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Programming, design and complexity 

•  The goal of software – to solve a particular problem 
–  E.g. computation of numeric problems, maintaining an organized 

database of information, finding the Higgs etc.. 

•  Growing computational power in the last decades has 
allowed us to tackle more and more complex problems 

•  As a consequence software has also grown more 
powerful and complex  
–  For example Microsoft Windows OS, last generation video games, 

often well over 1.000.000 lines of source code 
–  Growth also occurs in physics: e.g. collection of software packages 

for reconstruction/analysis of the BaBar experiment is ~6.4M lines 
of C++ 
 

•  How do we deal with such increasing complexity? 
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Programming philosophies 

•  Key to successfully coding complex systems is break 
down code into smaller modules and minimize the 
dependencies between these modules 

•  Traditional programming languages (C, Fortran, Pascal)  
achieve this through procedure orientation 
–  Modularity and structure of software revolves around ‘functions’ 

encapsulate (sub) algorithms 
–  Functions are a major tool in software structuring but leave a few 

major design headaches 

•  Object-oriented languages (C++, Java,…) take this 
several steps further 
–  Grouping data and associated functions into objects 
–  Profound implications for modularity and dependency reduction 
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What are objects 

•  ‘Software objects’ are often found naturally in real-life 
problems 

•  Object oriented programming à Finding these objects 
and their role in your problem 

Button object Check box object 

Drop box object 

Dialog box 
object 
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What are objects 

•  An object has 
–  Properties : position, shape, text label 

–  Behavior : if you click on the ‘Cancel button’ a defined action occurs 

Button object Check box object 

Drop box object 

Dialog box 
object 
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Relating objects 

•  Object-Oriented Analysis and Design seeks the relation 
between objects 
–  ‘Is-A’ relationship (a PushButton Is-A ClickableObject) 

–  ‘Has-A’ relationship (a DialogBox Has-A CheckBox) 

Button object Check box object 

Drop box object 

Dialog box 
object 
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Benefits of Object-Oriented programming 

•  Benefits of Object-oriented programming 
–  Reuse of existing code – objects can represent generic problems 

–  Improved maintainability – objects are more self contained than 
‘subroutines’ so code is less entangled 

–  Often a ‘natural’ way to describe a system – see preceding 
example of dialog box 
 

•  But… 
–  Object oriented modeling does not substitute for sound thinking 

–  OO programming does not guarantee high performance, but it 
doesn’t stand in its way either 

•  Nevertheless 

–  OO programming is currently the best way we know 
to describe complex systems 
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Basic concept of OOAD 

•  Object-oriented programming revolves around 
abstraction of your problem. 
–  Separate what you do from how you do it 

•  Example – PushButton object 

 
PushButton is a complicated 
piece of software – Handling 
of mouse input, drawing 
of graphics etc.. 
 
Nevertheless you can use a 
PushButton object and don’t 
need to know anything about 
that. Its public interface can 
be very simple: My name is 
‘cancel’ and I will call function 
doTheCancel() when I get 
clicked  
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Techniques to achieve abstraction 

•  Abstraction is achieved through 
 

1.   Modularity 
 

2.   Encapsulation 
 

3.   Inheritance 
 

4.   Polymorphism 
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Modularity 

•  Decompose your problem logically in independent units 
–  Minimize dependencies between units – Loose coupling 

–  Group things together that have logical connection – Strong cohesion 
 

•  Example  
–  Grouping actions and properties of a bank account together 

long getBalance() 
void print()  
void calculateInterest() 
 
char* ownersName 
long  accountNumber 
long  accountBalance 

Account 
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Encapsulation 

•  Separate interface and implementation and shield 
implementation from object ‘users’ 

long getBalance() 
void print()  
void calculateInterest() 
 
char* ownersName 
long  accountNumber 
long  accountBalance 

Account 

interface 

implementation 
(not visible from outside) 
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Inheritance 

•  Describe new objects in terms of existing objects 

•  Example of mortgage account 

long getBalance() 
void print()  
void calculateInterest() 
 
char* ownersName 
long  accountNumber 
long  accountBalance 

Account 

interface 

implementation 
(not visible from outside) 

char* collateralObject 
long  collateralValue 

MortgageAccount 
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Polymorphism 

•  Polymorphism is the ability to treat objects of different 
types the same way 
–  You don’t know exactly what object you’re dealing with but you 

know that you can interact with it through a standardized 
interface 

–  Requires some function call decisions to be taken at run time 

•  Example with trajectories 
–  Retrieve position at a flight length of 5 cm 

–  Same interface works for different objects with identical interface 

Point p = Traj->getPos(5.0) 

LineTrajectory HelixTrajectory 
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Introduction to C++ 

•  Wide choice of OO-languages – why program in C++? 
–  It depends on what you need… 

 

•  Advantage of C++ – It is a compiled language 
–  When used right the fastest of all OO languages 
–  Because OO techniques in C++ are resolved and implemented at compile 

time rather than runtime so 
•  Maximizes run-time performance 
•  You don’t pay for what you don’t use 

 
 

•  Disadvantage of C++ – syntax more complex  
–  Also, realizing performance advantage not always trivial 

 
 

•  C++ best used for large scale projects where performance 
matters 
–  C++ rapidly becoming standard in High Energy Physics for mainstream data 

processing, online data acquisition etc… 
–  Nevertheless, if your program code will be O(100) lines and performance is 

not critical C, Python, Java may be more efficient 



Versions of C++ 

•  C++ is a ‘living language’ that evolves over time.  

•  This course is largely based on the 2003 standard of C++ 

•  LHC experiments are now largely adopting C++ compilers 
that implement the 2011 standard of C++, which brings 
useful new features 
–  E.g. Auto types, range-based for loops, lambdas, constructor 

delegation, tuples, hash tables and pointer memory management 

–  I will cover a subset of these C++2011 features in this course, 
and explicitly point out the features that are only available in C+
+2011 

•  For the GNU compilers (gcc/g++) some of the C++2011 
features are implement starting in version 4.4, with 
almost all features implemented in 4.7 
–  In gcc 4.[3456] must add flag ‘-std=c++0x’ to activate 

–  In gcc 4.[78] must add flag ‘-std=c++11’ to activate 

© 2006 Wouter Verkerke, NIKHEF 
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Outline of the course 

1.  Introduction and overview 

2.  Basics of C++ 

3.  Modularity and Encapsulation – Files and Functions 

4.  Class Basics 

5.  Object Analysis and Design 

6.  The Standard Library I – Using IOstreams 

7.  Generic Programming – Templates 

8.  The Standard Library II – The template library 

9.  Object Orientation – Inheritance & Polymorphism 

10. Robust programming – Exception handling 

11. Where to go from here 
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The basics of C++ 

The basics 
of C++ 1 
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“Hello world” in C++ 

•  Lets start with a very simple C++ program 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  
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“Hello world” in C++ 

•  Lets start with a very simple C++ program 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  Anything on line after // in C++ is 

considered a comment 
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“Hello world” in C++ 

•  Lets start with a very simple C++ program 

 
 

•  The preprocessor of a C(++) compiler processes the 
source code before it is passed to the compiler. It can: 
–  Include other source files (using the #include directive) 

–  Define and substitute symbolic names (using the #define directive) 

–  Conditionally include source code (using the #ifdef, #else, #endif 
directives) 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  

Lines starting with # are directives for the 
preprocessor 

 
Here we include some standard function 

and type declarations of objects defined by 
the ‘iostream’ library  
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“Hello world” in C++ 

•  Let start with a very simple C++ program 

 
 

•  The main() function is the default function where all C++ 
programs begin their execution. 
–  In this case the main function takes no input arguments and returns 

an integer value 

–  You can also declare the main function to take arguments which will 
be filled with the command line options given to the program  

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  

Beginning of the main() 
function declaration. 
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“Hello world” in C++ 

•  Lets start with a very simple C++ program 

 
 

•  The names std::cout and std::endl are declared in the 
‘header file’ included through the ‘#include <iostream>’ 
preprocessor directive. 

•  The std::endl directive represents the ‘carriage return / line 
feed’ operation on the terminal 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  

Use iostream library objects 
to print string to standard 

output 
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“Hello world” in C++ 

•  Lets start with a very simple C++ program 

 
 

•  The return value of the main() function is passed back to 
the operating system as the ‘process exit code’ 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  The return statement passes 

the return value back to the 
calling function 
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Compiling and running ‘Hello World’ 

•  Example using Linux, (t)csh and g++ compiler 

unix> g++ -o hello hello.cc 
 
unix> ./hello 
Hello World! 
 
unix> echo $status 
0 

Run executable ‘hello’ 

Convert c++ source code 
into executable 

Print exit code of last 
run process (=hello) 
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Outline of this section 

•  Jumping in: the ‘hello world’ application 
 

•  Review of the basics 
–  Built-in data types 

 

–  Operators on built-in types 
 

–  Control flow constructs 
 

–  More on block {} structures 
 

–  Dynamic Memory allocation 

int main() { 
   int a  = 3 ; 
   float b = 5 ; 
 
   float c = a * b + 5 ; 
 
   if ( c > 10) { 
      return 1 ; 
   } 
 
   return 0 ; 
} 
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Review of the basics – built-in data types 

•  C++ has only few built-in data types 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

•  More complex types are available in the ‘Standard Library’ 
–  A standard collection of tools that is available with every compiler 

–  But these types are not fundamental as they're implement using standard C++ 

–  We will get to this soon 

type name type description 
char ASCII character, 1 byte 
int, 
signed int, unsigned int, 
short int, long int 

Integer. Can be signed, unsigned, long or 
short. Size varies and depends on CPU 
architecture (2,4,8 bytes) 

float, double Floating point number, single and double 
precision 

bool Boolean, can be true or false (1 byte) 
enum Integer with limited set of named states 

enum fruit { apple,pear,citrus }, or 
enum fruit { apple=0,pear=1,citrus} 
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Defining data objects – variables 

•  Defining a data object can be done in several ways 

•  Data objects declared can also be declared constant 

int main() { 
   int j ;     // definition – initial value undefined 
   int k = 0 ; // definition with assignment initialization 
   int l(0) ;  // definition with constructor initialization 
 
   int m = k + l ; // initializer can be any valid C++ expression 
 
   int a,b=0,c(b+5); // multiple declaration – a,b,c all integers    
} 

int main() { 
   const float pi = 3.14159268 ; // constant data object 
   pi = 2 ; // ERROR – doesn’t compile 
} 



Auto declaration type (C++ 2011) 

•  In C++ 2011, you can also omit an explicit type in 
declarations of objects that are immediately initialized 

•  In these cases the type is deduced from the initializer  
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auto j = 16 ;   // j is integer  
auto j = 2.3 ;  // j is double 
auto j = true ;  // j is bool 
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Arrays 

•  C++ supports 1-dimensional and N-dimensional arrays 
–  Definition 

–  Array dimensions in definition must be constants 
 
 
 
 
 
 
 

–  First element’s index is always 0 

–  Assignment initialization possible 

Type name[size] ; 
Type name[size1][size2]…[sizeN] ; 

float x[3] ;    // OK 
 
const int n=3 ; 
float x[n] ;    // OK 
 
int k=5 ; 
float x[k] ;    // ERROR! 

float x[3]     = { 0.0, 5.7 , 2.3 } ; 
float y[2][2]  = { 0.0, 1.0, 2.0, 3.0 } ; 
float y[3]     = { 1.0 } ; // Incomplete initialization OK 
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Declaration versus definition of data 

•  Important fine point: definition of a variable is two actions 
1.  Allocation of memory for object 
2.  Assigning a symbolic name to that memory space 

 

–  C++ symbolic name is a way for programs to give understandable 
names to segments of memory  

–  But it is an artifact: no longer exists once the program is compiled  

Memory layout C++ symbol name space 

int myArray[5] 

float x 

char name[256] 
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References 

•  C++ allows to create ‘alias names’, a different symbolic 
name referencing an already allocated data object 
–  Syntax: ‘Type& name = othername’ 

–  References do not necessarily allocate memory 

•  Example 

–  Concept of references will become more interesting when we’ll 
talk about functions 

int x ;      // Allocation of memory for int  
             // and declaration of name ‘x’ 
int& y = x ; // Declaration of alias name ‘y’ 
             // for memory referenced by ‘x’ 
 
x = 3 ; 
cout << x << endl ; // prints ‘3’ 
cout << y << endl ; // also prints ‘3’ 
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References 

•  Illustration C++ of reference concept 
–  Reference is symbolic name that points to same memory as 

initializer symbol 

Memory layout C++ symbol name space 

int myArray[5] 

float x 

char name[256] 

float& y = x 
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Pointers 

•  Pointer is a variable that contains a memory address 
–  Somewhat similar to a reference in functionality, but fundamentally 

different in nature: a pointer is always an object in memory itself 

–  Definition: ‘TYPE* name’ makes pointer to data of type TYPE 

Memory layout C++ symbol name space 

int myArray[5] 

float x 

char name[256] 

float* y = &x 

float& y = x 
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Pointers 

•  Working with pointers 
–  Operator & takes memory address of symbol object (=pointer value) 

–  Operator * turns memory address (=pointer value) into symbol object 

•  Creating and reading through pointers 

•  Modifying pointers and objects pointed to  

int x = 3, y = 4 ;    
int* px ;            // allocate px of type ‘pointer to integer’ 
px = &x ;            // assign ‘memory address of x’ to pointer px 
 
cout << px << endl ; // Prints 0x3564353, memory address of x 
cout << *px << endl ;// Prints 3, value of x, object pointed to by px 
 
 
 
 
*px = 5 ;            // Change value of object pointed to by px (=x) ; 
cout << x << endl ;  // Prints 5 (since changed through px)  
px = &y ;            // Reseat pointer to point to symbol named ‘y’ 
 
cout << px << endl ; // Prints 0x4863813, memory address of y 
cout << *px << endl ;// Prints 4, value of y, object pointed to by px 
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Pointers continued 

•  Pointers are also fundamentally related to arrays 

•  Pointer (pa+1) points to next element of an array 
–  This works regardless of the type in the array 

–  In fact a itself is a pointer of type int* pointing to a[0] 
 

•  The Basic Rule for arrays and pointers 
–  a[i] is equivalent to *(a+i) 

int a[3]  = { 1,2,3} ; // Allocates array of 3 integers 
int* pa   = &a[0] ;    // Pointer pa now points to a[0] 
 
cout << *pa << endl ;     // Prints ‘1’ 
cout << *(pa+1) << endl ; // Prints ‘2’ 
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Some details on the block {} statements 

•  Be sure to understand all consequences of a block {} 
–  The lifetime of automatic variables inside the block is limited to 

the end of the block (i.e up to the point where the } is 
encountered)  
 
