Introduction to CATIA V5

Release 16
 (A Hands-On Tutorial Approach)

Kirstie Plantenberg
University of Detroit Mercy

Visit the following websites to learn more about this book:
Publications amazon.com BARNES \& NOBLE

Introduction

Chapter 2 focuses on CATIA's Sketcher workbench. The reader will learn how to sketch ρ°-. onstrain very simple to $\mathrm{Lury} \mathrm{comp}^{2} \mathrm{x} 2 \mathrm{D}$ rofiles.

Tutoria. ~л. - ..e :- Ch ste 2

- Tutorial 2.1: S'^tcr 'Nork Mcлes
- Tutorial 2.2: S i. ' Jruili jr úr is ai io

- Tutorial 2.4: Modifying Geometries \& Relimitations
- Tutorial 2.5: Axes \& Transformations
- Tutorial 2.6: Operations on 3D Geometries \& Sketch planes
- Tutorial 2.7: Points \& Splines

NOTES:

Featured Topics \& Commands

The Sketcher wor b n 1 2.1-2
The Sketch tools tuolbar 2.1-3
Part Modeled 2.1-4
Section 1: Using Snap to Point 2.1-4
Section 2: Using Construction Elements 2.1-7
Section 3: Geometrical and Dimensional Constraints 2.1-9
Section 4: Cutting the part by the sketch plane 2.1-11

- Entering workbeıches
- Entering and $\epsilon^{\times i t i n \sim ~ t h e ~ S k e t ~ h e r ~ w o r k b e n c ' ~}$
- Drawing simpl , 'J es
- Simple Pads a ld P ok ts

The Sketcher vorkr~nct

The Sketcher wurkbeıun is a set, tous that hel z you create alıu cuisirain 2D geometries. Features (pads, pockets, shafts, etc...) may then be created solids or modifications to solids inr hese 2Γ profiles. Yoı, can ac ass the Sketcher
 menu (Start - Mechanical Design - Sketcher), or by selecting the Sketcher icon. When you enter the sketcher, CATIA requires that you choose a plane to sketch on. You can choose this plane either before or after you select the Sketcher icon. To exit the sketcher, select the Exit Workbench icon.
 toolbars.
 in this toolbar allow y u.o rf att sil pli geometries (rectangle, circle, ıne, etc...) and more complex geometries (profile,
 spline, etc...).

- Operation toolbar: Once a profile has been created, it can be modified using commands such as trim, mirror, char .c. and other commands lcuated in e Operation ıolba

- Constraint toolbar: Profires may be constrained with dimensional (dista ees angle-, etc...) -r
 using the commanı; ic ai \downarrow in the \cap)r tra t
 toolbar.
- Sketch tools toolbar: The commands in this toolbar allow you to work in different modes which make sketching easier.

 activate di rert elr jt $\overline{\mathrm{n}}$ te.
- Visualization toolbar: Allows you to, among othe thine to ript the rart hy the rike :r plar and ch $0 \geqslant 1 \mathrm{jh} \cdot, \in$ ect ; id ot $\because r$ factors that in uence how tue n t is
 visualized.
 things, to analyze á skuivi, fu. pruvi=rıo, aislusate a datum.

The Sketch tools Toolbar

The Sketch tools toolbar contains icons that activate and deactivate different work monne. These work modes ass'; you in Jrawing 2D profiles Reading from
 active it ho c n; car , e ، dil acti \geqslant, it k de

- Grid: This command turns the sketcher ๆrid on and off.
- Snap to Point: fac fe vi ar ur. or mill sne it tr : intersections of the grid lines.

- Construction / Standard Elements: You can draw two different types of elements in CATIA a standard element and a construction element. A standard element (solid line type) will be created when the icon is inactive (blue). It will be used to create a feature in the Part Design workbench. A construction element (dashed line type) will be created when the icon is active (ora' je, Thav are ised tn haln constrint jur si stch hut will not be used to crei afea ire
- Geonieuic vuns anuts: /herı acuve o orıetic cuilsuanits wiu automatically be applied such as tangencies, coincidences, parallelisms, etc...
- Dimensional `or raints: Nhen active. dimer ional constraints will
 when quantitie, are ar....d 1 . . inc ...lu fie.... ...c va.ue field is a place where dimensions such as line length and angle are manually entered.

Part Modeled

The part modı ed in this tutorial is stıuvn below. The part is constructed with the assistance of different work modes.

