-a ‘Client’

•  Has-a relationships translate into data members that are objects

4.  Iterate! Nobody gets it right the first time

© 2006 Wouter Verkerke, NIKHEF

Analysis – A textbook example

•  Example of telephone hardware represented as class
hierarchy using ‘has-a’ relationships
–  Programs describing or simulating hardware usually have an

intuitive decomposition and hierarchy

Telephone

Cable Housing Dialer Handset

Earpiece Mouthpiece Cable

Each line represents
a ‘has-a’ relationship

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  Real life often not so clean cut

•  Example problem from High Energy physics
–  We have a file with experimental data from a calorimeter.

–  A calorimeter is a HEP detector that detects energy through
absorption. A calorimeter consists of a grid of detector modules
(cells) that each individually measure deposited energy

Incoming particle

Calorimeter

Cell

Cells with energy deposit

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  First attempt to identify objects in data processing
model and their containment hierarchy
–  Calorimeter global position and cell coordinates are not physical

objects but separate logical entities so we make separate classes
for those too

Calorimeter

CaloCell

Coordinate

has-a

has-a

Position

has-a
Calorimeter

CaloCell

Position

Coordinate

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  Key Analysis sanity check – Can we describe what each
object is, in addition to what it does?
–  Answer: yes

Calorimeter

CaloCell

Coordinate

has-a

has-a

Position

has-a

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  Iterating the design – are there other/better solutions?
–  Remember ‘strong cohesion’ and ‘loose coupling’

–  Try different class decomposition, moving functionality from one
class to another

•  Example of alternative solution
–  We can store the CaloCells in an intelligent container class

CellGrid that mimics a 2D array and keeps track of coordinates

Calorimeter

CaloCell

CellGrid

has-a

has-a

Position

has-a

Calorimeter

CaloCell

Position

CellGrid

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  Which solution is better?
–  Source of ambiguity: cell coordinate not really intrinsic property of

calorimeter cell

–  Path to solution: what are cell coordinates used for? Import for insight in
best solution. Real-life answer: to find adjacent (surrounding cells)

–  Solution: Adjacency algorithms really couple strongly to layout of cells, not
to property of individual cells à design with layout in separate class
probably better

Calorimeter

CaloCell

CellGrid

has-a

has-a

Position

has-a

Calorimeter

CaloCell

Coordinate

has-a

has-a

Position

has-a

© 2006 Wouter Verkerke, NIKHEF

Extending the example – Has-A vs Uses-A

•  Next step in analysis of calorimeter data is to reconstruct
properties of incoming particles
–  Reconstruct blobs of energy deposited into multiple cells

–  Output stored in new class CaloCluster, which stores properties of cluster
and refers back to cells that form the cluster

–  Now we run into some problems with ‘has-a’ semantics: All CaloCells in
Calorimeter are owned by Calorimeter, so CaloCluster doesn’t really
‘have’ them. Solution: ‘Uses-A’ semantic.

–  A ‘Uses-A’ relation translates into a pointer or reference to an object

Calorimeter

CaloCell

CellGrid

has-a

has-a

Position

has-a

CaloCluster

has-a?, uses-a!

© 2006 Wouter Verkerke, NIKHEF

Summary on OO analysis

•  Choosing classes: You should be able to say what a class is
–  A ‘Has-A’ relation translates into data members, a ‘Uses-A’ relation into a

pointer

–  Functionality of your natural objects translates in member functions

•  Be wary of complexity
–  Signs of complexity: repeated identical code, too many function arguments,

too many member functions, functions with functionality that cannot be
succinctly described

–  A complex class is difficult to maintain à Redesign into smaller units

•  There may not be a unique or ‘single best’ decomposition of
your class analysis
–  Such is life. Iterate your design, adapt to new developments

•  We’ll revisit OOAD again in a while when we will discuss
polymorphism and inheritance which open up many new
possibility (and pitfalls)

© 2006 Wouter Verkerke, NIKHEF

The art of proper class design

•  Class Analysis tells you what functionality your class should have

•  Class Design now focuses on how to package that best

•  Focus: Make classes easy to use
–  Robust design: copying objects, assigning them (even to themselves) should

not lead to corruption, memory leaks etc

–  Aim for intuitive behavior: mimic interface of built-in types where possible

–  Proper functionality for ‘const objects’

•  Reward: better reusability of code, easier maintenance, shorter
documentation

•  And remember: Write the interface first, then the implementation
–  While writing the interface you might still find flaws or room for improvements

in the design. It is less effort to iterate if there is no implementation to data

© 2006 Wouter Verkerke, NIKHEF

The art of proper class design

•  Focus on following issues next

–  Boilerplate class design

–  Accessors & Modifiers – Proper interface for const objects

–  Operator overloading

–  Assignment – Why you need it

–  Overloading arithmetic, and subscript operators

–  Overloading conversion operators, use of explicit

–  Spilling your guts – friends

© 2006 Wouter Verkerke, NIKHEF

Accessor / modifier pattern

•  For each data member that is made publicly available
implement an accessor and a modifier

•  Pattern 1 – Encapsulate read & write access in separate functions
–  Complete control over input and output. Modifier can be protected for better

access control and modifier can validate input before accepting it

–  Note that returning large data types by value is inefficient. Consider to return a
const reference instead

class Demo {
private:
 float _val ;
public:
 // accessor
 float getVal() const {
 return _val ;
 }
 // modifier
 void setVal(float newVal) {
 // Optional validity checking goes here
 _val = newVal ;
 }
} ;

const here is important
otherwise this will fail

const Demo demo ;
demo.getVal() ;

© 2006 Wouter Verkerke, NIKHEF

Accessor / modifier pattern

•  Pattern 2 – Return reference to internal data member
–  Must implement both const reference and regular reference!

–  Note that no validation is possible on assignment. Best for built-in
types with no range restrictions or data members that are classes
themselves with built-in error checking and validation in their
modifier function

class Demo {
private:
 float _val ;

public:
 float& val() { return _val ; }
 const float& val() const { return _val ; }

} ;

const version here is essential,
otherwise code below will fail

const Demo demo ;
float demoVal = demo.val() ;

© 2006 Wouter Verkerke, NIKHEF

Making classes behave like built-in objects

•  Suppose we have written a ‘class complex’ that
represents complex numbers
–  Execution of familiar math through add(),multiply() etc member

functions easily obfuscates user code

–  Want to redefine meaning of C++ operators +,* etc to perform
familiar function on newly defined classes, i.e. we want compiler
to automatically translate:

•  Solution: C++ operator overloading

complex a(3,4), b(5,1) ;

b.multiply(complex(0,1)) ;
a.add(b) ;
a.multiply(b) ;
b.subtract(a) ;

c = a * b ; c.assign(a.multiply(b)) ;

© 2006 Wouter Verkerke, NIKHEF

Operator overloading

•  In C++ operations are functions too, i.e.