 
 
 
 
 
 
 

–  A block introduces a new scope : it is a separate namespace in 
which you can define new symbols, even if those names already 
existed in the enclosing block 

int main() { 
  int i = 1 ; 
 
  if (x>0) { 
    int i = 0 ; 
    // code 
  } else { 
    // code 
  } 
} 

Memory for  
‘int i’ allocated 

Memory for  
‘int i’ released 
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Dynamic memory allocation 

•  Allocating memory at run-time 
–  When you design programs you cannot always determine how 

much memory you need 

–  You can allocate objects of unknown size at compile time using 
the ‘free store’ of the C++ run time environment 

•  Basic syntax of runtime memory allocation 
–  Operator new allocates single object, returns pointer 

–  Operator new[] allocates array of objects, returns pointer 

// Single object 
Type* ptr = new Type ; 
Type* ptr = new Type(initValue) ; 
 
// Arrays of objects 
Type* ptr = new Type[size] ; 
Type* ptr = new Type[size1][size2]…[sizeN] ; 
 



Releasing dynamic memory allocation 

•  Operator delete releases dynamic memory previously 
allocated with new 
 

–  Be sure to use delete[] for allocated arrays. A mismatch will 
result in an incomplete memory release 

–  The delete operator only deletes memory that the pointer 
points to, not pointer itself 

–  Every call to new must be matched with a call to a delete 
 

•  How much memory is available in the free store? 
–  As much as the operating system lets you have 
–  If you ask for more than is available your program will terminate 

in the new operator 
–  It is possible to intercept this condition and continue the program 

using ‘exception handling’ (we’ll discuss this later) 

// Single object 
delete ptr ; 
 
// Arrays of objects 
delete[] ptr ; 
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Dynamic memory and leaks 

•  A common problem in programs are memory leaks 
–  Memory is allocated but never released even when it is not used 

anymore 

–  Example of leaking code 

void leakFunc() { 
  int* array = new int[1000] ; 
  // do stuff with array 
} 
 
int main() { 
  int i ; 
  for (i=0 ; i<1000 ; i++) { 
    leakFunc() ; // we leak 4K at every call 
  } 
} 

Leak happens right here  
we loose the pointer array  
here and with that our only  
possibility to release its memory  
in future 
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Dynamic memory and leaks 

•  Another scenario to leak memory 
–  Misunderstanding between two functions 

int* allocFunc() { 
  int* array = new int[1000] ; 
  // do stuff with array 
  return array ; 
} 
 
int main() { 
   int i ; 
   for (i=0 ; i<1000 ; i++) { 
     allocFunc() ;  
   } 
} 

allocFunc() allocates memory 
but pointer as return value 
memory is not leaked yet 

Author of main() doesn’t know 
that it is supposed to delete 
array returned by allocFunc() 

Leak occurs here, pointer to dynamically 
allocated memory is lost before memory 
is released 
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Dynamic memory and ownership 

•  Avoiding leaks is a matter of good bookkeeping 
–  All memory allocated should be released after use 

•  Memory handling logistics usually described in terms of 
ownership 
–  The ‘owner’ of dynamically allocated memory is responsible for 

releasing the memory again 

–  Ownership is a ‘moral concept’, not a C++ syntax rule. Code 
that never releases memory it allocated is legal, but may not work 
well as program size will increase in an uncontrolled way over 
time 

–  Document your memory management code in terms of ownership 
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Dynamic memory allocation 

•  Example of dynamic memory allocation with ownership 
semantics 
–  Less confusion about division of responsabilities 

 int* makearray(int size) { 
   // NOTE: caller takes ownership of memory 
   int* array = new int[size] ; 
 
   int i ; 
   for (i=0 ; i<size ; i++) { 
     array[i] = 0 ; 
   } 
   return array; 
} 
 
int main() { 
  // Note: We own array 
  int* array = makearray(1000) ; 
 
  delete[] array ; 
} 
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Files and Functions 

Files and  
Functions 2 
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Structured programming – Functions 

•  Functions group statements into logical units 
–  Functions encapsulate algorithms 

 

•  Declaration 

•  Definition: 
 
 

•  Ability to declare function separate from definition important 
–  Allows to separate implementation and interface 
–  But also solves certain otherwise intractable problems 

TYPE function_name(TYPE arg1, TYPE arg2, …, TYPE argN) ; 
 

TYPE function_name(TYPE arg1, TYPE arg2, …, TYPE argN) { 
   // body 
   statements ; 
   return arg ; 
} 
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Forward declaration of functions 

•  Example of trouble using function definitions only 
 

 
 
 
 
 
 
–  Reversing order of definition doesn’t solve problem  

–  But forward declaration does solve it: 

int g() { 
  f() ; // g calls f – ERROR, f not known yet 
} 
 
int f() { 
  g() ; // f calls g – OK g is defined 
} 

 

int f(int x) ; 
 
int g() { 
  f(x*2) ; // g calls f – OK f declared now 
} 
 
int f(int x) { 
  g() ; // f calls g – OK g defined by now 
} 
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Function arguments – values 

•  By default all functions arguments are passed by value 
–  Function is passed copies of input arguments 

–  Allows function to freely modify inputs without consequences 

–  Note: potentially expensive, because passing large objects 
(arrays) by value is expensive! 

a and b in swap() are copies of  
a and b in main() 

void swap(int a, int b) ; 
 
int main() { 
   int a=3, b=5 ; 
   swap(a,b) ; 
   cout << “a=“ << a << “, b=“ << b << endl ; 
} 
 
void swap(int a, int b) { 
   int tmp ; 
   tmp = a ; 
   a = b ; 
   b = tmp ; 
} 
// outputs: “a=3, b=5” 
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Function arguments – references 

•  You can change this behavior by passing references as 
input arguments 
 

–  Passing by reference is inexpensive, regardless of size of object 
–  But allows functions to modify input arguments which may have 

potentially further consequences 

a and b in swap() are references to  
original a and b in main(). Any operation 
affects originals 

void swap(int& a, int& b) ; 
 
int main() { 
   int a=3, b=5 ; 
   swap(a,b) ; 
   cout << “a=“ << a << “, b=“ << b << endl ; 
} 
 
void swap(int& a, int& b) { 
   int tmp ; 
   tmp = a ; 
   a = b ; 
   b = tmp ; 
} 
// outputs: “a=5, b=3” 
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Function arguments – const references 

•  Functions with ‘const references’ take references but 
promise not to change the object 

•  Use const references instead of ‘pass-by-value’ when 
you are dealing with large objects that will not be 
changed 
–  Low overhead (no copying of large objects) 

–  Input value remains unchanged (thanks to const promise) 

void swap(const int& a, const int& b) { 
   int tmp ; 
   tmp = a ;  // OK – does not modify a 
   a = b ;    // COMPILER ERROR – Not allowed 
   b = tmp ;  // COMPILER ERROR – Not allowed 
} 
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Function arguments – pointers 

•  You can of course also pass pointers as arguments 
 

–  Syntax more cumbersome, use references when you can, pointers 
only when you have to 

a and b in swap() are pointers to  
original a and b in main(). Any operation 
affects originals 

void swap(int* a, int* b) ; 
 
int main() { 
  int a=3, b=5 ; 
  swap(&a,&b) ; 
  cout << “a=“ << a << “, b=“ << b << endl ; 
} 
 
void swap(int* a, int* b) { 
  int tmp ; 
  tmp = *a ; 
  *a = *b ; 
  *b = tmp ; 
} 

// outputs: “a=5, b=3” 
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Function arguments – main() and the command line 

•  If you want to access command line arguments you can 
declare main() as follows 

 

 
 
–  Second argument is array of pointers 

 

•  Output of example program 

int main(int argc, const char* argv[]) { 
   int i ; 
   for (i=0 ; i<argc ; i++) { 
      // argv[i] is ‘char *’ 
      cout << “arg #” << i << “ = “ << argv[i] << endl ; 
   } 
} 

unix> cc –o foo foo.cc 
unix> foo Hello World 
arg #0 = foo  
arg #1 = Hello  
arg #2 = World 

Array of (char*) 
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Functions – default arguments 

•  Often algorithms have optional parameters with default values 
–  How to deal with these in your programs? 

•  Simple: in C++ functions, arguments can have default values 
 
 

 
 
 
 

•  Rules for arguments with default values 
–  Default values can be literals, constants, enumerations or statics 

–  Positional rule: all arguments without default values must appear to the left 
of all arguments with default values 

void f(double x = 5.0) ; 
void g(double x, double y=3.0) ; 
const int defval=3 ; 
void h(int i=defval) ; 
 
int main() { 
  double x(0.) ; 
 
  f() ;      // calls f(5.0) ; 
  g(x) ;     // calls g(x,3.0) ; 
  g(x,5.0) ; // calls g(x,5.0) ; 
  h() ;      // calls h(3) ; 
} 
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Function overloading 

•  Often algorithms have different implementations with 
the same functionality 
 
 
 
 
 
 
 

–  The minimum3 algorithm would be easier to use if both 
implementations had the same name and the compiler would 
automatically select the proper implementation with each use 

int minimum3_int(int a, int b, int c) { 
  return (a < b ? ( a < c ? a : c ) : ( b < c ? b : c) ) ;  
} 
 
float minimum3_float(float a, float b, float c) { 
  return (a < b ? ( a < c ? a : c ) : ( b < c ? b : c) ) ; 
} 
 
int main() { 
  int a=3,b=5,c=1 ; 
  float x=4.5,y=1.2,z=-3.0 ; 
 
  int d = minimum3_int(a,b,c) ; 
  float w = minimum3_float(x,y,z) ; 
} 
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Function overloading 

•  C++ function overloading does exactly that 
–  Reimplementation of example with function overloading 

int minimum3(int a, int b, int c) { 
  return (a < b ? ( a < c ? a : c )  
                : ( b < c ? b : c) ) ;  
} 
 
float minimum3 (float a, float b, float c) { 
  return (a < b ? ( a < c ? a : c )  
                : ( b < c ? b : c) ) ; 
} 
 
int main() { 
  int a=3,b=5,c=1 ; 
  float x=4.5,y=1.2,z=-3.0 ; 
 
  int d = minimum3(a,b,c) ; 
  float w = minimum3(x,y,z) ; 
} 
 

Overloaded 
functions have 
same name,  
but different  
signature 
(list of arguments) 

Code calls same function name 
twice. Compiler selects appropriate 
overloaded function based on 
argument list 
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Organizing your code into modules 

•  For all but the most trivial programs it is not convenient 
to keep all C++ source code in a single file 
–  Split source code into multiple files 

•  Module: unit of source code offered to the compiler 
–  Usually module = file 

•  How to split your code into files and modules 
1.  Group functions with related functionality into a single file 

•  Follow guide line ‘strong cohesion’, ‘loose coupling’ 

•  Example: a collection of char* string manipulation functions go together in a single 
module 

2.  Separate declaration and definition in separate files 
•  Declaration part to be used by other modules that interact with given module 

•  Definition part only offered once to compiler for compilation 
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Typical layout of a module 

•  Declarations file 
 

•  Definitions file 

// capitalize.hh 
void convertUpper(char* str) ; 
void convertLower(char* str) ; 

// capitalize.cc 
#include “capitalize.hh” 
void convertUpper(char* ptr) { 
   while(*ptr) { 
      if (*ptr>=‘a’&&*ptr<=‘z’) *ptr -= ‘a’-’A’ ; 
      ptr++ ; 
   } 
} 
void convertLower(char* ptr) { 
   while(*ptr) { 
      if (*ptr>=‘A’&&*ptr<=‘Z’) *ptr += ‘a’-’A’ ; 
      ptr++ ; 
   } 
} 

Declarations 

Definitions 
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Using the preprocessor to include declarations 

•  The C++ preprocessor #include directive can be used 
to include declarations from an external module 

•  But watch out for multiple inclusion of same source file 
–  Multiple inclusion can have unwanted effects or lead to errors 

–  Preferred solution: add safeguard in .hh file that gracefully 
handles multiple inclusions  

•  rather than rely on cumbersome bookkeeping by module programming 

// demo.cc 
 
#include “capitalize.hh” 
 
int main(int argc, const char* argv[]) { 
    if (argc!=2) return 0 ; 
    convertUpper(argv[1]) ; 
    cout << argv[1] << endl ; 
} 
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Safeguarding against multiple inclusion 

•  Automatic safeguard against multiple inclusion 
–  Use preprocessor conditional inclusion feature 

 
#ifndef NAME 
(#else) 
#endif 

–  NAME can be defined with #define 
 

•  Application in capitalize.hh example 
–  If already included, CAPITALIZE_HH is set and future inclusion will 

be blank 

// capitalize.hh 
#ifndef CAPITALIZE_HH 
#define CAPITALIZE_HH 
 
void convertUpper(char* str) ; 
void convertLower(char* str) ; 
 
#endif 
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Namespaces 

•  Single global namespace often bad idea 
–  Possibility for conflict: someone else (or even you inadvertently) 

may have used the name want you use in your new piece of code 
elsewhere à Linking and runtime errors may result 

–  Solution: make separate ‘namespaces’ for unrelated modules of 
code 

•  The namespace feature in C++ allows you to explicitly 
control the scope of your symbols 
–  Syntax:   namespace name { 

 
  int global = 0 ; 
 
  void func() { 
    // code 
    cout << global << endl ; 
  } 
 
} 

Code can access symbols 
inside same namespace 
without further qualifications 
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Namespaces 

•  But code outside namespace must explicitly use scope 
operator with namespace name to resolve symbol 

namespace foo { 
 
  int global = 0 ; 
 
  void func() { 
     // code 
     cout << global << endl ; 
  } 
 
} 
 
void bar() { 
   cout << foo::global << endl ; 
 
   foo::func() ; 
} 

Namespace applies to functions too! 
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Namespace rules 

•  Namespace declaration must occur at the global level 

•  Namespaces are extensible 

void function foo() { 
   namespace bar { 
      statements ; 
   } 
} 

ERROR! 

namespace foo { 
  int bar = 0 ; 
} 
 
// other code 
 
namespace foo { 
  int foobar = 0 ; 
} 
 

Legal 
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Namespace rules 

•  Namespaces can nest 

namespace foo { 
  int zap = 0 ; 
 
   namespace bar { 
     int foobar = 0 ;  
   } 
 
} 
 
int main() { 
   cout << foo::zap << endl ; 
   cout << foo::bar::foobar << endl ; 
} 
 
 

Legal 

Recursively use :: operator to resolve nested namespaces 
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Namespace rules 

•  Namespaces can be unnamed! 
–  Primary purpose: to avoid ‘leakage’ of private global symbols from 

module of code 

namespace { 
  int bar = 0 ; 
} 
 
void func() { 
  cout << bar << endl ; 
} 

Code in same module outside unnamed namespace 
can access symbols inside unnamed namespace 
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Namespaces and the Standard Library 

•  All symbols in the Standard library are wrapped in the 
namespace ‘std’ 

•  The ‘Hello world’ program revisited: 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  
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Using namespaces conveniently 

•  It is possible to import symbols from a given 
namespace into the current scope 
–  To avoid excessive typing and confusing due to repeated lengthy 

notation 

–  Can also import symbols in a local scope. In that case import valid 
only inside local scope 

// my first program in C++  
#include <iostream>  
using std::cout ; 
using std::endl ; 
 
int main () {  
  cout << "Hello World!“ << endl;  
  return 0;  
}  

Import selected symbols into global namespace 

Imported symbols can now be used 
without qualification in this module 
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Using namespaces conveniently 

•  You can also import the symbol contents of an entire 
namespace 

•  Style tip: If possible only import symbols you need 

// my first program in C++  
#include <iostream>  
using namespace std ; 
 
int main () {  
  cout << "Hello World!“ << endl;  
  return 0;  
}  
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The standard library as example 

•  Each C++ compiler comes with a standard suite of 
libraries that provide additional functionality 
–  <math> -- Math routines sin(),cos(),exp(),pow(),… 

–  <stdlib> -- Standard utilities strlen(),strcat(),… 

–  <stdio> -- File manipulation utilities open(),write(),close(),… 

•  Nice example of modularity and use of namespaces 
–  All Standard Library routines are contained in namespace std 



Debugging tips – Crashes etc... 