Section 1: Using Snap to Point

擐1) Open a New Part drawing and name the part Spline Shape.
2) Restore the default f_sition of the tol:...urs (Tools - Customize... Toolbars tab - Restore nosition.) Move the Skotch Tocls toolbar and the

3) Set your grid spacing. At the top pull down menu, select Tools - Options... In the plune window evpand the Merhani \Rightarrow 名 De rn nortione of the left side

 Primary spacing and Graduations to $\mathrm{H}: \mathbf{1 0 0} \mathbf{~ m m}$ and $\mathbf{2 0}$, and $\mathrm{V}: \mathbf{1 0 0} \mathbf{~ m m}$ and 10.

 side toolbar ar a.
4) Move your cursor around the screen. Note that it snaps to the intersections of the grid. Your Snap to Point should be orange (active). Deactivate the Snap to Point \qquad icon by clicking on it and turning it back to blue. Move your ... or around the screen anu notice $t \geqslant$ diffe ence.
5) Reactivate the Snap to Point 撶 icor ar I Ira , the spline urow... \subseteq met each point (indicated by a number in a square) ${ }^{\circ}$ or ${ }^{\circ}$ from 1 to 7, double : 1 g at the last point to _nd t.e. spline command.
6) Edit the spline by double clicking on any portion of it.
7) In the Snline Definition window, s ect $r^{\prime} .{ }^{\prime}{ }^{3} o^{\prime} \because{ }^{\boldsymbol{\top}}$, then active $\operatorname{~} \mathrm{tr} \in \mathrm{Ta}$ g n ノ $/$ option, and select OK. Notice that the last point is now tangent to tl ; point.

10)Draw a Circle inside the spline as shown.

8) Deselect all.
9) Enter the Sketcher on the front face of the part.
10) Activ- the Construction / Sta. dard Elei. ${ }^{\text {n's }}$ s (2) ir n. ، : lou l orange.

11) Project an outline of the part onto the sketch plane. Select the Project 3D Elements 書 icon then select the face of the part. This icon is located in the Operations toolbar near the bottom of the right side toolbar area. It may be hidden in the bottom right corner.
12) Desr' . a all. The projection shoulu now be rellow (this means is associated with the f it $\mathrm{n} \mathrm{w}^{\prime}$, if ig wi 1 ie la) ic da nc no means it is a cons. . .ic. .er : ..).
13) At the top pull down window, select Tools - Options - Sketcher tab. Deactivate e Jrin nisnlov and Snontn Printo finns solent OK

14) Deactivate the Construction / Standard Elements icon.
15) Using the Profile commana to araw we triangie snown. The points of the triangle should lie on the projected construction element. You will know when you are on the projection when a symbol of two concentric circles appears, and you will know when you are snapped to the endpoint of the start point when a symbol of two concentric circles appears and the inner one is filled.

 to a ?ng̣t of 0 in

16) Deselect all.
17) Enter the Sketcher on the front large face of the part.
18) Activ- - the Geometrical

Con 'rn' n : E. I. 1 no $d t$ orange.

4) At the top pull down window, select Tools - Options - Sketcher. Under the Constraint portions of the window, select SmartPick... The SmartPick window shows all the geometrical constraints that will be created automatically. These constraints may be turn on and off depending on your design/sketch needs. Close both the Smart Pick and Options wind vo

5) Draw a Re aı.gle \square t \cap the right of tl ? hol a hc rr. Notice uiut ge ...etric constraints ($\mathrm{H}=$ horizontal, V $=$ Vertical) are aut na' ally applied.
6) Deactivate the Geometrical

Constraints
icon. It should be blue.
7) Draw a Re caı.gin \square tn thn left of th holi a hc n Notice that nu geowetri cunst .ints are made.

 horizontal and vertical constraints that were applied to the one rectangle.
9) Undo (CTRL + Z) the moves until the original rectangles are back.
10)Exit the Sra+rher and Pocket the sketch usii f the ' $\mu>$ is \boldsymbol{N} io.

11)Expand the specifica*: $n^{\text {tme }}$ e to the ${ }^{\text {k }}$ ketch level.
12)Edit Sketch. 3 (the sketch associated with the pocket). In the specification tree auble rlick on Stotrh. ${ }^{2}$, nr right rlicl on it in solact Ck tch. 3 object -
 create ulls snetc|

14)Select the Corner Γ icon, select the bottom left corner point of the left rectangle, move your mouse up and to the right, and click. A corner or fillet will be created. The corner inon
 nea, the of رn r th ric it : dt toolbar area. Thi corne rillet may also be created by
 create the c $r_{1} \leadsto r_{1}$ ie th a a dimension is automatically createa.
15)Deactivate the Dimensional Constraint ${ }^{\text {icon }}$ It should be blue -. ate a Corner Γ in the upp r righ so $ו \in \mathrm{O}$ h $\mathrm{h} . \mathrm{m}$ recta. u',. .- .ce L. th. tim nc dimensional consıraint vads created.
16)Exit the Ske shel do 10
 changed the sketch used to create the pocket. Notice that the pocket is automatically updated to reflect these changes.