•  Operators can be both regular functions as well as class
member functions
–  In example above operator=() is implemented as member

function of class complex, operator+() is implemented as global
function

–  You have free choice here, operator+() can also be implemented
as member function in which case the code would be come

–  Design consideration: member functions (including operators) can
access ‘private’ parts, so operators that need this are easier to
implement as member functions

•  More on this in a while…

complex c = a + b; c.operator=(operator+(a,b));

What you write What the compiler does

c.operator=(a.operator+(b));

© 2006 Wouter Verkerke, NIKHEF

An assignment operator – declaration

•  Lets first have a look at implementing the assignment
operator for our fictitious class complex

•  Declared as member operator of class complex:
–  Allows to modify left-hand side of assignment

–  Gives access to private section of right-hand side of assignment

class complex {
public:
 complex(double r, double i) : _r(r), _i(i) {} ;
 complex& operator=(const complex& other) ;

private:
 double _r, _i ;
} ;

© 2006 Wouter Verkerke, NIKHEF

Handle self-assignment explicitly
It happens, really!

An assignment operator – implementation

complex& complex::operator=(const complex& other) {

 // handle self-assignment
 if (&other == this) return *this ;

 // copy content of other
 _r = other._r ;
 _i = other._i ;

 // return reference to self
 return *this ;
}

Copy content of other object
It is the same class, so you have
access to its private members

Return reference to self
Takes care of chain assignments

© 2006 Wouter Verkerke, NIKHEF

Copy content of other object
It is the same class, so you have
access to its private members

Handle self-assignment explicitly
It happens, really!

An assignment operator – implementation

complex& complex::operator=(const complex& other) {

 // handle self-assignment
 if (&other == this) return *this ;

 // copy content of other
 _r = other._r ;
 _i = other._i ;

 // return reference to self
 return *this ;
}

Why ignoring self-assignment can be bad
Image you store information in a dynamically allocated array
that needs to be reallocated on assignment…

A& A::operator=(const A& other) {
 delete _array ;
 _len = other._len;
 _array = new int[other._len] ;
 // Refill array here
 return *this ;
}

Oops if (other==*this)
you just deleted your own
array!

© 2006 Wouter Verkerke, NIKHEF

An assignment operator – implementation

complex& complex::operator=(const complex& other) {

 // handle self-assignment
 if (&other == this) return *this ;

 // copy content of other
 _r = other._r ;
 _i = other._i ;

 // return reference to self
 return *this ;
}

Return reference to self
Takes care of chain assignments

Why you should return a reference to yourself
Returning a reference to yourself allows chain assignment

Not mandatory, but essential if you want to mimic behavior of built-in types

complex a,b,c ;
a = b = c ;

complex a,b,c ;
a.operator=(b.operator=(c)) ;

Returns reference to b

© 2006 Wouter Verkerke, NIKHEF

The default assignment operator

•  The assignment operator is like the copy constructor:
it has a default implementation
–  Default implementation calls assignment operator for each data member

•  If you have data member that are pointers to ‘owned’ objects
this will create problems
–  Just like in the copy constructor

•  Rule: If your class owns dynamically allocated memory or
similar resources you should implement your own assignment
operator

•  You can disallow objects being assigned by declaring their
assignment operator as ‘private’
–  Use for classes that should not copied because they own non-assignable

resources or have a unique role (e.g. an object representing a file)

© 2006 Wouter Verkerke, NIKHEF

Example of assignment operator for owned data members

class A {
private:
 float* _arr ;
 int _len ;
public:
 operator=(const A& other) ;
} ;

 C++ default operator=() Custom operator=()

A& operator=(const A& other) {
 if (&other==this) return *this;
 _arr = other._arr ;
 _len = other._len ;
 return *this ;
}

A& operator=(const A& other) {
 if (&other==this) return *this;
 _len = other._len ;
 delete[] _arr ;
 _arr = new int[_len] ;
 int i ;
 for (i=0; i<len ; i++) {
 _arr[i] = other._arr[i] ;
 }
 return *this ;
}

YOU DIE.
If other is deleted before us, _arr will point
to garbage. Any subsequent use of self has
undefined results

If we are deleted before other, we will delete
_arr=other._arr, which is not owned by us:
other._arr will point to garbage and will
attempt to delete array again

© 2006 Wouter Verkerke, NIKHEF

Overloading other operators

•  Overloading of operator=() mandatory if object owns
other objects

•  Overloading of other operators voluntary
–  Can simplify use of your classes (example: class complex)
–  But don’t go overboard – Implementation should be congruent

with meaning of operator symbol
•  E.g. don’t redefine operator^() to implement exponentiation

–  Comparison operators (<,>,==,!=) useful to be able to put class
in sortable container

–  Addition/subtraction operator useful in many contexts: math
objects, container class (add new content/ remove content)

–  Subscript operator[] potentially useful in container classes
–  Streaming operators <<() and operator>>() useful for printing in

many objects

•  Next: Case study of operator overloading with a custom
string class

© 2006 Wouter Verkerke, NIKHEF

The custom string class

•  Example string class for illustration of operator overloading
class String {
private:
 char* _s ;
 int _len ;

 void insert(const char* str) { // private helper function
 _len = strlen(str) ;
 if (_s) delete[] _s ;
 _s = new char[_len+1] ;
 strcpy(_s,str) ;
 }

public:
 String(const char* str= “”) : _s(0) { insert(str) ; }
 String(const String& a) : _s(0) { insert(a._s) ; }
 ~String() { if (_s) delete[] _s ; }

 int length() const { return _len ; }
 const char* data() const { return _s ; }
 String& operator=(const String& a) {
 if (this != &a) insert(a._s) ;
 return *this ;
 }
} ;

Data members, array & length

© 2006 Wouter Verkerke, NIKHEF

The custom string class

•  Example string class for illustration of operator overloading
class String {
private:
 char* _s ;
 int _len ;

 void insert(const char* str) { // private helper function
 _len = strlen(str) ;
 if (_s) delete[] _s ;
 _s = new char[_len+1] ;
 strcpy(_s,str) ;
 }

public:
 String(const char* str= “”) : _s(0) { insert(str) ; }
 String(const String& a) : _s(0) { insert(a._s) ; }
 ~String() { if (_s) delete[] _s ; }

 int length() const { return _len ; }
 const char* data() const { return _s ; }
 String& operator=(const String& a) {
 if (this != &a) insert(a._s) ;
 return *this ;
 }
} ;

Delete old buffer,
allocate new buffer,
copy argument into new buffer

© 2006 Wouter Verkerke, NIKHEF

The custom string class

•  Example string class for illustration of operator overloading
class String {
private:
 char* _s ;
 int _len ;

 void insert(const char* str) { // private helper function
 _len = strlen(str) ;
 if (_s) delete[] _s ;
 _s = new char[_len+1] ;
 strcpy(_s,str) ;
 }

public:
 String(const char* str= “”) : _s(0) { insert(str) ; }
 String(const String& a) : _s(0) { insert(a._s) ; }
 ~String() { if (_s) delete[] _s ; }

 int length() const { return _len ; }
 const char* data() const { return _s ; }
 String& operator=(const String& a) {
 if (this != &a) insert(a._s) ;
 return *this ;
 }
} ;

Ctor
Dtor

© 2006 Wouter Verkerke, NIKHEF

The custom string class

•  Example string class for illustration of operator overloading
class String {
private:
 char* _s ;
 int _len ;

 void insert(const char* str) { // private helper function
 _len = strlen(str) ;
 if (_s) delete[] _s ;
 _s = new char[_len+1] ;
 strcpy(_s,str) ;
 }

public:
 String(const char* str= “”) : _s(0) { insert(str) ; }
 String(const String& a) : _s(0) { insert(a._s) ; }
 ~String() { if (_s) delete[] _s ; }

 int length() const { return _len ; }
 const char* data() const { return _s ; }
 String& operator=(const String& a) {
 if (this != &a) insert(a._s) ;
 return *this ;
 }
} ;

Overloaded
assignment
operator

© 2006 Wouter Verkerke, NIKHEF

Overloading operator+(), operator+=()

•  Strings have a natural equivalent of addition
–  “A” + “B” = “AB”

–  Makes sense to implement operator+

•  Coding guideline: if you implement +, also implement +=
–  In C++ they are separate operators.