•  Your program crashes – How do you analyze this 
–  Recompile your program with the ‘-g’ flag  

(i.e. g++ -g –o blah blah.c).  
•  This will preserve source code line-number information in the executable 

–  Rerun your program in the debugger: 
unix> gdb blah 
gdb> run <command line args for blah, if any, go here> 
 
(wait for crash) 
 
gdb> where 
(shows line of code where crash occurred) 

 gdb> quit 
(exits the debugger) 
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Debugging tips – Memory leaks, corruption etc 

•  You want to check that no memory leaks occur, no 
memory corruption occurs (e.g. writing beyond 
boundaries of arrays etc...) 
–  Recompile your program with the ‘-g’ flag  

(i.e. g++ -g –o blah blah.c).  
•  This will preserve source code line-number information in the executable 

–  Rerun your problem with valgrind 
unix> valgrind blah 
 

–  If memory corruption occurs, ERRORs will be printed in report 
(along with line numbers in code) 

–  If memory leakage occurs, only total amount leaked is shown. To 
show report with details (where memory was allocated that was 
not deleted), rerun  
unix> valgrind –-leak-check=full blah 
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Object-based programming – Classes 

Class 
Basics  3 
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Encapsulation 

•  OO languages like C++ enable you to create your own 
data types. This is important because 
–  New data types make program easier to visualize and implement 

new designs 

–  User-defined data types are reusable 

–  You may modify and enhance new data types as programs evolve 
and specifications change 

–  New data types let you create objects with simple declarations 

•  Example 

Window w ;     // Window object 
Database ood ; // Database object 
Device d ;     // Device object 
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Evolving code design through use of C++ classes 

•  Illustration of utility of C++ classes – Designing and 
building a FIFO queue 
–  FIFO = ‘First In First Out’ 

•  Graphical illustration of a FIFO queue 

‘A’ ‘Q’ ‘W’ ‘Z’ 
write read 

‘S’ ‘L’ 
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Evolving code design through use of C++ classes 

•  First step in design is to write down the interface 
–  How will ‘external’ code interact with our FIFO code? 

 
 
 
 
 
 

•  List the essential interface tasks 
1.   Create and initialize a FIFO 

2.   Write a character in a FIFO 

3.   Read a character from a FIFO 

–  Support  tasks 
1.  How many characters are currently in the FIFO 

2.  Is a FIFO empty 

3.  Is a FIFO full 

‘A’ ‘Q’ ‘W’ ‘Z’ 
write read 

‘S’ ‘L’ 
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Designing the C++ class FIFO – interface 

 
  // Interface 
  void init() ; 
  void write(char c) ;      
  char read() ; 
 
  int nitems() ; 
  bool full() ; 
  bool empty() ; 
 

•  List of interface tasks 
1.   Create and initialize a FIFO 

2.   Write a character in a FIFO 

3.   Read a character from a FIFO 
 

•  List desired support tasks 
1.  How many characters are  

currently in the FIFO 

2.  Is a FIFO empty 

3.  Is a FIFO full 

‘A’ ‘Q’ ‘W’ ‘Z’ 
write read 

‘S’ ‘L’ 
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Designing the C++ struct FIFO – implementation 

•  Implement FIFO with array of elements 
–  Use index integers to keep track of front and rear, size of queue 

 // Implementation 
  char s[LEN] ; 
  int rear ; 
  int front ; 
  int count ; 
 

‘A’ 

‘Z’ 

‘Q’ 

‘W’ 
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Designing the C++ struct FIFO – implementation 

•  Implement FIFO with array of elements 
–  Use index integers to keep track of front and rear, size of queue 

–  Indices revolve: if they reach end of array, they go back to 0 

‘A’ 

‘Z’ 

‘Q’ 

‘W’ 

 // Implementation 
void init() { front = rear = count = 0 ; } 
 
void write(char c) { count++ ;  
                     if(rear==LEN) rear=0 ;  
                     s[rear++] = c ; } 
 
char read() { count-- ;  
              if (front==LEN) front=0 ;  
              return s[front++] ; } 
 
 
int nitems() { return count ; } 
bool full() { return (count==LEN) ; } 
bool empty() { return (count==0) ; } 
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Designing the C++ struct FIFO – implementation 

•  Animation of FIFO write operation 

‘A’ 

‘Z’ 

‘Q’ 

‘W’ 

void write(char c) { count++ ;  
                     if(rear==LEN) rear=0 ;  
                     s[rear++] = c ; } 

front=1 

rear=4 

count=4 

‘X’ 

‘A’ 

‘Z’ 

‘Q’ 

‘W’ front=1 

rear=4 

count=5 

‘X’ 

‘A’ 

‘Z’ 

‘Q’ 

‘W’ front=1 

rear=5 

count=5 
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Designing the C++ struct FIFO – implementation 

•  Animation of FIFO read operation 

‘A’ 

‘Z’ 

‘Q’ 

‘W’ front=1 

rear=5 

count=5 

‘X’ 

‘A’ 

‘Z’ 

‘Q’ 

‘W’ front=1 

rear=5 

count=4 

‘X’ 

‘A’ 

‘Z’ 

‘Q’ 

‘W’ 

front=2 

rear=5 

count=4 

char read() { count-- ;  
              if (front==LEN) front=0 ;  
              return s[front++] ; } 

‘X’ 
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Putting the FIFO together – the struct concept 

•  The finishing touch: putting it all together in a struct 
const int LEN = 80 ; // default fifo length 
 
struct Fifo { 
  // Implementation 
  char s[LEN] ; 
  int front ; 
  int rear ; 
  int count ; 
 
  // Interface 
  void init() { front = rear = count = 0 ; } 
  int nitems() { return count ; } 
  bool full() { return (count==LEN) ; } 
  bool empty() { return (count==0) ; } 
  void write(char c) { count++ ;  
                       if(rear==LEN) rear=0 ;  
                       s[rear++] = c ; } 
  char read() { count-- ;  
                if (front==LEN) front=0 ;  
                return s[front++] ; } 
} ; 
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Characteristics of the ‘struct’ construct 

•  Grouping of data members facilitates storage allocation 
–  Single statement allocates all data members 

 
 
 
 
 
 
 
 
 
 
 
 
 

•  A struct organizes access to data members and 
functions through a common symbolic name 

 
  // Allocate struct data type ‘Fifo’ 
  Fifo f ; 
 
  // Access function through name ‘f’ 
  f.init() ; 
 
  // Access data member through name ‘f’   
  cout << f.count << endl ; 
 



Type names vs. instance names 

•  Note important distinction between  
type name and instance name 

 

•  Compare to basic types 
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  // Allocate struct data type ‘Fifo’ 
  Fifo f ; 
 
  // Allocate struct data type ‘Fifo’ 
  Fifo f2 ; 
 

Type name (Fifo) 

Instance name (f,f2) 

 
  int i ; 
  int i2 ; 
 



Type names vs. instance names 

•  Instance name (f1,f2) maps to address in memory 

•  Type name (Fifo) controls size of memory allocation, 
interpretation of memory in allocated block 
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Memory layout C++ symbol name space 

Fifo f1 

Fifo f2 

char name[256] 

char s[80] 

int front 
int rear 
int count 



Member access operator 

•  The dot (.)  and arrow (->) operators implements 
access to members of composite object like struct’s 
–  Syntax: TypeName.MemberName 
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  // Allocate struct  
  // data type ‘Fifo’ 
  Fifo f ; 
 
  // Access data member  
  // through name ‘f’   
  cout << f.count << endl ; 
 
  // Access data member 
  // through pointer to f 
  Fifo* pf = &f ; 
  cout << (*pf).count << endl ; 
  cout << pf->count << endl ; 
 

Memory layout C++ symbol  
name space 

Fifo f1 
 
f1.count 

char s[80] 

int front 
int rear 
int count 
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Characteristics of the ‘struct’ construct 

•  Concept of ‘member functions’ automatically ties 
manipulator functions to their data 
–  No need to pass data member operated on to interface function 

// Solution without  
// member functions 
 
struct fifo { 
   int front, rear, count ; 
} ; 
 
char read_fifo(fifo& f) { 
  f.count-- ; 
  … 
} 
 
fifo f1,f2 ; 
read_fifo(f1) ; 
read_fifo(f2) ; 

// Solution with  
// member functions 
 
struct fifo { 
   int front, rear, count ; 
   char read() { 
     count-- ; 
     … 
   } 
} ; 
 
fifo f1,f2 ; 
f1.read() ; // does f1.count-- 
f2.read() ; // does f2.count-- 
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Using the FIFO example code 

•  Example code using the FIFO struct 

const char* data = “data bytes” ; 
int i, nc = strlen(data) ; 
 
Fifo f ; 
f.init() ; // initialize FIFO 
 
// Write chars into fifo 
const char* p = data ; 
for (i=0 ; i<nc && !f.full() ; i++) { 
  f.write(*p++) ; 
} 
 
// Count chars in fifo 
cout << f.nitems() << “ characters in fifo” << endl ; 
 
// Read chars back from fifo 
for (i=0 ; i<nc && !f.empty() ; i++) { 
  cout << f.read() << endl ; 
} 
 

10 chars 
in fifo 
d 
a 
t 
a 
  
b 
y 
t 
e 
s 

Program Output 
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Characteristics of the FIFO code 

•  Grouping data, function members into a struct promotes 
encapsulation 
–  All data members needed for fifo operation allocated in a single 

statement 
–  All data objects, functions needed for fifo operation have 

implementation contained within the namespace of the FIFO 
object 

–  Interface functions associated with struct allow implementation 
of a controlled interface functionality of FIFO 

•  For example can check in read(), write() if FIFO is full or empty and 
take appropriate action depending on status 

•  Problems with current implementation 
–  User needs to explicitly initialize fifo prior to use 
–  User needs to check explicitly if fifo is not full/empty when 

writing/reading 
–  Data objects used in implementation are visible to user and 

subject to external modification/corruption 
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Controlled interface 

•  Improving encapsulation 
–  We improve encapsulation of the FIFO implementation by 

restricting access to the member functions and data members that 
are needed for the implementation 
 

•  Objective – a controlled interface 
–  With a controlled interface, i.e. designated member functions that 

perform operations on the FIFO, we can catch error conditions on 
the fly and validate offered input before processing it 

–  With a controlled interface there is no ‘back door’ to the data 
members that implement the fifo thus guaranteeing that no 
corruption through external sources can take place 

•  NB: This also improves performance since you can afford to be less paranoid. 
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Private and public 

•  C++ access control keyword: ‘public’ and ‘private’ 

•  Public data 
–  Access is unrestricted. Situation identical to no access control declaration 

•  Private data 
–  Data objects and member functions in the private section can only be 

accessed by member functions of the struct (which themselves can be 
either private or public) 

struct Name { 
private: 
 
… members … // Implementation 
 
public: 
 
… members … // Interface 
 
} ; 
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Redesign of Fifo class with access restrictions  

const int LEN = 80 ; // default fifo length 
 
struct Fifo { 
  private:   // Implementation 
  char s[LEN] ; 
  int front ; 
  int rear ; 
  int count ; 
 
  public:    // Interface 
  void init() { front = rear = count = 0 ; } 
  int nitems() { return count ; } 
  bool full() { return (count==LEN) ; } 
  bool empty() { return (count==0) ; } 
  void write(char c) { count++ ;  
                       if(rear==LEN) rear=0 ;  
                       s[rear++] = c ; } 
  char read() { count-- ;  
                if (front==LEN) front=0 ;  
                return s[front++] ; } 
} ; 
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Using the redesigned FIFO struct 

•  Effects of access control in improved fifo struct 

Fifo f ; 
f.init() ;                  // initialize FIFO 
 
 
f.front = 5 ;               // COMPILER ERROR – not allowed 
cout << f.count << endl ;   // COMPILER ERROR – not allowed 
 
cout << f.nitems() << endl ; // OK – through   
                             // designated interface 

front is an implementation detail that’s not part of the 
abstract FIFO concept. Hiding this detail promotes encapsulation 
as we are now able to change the implementation later 
with the certainty that we will not break existing code 

‘A’ ‘Q’ ‘W’ ‘Z’ 
write read 

‘S’ ‘L’ 
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Class – a better struct 

•  In addition to ‘struct’ C++ also defines ‘class’ as a 
method to group data and functions 
–  In structs members are by default public, 

In classes member functions are by default private 

–  Classes have several additional features that we’ll cover shortly 

struct Name { 
private: 
 
… members … 
 
public: 
 
… members … 
 
} ; 

class Name { 
 
 
… members … 
 
public: 
 
… members … 
 
} ; 

Equivalent 
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Classes and namespaces 

•  Classes (and structs) also define their own namespace 
–  Allows to separate interface and implementation even further by 

separating declaration and definition of member functions 

 
class Fifo { 
public:    // Interface 
char read() {  
  count-- ;  
  if (front==len) front=0 ;  
  return s[front++] ;  
  } 
} ; 

 
class Fifo { 
public:    // Interface 
char read() ; 
} ; 
 