–  Implementing + will not automatically make += work.

–  Implementing both fulfills aim to mimic behavior of built-in types

•  Practical tip: Do operator+=() first.
–  It is easier

–  Operator+ can trivially be implemented in terms of operator+=
(code reuse)

© 2006 Wouter Verkerke, NIKHEF

Overloading operator+(), operator+=()

•  Example implementation for String
–  Argument is const (it is not modified after all)

–  Return is reference to self, which allows chain assignment

class String {
public:
 String& operator+=(const String& other) {
 int newlen = _len + other._len ; // calc new length
 char* newstr = new char[newlen+1] ; // alloc new buffer

 strcpy(newstr,_s) ; // copy own contents
 strcpy(newstr+_len,other._s) ; // append new contents

 if (_s) delete[] _s ; // release orig memory

 _s = newstr ; // install new buffer
 _len = newlen ; // set new length
 return *this ;
 }
} ;

© 2006 Wouter Verkerke, NIKHEF

Overloading operator+(), operator+=()

•  Now implement operator+() using operator+=()
–  Operator is a global function rather than a member function – no

privileged access is needed to String class content

–  Both arguments are const as neither contents is changed

–  Result string is passed by value

String operator+(const String& s1, const String& s2) {
 String result(s1) ; // clone s1 using copy ctor
 result += s2 ; // append s2
 return result ; // return new result
}

© 2006 Wouter Verkerke, NIKHEF

Overloading operator+() with different types

•  You can also add heterogeneous types with operator+()
–  Example: String(“A”) + “b”

•  Implementation of heterogeneous operator+ similar
–  Illustration only, we’ll see later why we don’t need it in this particular

case

•  NB: Arguments of operator+() do not commute

operator+(const& A, const& B)!=operator+(const& B, const& A)

–  If you need both, implement both

String operator+(const String& s1, const char* s2) {
 String result(s1) ; // clone s1 using copy ctor
 result += String(s2) ; // append String converted s2
 return result ; // return new result
}

Working with class String

•  Demonstration of operator+ use on class String

•  Compare ease of use (including correct memory
management) to join() functions of exercise 2.1...

© 2006 Wouter Verkerke, NIKHEF

// Create two strings
String s1(“alpha”) ;
String s2(“bet”) ;

// Concatenate strings into 3rd string
String s3 = s1+s2 ;

// Print concatenated result
cout << s1+s2 << endl ;

cout << String(s1+s2) << endl ;

Implicit conversion by compiler

© 2006 Wouter Verkerke, NIKHEF

Class string

•  The C++ Standard Library provides a class string
very similar to the example class String that we have
used in this chapter
–  Nearly complete set of operators defined, internal buffer memory

expanded as necessary on the fly

–  Declaration in <string>

–  Example

string dirname(“/usr/include”) ;
string filename ;

cout << “Give first name:” ;

// filename buffer will expand as necessary
cin >> filename ;

// Append char arrays and string intuitively
string pathname = dirname + ”/” + filename ;

// But conversion string à char* must be done explicitly
ifstream infile(pathname.c_str()) ;

© 2006 Wouter Verkerke, NIKHEF

Generic programming – Templates

Generic
Programming
– Templates

6

© 2006 Wouter Verkerke, NIKHEF

Introduction to generic programming

•  So far concentrated on definitions of objects as means
of abstraction

•  Next: Abstracting algorithms to be independent of the
type of data they work with

•  Naïve – max()
–  Integer implementation

–  (Naïve) real-life use

// Maximum of two values
int max(int a, int b) {
 return (a>b) ? a : b ;
}

int m = 43, n = 56 ;
cout << max(m,n) << endl ; // displays 56 (CORRECT)

double x(4.3), y(5.6) ;
cout << max(x,y) << endl ; // displays 5 (INCORRECT)

© 2006 Wouter Verkerke, NIKHEF

Generic algorithms – the max() example

•  First order solution – function overloading
–  Integer and float implementations

–  (Naïve) real-life use

// Maximum of two values
int max(int a, int b) {
 return (a>b) ? a : b ;
}

// Maximum of two values
float max(float a, float b) {
 return (a>b) ? a : b ;
}

int m = 43, n = 56 ;
cout << max(m,n) << endl ; // displays 56 (CORRECT)

double x(4.3), y(5.6) ;
cout << max(x,y) << endl ; // displays 5.6 (CORRECT)

© 2006 Wouter Verkerke, NIKHEF

Generic algorithms – the template solution

•  Overloading solution works but not elegant
–  Duplicated code (always a sign of trouble)

–  We need to anticipate all use cases in advance

•  C++ solution – a template function

template<class TYPE>
TYPE max(const TYPE& a, const TYPE& b) {
 return (a>b) ? a : b ;
}

int m = 43, n = 56 ;
cout << max(m,n) << endl ; // displays 56 (CORRECT)

double x(4.3), y(5.6) ;
cout << max(x,y) << endl ; // displays 5.6 (CORRECT)

© 2006 Wouter Verkerke, NIKHEF

Basics of templates

•  A template function is function or algorithm for a
generic TYPE
–  Whenever the compiler encounter use of a template function with

a given TYPE that hasn’t been used before the compiler will
instantiate the function for that type

template<class TYPE>
TYPE max(const TYPE& a, const TYPE& b) {
 return (a>b) ? a : b ;
}

int m = 43, n = 56 ;
// compiler automatically instantiates max(int&, int&)
cout << max(m,n) << endl ; // displays 56 (CORRECT)

double x(4.3), y(5.6) ;
// compiler automatically instantiates max(float&, float&)
cout << max(x,y) << endl ; // displays 5.6 (CORRECT)

© 2006 Wouter Verkerke, NIKHEF

Basics of templates – assumptions on TYPE

•  A template function encodes a generic algorithm but not
a universal algorithm
–  TYPE still has to meet certain criteria to result in proper code

–  For example:

assumes that TYPE.operator>(TYPE&) is defined

•  Style tip: When you write a template spell out in the
documentation what assumptions you make (if any)

template<class TYPE>
TYPE max(const TYPE& a, const TYPE& b) {
 return (a>b) ? a : b ;
}

© 2006 Wouter Verkerke, NIKHEF

Basics of templates – another example

•  Here is another template function example

–  Allocation of generic storage space

–  Only assumption of this swap function: TYPE::operator=()
defined

–  Since operator=() has a default implementation for all types this
swap function truly universal

•  Unless of course a class declares operator=() to be private in which case no
copies can be made at all

template <class TYPE>
void swap(TYPE& a, TYPE& b) {
 TYPE tmp = a ; // declare generic temporary
 a = b ;
 b = tmp ;
}

© 2006 Wouter Verkerke, NIKHEF

Template specialization

•  Sometimes you have a template function that is almost
generic because
–  It doesn’t work (right) with certain types.

For example max(const char* a, const char* b)

–  Or for certain types there is a more efficient implementation of the
algorithm

•  Solution: provide a template specialization
–  Can only be done in definition, not in declaration
–  Tells compiler that specialized version of function for given template should

be used when appropriate

template<class TYPE>
TYPE max(const TYPE& a, const TYPE& b) {
 return (a>b) ? a : b ; // comparing pointer not sensible
}

template<>
const char* max(const char*& a, const char*& b) {
 return strcmp(a,b)>0 ? a : b ; // Use string comparison instead
}

© 2006 Wouter Verkerke, NIKHEF

Template classes

•  Concept of templates also extends to classes
–  Can define a template class just like a template function

•  Class template mechanism allows to create generic
classes
–  A generic class provides the same set of behaviors for all types

–  Eliminates code duplication

–  Simplifies library design

–  Use case per excellence: container classes (arrays, stacks etc…)

template<class T>
class Triplet {
public:
 Triplet(T& t1, T& t2, T& t3) () ;
private:
 T _array[3] ;
};

© 2006 Wouter Verkerke, NIKHEF

Generic container class example

•  A generic stack example

template<class TYPE>
class Stack {
public:
 Stack(int size) : _len(size), _top(0) { // constructor
 _v = new TYPE[_len] ;
 }
 Stack(const Stack<TYPE>& other) ; // copy constructor
 ~Stack() { delete[] _v ; }

 void push(const TYPE& d) { _v[_top++] = d ; }
 TYPE pop() { return _v[--_top] ; }

 Stack<TYPE>& operator=(const Stack<TYPE>& s) ; // assignment

private:
 TYPE* _v ;
 int _len ;
 int _top ;

} ;

Assumptions on TYPE
- Default constructor
- Assignment defined

© 2006 Wouter Verkerke, NIKHEF

Using the generic container class

•  Example using Stack

void example() {

 Stack<int> s(10) ; // stack of 10 integers
 Stack<String> t(20) ; // stack of 20 Strings

 s.push(1) ;
 s.push(2) ;
 cout << s.pop() << endl ;

 // OUTPUTS ‘2’

 t.push(“Hello”) ; // Exploit automatic
 t.push(“World”) ; // const char* à String conversion

 cout << t.pop() << “ “ << t.pop() << endl ;

 // OUTPUTS ‘World Hello’

}

Initializer list of generic containers (C++ 2011)

•  In C++2011 the compound initializer syntax of arrays
can be extended to generic container classes

© 2006 Wouter Verkerke, NIKHEF

int x[3] = { 0, 1, 2 } ;

IntVector iv = { 0, 1, 2 } ; // Also works!

// Because constructor with initializer_list
// was added to class IntVector

class IntVector {
public:
 IntVector(std::initializer_list<int> ilist) ;
 ~IntVector() ;

private:
 int* _xvec ;
} ;

Initializer list of generic containers (C++ 2011)

•  In C++2011 the compound initializer syntax of arrays
can be extended to generic container classes
–  Retrieve content with iterator semantics – more in Module 7

© 2006 Wouter Verkerke, NIKHEF

class IntVector {
public:
 IntVector(std::initializer_list<int> ilist) {

 _xvec = new int[ilist.size()] ;

 int i(0) ;
 auto iter = ilist.begin() ;
 while (iter != ilist.end()) {
 _xvec[i++] = *iter ;
 iter++ ;
 }
 ~IntVector() ;

private:
 int* _xvec ;
} ;

Pointer memory management tools (C++2011)

•  C++ also adds templated-based tools for pointer-based
memory management

•  Idea: have a dedicated wrapper class that ‘owns’ a
pointer
–  Can be returned by-value from functions, if wrapper is deleted

because it goes out of scope, it will delete the pointer

•  Situation without wrapper

© 2006 Wouter Verkerke, NIKHEF

double* allocate_buffer(int size) {
 return new double[size] ;
}

int main() {
 // we own tmp, don’t forget to delete
 double* tmp = allocate_buffer(100) ;
 tmp[3] = 5 ;
}

Pointer memory management tools (C++2011)

•  C++ also adds templated-based tools for pointer-based
memory management

•  Idea: have a dedicated wrapper class that ‘owns’ a
pointer
–  Can be returned by-value from functions, if wrapper is deleted

because it goes out of scope, it will delete the pointer

•  Situation with wrapper

© 2006 Wouter Verkerke, NIKHEF

unique_ptr<double> allocate_buffer(int size) {
 return unique_ptr<double>(new double[size]) ;
}

int main() {
 // we own tmp, don’t forget to delete
 unique_ptr<double> tmp = allocate_buffer(100) ;
 tmp[3] = 5 ;
}
// memory held by tmp deleted when tmp goes out of scope

Pointer memory management tools (C++2011)

•  C++ also adds templated-based tools for pointer-based
memory management

•  Idea: have a dedicated wrapper class that ‘owns’ a
pointer
–  Can be returned by-value from functions, if wrapper is deleted

because it goes out of scope, it will delete the pointer

•  Situation with wrapper

© 2006 Wouter Verkerke, NIKHEF

int main() {
 // we own tmp, don’t forget to delete
 unique_ptr<double> tmp = allocate_buffer(100) ;
 tmp[3] = 5 ;
}

Class unique_ptr overloads operator-> to
return pointer to payload. Can use unique_ptr<T>
in same way as T*

© 2006 Wouter Verkerke, NIKHEF

The Standard Template Library

Standard Library II
the Template Library 7

© 2006 Wouter Verkerke, NIKHEF

Introduction to STL

•  STL = The Standard Template Library
–  A collection of template classes and functions for general use

–  Started out as experimental project by Hewlett-Packard

–  Now integral part of ANSI C++ definition of ‘Standard Library’

–  Excellent design!

•  Core functionality – Collection & Organization
–  Containers (such as lists)

–  Iterators (abstract methods to iterate of containers)

–  Algorithms (such as sorting container elements)

•  Some other general-purpose classes
–  Classes string, complex, bits

© 2006 Wouter Verkerke, NIKHEF

Overview of STL components

•  Containers
–  Storage facility of objects

•  Iterators
–  Abstract access mechanism to collection contents

–  “Pointer to container element” with functionality to move pointer

•  Algorithms
–  Operations (modifications) of container organization of contents

–  Example: Sort contents, apply operation to each of elements

Object Object Object Object Object Object

Container

© 2006 Wouter Verkerke, NIKHEF

STL Advantages

•  STL containers are generic
–  Templates let you use the same container class with any class or built-in

type

•  STL is efficient
–  The various containers provide different data structures.

–  No inheritance nor virtual functions are used (we’ll cover this shortly).