 
 
 
#include “fifo.hh” 
char Fifo::read() {  
  count-- ;  
  if (front==len) front=0 ;  
  return s[front++] ;  
} 

Declaration and definition Declaration only 

Definition 

Use of scope operator :: 
to specify read() function 
of Fifo class when outside 
class declaration 
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Classes and namespaces 

•  Scope resolution operator can also be used in class 
member function to resolve ambiguities 

 
class Fifo { 
public:    // Interface 
char read() { 
  …  
  std::read() ;  
  … 
  } 
} ; Use scope operator to specify that you want 

to call the read() function in the std namespace 
rather than yourself 
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Classes and files 

•  Class declarations and definitions have a natural 
separation into separate files 
–  A header file with the class declaration 

To be included by everybody that uses the class 

–  A definition file with definition 
that is only offered once 
to the compiler 

–  Advantage: You do not need to 
recompile code using 
class fifo if only implementation 
(file fifo.cc) changes 

#ifndef FIFO_HH 
#define FIFO_HH 
class Fifo { 
public:    // Interface 
char read() ; 
} ; 
#endif 

#include “fifo.hh” 
char Fifo::read() {  
  count-- ;  
  if (front==len) front=0 ;  
  return s[front++] ;  
} 

fifo.hh 

fifo.cc 
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Constructors 

•  Abstraction of FIFO data type can be further enhanced 
by letting it take care of its own initialization 
–  User should not need to know if and how initialization should 

occur 

–  Self-initialization makes objects easier to use and gives less 
chances for user mistakes 

•  C++ approach to self-initialization – the Constructor 
member function 
–  Syntax: member function with function name identical to class 

name 

class ClassName { 
… 
ClassName() ; 
… 
} ; 
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Adding a Constructor to the FIFO example 

•  Improved FIFO example 

•  Simplified use of FIFO 

class Fifo { 
public:  
  void init() ; 
  … 

class Fifo { 
public:  
  Fifo() { init() ; } 
 
private: 
  void init() ; 
  … 

Fifo f ;   // creates raw FIFO 
f.init() ; // initialize FIFO 

Fifo f ;   // creates initialized FIFO 
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Default constructors vs general constructors 

•  The FIFO code is an example of a default constructor 
–  A default constructor by definition takes no arguments 

•  Sometimes an object requires user input to properly 
initialize itself 
–  Example: A class that represents an open file – Needs file name 

–  Use ‘regular constructor’ syntax 

–  Supply constructor arguments at construction 

class ClassName { 
… 
ClassName(argument1,argument2,…argumentN) ; 
… 
} ; 

ClassName obj(arg1,…,argN) ; 
ClassName* ptr = new ClassName(Arg1,…,ArgN) ; 
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Constructor example – a File class 

class File { 
 
private: 
   int fh ; 
 
public: 
   File(const char* name) { 
      fh = open(name) ; 
   } 
 
   void read(char* p, int n) { ::read(fh,p,n) ; } 
   void write(char* p, int n) { ::write(fh,p,n) ; } 
   void close() { ::close(fh) ; } 
} ; 

File* f1 = new File(“dbase”) ; 
File f2(“records”) ;  Supply constructor arguments here 
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Multiple constructors 

•  You can define multiple constructors with different 
signatures 
–  C++ function overloading concept applies to class member 

functions as well, including the constructor function 

class File { 
 
private: 
   int fh ; 
 
public: 
   File() {  
      fh = open(“Default.txt”) ; 
   } 
   File(const char* name) { 
      fh = open(name) ; 
   } 
 
   read(char* p, int n) { ::read(p,n) ; } 
   write(char* p, int n) { ::write(p,n) ; } 
   close() { ::close(fh) ; } 
} ; 
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Default constructor and default arguments 

•  Default values for function arguments can be applied to 
all class member functions, including the constructor 
–  If any constructor can be invoked with no arguments (i.e. it has 

default values for all arguments) it is also the default constructor 

class File { 
 
private: 
   int fh ; 
 
public: 
   File(const char* name=“Default.txt”) { 
      fh = open(name) ; 
   } 
 
   read(char* p, int n) { ::read(p,n) ; } 
   write(char* p, int n) { ::write(p,n) ; } 
   close() { ::close(fh) ; } 
} ; 
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Default constructors and arrays 

•  Array allocation of objects does not allow for 
specification of constructor arguments 

•  You can only define arrays of classes that have a 
default constructor 
–  Be sure to define one if it is logically allowed 
–  Workaround for arrays of objects that need constructor 

arguments: allocate array of pointers ; 

 
 

–  Don’t forget to delete elements in addition to array afterwards! 

Fifo* fifoArray = new Fifo[100] ; 

Fifo** fifoPtrArray = new (Fifo*)[100] ; 
int i ; 
for (i=0 ; i<100 ; i++) { 
   fifoPtrArray[i] = new Fifo(arguments…) ; 
} 
 



Data members vs function arguments 

•  Note that you can access two types of variables 
in class member functions, including the constructor 
–  Data members – Will live beyond function call, 

                         but not beyond object lifetime 

–  Function arguments – Will only for duration of function call 
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class Fifo { 
public: 
  
  Fifo(int size) { _size = size ;} 
 
private: 
  int _size ; 
  … 

If you need to preserve information  
given as function argument to constructor,  
you must copy it to a data member 
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Classes contained in classes – member initialization 

•  If classes have other classes w/o default constructor as 
data member you need to initialize ‘inner class’ in 
constructor of ‘outer class’ 

class File { 
  public: 
  File(const char* name) ; 
  … 
} ; 
 
class Database { 
  public: 
  Database(const char* fileName) ; 
 
  private: 
  File f ; 
} ; 
 
Database::Database(const char* fileName) : f(fileName) { 
  // Database constructor 
} 
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Class member initialization 

•  General constructor syntax with member initialization 

–  Note that insofar order matters, data members are initialized in 
the order they are declared in the class, not in the order they 
are listed in the initialization list in the constructor 

–  Also for basic types (and any class with default ctor) the member 
initialization form can be used 

–  Performance tip: for classes constructor initialization tends to be 
faster than assignment initialization (more on this later) 

ClassName::ClassName(args) :  
   member1(args),  
   member2(args), … 
   memberN(args) { 
   // constructor body 
} 

File(const char* name) { 
   fh = open(name) ; 
} 

File(const char* name) : 
fh(open(name)) { 
} 

Initialization through assignment Initialization through constructor 



Class member initialization in C++2011 

•  In C++2011 a new intuitive form of data member 
initialization is supported: assignment in the class 
declaration 

 
 

–  Conceptually C++ compiler will translates assignments to 
corresponding member initializations ‘front(0) etc’ 

•  If both assignment and ctor member initializer are 
specified, latter takes precedence 
–  I.e. Assignment can be used as the ‘default’ initializer than can be 

overridden my member init in ctor 
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class Fifo { 
  private:   // Implementation 
  char s[LEN] ; 
  int front = 0; 
  int rear = 0 ; 
  int count = 0; 
 
  public:    // Interface 
  … 
} ; 
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Destructors 

•  Classes that define constructors often allocate dynamic 
memory or acquire resources 
–  Example: File class acquires open file handles, any other class 

that allocates dynamic memory as working space 
 

•  C++ defines Destructor function for each class to be 
called at end of lifetime of object 
–  Can be used to release memory, resources before death 

•  Class destructor syntax: 

class ClassName { 
… 
~ClassName() ; 
… 
} ; 
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Example of destructor in File class 

class File { 
 
private: 
 int fh ; 
 void close() { ::close(fh) ; } 
 
public: 
   File(const char* name) { fh = open(name) ; } 
   ~File() { close() ; } 
   … 
} ; 

File is automatically closed 
when object is deleted 

void readFromFile() { 
   File *f = new File(“theFile.txt”) ; 
   // read something from file 
   delete f ; 
} 

Opens file automatically 

Closes file automatically 
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Automatic resource control 

•  Destructor calls can take care of automatic resource 
control  
–  Example with dynamically allocated File object 

–  Example with automatic File object 

–  Great example of abstraction of  
file concept and of encapsulation  
of resource control 

void readFromFile() { 
   File *f = new File(“theFile.txt”) ; 
   // read something from file 
   delete f ; 
} 

Opens file automatically 

Closes file automatically 

void readFromFile() { 
   File f(“theFile.txt”) ; 
   // read something from file 
} 

Opens file automatically 

Deletion of automatic 
variable f calls destructor 
& closes file automatically 
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Copy constructor – a special constructor 

•  The copy constructor is the constructor with the 
signature 

•  It is used to make a clone of your object 
 

•  It exists for all objects because the C++ compiler 
provides a default implementation if you don’t supply 
one 
–  The default copy constructor calls the copy constructor for all data 

members. Basic type data members are simply copied 
–  The default implementation is not always right for your class, we’ll 

return to this shortly 

ClassA::ClassA(const ClassA&) ; 

ClassA a ; 
ClassA aclone(a) ; // aclone is an identical copy of a 
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Taking good care of your property 

•  Use ‘ownership’ semantics in classes as well 
–  Keep track of who is responsible for resources allocated by your 

object 

–  The constructor and destructor of a class allow you to 
automatically manage your initialization/cleanup 

–  All private resources are always owned by the class so make sure 
that the destructor always releases those 

•  Be careful what happens to ‘owned’ objects when you 
make a copy of an object 
–  Remember: default copy constructor calls copy ctor on all class 

data member and copies values of all basic types 

–  Pointers are basic types 

–  If an ‘owned’ pointer is copied by the copy constructor it is no 
longer clear which instance owns the object à danger ahead! 
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Taking good care of your property 

•  Example of default copy constructor wreaking havoc 

class Array { 
public: 
  Array(int size) { 
    initialize(size) ; 
  } 
  ~Array() { 
    delete[] _x ; 
  } 
   
private: 
  void initialize(int size) { 
    _size = size ; 
    _x = new double[size] ; 
  } 
  int _size ; 
  double* _x ; 
}; 

Watch out! Pointer data member 
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Taking good care of your property 

•  Example of default copy constructor wreaking havoc 

void example { 
 
Array a(10) ; 
// ‘a’ Constructor allocates _x ; 
 
if (some_condition) 
  Array b(a) ; 
  // ‘b’ Copy Constructor does 
  // b._x = a._x ; 
 
  // b appears to be copy of a 
} 
// ‘b’ Destructor does: 
// delete[] _b.x ;  
 
// BUT _b.x == _a.x à Memory 
// allocated by ‘Array a’ has 
// been released by ~b() ; 
 
<Do something with Array> 
// You are dead! 
} 

Array a 
 
_x 
 

Array b 
 
_x 
 

double[] 

Array a 
 
_x 
 û Problem is here:  

b._x points to  
same array  

as a._x! 
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Taking good care of your property 

•  Example of default copy constructor wreaking havoc 

class Array { 
public: 
  Array(int size) { 
    initialize(size) ; 
  } 
  ~Array() { 
    delete[] _x ; 
  } 
   
private: 
  void initialize(int size) { 
    _size = size ; 
    _x = new double[size] ; 
  } 
  int _size ; 
  double* _x ; 
}; 

void example { 
 
Array a(10) ; 
// ‘a’ Constructor allocates _x ; 
 
if (some_condition) 
  Array b(a) ; 
  // ‘b’ Copy Constructor does 
  // b._x = a._x ; 
 
  // b appears to be copy of a 
} 
// ‘b’ Destructor does 
// delete[] _b.x  
 
// BUT _b.x == _a.x à Memory 
// allocated by ‘Array a’ has 
// been released by ~b() ; 
 
<Do something with Array> 
// You are dead! 
} 

Whenever your class owns dynamically allocated  
memory or similar resources you need to implement  

your own copy constructor! 
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Example of a custom copy constructor 
class Array { 
public: 
  Array(int size) { 
    initialize(size) ; 
  } 
 
  Array(const double* input, int size) { 
    initialize(size) ; 
    int i ; 
    for (i=0 ; i<size ; i++) _x[i] = input[i] ; 
  } 
 
  Array(const Array& other) { 
    initialize(other._size) ; 
    int i ; 
    for (i=0 ; i<_size ; i++) _x[i] = other._x[i] ; 
  } 
 
private: 
  void initialize(int size) { 
    _size = size ; 
    _x = new double[size] ; 
  } 
  int _size ;  
  double* _x ; 
}; 

Symbol _x refers  
to data member 
of this instance 

Symbol other._x  
refers to data  
member of other  
instance 

Classes vs Instances 
Here we are dealing 
explicitly with one 
class and two instances 
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Another solution to copy constructor problems 

•  You can disallow objects being copied by declaring their 
copy constructor as ‘private’ 
–  Use for classes that should not copied because they own non-

clonable resources or have a unique role 

–  Example: class File – logistically and resource-wise tied to a 
single file so a clone of a File instance tied to the same file 
makes no sense 

class File { 
 
private: 
 int fh ; 
 close() { ::close(fh) ; } 
 File(const File&) ; // disallow copying 
 
public: 
   File(const char* name) { fh = open(name) ; } 
   ~File() { close() ; } 
   … 
} ; 
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Deleting default constructors in C++2011 

•  In C++2011 new language feature allows to delete 
default implementations of constructors explicitly as 
follows 

class File { 
 
private: 
 int fh ; 
 close() { ::close(fh) ; } 
  
public: 
   File(const char* name) { fh = open(name) ; } 
 
   File(const File&) = delete ; // disallow copying 
 
  ~File() { close() ; } 
   … 
} ; 
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Class Analysis and Design 

Class Analysis  
& Design 4 
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Class Analysis and Design 

•  We now understand the basics of writing classes 
–  Now it’s time to think about how to decompose your problem into 

classes 
 

•  Writing good OO software involves 3 separate steps 
1.   Analysis 
2.   Design 

3.   Programming 
–  You can do them formally or informally, well or poorly, but you 

can’t avoid them 
 

•  Analysis 
–  How to divide up your problem in classes 
–  What should be the functionality of each class 

 

•  Design 
–  What should the interface of your class look like? 
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Analysis – Find the class 

•  OO Analysis subject of many text books, many different 
approaches 
–  Here some basic guidelines  

 

1.  Try to describe briefly in plain English (or Dutch) what you intend 
your software to do 

•  Rationale – This naturally makes you think about your software in a high abstraction 
level 

2.  Associate software objects with natural objects (‘objects in the 
application domain’) 

•  Actions translate to member functions 

•  Attributes translate to data members 
 

3.  Make hierarchical ranking of objects using ‘has-a’ relationships 
•  Example: a ‘BankAccount’ has-a ‘Client’ 

•  Has-a relationships translate into data members that are objects    
 

4.  Iterate! Nobody gets it right the first time 
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Analysis – A textbook example 

•  Example of telephone hardware represented as class 
hierarchy using ‘has-a’ relationships 
–  Programs describing or simulating hardware usually have an 

intuitive decomposition and hierarchy 

Telephone 

Cable Housing Dialer Handset 

Earpiece Mouthpiece Cable 

Each line represents 
a ‘has-a’ relationship 
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Analysis – Example from High Energy Physics 

•  Real life often not so clean cut 
 

•  Example problem from High Energy physics 
–  We have a file with experimental data from a calorimeter.  