–  You can choose the container that is most efficient for the type of
operations you expect

•  STL has a consistent interface
–  Many containers have the same interface, making the learning curve easier

•  Algorithms are generic
–  Template functions allow the same algorithm to be applied to different

containers.

•  Iterators let you access elements consistently
–  Algorithms work with iterators

–  Iterators work like C++ pointers

•  Many aspects can be customized easily

© 2006 Wouter Verkerke, NIKHEF

Overview of STL containers classes

•  Sequential containers (with a defined order)
–  vector

–  list

–  deque (double-ended queue)

–  stack

–  queue
–  priority_queue

•  Associative containers (no defined order, access by key)
–  set

–  multiset

–  map

–  Multimap

–  unordered_set, unordered_map (C++2011)

Fundamental container
implementations
with different performance tradeoffs

Adapters of fundamental
containers
that provide a modified functionality

© 2006 Wouter Verkerke, NIKHEF

Common container facilities

•  Common operations on fundamental containers
–  insert – Insert element at defined location

–  erase – Remove element at defined location

–  push_back – Append element at end

–  pop_back – Remove & return element at end

–  push_front – Append element at front

–  pop_front – Remove & return element at front

–  at – Return element at defined location (with range checking)

–  operator[] – Return element at defined location (no range checking)

–  Not all operations exist at all containers (e.g. push_back is undefined on
a set as there is no ‘begin’ or ‘end’ in an associative container)

© 2006 Wouter Verkerke, NIKHEF

Vector <vector>

•  Vector is similar to an array

–  Manages its own memory allocation

–  Initial length at construction, but can be extended later

–  Elements initialized with default constructor

–  Offers fast random access to elements

–  Example

0 1 2

#include <vector>
vector<int> v(10) ;

v[0] = 80 ;
v.push_back(70) ; // creates v[10] and sets it to 70

vector<double> v2(5,3.14) ; // initialize 5 elements to 3.14

© 2006 Wouter Verkerke, NIKHEF

List <list>

•  Implemented as doubly linked list

–  Fast insert/remove of in the middle of the collection

–  No random access

–  Example

front end

front end

#include <list>
list<double> l ;
l.push_front(30.5) ; // append element in front
l.insert(somewhere,47.5) ; // insert in middle

iterator ‘pointer’ in collection

Template<class T>
Struct ListElem {
 T elem ;
 ListElem* prev ;
 ListElem* next ;
}

© 2006 Wouter Verkerke, NIKHEF

Stack <stack>

•  A stack is an adapter of deque
–  It provides a restricted view of a deque

–  Can only insert/remove elements
at end (‘top’ in stack view’)

–  No random access

•  Example

top

bottom
void sender() {
 stack<string> s ;
 s.push(“Aap”) ;
 s.push(“Noot”) ;
 s.push(“Mies”) ;
 receiver(s) ;
}
void receiver(stack<string>& s) {
 while(!s.empty()) cout << s.pop() << “ “ ;
}

// outputs “Mies Noot Aap”

push() pop()

© 2006 Wouter Verkerke, NIKHEF

Sequential versus associative containers

•  So far looked at several forms of sequential containers
–  Defining property: storage organization revolves around ordering: all elements

are stored in a user defined order

–  Access to elements is always done by relative or absolute position in container

–  Example:

•  For many types of problems access by key is much more natural
–  Example: Phone book. You want to know the phone number (=value) for a

name (e.g. ‘B. Stroustrup’ = key)

–  You don’t care in which order collection is stored as you never retrieve the
information by positional reference (i.e. you never ask: give me the 103102nd
entry in the phone book)

–  Rather you want to access information with a ‘key’ associated with each value

•  Solution: the associative container

vector<int> v ;
v[3] = 4rd element of vector v

List<double> l ;
double tmp = *(l.begin()) ; // 1st element of list

© 2006 Wouter Verkerke, NIKHEF

Sequential versus associative containers

front end

Give me 3rd element

key:
Bjarne

value:
43

key:
Thor

value:
39

key:
Ivar

value:
49

key:
Leif

value:
47

key:
Brian

value:
52

Give me value of element
with key “Leif”

Sequential

Associative

© 2006 Wouter Verkerke, NIKHEF

Pair <utility>

•  Utility for associative containers – stores a key-value pair

–  Main use of pair is as input or return value

template<type T1, type T2>
struct pair {
 T1 first ;
 T2 second ;
 pair(const T1&, const T2&) ;
} ;

template<type T1, type T2>
pair<T1,T2> make_pair(T1,T2) ; // exists for convenience

pair<int,float> calculation() {
 return make_pair(42,3.14159) ;
}
int main() {
 pair<int,float> result = calculation() ;
 cout << “result = “ << pair.first
 << “ “ << pair.second << endl ;
}

© 2006 Wouter Verkerke, NIKHEF

Map <map>

•  Map is an associative container
–  It stores pairs of const keys and values

–  Elements stored in ranking by keys (using key::operator<())

–  Provides direct access by key

–  Multiple entries with same key prohibited

Bjarne 33

Thor 52

Leif 47

Gunnar 42

pair<const T1,T2>

map<T1,T2>

© 2006 Wouter Verkerke, NIKHEF

Map <map>

•  Map example

–  If element is not found, new entry is added using default
constructors

map<string,int> shoeSize ;

shoeSize.insert(pair<string,int>(“Leif”,47)) ;
showSize.insert(make_pair(“Leif”,47)) ;

shoeSize[“Bjarne”] = 43 ;
shoeSize[“Thor”] = 52 ;

int theSize = shoeSize[“Bjarne”] ; // theSize = 43
int another = shoeSize[“Stroustrup”] ; // another = 0

© 2006 Wouter Verkerke, NIKHEF

Taking a more abstract view of containers

•  So far have dealt directly with container object to insert
and retrieve elements
–  Drawback: Client code must know exactly what kind of container

it is accessing
–  Better solution: provide an abstract interface to the container.
–  Advantage: the containers will provide the same interface (as far

as possible within the constraints of its functionality)
–  Enhanced encapsulation – You can change the type of container

class you use later without invasive changes to your client code

•  STL abstraction mechanism for container access:
the iterator
–  An iterator is a pointer to an element in a container
–  So how is an iterator different from a regular C++ pointer? – An

iterator is aware of the collection it is bound to.

–  How do you get an iterator: A member function of the collection
will give it to you

© 2006 Wouter Verkerke, NIKHEF

Taking a more abstract view of containers

•  Illustration of iterators vs C++ pointers

double array[10] ;

int i = 0 ;
double* ptr ;

ptr = &array[0] ;

while(i<10) {

 cout << *ptr << endl ;

 ++ptr ;
 ++i ;
}

vector<double> v(10) ;

vector<double>::iterator iter ;

iter = v.begin() ;

while(iter!=v.end()) {

 cout << *iter << endl ;

 ++iter ;
}

Allocate C++ array of 10 elements Allocate STL vector of 10 elements

© 2006 Wouter Verkerke, NIKHEF

Taking a more abstract view of containers

•  Illustration of iterators vs C++ pointers

double array[10] ;

int i = 0 ;
double* ptr ;

ptr = &array[0] ;

while(i<10) {

 cout << *ptr << endl ;

 ++ptr ;
 ++i ;
}

vector<double> v(10) ;

vector<double>::iterator iter ;

iter = v.begin() ;

while(iter!=v.end()) {

 cout << *iter << endl ;

 ++iter ;
}

Allocate a pointer.
Also allocate an integer to keep
track of when you’re at the end
of the array

Allocate an STL iterator to a vector

© 2006 Wouter Verkerke, NIKHEF

Taking a more abstract view of containers

•  Illustration of iterators vs C++ pointers

double array[10] ;

int i = 0 ;
double* ptr ;

ptr = &array[0] ;

while(i<10) {

 cout << *ptr << endl ;

 ++ptr ;
 ++i ;
}

vector<double> v(10) ;

vector<double>::iterator iter ;

iter = v.begin() ;

while(iter!=v.end()) {

 cout << *iter << endl ;

 ++iter ;
}

Make the pointer point to
the first element of the
array

Make the iterator point to
the first element of the vector

© 2006 Wouter Verkerke, NIKHEF

Taking a more abstract view of containers

•  Illustration of iterators vs C++ pointers

double array[10] ;

int i = 0 ;
double* ptr ;

ptr = &array[0] ;

while(i<10) {

 cout << *ptr << endl ;

 ++ptr ;
 ++i ;
}

vector<double> v(10) ;

vector<double>::iterator iter ;

iter = v.begin() ;

while(iter!=v.end()) {

 cout << *iter << endl ;

 ++iter ;
}

Check if you’re at the end
of your array

Check if you’re at the end of
your vector

© 2006 Wouter Verkerke, NIKHEF

Taking a more abstract view of containers

•  Illustration of iterators vs C++ pointers

double array[10] ;

int i = 0 ;
double* ptr ;

ptr = &array[0] ;

while(i<10) {

 cout << *ptr << endl ;

 ++ptr ;
 ++i ;
}

vector<double> v(10) ;

vector<double>::iterator iter ;

iter = v.begin() ;

while(iter!=v.end()) {

 cout << *iter << endl ;

 ++iter ;
}

Access the element the pointer
is currently pointing to

Access the element the iterator
is currently pointing to

© 2006 Wouter Verkerke, NIKHEF

Taking a more abstract view of containers

•  Illustration of iterators vs C++ pointers

double array[10] ;

int i = 0 ;
double* ptr ;

ptr = &array[0] ;

while(i<10) {

 cout << *ptr << endl ;

 ++ptr ;
 ++i ;
}

vector<double> v(10) ;

vector<double>::iterator iter ;

iter = v.begin() ;

while(iter!=v.end()) {

 cout << *iter << endl ;

 ++iter ;

}

Modifiy the pointer to point
to the next element in the
array

Modify the iterator to point to
the next element in the array

Auto types work great with STL contains C++2011

•  Note that ‘auto’ types are particularly handy when using
STL classes as iterator type names are usually long, and
never explicitly needed

© 2006 Wouter Verkerke, NIKHEF

// Iterator loop
vector<int> v(10) ;
vector<int>::iterator iter ;
for (iter=v.begin() ;iter!=v.end() ; ++iter) {
 *iter = 0 ;
}

// Iterator loop
vector<int> v(10) ;
for (auto iter=v.begin() ; iter!=v.end() ; ++iter) {
 *iter = 0 ;
}

Even better: range-based for loops C++2011

•  C++2011 also introduces concept of ‘range-based’ for
loops over any entity that supports iterators

•  Works for any container that defines methods
begin() and end() that return an iteratable type

© 2006 Wouter Verkerke, NIKHEF

std::vector<int> v = {0, 1, 2, 3, 4, 5};

// Loop over all elements of v
for (auto i : v) { // access by value,
 cout << i << endl ;
}

// Loop over all elements of v
for (auto&& i : v) { // access by reference,
 cout << i << endl ;
}

© 2006 Wouter Verkerke, NIKHEF

OO programming – Inheritance & Polymorphism

Inheritance &
Polymorphism 8

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Introduction

•  Inheritance is
–  a technique to build a new class based on an old class

•  Example
–  Class employee holds employee personnel record

–  Company also employs managers, which in addition to being
employees themselves supervise other personnel

•  Manager class needs to contain additional information: list of subordinates

–  Solution: make Manager class that inherits from Employee

class Employee {
public:
 Employee(const char* name, double salary) ;
 const char* name() const ;
 double salary() const ;
private:
 string _name ;
 double _salary ;
} ;

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Syntax

•  Example of Manager class constructed through
inheritance

class Manager : public Employee {
public:
 Manager(const char* name, double salary,
 vector<Employee*> subordinates) ;
 list<Employee*> subs() const ;
private:
 list<Employee*> _subs ;
} ;

Declaration of public
inheritance

Additional data members in
Manager class

© 2006 Wouter Verkerke, NIKHEF

Inheritance and OOAD

•  Inheritance means: Manager Is-An Employee
–  Object of class Manager can be used in exactly the same way as

you would use an object of class Employee because:

–  class Manager also has all data members and member functions of
class Employee

–  Detail: examples shows ‘public inheritance’ – Derived class
inherits public interface of Base class

•  Inheritance offers new possibilities in OO Analysis and
Design
–  But added complexity is major source for conceptual problems

–  We’ll look at that in a second, let’s first have a better look at
examples

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Example in pictures

•  Schematic view of Manager class

class Manager
public:
 list<Employee*> subs() const ;
private:
 list<Employee*> _subs ;

‘Base class’

‘Derived class’

Terminology

class Employee
public:
 const char* name() const ;
 double salary() const ;
private:
 string _name ;
 double _salary ;

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Using it

•  Demonstration of Manager-IS-Employee concept

// Create employee, manager record
Employee* emp = new Employee(“Wouter”,10000) ;

list<Employee*> subs ;
subs.push_back(emp) ;

Manager* mgr = new Manager(“Stan”,20000,subs) ;

// Print names and salaries using
// Employee::salary() and Employee::name()
cout << emp->name() << endl ; // prints Wouter
cout << emp->salary() << endl ; // prints 10000

cout << mgr->name() << endl ; // prints Stan
cout << mgr->salary() << endl ; // prints 20000

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Using it

•  Demonstration of Manager-IS-Employee concept
–  A pointer to a derived class is also a pointer to the base class

–  But the reverse is not true!