–  A calorimeter is a HEP detector that detects energy through 
absorption. A calorimeter consists of a grid of detector modules 
(cells) that each individually measure deposited energy 

Incoming particle 

Calorimeter 

Cell 

Cells with energy  deposit 
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Analysis – Example from High Energy Physics 

•  First attempt to identify objects in data processing 
model and their containment hierarchy 
–  Calorimeter global position and cell coordinates are not physical 

objects but separate logical entities so we make separate classes 
for those too 

Calorimeter 

CaloCell 

Coordinate 

has-a 

has-a 

Position 

has-a 
Calorimeter 

CaloCell 

Position 

Coordinate 
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Analysis – Example from High Energy Physics 

•  Key Analysis sanity check – Can we describe what each 
object is, in addition to what it does? 
–  Answer: yes 

Calorimeter 

CaloCell 

Coordinate 

has-a 

has-a 

Position 

has-a 
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Analysis – Example from High Energy Physics 

•  Iterating the design – are there other/better solutions? 
–  Remember ‘strong cohesion’ and ‘loose coupling’ 

–  Try different class decomposition, moving functionality from one 
class to another 

•  Example of alternative solution 
–  We can store the CaloCells in an intelligent container class 

CellGrid that mimics a 2D array and keeps track of coordinates 

Calorimeter 

CaloCell 

CellGrid 

has-a 

has-a 

Position 

has-a 

Calorimeter 

CaloCell 

Position 

CellGrid 
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Analysis – Example from High Energy Physics 

•  Which solution is better?  
–  Source of ambiguity: cell coordinate not really intrinsic property of 

calorimeter cell 

–  Path to solution: what are cell coordinates used for? Import for insight in 
best solution. Real-life answer: to find adjacent (surrounding cells) 

–  Solution: Adjacency algorithms really couple strongly to layout of cells, not 
to property of individual cells à design with layout in separate class 
probably better 

Calorimeter 

CaloCell 

CellGrid 

has-a 

has-a 

Position 

has-a 

Calorimeter 

CaloCell 

Coordinate 

has-a 

has-a 

Position 

has-a 
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Extending the example – Has-A vs Uses-A 

•  Next step in analysis of calorimeter data is to reconstruct 
properties of incoming particles 
–  Reconstruct blobs of energy deposited into multiple cells 

–  Output stored in new class CaloCluster, which stores properties of cluster 
and refers back to cells that form the cluster 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

–  Now we run into some problems with ‘has-a’ semantics: All CaloCells in 
Calorimeter are owned by Calorimeter, so CaloCluster doesn’t really 
‘have’ them.  Solution: ‘Uses-A’ semantic.  

–  A ‘Uses-A’ relation translates into a pointer or reference to an object 

Calorimeter 

CaloCell 

CellGrid 

has-a 

has-a 

Position 

has-a 

CaloCluster 

has-a?, uses-a! 
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Summary on OO analysis 

•  Choosing classes: You should be able to say what a class is 
–  A ‘Has-A’ relation translates into data members, a ‘Uses-A’ relation into a 

pointer 

–  Functionality of your natural objects translates in member functions 
 

•  Be wary of complexity 
–  Signs of complexity: repeated identical code, too many function arguments, 

too many member functions, functions with functionality that cannot be 
succinctly described 

–  A complex class is difficult to maintain à Redesign into smaller units 
 

•  There may not be a unique or ‘single best’ decomposition of 
your class analysis 
–  Such is life. Iterate your design, adapt to new developments 

 

•  We’ll revisit OOAD again in a while when we will discuss 
polymorphism and inheritance which open up many new 
possibility (and pitfalls) 
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The art of proper class design 

•  Class Analysis tells you what functionality your class should have 

•  Class Design now focuses on how to package that best 
  

•  Focus: Make classes easy to use 
–  Robust design: copying objects, assigning them (even to themselves) should 

not lead to corruption, memory leaks etc  

–  Aim for intuitive behavior: mimic interface of built-in types where possible 

–  Proper functionality for ‘const objects’ 

•  Reward: better reusability of code, easier maintenance, shorter 
documentation 
 

•  And remember: Write the interface first, then the implementation 
–  While writing the interface you might still find flaws or room for improvements 

in the design. It is less effort to iterate if there is no implementation to data 
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The art of proper class design 

•  Focus on following issues next 
 
–  Boilerplate class design 

  

–  Accessors & Modifiers – Proper interface for const objects 
 

–  Operator overloading 
 

–  Assignment – Why you need it 
 

–  Overloading arithmetic, and subscript operators 
 

–  Overloading conversion operators, use of explicit 
 

–  Spilling your guts – friends  
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Accessor / modifier pattern 

•  For each data member that is made publicly available  
implement an accessor and a modifier 

•  Pattern 1 – Encapsulate read & write access in separate functions 
–  Complete control over input and output. Modifier can be protected for better 

access control and modifier can validate input before accepting it 

–  Note that returning large data types by value is inefficient. Consider to return a 
const reference instead 

class Demo { 
private: 
   float _val ; 
public: 
   // accessor 
   float getVal() const {  
       return _val ;  
   } 
   // modifier 
   void setVal(float newVal) {  
     // Optional validity checking goes here 
       _val = newVal ;  
   }    
} ; 

const here is important 
otherwise this will fail 
 
const Demo demo ; 
demo.getVal() ; 
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Accessor / modifier pattern 

•  Pattern 2 – Return reference to internal data member 
–  Must implement both const reference and regular reference! 

–  Note that no validation is possible on assignment. Best for built-in 
types with no range restrictions or data members that are classes 
themselves with built-in error checking and validation in their 
modifier function 

class Demo { 
private: 
   float _val ; 
 
public: 
   float& val() { return _val ; } 
   const float& val() const { return _val ; } 
 
} ; 

const version here is essential,  
otherwise code below will fail 
 
const Demo demo ; 
float demoVal = demo.val() ; 
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Making classes behave like built-in objects 

•  Suppose we have written a ‘class complex’ that 
represents complex numbers 
–  Execution of familiar math through add(),multiply() etc member 

functions easily obfuscates user code 

–  Want to redefine meaning of C++ operators +,* etc to perform 
familiar function on newly defined classes, i.e. we want compiler 
to automatically translate: 

•  Solution: C++ operator overloading 

complex a(3,4), b(5,1) ; 
 
b.multiply(complex(0,1)) ; 
a.add(b) ; 
a.multiply(b) ; 
b.subtract(a) ; 

c = a * b ; c.assign(a.multiply(b)) ; 
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Operator overloading 

•  In C++ operations are functions too, i.e. 

•  Operators can be both regular functions as well as class 
member functions 
–  In example above operator=() is implemented as member 

function of class complex, operator+() is implemented as global 
function 

–  You have free choice here, operator+() can also be implemented 
as member function in which case the code would be come 
 
 

–  Design consideration: member functions (including operators) can 
access ‘private’ parts, so operators that need this are easier to 
implement as member functions 

•  More on this in a while… 

complex c = a + b; c.operator=(operator+(a,b)); 

What you write What the compiler does 

c.operator=(a.operator+(b)); 
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An assignment operator – declaration 

•  Lets first have a look at implementing the assignment 
operator for our fictitious class complex 

•  Declared as member operator of class complex:  
–  Allows to modify left-hand side of assignment 

–  Gives access to private section of right-hand side of assignment 

 
class complex { 
public: 
   complex(double r, double i) : _r(r), _i(i) {} ; 
   complex& operator=(const complex& other) ;  
 
private: 
   double _r, _i ;  
} ; 
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Handle self-assignment explicitly 
It happens, really! 

 

An assignment operator – implementation 

complex& complex::operator=(const complex& other) { 
 
   // handle self-assignment 
   if (&other == this) return *this ;  
 
   // copy content of other 
   _r = other._r ;  
   _i = other._i ; 
 
   // return reference to self 
   return *this ; 
} 

Copy content of other object 
It is the same class, so you have  
access to its private members 

Return reference to self 
Takes care of chain assignments 
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Copy content of other object 
It is the same class, so you have  
access to its private members 

Handle self-assignment explicitly 
It happens, really! 

 

An assignment operator – implementation 

complex& complex::operator=(const complex& other) { 
 
   // handle self-assignment 
   if (&other == this) return *this ;  
 
   // copy content of other 
   _r = other._r ;  
   _i = other._i ; 
 
   // return reference to self 
   return *this ; 
} 

Why ignoring self-assignment can be bad 
Image you store information in a dynamically allocated array 
that needs to be reallocated on assignment… 

A& A::operator=(const A& other) { 
   delete _array ; 
   _len = other._len; 
   _array = new int[other._len] ; 
   // Refill array here 
   return *this ; 
} 

Oops if (other==*this)  
you just deleted your own 
array! 
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An assignment operator – implementation 

complex& complex::operator=(const complex& other) { 
 
   // handle self-assignment 
   if (&other == this) return *this ;  
 
   // copy content of other 
   _r = other._r ;  
   _i = other._i ; 
 
   // return reference to self 
   return *this ; 
} 

Return reference to self 
Takes care of chain assignments 

Why you should return a reference to yourself 
Returning a reference to yourself allows chain assignment 
 
 
 
 
 
 
 
 
Not mandatory, but essential if you want to mimic behavior of built-in types 

complex a,b,c ; 
a = b = c ; 

complex a,b,c ; 
a.operator=(b.operator=(c)) ; 

Returns reference to b 
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The default assignment operator 

•  The assignment operator is like the copy constructor:  
it has a default implementation 
–  Default implementation calls assignment operator for each data member 

 

•  If you have data member that are pointers to ‘owned’ objects 
this will create problems 
–  Just like in the copy constructor 

•  Rule: If your class owns dynamically allocated memory or 
similar resources you should implement your own assignment 
operator 
 

•  You can disallow objects being assigned by declaring their 
assignment operator as ‘private’ 
–  Use for classes that should not copied because they own non-assignable 

resources or have a unique role (e.g. an object representing a file) 
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Example of assignment operator for owned data members 

class A { 
private: 
   float* _arr ; 
   int _len ; 
public: 
   operator=(const A& other) ; 
} ; 
 
 C++ default operator=() Custom operator=() 

A& operator=(const A& other) { 
  if (&other==this) return *this; 
  _arr = other._arr ; 
  _len = other._len ; 
  return *this ; 
} 

A& operator=(const A& other) { 
  if (&other==this) return *this; 
   _len = other._len ; 
  delete[] _arr ; 
  _arr = new int[_len] ; 
  int i ; 
  for (i=0; i<len ; i++) { 
     _arr[i] = other._arr[i] ; 
  } 
  return *this ; 
} 

YOU DIE. 
If other is deleted before us, _arr will point  
to garbage. Any subsequent use of self has 
undefined results  
 
If we are deleted before other, we will delete  
_arr=other._arr, which is not owned by us:  
other._arr will point to garbage and will  
attempt to delete array again 



© 2006 Wouter Verkerke, NIKHEF 

Overloading other operators 

•  Overloading of operator=() mandatory if object owns 
other objects 

•  Overloading of other operators voluntary 
–  Can simplify use of your classes (example: class complex) 
–  But don’t go overboard – Implementation should be congruent 

with meaning of operator symbol 
•  E.g. don’t redefine operator^() to implement exponentiation 

–  Comparison operators (<,>,==,!=) useful to be able to put class 
in sortable container 

–  Addition/subtraction operator useful in many contexts: math 
objects, container class (add new content/ remove content) 

–  Subscript operator[] potentially useful in container classes 
–  Streaming operators <<() and operator>>() useful for printing in 

many objects 

•  Next: Case study of operator overloading with a custom 
string class 
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The custom string class 

•  Example string class for illustration of operator overloading 
class String { 
private: 
  char* _s ; 
  int _len ; 
 
  void insert(const char* str) { // private helper function 
     _len = strlen(str) ; 
     if (_s) delete[] _s ;  
     _s = new char[_len+1] ; 
    strcpy(_s,str) ; 
  } 
 
public: 
  String(const char* str= “”) : _s(0) { insert(str) ; } 
  String(const String& a)  : _s(0) { insert(a._s) ; } 
  ~String() { if (_s) delete[] _s ; } 
 
  int length() const { return _len ; } 
  const char* data() const { return _s ; } 
  String& operator=(const String& a) { 
    if (this != &a) insert(a._s) ; 
    return *this ; 
   } 
} ; 

Data members, array & length 
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The custom string class 

•  Example string class for illustration of operator overloading 
class String { 
private: 
  char* _s ; 
  int _len ; 
 
  void insert(const char* str) { // private helper function 
     _len = strlen(str) ; 
     if (_s) delete[] _s ;  
     _s = new char[_len+1] ; 
    strcpy(_s,str) ; 
  } 
 
public: 
  String(const char* str= “”) : _s(0) { insert(str) ; } 
  String(const String& a)  : _s(0) { insert(a._s) ; } 
  ~String() { if (_s) delete[] _s ; } 
 
  int length() const { return _len ; } 
  const char* data() const { return _s ; } 
  String& operator=(const String& a) { 
    if (this != &a) insert(a._s) ; 
    return *this ; 
   } 
} ; 

Delete old buffer, 
allocate new buffer, 
copy argument into new buffer 
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The custom string class 

•  Example string class for illustration of operator overloading 
class String { 
private: 
  char* _s ; 
  int _len ; 
 
  void insert(const char* str) { // private helper function 
     _len = strlen(str) ; 
     if (_s) delete[] _s ;  
     _s = new char[_len+1] ; 
    strcpy(_s,str) ; 
  } 
 
public: 
  String(const char* str= “”) : _s(0) { insert(str) ; } 
  String(const String& a)  : _s(0) { insert(a._s) ; } 
  ~String() { if (_s) delete[] _s ; } 
 
  int length() const { return _len ; } 
  const char* data() const { return _s ; } 
  String& operator=(const String& a) { 
    if (this != &a) insert(a._s) ; 
    return *this ; 
   } 
} ; 

Ctor 
Dtor 
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The custom string class 

•  Example string class for illustration of operator overloading 
class String { 
private: 
  char* _s ; 
  int _len ; 
 
  void insert(const char* str) { // private helper function 
     _len = strlen(str) ; 
     if (_s) delete[] _s ;  
     _s = new char[_len+1] ; 
    strcpy(_s,str) ; 
  } 
 
public: 
  String(const char* str= “”) : _s(0) { insert(str) ; } 
  String(const String& a)  : _s(0) { insert(a._s) ; } 
  ~String() { if (_s) delete[] _s ; } 
 
  int length() const { return _len ; } 
  const char* data() const { return _s ; } 
  String& operator=(const String& a) { 
    if (this != &a) insert(a._s) ; 
    return *this ; 
   } 
} ; 

Overloaded 
assignment 
operator 
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Overloading operator+(), operator+=() 

•  Strings have a natural equivalent of addition 
–  “A” + “B” = “AB” 

–  Makes sense to implement operator+ 

•  Coding guideline: if you implement +, also implement += 
–  In C++ they are separate operators.  

–  Implementing + will not automatically make += work. 

–  Implementing both fulfills aim to mimic behavior of built-in types 

•  Practical tip: Do operator+=() first. 
–  It is easier 

–  Operator+ can trivially be implemented in terms of operator+=  
(code reuse) 
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Overloading operator+(), operator+=() 

•  Example implementation for String 
–  Argument is const (it is not modified after all) 

–  Return is reference to self, which allows chain assignment 

class String { 
public: 
  String& operator+=(const String& other) { 
    int newlen = _len + other._len ;    // calc new length 
    char* newstr = new char[newlen+1] ; // alloc new buffer 
 
    strcpy(newstr,_s) ;                 // copy own contents 
    strcpy(newstr+_len,other._s) ;      // append new contents 
 
    if (_s) delete[] _s ;               // release orig memory 
 
    _s = newstr ;                       // install new buffer 
    _len = newlen ;                     // set new length 
    return *this ;           
  } 
} ; 
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Overloading operator+(), operator+=() 

•  Now implement operator+() using operator+=() 
–  Operator is a global function rather than a member function – no 

privileged access is needed to String class content 

–  Both arguments are const as neither contents is changed 

–  Result string is passed by value 

String operator+(const String& s1, const String& s2) { 
    String result(s1) ; // clone s1 using copy ctor 
    result += s2 ;      // append s2 
    return result ;     // return new result 
} 
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Overloading operator+() with different types 

•  You can also add heterogeneous types with operator+() 
–  Example: String(“A”) + “b” 

•  Implementation of heterogeneous operator+ similar 
–  Illustration only, we’ll see later why we don’t need it in this particular 

case 
 

•  NB: Arguments of operator+() do not commute 
 

operator+(const& A, const& B)!=operator+(const& B, const& A) 
 

–  If you need both, implement both 

String operator+(const String& s1, const char* s2) { 
    String result(s1) ;     // clone s1 using copy ctor 
    result += String(s2) ;  // append String converted s2 
    return result ;         // return new result 
} 



Working with class String 

•  Demonstration of operator+ use on class String 
 
 

•  Compare ease of use (including correct memory 
management) to join() functions of exercise 2.1... 
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// Create two strings 
String s1(“alpha”) ; 
String s2(“bet”) ; 
 
// Concatenate strings into 3rd string 
String s3 = s1+s2 ; 
 
// Print concatenated result 
cout << s1+s2 << endl ; 

 
cout << String(s1+s2) << endl ; 

Implicit conversion by compiler 
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Class string 

•  The C++ Standard Library provides a class string 
very similar to the example class String that we have 
used in this chapter 
–  Nearly complete set of operators defined, internal buffer memory 

expanded as necessary on the fly 

–  Declaration in <string> 

–  Example 

string dirname(“/usr/include”) ; 
string filename ; 
 
cout << “Give first name:” ; 
 
// filename buffer will expand as necessary 
cin >> filename ; 
 
// Append char arrays and string intuitively 
string pathname = dirname + ”/” + filename ; 
 
// But conversion string à char* must be done explicitly 
ifstream infile(pathname.c_str()) ; 
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Generic programming – Templates 

Generic  
Programming  
– Templates 

6 
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Introduction to generic programming 

•  So far concentrated on definitions of objects as means 
of abstraction 

•  Next: Abstracting algorithms to be independent of the 
type of data they work with 

•  Naïve – max()  
–  Integer implementation 

–  (Naïve) real-life use 

// Maximum of two values 
int max(int a, int b) { 
   return (a>b) ? a : b ; 
} 

int m = 43, n = 56 ;  
cout << max(m,n) << endl ; // displays 56 (CORRECT) 
 
double x(4.3), y(5.6) ; 
cout << max(x,y) << endl ; // displays 5 (INCORRECT) 
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Generic algorithms – the max() example 

•  First order solution – function overloading 
–  Integer and float implementations 

–  (Naïve) real-life use 

// Maximum of two values 
int max(int a, int b) { 
   return (a>b) ? a : b ; 
} 

// Maximum of two values 
float max(float a, float b) { 
   return (a>b) ? a : b ; 
} 

int m = 43, n = 56 ;  
cout << max(m,n) << endl ; // displays 56 (CORRECT) 
 
double x(4.3), y(5.6) ; 
cout << max(x,y) << endl ; // displays 5.6 (CORRECT) 
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Generic algorithms – the template solution 

•  Overloading solution works but not elegant 
–  Duplicated code (always a sign of trouble) 

–  We need to anticipate all use cases in advance 
 

•  C++ solution – a template function 

template<class TYPE> 
TYPE max(const TYPE& a, const TYPE& b) { 
    return (a>b) ? a : b ; 
} 

int m = 43, n = 56 ;  
cout << max(m,n) << endl ; // displays 56 (CORRECT) 
 
double x(4.3), y(5.6) ; 
cout << max(x,y) << endl ; // displays 5.6 (CORRECT) 
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Basics of templates 

•  A template function is function or algorithm for a 
generic TYPE 
–  Whenever the compiler encounter use of a template function with 

a given TYPE that hasn’t been used before the compiler will 
instantiate the function for that type 

template<class TYPE> 
TYPE max(const TYPE& a, const TYPE& b) { 
    return (a>b) ? a : b ; 
} 

int m = 43, n = 56 ; 
// compiler automatically instantiates max(int&, int&)  
cout << max(m,n) << endl ; // displays 56 (CORRECT) 
 
double x(4.3), y(5.6) ; 
// compiler automatically instantiates max(float&, float&)  
cout << max(x,y) << endl ; // displays 5.6 (CORRECT) 
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Basics of templates – assumptions on TYPE 

•  A template function encodes a generic algorithm but not 
a universal algorithm 
–  TYPE still has to meet certain criteria to result in proper code 

–  For example: 
 
 
 
 
 
 
assumes that TYPE.operator>(TYPE&) is defined 
 

•  Style tip: When you write a template spell out in the 
documentation what assumptions you make (if any) 

template<class TYPE> 
TYPE max(const TYPE& a, const TYPE& b) { 
    return (a>b) ? a : b ; 
} 
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Basics of templates – another example 

•  Here is another template function example 

–  Allocation of generic storage space 

–  Only assumption of this swap function: TYPE::operator=() 
defined 

–  Since operator=() has a default implementation for all types this 
swap function truly universal 

•  Unless of course a class declares operator=() to be private in which case no 
copies can be made at all 

template <class TYPE> 
void swap(TYPE& a, TYPE& b) { 
    TYPE tmp = a ; // declare generic temporary 
    a = b ; 
    b = tmp ; 
} 
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Template specialization 

•  Sometimes you have a template function that is almost 
generic because 
–  It doesn’t work (right) with certain types.  

For example max(const char* a, const char* b) 
 
 
 

–  Or for certain types there is a more efficient implementation of the 
algorithm 
 

•  Solution: provide a template specialization 
–  Can only be done in definition, not in declaration 
–  Tells compiler that specialized version of function for given template should 

be used when appropriate 
 
 
 
 

template<class TYPE> 
TYPE max(const TYPE& a, const TYPE& b) { 
    return (a>b) ? a : b ; // comparing pointer not sensible 
} 

template<> 
const char* max(const char*& a, const char*& b) { 
    return strcmp(a,b)>0 ? a : b ; // Use string comparison instead 
} 
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Template classes 

•  Concept of templates also extends to classes 
–  Can define a template class just like a template function 

•  Class template mechanism allows to create generic 
classes 
–  A generic class provides the same set of behaviors for all types 

–  Eliminates code duplication 

–  Simplifies library design 

–  Use case per excellence: container classes (arrays, stacks etc…) 

template<class T>  
class Triplet { 
public: 
   Triplet(T& t1, T& t2, T& t3) () ; 
private: 
   T _array[3] ; 
}; 
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Generic container class example 

•  A generic stack example 

template<class TYPE> 
class Stack { 
public: 
   Stack(int size) : _len(size), _top(0) {    // constructor  
      _v = new TYPE[_len] ; 
   } 
   Stack(const Stack<TYPE>& other) ;          // copy constructor 
   ~Stack() { delete[] _v ; } 
 
   void push(const TYPE& d) { _v[_top++] = d ; } 
   TYPE pop() { return _v[--_top] ; } 
 
   Stack<TYPE>& operator=(const Stack<TYPE>& s) ; // assignment 
 
private: 
   TYPE* _v ; 
   int _len ; 
   int _top ; 
 
} ; 

Assumptions on TYPE 
- Default constructor 
- Assignment defined 



© 2006 Wouter Verkerke, NIKHEF 

Using the generic container class 

•  Example using Stack 

void example() { 
 
   Stack<int> s(10) ; // stack of 10 integers 
   Stack<String> t(20) ; // stack of 20 Strings 
 
   s.push(1) ;  
   s.push(2) ; 
   cout << s.pop() << endl ;  
 
   // OUTPUTS ‘2’ 
     
   t.push(“Hello”) ; // Exploit automatic  
   t.push(“World”) ; // const char* à String conversion 
 
   cout << t.pop() << “ “ << t.pop() << endl ;  
 
   // OUTPUTS ‘World Hello’ 
 
} 



Initializer list of generic containers (C++ 2011) 

•  In C++2011 the compound initializer syntax of arrays 
can be extended to generic container classes 
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int x[3] = { 0, 1, 2 } ; 
 
IntVector iv = { 0, 1, 2 } ; // Also works! 
 
// Because constructor with initializer_list 
// was added to class IntVector 
 
class IntVector { 
public: 
  IntVector(std::initializer_list<int> ilist) ; 
  ~IntVector() ; 
 
private: 
  int* _xvec ;    
} ; 
 
 
 



Initializer list of generic containers (C++ 2011) 

•  In C++2011 the compound initializer syntax of arrays 
can be extended to generic container classes 
–  Retrieve content with iterator semantics – more in Module 7 
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class IntVector { 
public: 
  IntVector(std::initializer_list<int> ilist) { 
 
    _xvec = new int[ilist.size()] ; 
 
    int i(0) ; 
    auto iter = ilist.begin() ; 
    while (iter != ilist.end()) { 
        _xvec[i++] = *iter ;     
        iter++ ; 
  } 
  ~IntVector() ; 
 
private: 
  int* _xvec ;    
} ; 



Pointer memory management tools (C++2011) 

•  C++ also adds templated-based tools for pointer-based 
memory management 

•  Idea: have a dedicated wrapper class that ‘owns’ a 
pointer 
–  Can be returned by-value from functions, if wrapper is deleted 

because it goes out of scope, it will delete the pointer 

•  Situation without wrapper 
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double* allocate_buffer(int size) { 
    return new double[size] ; 
} 
 
int main() { 
   // we own tmp, don’t forget to delete 
   double* tmp = allocate_buffer(100) ; 
   tmp[3] = 5 ; 
} 



Pointer memory management tools (C++2011) 

•  C++ also adds templated-based tools for pointer-based 
memory management 

•  Idea: have a dedicated wrapper class that ‘owns’ a 
pointer 
–  Can be returned by-value from functions, if wrapper is deleted 

because it goes out of scope, it will delete the pointer 

•  Situation with wrapper 
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unique_ptr<double> allocate_buffer(int size) { 
    return unique_ptr<double>(new double[size]) ; 
} 
 
int main() { 
   // we own tmp, don’t forget to delete 
   unique_ptr<double> tmp = allocate_buffer(100) ; 
   tmp[3] = 5 ; 
} 
// memory held by tmp deleted when tmp goes out of scope 



Pointer memory management tools (C++2011) 

•  C++ also adds templated-based tools for pointer-based 
memory management 

•  Idea: have a dedicated wrapper class that ‘owns’ a 
pointer 
–  Can be returned by-value from functions, if wrapper is deleted 

because it goes out of scope, it will delete the pointer 

•  Situation with wrapper 
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int main() { 
   // we own tmp, don’t forget to delete 
   unique_ptr<double> tmp = allocate_buffer(100) ; 
   tmp[3] = 5 ; 
} 
 
Class unique_ptr overloads operator-> to 
return pointer to payload. Can use unique_ptr<T> 
in same way as T* 
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The Standard Template Library 

Standard Library II 
the Template Library 7 
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Introduction to STL 

•  STL = The Standard Template Library 
–  A collection of template classes and functions for general use 

–  Started out as experimental project by Hewlett-Packard 

–  Now integral part of ANSI C++ definition of ‘Standard Library’ 

–  Excellent design! 

•  Core functionality – Collection & Organization 
–  Containers (such as lists) 

–  Iterators (abstract methods to iterate of containers) 

–  Algorithms (such as sorting container elements) 

•  Some other general-purpose classes 
–  Classes string, complex, bits 
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Overview of STL components 

•  Containers 
–  Storage facility of objects 

•  Iterators 
–  Abstract access mechanism to collection contents 

–  “Pointer to container element” with functionality to move pointer 

•  Algorithms 
–  Operations (modifications) of container organization of contents 

–  Example: Sort contents, apply operation to each of elements 

Object Object Object Object Object Object 

Container 
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STL Advantages 

•  STL containers are generic 
–  Templates let you use the same container class with any class or built-in 

type 

•  STL is efficient 
–  The various containers provide different data structures.  

–  No inheritance nor virtual functions are used (we’ll cover this shortly). 

–  You can choose the container that is most efficient for the type of 
operations you expect 

•  STL has a consistent interface 
–  Many containers have the same interface, making the learning curve easier 

•  Algorithms are generic 
–  Template functions allow the same algorithm to be applied to different 

containers. 