// Pointer-to-derived IS Pointer-to-base
void processEmployee(Employee& emp) {
 cout << emp.name() << “ : “ << emp.salary() << endl ;
}

processEmployee(*emp) ;
processEmployee(*mgr) ; // OK Manager IS Employee

// Manager details are not visible through Employee* ptr
Employee* emp2 = mgr ; // OK Manager IS Employee
emp2->subs() ; // ERROR – Employee is not manager

© 2006 Wouter Verkerke, NIKHEF

OO Analysis and Design – ‘Is-A’ versus ‘Has-A’

•  How is an ‘Is-A’ relationship different from a ‘Has-A’
relationship
–  An Is-A relationship expresses inheritance (A is B)

–  A Has-A relationship expresses composition (A is a component of B)

a Calorimeter HAS-A Position An Manager IS-An Employee

class Calorimeter {
public:
 Position& p() { return _p ; }
private:
 Position _p ;
} ;

class Manager :
 public Employee {
public:

private:
} ;

Calorimeter calo ;
// access position part

calo.p() ;

Manager mgr ;
// Use employee aspect of mgr

mgr.salary() ;

© 2006 Wouter Verkerke, NIKHEF

Inheritance – constructors, initialization order

•  Construction of derived class involves construction of base
object and derived object
–  Derived class constructor must call base class constructor

–  The base class constructor is executed before the derived class ctor

–  Applies to all constructors, including the copy constructor

Manager::Manager(const char* _name, double _salary,
 list<Employee*>& l) :
 Employee(_name,_salary),
 _subs(l) {
 cout << name() << endl ; // OK - Employee part of object
} // is fully constructed at this
 // point so call to base class
 // function is well defined

Manager::Manager(const Manager& other) :
 Employee(other), // OK Manager IS Employee
 _subs(other._subs) {
 // body of Manager copy constructor
}

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Destructors, call sequence

•  For destructors the reverse sequences is followed
–  First the destructor of the derived class is executed

–  Then the destructor of the base class is executed

•  Constructor/Destructor sequence example

class A {
 A() { cout << “A constructor” << endl ; }
 ~A() { cout << “A destructor” << endl ; }
} ;

class B : public A {
 B() { cout << “B constructor” << endl ; }
 ~B() { cout << “B destructor” << endl ; }
} ;

int main() {
 B b ;
 cout << endl ;
}

A constructor
B constructor

B destructor
A destructor

Output

© 2006 Wouter Verkerke, NIKHEF

Sharing information – protected access

•  Inheritance preserves existing encapsulation
–  Private part of base class Employee is not accessible by derived

class Manager

•  Sometimes useful if derived class can access part of
private data of base class
–  Solution: ‘protected’ -- accessible by derived class, but not by

public

Manager::giveMyselfRaise() {
 _salary += 1000 ; // NOT ALLOWED: private in base class
}

class Base {
 public:
 int a ;
 protected:
 int b ;
 private:
 int c ;
} ;

class Derived : public Base {
 void foo() {
 a = 3 ; // OK public
 b = 3 ; // OK protected
 }
} ;

Base base ;
base.a = 3 ; // OK public
base.b = 3 ; // ERROR protected

© 2006 Wouter Verkerke, NIKHEF

Better example of protected interface
class Employee {
public:
 Employee(const char* name, double salary) ;
 annualRaise() { setSalary(_salary*1.03) ; }
 double salary() const { return _salary ; }

protected:
 void setSalary(double newSalary) {
 if (newSalary<_salary) {
 cout << “ERROR: salary must always increase” << endl ;
 } else {
 _salary = newSalary ;
 }
 }

private:
 string _name ;
 double _salary ;
} ;

The setSalary() function is
protected:

Public cannot change salary

except in controlled way
through public

annualRaise() method

© 2006 Wouter Verkerke, NIKHEF

Better example of protected interface
class Employee {
public:
 Employee(const char* name, double salary) ;
 annualRaise() { setSalary(_salary*1.03) ; }
 double salary() const { return _salary ; }

protected:
 void setSalary(double newSalary) {
 if (newSalary<_salary) {
 cout << “ERROR: salary must always increase” << endl ;
 } else {
 _salary = newSalary ;
 }
 }

private:
 string _name ;
 double _salary ;
} ;

class Manager : public Employee {
public:
 Manager(const char* name, double salary,
 list<Employee*> subs) ;

 giveBonus(double amount) {
 setSalary(salary()+amount) ;
 }
private:
 list<Employee*> _subs ;
} ;

Managers can also get additional
raise through giveBonus()

Access to protected

setSalary() method allows
giveBonus() to modify salary

© 2006 Wouter Verkerke, NIKHEF

Better example of protected interface
class Employee {
public:
 Employee(const char* name, double salary) ;
 annualRaise() { setSalary(_salary*1.03) ; }
 double salary() const { return _salary ; }

protected:
 void setSalary(double newSalary) {
 if (newSalary<_salary) {
 cout << “ERROR: salary must always increase” << endl ;
 } else {
 _salary = newSalary ;
 }
 }

private:
 string _name ;
 double _salary ;
} ;

class Manager : public Employee {
public:
 Manager(const char* name, double salary,
 list<Employee*> subs) ;

 giveBonus(double amount) {
 setSalary(salary()+amount) ;
 }
private:
 list<Employee*> _subs ;
} ;

Note how accessor/modifier
pattern salary()/setSalary()

is also useful for protected
access

Manager is only allowed to

change salary through
controlled method: negative
bonuses are not allowed…

© 2006 Wouter Verkerke, NIKHEF

Object Oriented Analysis & Design with Inheritance

•  Principal OOAD rule for inheritance: an Is-A relation is an
extension of an object, not a restriction
–  manager Is-An employee is good example of a valid Is-A relation:

A manager conceptually is an employee in all respects, but with
some extra capabilities

–  Many cases are not that simple however

•  Some other cases to consider
–  A cat is a carnivore that knows how to meow (maybe)

–  A square is a rectangle with equal sides (no!)

•  ‘Is-A except‘ is a restriction, not an extension

–  A rectangle is a square with method to change side lengths (no!)

•  Code in square can make legitimate assumptions that both sides
are of equal length

© 2006 Wouter Verkerke, NIKHEF

Object Oriented Analysis & Design with Inheritance

•  Remarkably easy to get confused
–  Particularly if somebody else inherits from your class later (and you might

not even know about that)

•  The Iron-Clad rule: The Liskov Subtitution Principle
–  Original version:

–  In plain English:

–  Keep this in mind when you design class hierarchies using Is-A relationships

‘If for each object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T, the behavior

of P is unchanged when o1 is substituted for o2, then S a subtype of T’

‘An object of a subclass must behave indistinguishably from an
object of the superclass when referenced as an object of the superclass’

© 2006 Wouter Verkerke, NIKHEF

Object Oriented Analysis & Design with Inheritance

•  Extension through inheritance can be quite difficult
–  ‘Family trees’ seen in text books very hard to do in real designs

•  Inheritance for “extension” is non-intuitive, but for
“restriction” is wrong

•  Inheritance is hard to get right in advance
–  Few things are straightforward extensions

–  Often behavior needs to be overridden rather than extended

–  Design should consider entire hierarchy

•  But do not despair:
–  Polymorphism offers several new features that will make OO

design with inheritance easier

© 2006 Wouter Verkerke, NIKHEF

Polymorphism

•  Polymorphism is the ability of an object to retain its true
identity even when accessed through a base pointer
–  This is perhaps easiest understood by looking at an example

without polymorphism

•  Example without polymorphism
–  Goal: have name() append “(Manager)” to name tag for manager
–  Solution: implement Manager::name() to do exactly that

class Manager : public Employee {
public:
 Manager(const char* name, double salary,
 vector<Employee*> subordinates) ;

 const char* name() const {
 cout << _name << “ (Manager)” << endl ;
 }

 list<Employee*> subs() const ;
private:
 list<Employee*> _subs ;
} ;

© 2006 Wouter Verkerke, NIKHEF

Example without polymorphism

•  Using the improved manager class

•  But it doesn’t work in all circumstances…

–  Why does this happen?