•  Iterators let you access elements consistently 
–  Algorithms work with iterators 

–  Iterators work like C++ pointers 

•  Many aspects can be customized easily 
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Overview of STL containers classes 

•  Sequential containers (with a defined order) 
–  vector 

–  list 

–  deque (double-ended queue) 

–  stack 

–  queue 
–  priority_queue 

 

•  Associative containers (no defined order, access by key) 
–  set 

–  multiset 

–  map 

–  Multimap 

–  unordered_set, unordered_map (C++2011) 

Fundamental container 
implementations  
with different performance tradeoffs 

Adapters of fundamental 
containers 
that provide a modified functionality 
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Common container facilities 

•  Common operations on fundamental containers 
–  insert     – Insert element at defined location 

–  erase      – Remove element at defined location 
  

–  push_back  – Append element at end 

–  pop_back   – Remove & return element at end 
 

–  push_front – Append element at front 

–  pop_front  – Remove & return element at front 
 

–  at         – Return element at defined location (with range checking) 

–  operator[] – Return element at defined location (no range checking) 

–  Not all operations exist at all containers (e.g. push_back is undefined on 
a set as there is no ‘begin’ or ‘end’ in an associative container) 
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Vector <vector> 

•  Vector is similar to an array 

–  Manages its own memory allocation 

–  Initial length at construction, but can be extended later 

–  Elements initialized with default constructor 

–  Offers fast random access to elements 

–  Example 

0 1 2 

#include <vector> 
vector<int> v(10) ; 
 
v[0] = 80 ; 
v.push_back(70) ; // creates v[10] and sets it to 70 
 
vector<double> v2(5,3.14) ; // initialize 5 elements to 3.14 
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List <list> 

•  Implemented as doubly linked list 
 

–  Fast insert/remove of in the middle of the collection 
 

–  No random access 

–  Example 

front end 

front end 

#include <list> 
list<double> l ; 
l.push_front(30.5) ; // append element in front 
l.insert(somewhere,47.5) ; // insert in middle 

iterator ‘pointer’ in collection 

Template<class T> 
Struct ListElem { 
  T elem ; 
  ListElem* prev ; 
  ListElem* next ; 
} 
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Stack <stack> 

•  A stack is an adapter of deque 
–  It provides a restricted view of a deque  

–  Can only insert/remove elements  
at end (‘top’ in stack view’) 

–  No random access 

•  Example 

top 

bottom 
void sender() { 
   stack<string> s ; 
   s.push(“Aap”) ; 
   s.push(“Noot”) ; 
   s.push(“Mies”) ; 
   receiver(s) ; 
} 
void receiver(stack<string>& s) { 
   while(!s.empty()) cout << s.pop() << “ “ ; 
} 
 
// outputs “Mies Noot Aap” 

push() pop() 
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Sequential versus associative containers 

•  So far looked at several forms of sequential containers 
–  Defining property: storage organization revolves around ordering: all elements 

are stored in a user defined order 

–  Access to elements is always done by relative or absolute position in container 

–  Example: 
 
 

•  For many types of problems access by key is much more natural 
–  Example: Phone book. You want to know the phone number (=value) for a 

name (e.g. ‘B. Stroustrup’ = key) 

–  You don’t care in which order collection is stored as you never retrieve the 
information by positional reference (i.e. you never ask: give me the 103102nd 
entry in the phone book) 

–  Rather you want to access information with a ‘key’ associated with each value 

•  Solution: the associative container 

vector<int> v ; 
v[3] = 4rd element of vector v 
 
List<double> l ; 
double tmp = *(l.begin()) ; // 1st element of list 
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Sequential versus associative containers 

front end 

Give me 3rd element 

key: 
Bjarne 

value: 
43 

key: 
Thor 

value: 
39 

key: 
Ivar 

value: 
49 

key: 
Leif 

value: 
47 

key: 
Brian 

value: 
52 

Give me value of element 
with key “Leif” 

Sequential 

Associative 
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Pair <utility> 

•  Utility for associative containers – stores a key-value pair 
  

–  Main use of pair is as input or return value 

template<type T1, type T2> 
struct pair { 
   T1 first ; 
   T2 second ; 
   pair(const T1&, const T2&) ; 
} ; 
 
template<type T1, type T2>  
pair<T1,T2> make_pair(T1,T2) ; // exists for convenience 

pair<int,float> calculation() { 
   return make_pair(42,3.14159) ; 
} 
int main() { 
   pair<int,float> result = calculation() ; 
   cout << “result = “ << pair.first  
        << “ “ << pair.second << endl ; 
} 
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Map <map> 

•  Map is an associative container 
–  It stores pairs of const keys and values 

–  Elements stored in ranking by keys (using key::operator<()) 

–  Provides direct access by key 

–  Multiple entries with same key prohibited 
 

Bjarne 33 

Thor 52 

Leif 47 

Gunnar 42 

pair<const T1,T2> 

map<T1,T2> 
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Map <map> 

•  Map example 
 
 
 
 

–  If element is not found, new entry is added using default 
constructors 

map<string,int> shoeSize ; 
 
shoeSize.insert(pair<string,int>(“Leif”,47)) ; 
showSize.insert(make_pair(“Leif”,47)) ; 
 
shoeSize[“Bjarne”] = 43 ; 
shoeSize[“Thor”] = 52 ; 
 
int theSize = shoeSize[“Bjarne”] ;     // theSize = 43 
int another = shoeSize[“Stroustrup”] ; // another = 0 
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Taking a more abstract view of containers 

•  So far have dealt directly with container object to insert 
and retrieve elements 
–  Drawback: Client code must know exactly what kind of container 

it is accessing 
–  Better solution: provide an abstract interface to the container.  
–  Advantage: the containers will provide the same interface (as far 

as possible within the constraints of its functionality) 
–  Enhanced encapsulation – You can change the type of container 

class you use later without invasive changes to your client code 
 

•  STL abstraction mechanism for container access:  
the iterator 
–  An iterator is a pointer to an element in a container 
–  So how is an iterator different from a regular C++ pointer? – An 

iterator is aware of the collection it is bound to. 

–  How do you get an iterator: A member function of the collection 
will give it to you 
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Taking a more abstract view of containers 

•  Illustration of iterators vs C++ pointers 

double array[10] ; 
 
int i = 0 ; 
double* ptr ; 
 
ptr = &array[0] ; 
 
while(i<10) { 
 
  cout << *ptr << endl ; 
 
  ++ptr ; 
  ++i ; 
} 

vector<double> v(10) ; 
 
 
vector<double>::iterator iter ; 
 
iter = v.begin() ; 
 
while(iter!=v.end()) { 
 
  cout << *iter << endl ; 
 
  ++iter ; 
} 

Allocate C++ array of 10 elements Allocate STL vector of 10 elements 



© 2006 Wouter Verkerke, NIKHEF 

Taking a more abstract view of containers 

•  Illustration of iterators vs C++ pointers 

double array[10] ; 
 
int i = 0 ; 
double* ptr ; 
 
ptr = &array[0] ; 
 
while(i<10) { 
 
  cout << *ptr << endl ; 
 
  ++ptr ; 
  ++i ; 
} 

vector<double> v(10) ; 
 
 
vector<double>::iterator iter ; 
 
iter = v.begin() ; 
 
while(iter!=v.end()) { 
 
  cout << *iter << endl ; 
 
  ++iter ; 
} 

Allocate a pointer.  
Also allocate an integer to keep  
track of when you’re at the end  
of the array 

Allocate an STL iterator to a vector 
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Taking a more abstract view of containers 

•  Illustration of iterators vs C++ pointers 

double array[10] ; 
 
int i = 0 ; 
double* ptr ; 
 
ptr = &array[0] ; 
 
while(i<10) { 
 
  cout << *ptr << endl ; 
 
  ++ptr ; 
  ++i ; 
} 

vector<double> v(10) ; 
 
 
vector<double>::iterator iter ; 
 
iter = v.begin() ; 
 
while(iter!=v.end()) { 
 
  cout << *iter << endl ; 
 
  ++iter ; 
} 

Make the pointer point to 
the first element of the 
array 

Make the iterator point to 
the first element of the vector 
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Taking a more abstract view of containers 

•  Illustration of iterators vs C++ pointers 

double array[10] ; 
 
int i = 0 ; 
double* ptr ; 
 
ptr = &array[0] ; 
 
while(i<10) { 
 
  cout << *ptr << endl ; 
 
  ++ptr ; 
  ++i ; 
} 

vector<double> v(10) ; 
 
 
vector<double>::iterator iter ; 
 
iter = v.begin() ; 
 
while(iter!=v.end()) { 
 
  cout << *iter << endl ; 
 
  ++iter ; 
} 

Check if you’re at the end 
of your array 

Check if you’re at the end of 
your vector 
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Taking a more abstract view of containers 

•  Illustration of iterators vs C++ pointers 

double array[10] ; 
 
int i = 0 ; 
double* ptr ; 
 
ptr = &array[0] ; 
 
while(i<10) { 
 
  cout << *ptr << endl ; 
 
  ++ptr ; 
  ++i ; 
} 

vector<double> v(10) ; 
 
 
vector<double>::iterator iter ; 
 
iter = v.begin() ; 
 
while(iter!=v.end()) { 
 
  cout << *iter << endl ; 
 
  ++iter ; 
} 

Access the element the pointer 
is currently pointing to 

Access the element the iterator 
is currently pointing to 
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Taking a more abstract view of containers 

•  Illustration of iterators vs C++ pointers 

double array[10] ; 
 
int i = 0 ; 
double* ptr ; 
 
ptr = &array[0] ; 
 
while(i<10) { 
 
  cout << *ptr << endl ; 
 
  ++ptr ; 
  ++i ; 
} 

vector<double> v(10) ; 
 
 
vector<double>::iterator iter ; 
 
iter = v.begin() ; 
 
while(iter!=v.end()) { 
 
  cout << *iter << endl ; 
 
  ++iter ; 
 
} 

Modifiy the pointer to point 
to the next element in the 
array 

Modify the iterator to point to 
the next element in the array 



Auto types work great with STL contains C++2011 

•  Note that ‘auto’ types are particularly handy when using 
STL classes as iterator type names are usually long, and 
never explicitly needed 
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// Iterator loop 
vector<int> v(10) ; 
vector<int>::iterator iter ; 
for (iter=v.begin() ;iter!=v.end() ; ++iter) { 
   *iter = 0 ; 
} 

// Iterator loop 
vector<int> v(10) ; 
for (auto iter=v.begin() ; iter!=v.end() ; ++iter) { 
   *iter = 0 ; 
} 



Even better: range-based for loops C++2011 

•  C++2011 also introduces concept of ‘range-based’ for 
loops over any entity that supports iterators 
 

•  Works for any container that defines methods 
begin() and end() that return an iteratable type  
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std::vector<int> v = {0, 1, 2, 3, 4, 5}; 
  
// Loop over all elements of v  
for (auto i : v) { // access by value,  
    cout << i << endl ; 
} 
  
// Loop over all elements of v  
for (auto&& i : v) { // access by reference,  
 cout << i << endl ; 
}  
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OO programming – Inheritance & Polymorphism 

 
Inheritance &  
Polymorphism 8 
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Inheritance – Introduction  

•  Inheritance is  
–  a technique to build a new class based on an old class 

•  Example 
–  Class employee holds employee personnel record  

–  Company also employs managers, which in addition to being 
employees themselves supervise other personnel 

•  Manager class needs to contain additional information: list of subordinates 

–  Solution: make Manager class that inherits from Employee 

 

class Employee { 
public: 
  Employee(const char* name, double salary) ; 
  const char* name() const ; 
  double salary() const ; 
private: 
  string _name ; 
  double _salary ; 
} ; 
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Inheritance – Syntax 

•  Example of Manager class constructed through 
inheritance 
 

 
 

class Manager : public Employee { 
public: 
  Manager(const char* name, double salary,  
          vector<Employee*> subordinates) ; 
  list<Employee*> subs() const ; 
private: 
  list<Employee*> _subs ; 
} ; 

Declaration of public 
inheritance 

Additional data members in 
Manager class  
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Inheritance and OOAD 

•  Inheritance means: Manager Is-An Employee 
–  Object of class Manager can be used in exactly the same way as 

you would use an object of class Employee because: 

–  class Manager also has all data members and member functions of 
class Employee 

–  Detail: examples shows ‘public inheritance’ – Derived class 
inherits public interface of Base class 
 

•  Inheritance offers new possibilities in OO Analysis and 
Design 
–  But added complexity is major source for conceptual problems 

–  We’ll look at that in a second, let’s first have a better look at 
examples 
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Inheritance – Example in pictures 

•  Schematic view of Manager class 

class Manager 
public: 
  list<Employee*> subs() const ; 
private: 
  list<Employee*> _subs ; 

‘Base class’ 

‘Derived class’ 

Terminology 

class Employee 
public: 
 const char* name() const ; 
  double salary() const ; 
private: 
  string _name ; 
  double _salary ; 
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Inheritance – Using it 

•  Demonstration of Manager-IS-Employee concept 
 
 
 
 
 

// Create employee, manager record 
Employee* emp = new Employee(“Wouter”,10000) ; 
 
list<Employee*> subs ; 
subs.push_back(emp) ; 
 
Manager* mgr = new Manager(“Stan”,20000,subs) ; 
 
 
// Print names and salaries using  
// Employee::salary() and Employee::name() 
cout << emp->name() << endl ;    // prints Wouter 
cout << emp->salary() << endl ;  // prints 10000 
 
cout << mgr->name() << endl ;    // prints Stan 
cout << mgr->salary() << endl ;  // prints 20000 
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Inheritance – Using it 

•  Demonstration of Manager-IS-Employee concept 
–  A pointer to a derived class is also a pointer to the base class  

–  But the reverse is not true! 
 