–  Function print() sees mgr as employee, thus the compiler calls
Employee::name() rather than Manager::name() ;

–  Problem profound: name() function call selected at compile time. No way
for compiler to know that emp really is a Manager!

Employee emp(“Wouter”,10000) ;
Manager mgr(“Stan”,20000,&emp) ;

cout << emp.name() << endl ; // Prints “Wouter”
cout << mgr.name() << endl ; // Prints “Stan (manager)”

void print(Employee& emp) {
 cout << emp.name() << endl ;
}
print(emp) ; // Prints “Wouter”
print(mgr) ; // Prints “Stan” – NOT WHAT WE WANTED!

© 2006 Wouter Verkerke, NIKHEF

Polymorphism

•  Polymorphism is the ability of an object to retain its true
identity even when accessed through a base pointer
–  I.e. we want this:

•  In other words: Polymorphism is the ability to treat
objects of different types the same way
–  To accomplish that we will need to tell C++ compiler to look at

run-time what emp really points to.
–  In compiler terminology this is called ‘dynamic binding’ and

involves the compiler doing some extra work prior to executing
the emp->name() call

Employee emp(“Wouter”,10000) ;
Manager mgr(“Stan”,20000,&emp) ;

void print(Employee& emp) {
 cout << emp.name() << endl ;
}
print(emp) ; // Prints “Wouter”
print(mgr) ; // Prints “Stan (Manager)”

© 2006 Wouter Verkerke, NIKHEF

Dynamic binding in C++ – keyword virtual

•  The keyword virtual in a function declaration activates
dynamic binding for that function
–  The example class Employee revisited

–  No further changes to class Manager needed

… And the broken printing example now works

class Employee {
public:
 Employee(const char* name, double salary) ;
 virtual const char* name() const ;
 double salary() const ;
private:
 …
} ;

void print(Employee& emp) {
 cout << emp.name() << endl ;
}
print(emp) ; // Prints “Wouter”
print(mgr) ; // Prints “Stan (Manager)” EUREKA

© 2006 Wouter Verkerke, NIKHEF

Keyword virtual – some more details

•  Declaration ‘virtual’ needs only to be done in the base
class
–  Repetition in derived classes is OK but not necessary

•  Any member function can be virtual
–  Specified on a member-by-member basis

class Employee {
public:
 Employee(const char* name, double salary) ;
 ~Employee() ;

 virtual const char* name() const ; // VIRTUAL
 double salary() const ; // NON-VIRTUAL

private:
 …
} ;

© 2006 Wouter Verkerke, NIKHEF

Virtual functions and overloading

•  For overloaded virtual functions either all or none of the
functions variants should be redefined

class A {
 virtual void func(int) ;
 virtual void func(float) ;
} ;

class B : public A {
 void func(int) ;
 void func(float) ;
} ;

class A {
 virtual void func(int) ;
 virtual void func(float) ;
} ;

class B : public A {
} ;

class A {
 virtual void func(int) ;
 virtual void func(float) ;
} ;

class B : public A {
 void func(float) ;
} ;

OK – all redefined

OK – none redefined

NOT OK – partially redefined

© 2006 Wouter Verkerke, NIKHEF

Virtual functions – Watch the destructor

•  Watch the destructor declaration if you define virtual functions
–  Example

–  Any resources allocated in Manager constructor will not be released as
Manager destructor is not called (just Employee destructor)

–  Solution: make the destructor virtual as well

•  Lesson: if you ever delete a derived class through a base
pointer your class should have a virtual destructor
–  In practice: Whenever you have any virtual function, make the destructor

virtual

Employee* emp = new Employee(“Wouter”,10000) ;
Manager* mgr = new Manager(“Stan”,20000,&emp) ;

void killTheEmployee(Employee* emp) {
 delete emp ;
}

killTheEmployee(emp) ; // OK
killTheEmployee(mgr) ; // LEGAL but WRONG!
 // calls ~Employee() only, not ~Manager()

© 2006 Wouter Verkerke, NIKHEF

Abstract base classes – concept

•  Virtual functions offer an important tool to OOAD – the
Abstract Base Class
–  An Abstract Base Class is an interface only. It describes how an

object can be used but does not offer a (full) implementation

class Trajectory
public:

virtual Point x(float& t)=0;

class LineTrajectory
public:

Point x(float &t) ;

private:
Vector _orig ;
Vector _dir ;

class HelixTrajectory
public:

Point x(float &t) ;

private:
Vector _orig ;

double _rho, _phi, _d,
_kappa, _lambda ;

Interface
only

Imple-
mentation

© 2006 Wouter Verkerke, NIKHEF

Abstract base classes – pure virtual functions

•  A class becomes an abstract base class when it has one
or more pure virtual functions
–  A pure virtual function is a declaration without an implementation

–  Example

–  It is not possible to create an instance of an abstract base
class, only of implementations of it

class Trajectory {
public:
 Trajectory() ;
 virtual ~Trajectory() ;
 virtual Point x(float& t) const = 0 ;
} ;

Trajectory* t1 = new Trajectory(…) ; // ERROR abstract class
Trajectory* t2 = new LineTrajectory(…); // OK
Trajectory* t3 = new HelixTrajectory(…);// OK

© 2006 Wouter Verkerke, NIKHEF

Abstract base classes and design

•  Abstract base classes are a way to express common
properties and behavior without implementation
–  Especially useful if there are multiple implementations of a

common interface possible

–  Example: a straight line ‘is a’ trajectory,
 but a helix also ‘is a’ trajectory

•  Enables you to write code at a higher level abstraction
–  For example, you don’t need to know how trajectory is

parameterized, just how to get its position at a give flight time.

–  Powered by polymorphism

•  Simplifies extended/augmenting existing code
–  Example: can write new class SegmentedTrajectory. Existing

code dealing with trajectories can use new class without
modifications (or even recompilation!)

© 2006 Wouter Verkerke, NIKHEF

Abstract Base classes – Example

•  Example on how to use abstract base classes

void processTrack(Trajectory& track) ;

int main() {
 // Allocate array of trajectory pointers
 Trajectory* tracks[3] ;

 // Fill array of trajectory pointers
 tracks[0] = new LineTrajectory(…) ;
 tracks[1] = new HelixTrajectory(…) ;
 tracks[2] = new HelixTrajectory(…) ;

 for (int i=0 ; i<3 ; i++) {
 processTrack(*tracks[i]) ;
 }
}

void processTrack(Trajectory& track) {
 cout << “position at flight length 0 is “
 << track.pos(0) << endl ;
}

Use Trajectory
interface to
manipulate track
without knowing
the exact class
you’re dealing with
(HelixTrajectory
or LineTrajectory)

© 2006 Wouter Verkerke, NIKHEF

Object Oriented Analysis and Design and Polymorphism

•  Design of class hierarchies can be much simplified if
only abstract base classes are used
–  In plain inheritance derived class forcibly inherits full specifications

of base type

–  Two classes that inherit from a common abstract base class can
share any subset of their common functionality

Base

Derived

Abstract
Common
Interface

Concrete
Implementation

I

Concrete
Implementation

II