 
 
 
 

// Pointer-to-derived IS Pointer-to-base 
void processEmployee(Employee& emp) { 
   cout << emp.name() << “ : “ << emp.salary() << endl ; 
} 
 
processEmployee(*emp) ; 
processEmployee(*mgr) ; // OK Manager IS Employee 
 
 
 
 
 
// Manager details are not visible through Employee* ptr 
Employee* emp2 = mgr ; // OK Manager IS Employee 
emp2->subs() ; // ERROR – Employee is not manager 
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OO Analysis and Design – ‘Is-A’ versus ‘Has-A’ 

•  How is an ‘Is-A’ relationship different from a ‘Has-A’ 
relationship 
–  An Is-A relationship expresses inheritance (A is B) 

–  A Has-A relationship expresses composition (A is a component of B) 

a Calorimeter HAS-A Position  An Manager IS-An Employee 

class Calorimeter { 
public: 
  Position& p() { return _p ; } 
private: 
  Position _p ; 
} ; 

class Manager :  
       public Employee { 
public: 
 
private: 
} ; 

Calorimeter calo ; 
// access position part 

calo.p() ;  

Manager mgr ; 
// Use employee aspect of mgr 

mgr.salary() ;  
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Inheritance – constructors, initialization order 

•  Construction of derived class involves construction of base 
object and derived object 
–  Derived class constructor must call base class constructor 

–  The base class constructor is executed before the derived class ctor 

–  Applies to all constructors, including the copy constructor 

Manager::Manager(const char* _name, double _salary,  
                            list<Employee*>& l) : 
   Employee(_name,_salary), 
   _subs(l) { 
   cout << name() << endl ; // OK - Employee part of object  
}                           // is fully constructed at this 
                            // point so call to base class 
                            // function is well defined 
 
Manager::Manager(const Manager& other) : 
   Employee(other), // OK Manager IS Employee 
   _subs(other._subs) { 
   // body of Manager copy constructor 
} 
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Inheritance – Destructors, call sequence 

•  For destructors the reverse sequences is followed 
–  First the destructor of the derived class is executed 

–  Then the destructor of the base class is executed 

•  Constructor/Destructor sequence example 

class A { 
  A() { cout << “A constructor” << endl ; } 
  ~A() { cout << “A destructor” << endl ; } 
} ; 
 
class B : public A { 
  B() { cout << “B constructor” << endl ; } 
  ~B() { cout << “B destructor” << endl ; } 
} ; 
 
int main() { 
  B b ; 
  cout << endl ; 
} 

A constructor 
B constructor 
 
B destructor 
A destructor 

Output 



© 2006 Wouter Verkerke, NIKHEF 

Sharing information – protected access 

•  Inheritance preserves existing encapsulation 
–  Private part of base class Employee is not accessible by derived 

class Manager 
 
 
 
 

•  Sometimes useful if derived class can access part of 
private data of base class 
–  Solution: ‘protected’ --  accessible by derived class, but not by 

public 
 

Manager::giveMyselfRaise() {  
  _salary += 1000 ; // NOT ALLOWED: private in base class 
} 

class Base { 
  public: 
    int a ; 
  protected: 
    int b ; 
  private:  
    int c ; 
} ; 

class Derived : public Base { 
 void foo() { 
   a = 3 ; // OK public 
   b = 3 ; // OK protected 
  } 
} ; 
 
Base base ; 
base.a = 3 ; // OK public  
base.b = 3 ; // ERROR protected 
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Better example of protected interface 
class Employee { 
public: 
  Employee(const char* name, double salary) ; 
  annualRaise() { setSalary(_salary*1.03) ; } 
  double salary() const { return _salary ; } 
 
protected: 
  void setSalary(double newSalary) { 
    if (newSalary<_salary) { 
      cout << “ERROR: salary must always increase” << endl ; 
    } else { 
      _salary = newSalary ; 
    } 
  } 
 
private: 
  string _name ; 
  double _salary ; 
} ; 

The setSalary() function is 
protected: 

 
Public cannot change salary 

except in controlled way 
through public 

annualRaise() method 
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Better example of protected interface 
class Employee { 
public: 
  Employee(const char* name, double salary) ; 
  annualRaise() { setSalary(_salary*1.03) ; } 
  double salary() const { return _salary ; } 
 
protected: 
  void setSalary(double newSalary) { 
    if (newSalary<_salary) { 
      cout << “ERROR: salary must always increase” << endl ; 
    } else { 
      _salary = newSalary ; 
    } 
  } 
 
private: 
  string _name ; 
  double _salary ; 
} ; 

class Manager : public Employee { 
public: 
   Manager(const char* name, double salary, 
          list<Employee*> subs) ; 
 
   giveBonus(double amount) { 
      setSalary(salary()+amount) ; 
   } 
private: 
  list<Employee*> _subs ; 
} ; 

Managers can also get additional 
raise through giveBonus() 

 
Access to protected 

setSalary() method allows 
giveBonus() to modify salary 
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Better example of protected interface 
class Employee { 
public: 
  Employee(const char* name, double salary) ; 
  annualRaise() { setSalary(_salary*1.03) ; } 
  double salary() const { return _salary ; } 
 
protected: 
  void setSalary(double newSalary) { 
    if (newSalary<_salary) { 
      cout << “ERROR: salary must always increase” << endl ; 
    } else { 
      _salary = newSalary ; 
    } 
  } 
 
private: 
  string _name ; 
  double _salary ; 
} ; 

class Manager : public Employee { 
public: 
   Manager(const char* name, double salary, 
          list<Employee*> subs) ; 
 
   giveBonus(double amount) { 
      setSalary(salary()+amount) ; 
   } 
private: 
  list<Employee*> _subs ; 
} ; 

Note how accessor/modifier 
pattern salary()/setSalary() 

is also useful for protected 
access 

 
Manager is only allowed to 

change salary through 
controlled method: negative 
bonuses are not allowed… 
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Object Oriented Analysis & Design with Inheritance 

•  Principal OOAD rule for inheritance: an Is-A relation is an 
extension of an object, not a restriction 
–  manager Is-An employee is good example of a valid Is-A relation:  

 
A manager conceptually is an employee in all respects, but with 
some extra capabilities 

–  Many cases are not that simple however 

•  Some other cases to consider 
–  A cat is a carnivore that knows how to meow (maybe) 

–  A square is a rectangle with equal sides (no!) 

•  ‘Is-A except‘ is a restriction, not an extension 

–  A  rectangle is a square with method to change side lengths (no!) 

•  Code in square can make legitimate assumptions that both sides 
are of equal length 
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Object Oriented Analysis & Design with Inheritance 

•  Remarkably easy to get confused 
–  Particularly if somebody else inherits from your class later (and you might 

not even know about that) 

•  The Iron-Clad rule: The Liskov Subtitution Principle 
–  Original version: 

 
 
 

–  In plain English: 
 
 

–  Keep this in mind when you design class hierarchies using Is-A relationships 

‘If for each object o1 of type S there is an object o2 of type T 
such that for all programs P defined in terms of T, the behavior 

of P is unchanged when o1 is substituted for o2, then S a subtype of T’ 

‘An object of a subclass must behave indistinguishably from an 
object of the superclass when referenced as an object of the superclass’ 
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Object Oriented Analysis & Design with Inheritance 

•  Extension through inheritance can be quite difficult  
–  ‘Family trees’ seen in text books very hard to do in real designs 

•  Inheritance for “extension” is non-intuitive, but for 
“restriction” is wrong 

•  Inheritance is hard to get right in advance 
–  Few things are straightforward extensions 

–  Often behavior needs to be overridden rather than extended 

–  Design should consider entire hierarchy 

•  But do not despair:  
–  Polymorphism offers several new features that will make OO 

design with inheritance easier 
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Polymorphism 

•  Polymorphism is the ability of an object to retain its true 
identity even when accessed through a base pointer 
–  This is perhaps easiest understood by looking at an example 

without polymorphism 

•  Example without polymorphism  
–  Goal: have name() append “(Manager)” to name tag for manager 
–  Solution: implement Manager::name() to do exactly that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

class Manager : public Employee { 
public: 
  Manager(const char* name, double salary,  
          vector<Employee*> subordinates) ; 
 
  const char* name() const { 
    cout << _name << “ (Manager)” << endl ; 
  } 
 
  list<Employee*> subs() const ; 
private: 
  list<Employee*> _subs ; 
} ; 
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Example without polymorphism 

•  Using the improved manager class 
 
 
 

•  But it doesn’t work in all circumstances… 
 

–  Why does this happen?  

–  Function print() sees mgr as employee, thus the compiler calls 
Employee::name() rather than Manager::name() ; 

–  Problem profound: name() function call selected at compile time. No way 
for compiler to know that emp really is a Manager! 

Employee emp(“Wouter”,10000) ; 
Manager mgr(“Stan”,20000,&emp) ; 
 
cout << emp.name() << endl ; // Prints “Wouter” 
cout << mgr.name() << endl ; // Prints “Stan (manager)” 
 

void print(Employee& emp) { 
   cout << emp.name() << endl ; 
} 
print(emp) ;  // Prints “Wouter” 
print(mgr) ;  // Prints “Stan” – NOT WHAT WE WANTED! 
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Polymorphism 

•  Polymorphism is the ability of an object to retain its true 
identity even when accessed through a base pointer 
–  I.e. we want this: 

 
 

•  In other words: Polymorphism is the ability to treat 
objects of different types the same way 
–  To accomplish that we will need to tell C++ compiler to look at 

run-time what emp really points to. 
–  In compiler terminology this is called ‘dynamic binding’ and 

involves the compiler doing some extra work prior to executing 
the emp->name() call 

Employee emp(“Wouter”,10000) ; 
Manager mgr(“Stan”,20000,&emp) ; 
 
void print(Employee& emp) { 
   cout << emp.name() << endl ; 
} 
print(emp) ;  // Prints “Wouter” 
print(mgr) ;  // Prints “Stan (Manager)” 
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Dynamic binding in C++ – keyword virtual 

•  The keyword virtual in a function declaration activates 
dynamic binding for that function 
–  The example class Employee revisited 

 
  

–  No further changes to class Manager needed 

… And the broken printing example now works 

class Employee { 
public: 
  Employee(const char* name, double salary) ; 
  virtual const char* name() const ; 
  double salary() const ; 
private: 
  … 
} ; 

void print(Employee& emp) { 
   cout << emp.name() << endl ; 
} 
print(emp) ;  // Prints “Wouter” 
print(mgr) ;  // Prints “Stan (Manager)” EUREKA 
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Keyword virtual – some more details 

•  Declaration ‘virtual’ needs only to be done in the base 
class 
–  Repetition in derived classes is OK but not necessary 

•  Any member function can be virtual 
–  Specified on a member-by-member basis 

class Employee { 
public: 
  Employee(const char* name, double salary) ; 
  ~Employee() ; 
 
  virtual const char* name() const ; // VIRTUAL 
  double salary() const ;            // NON-VIRTUAL  
 
private: 
  … 
} ; 
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Virtual functions and overloading  

•  For overloaded virtual functions either all or none of the 
functions variants should be redefined 

class A { 
 virtual void func(int) ; 
 virtual void func(float) ; 
} ; 
 
class B : public A { 
 void func(int) ; 
 void func(float) ; 
} ; 

class A { 
 virtual void func(int) ; 
 virtual void func(float) ; 
} ; 
 
class B : public A { 
} ; 

class A { 
 virtual void func(int) ; 
 virtual void func(float) ; 
} ; 
 
class B : public A { 
  void func(float) ; 
} ; 
 

OK – all redefined 

OK – none redefined 

NOT OK – partially redefined 
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Virtual functions – Watch the destructor 

•  Watch the destructor declaration if you define virtual functions 
–  Example 

 
 
 

–  Any resources allocated in Manager constructor will not be released as 
Manager destructor is not called (just Employee destructor) 

–  Solution: make the destructor virtual as well 

•  Lesson: if you ever delete a derived class through a base 
pointer your class should have a virtual destructor 
–  In practice: Whenever you have any virtual function, make the destructor 

virtual 

Employee* emp = new Employee(“Wouter”,10000) ; 
Manager* mgr = new Manager(“Stan”,20000,&emp) ; 
 
void killTheEmployee(Employee* emp) { 
   delete emp ; 
} 
 
killTheEmployee(emp) ; // OK 
killTheEmployee(mgr) ; // LEGAL but WRONG! 
                  // calls ~Employee() only, not ~Manager() 
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Abstract base classes – concept 

•  Virtual functions offer an important tool to OOAD – the 
Abstract Base Class  
–  An Abstract Base Class is an interface only. It describes how an 

object can be used but does not offer a (full) implementation 

class Trajectory 
public: 

virtual Point x(float& t)=0; 
 

class LineTrajectory 
public: 

Point x(float &t) ; 
 

private: 
Vector _orig ; 
Vector _dir ; 

 

class HelixTrajectory 
public: 

Point x(float &t) ; 
 

private: 
Vector _orig ; 

double _rho, _phi, _d, 
_kappa, _lambda ; 

Interface 
only 

Imple- 
mentation 



© 2006 Wouter Verkerke, NIKHEF 

Abstract base classes – pure virtual functions 

•  A class becomes an abstract base class when it has one 
or more pure virtual functions 
–  A pure virtual function is a declaration without an implementation 

–  Example 
 
 
 
 
 
 
 
 

–  It is not possible to create an instance of an abstract base 
class, only of implementations of it 
 

class Trajectory { 
public: 
   Trajectory() ; 
   virtual ~Trajectory() ; 
   virtual Point x(float& t) const = 0 ; 
} ; 

Trajectory* t1 = new Trajectory(…) ;    // ERROR abstract class 
Trajectory* t2 = new LineTrajectory(…); // OK 
Trajectory* t3 = new HelixTrajectory(…);// OK 
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Abstract base classes and design 

•  Abstract base classes are a way to express common 
properties and behavior without implementation 
–  Especially useful if there are multiple implementations of a 

common interface possible 

–  Example: a straight line ‘is a’ trajectory,  
         but a helix also ‘is a’ trajectory 

•  Enables you to write code at a higher level abstraction 
–  For example, you don’t need to know how trajectory is 

parameterized, just how to get its position at a give flight time. 

–  Powered by polymorphism 

•  Simplifies extended/augmenting existing code 
–  Example: can write new class SegmentedTrajectory. Existing 

code dealing with trajectories can use new class without 
modifications (or even recompilation!) 
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Abstract Base classes – Example  

•  Example on how to use abstract base classes 

void processTrack(Trajectory& track) ; 
 
int main() { 
  // Allocate array of trajectory pointers 
  Trajectory* tracks[3] ; 
 
  // Fill array of trajectory pointers 
  tracks[0] = new LineTrajectory(…) ; 
  tracks[1] = new HelixTrajectory(…) ; 
  tracks[2] = new HelixTrajectory(…) ; 
 
  for (int i=0 ; i<3 ; i++) { 
    processTrack(*tracks[i]) ;  
  } 
} 
 
void processTrack(Trajectory& track) { 
   cout << “position at flight length 0 is “  
        << track.pos(0) << endl ; 
} 

Use Trajectory 
interface to  
manipulate track  
without knowing 
the exact class  
you’re dealing with  
(HelixTrajectory 
or LineTrajectory) 
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Object Oriented Analysis and Design and Polymorphism 

•  Design of class hierarchies can be much simplified if 
only abstract base classes are used 
–  In plain inheritance derived class forcibly inherits full specifications 

of base type 

–  Two classes that inherit from a common abstract base class can 
share any subset of their common functionality 

Base 

Derived 

Abstract 
Common 
Interface 

Concrete 
Implementation 

I 

Concrete 
Implementation 

II 