Section 4: Cutting the part by the sketch plane.

 Plane commana all ws yo to see insivo ne part and makes it easier to draw and constrain your sketch.

1) Enter the Skewher
2) Select the ' unetrin Viaw, iron This icon is rater in tho bottom toolbar area.
3) Select the Cut Part by Sketch Plane
 icon loci :t tr= bottom toolbar area. . he pun ... now cut by the wy plane (the sketch plane).
4) Select the Ton view
 icon
 and draw c Sirs (), in ie middle of the hole as how in the figure.
5) Exit the Sketcher \downarrow

6) Select the Pad icon and then select the More>> button. Fill in the following fields for both the First . . . Second Limits; Type: Up to ur ic, .it it Select the ı.. .. c.. ${ }^{-}$.ntice a the hole, and selection: Sketch. 4 (the circ'n). Select Preview to see if the • \rightarrow, vil, ut applied correctly, an her $)$

U'hapir 2.
 SKETCHER

Tutorial 2.2: Simple Profiles \& Constraints

Featured Topics \& Commands

Profile toolbar 2.2-2
Constraints toolbár 2.2-5
Selecting icons 2.2-5
Part Modeled 2.2-6
Section 1: Creating circles. 2.2-6
Section 2: Creating dimensional constraints. 2.2-7
Section 3: Creating lines. 2.2-8
Section ^ `reating geometrical cons...aints. 2.2-11
Sectior j: Crr ith y c: 2.2-14

Prerequisite Knowleuge \& Commands

- Entering work : v/ s
- Entering and ϵ itıne th cei he, an*k enc
- Simple Pads
- Work modes (Sketch tools toolbar)

Profile toolbar

 from the very slurie (ruint rectan de, tuc...) to wr veiy comipiex (opliries, conics, etc...). The Profile toolbar contains many sub-toolbars. Most of these subtoolbars contain differer $\mathrm{fp}^{\prime} \mathrm{ns}$ for c zatina the saııe aeom try. For example, you can create a simple r., lin \quad əf eć $\because N$ tar jent; ,il s, or a line that is
 the following commands.

Profile toolbar

 connected together.

 predefined geometrí

- Circle / Circle toolbar: The default top command is circle. Stacked underneath are several different options for creating circles and arcs.
- Spline / Spline toolbar: The default top command is spline which is a curved line created by connecting a series of points.
- Ellipse / Conic toolbar: The default top command is ellipse. Stacked underneath are commands to create different conic shapes surh as a hyperbola.
 several different options for cre ting lines.
- Axis: An axis is used in conjunction with commands like mirror and shaft
 become a physical pit $f o^{\prime}$ " at e.
- Point / Point toolbar: The default top command is point. Stacked underneath

Predefineu Prome tc ınar

Predefined profile ar 'renıent' used geomearies CA IA makes these profiles

- Rectangle: The rectangle is defined by two corner points. The sides of the rectangle are always horizontal and vertical.
- Orien ${ }^{+\sim}$ Rectangle: The orientec' rectangl is defined by threr corner points.
 horic ${ }^{n+}$ - .
- Parallelogram: T., e pará..elogram is uv..ned by three corner points.
- Elongated Hola. The elongated hole or slat. is defined by two points and a radius.
- Cylindrical Ele lgat $\underline{ \pm}$ th $\underset{\sim}{3}$ he rulin rice ϵ or a d hole is defined by a cylindrical radius, two point and a hole radius.
- Keyhole Profile: The keyhole profile is defined by two center points and two radii.
- Hexagon: The hexagon is defined by a center point and the radius of an inscribed circle.
- Centered Rectangle: The centered rectancle is defined by a center point and a cc ler pr:-
 point (defined by wo int isecting lines) and a corner point.

Circle toolbar

The Circle toolbáı corıairı seveıal umerent valay vi cieating circles and arcs. Reading from left to right, the Circle toolbar contains the following commands.

- Circle: A circle is defined by a center point and a radius.
- Three Point Circle: The three point circle
 comr ... d allows you to create a circle us g thre circl ite el ia $x \eta^{\dagger}$.
 to create a circle sy entering the coorumates for the center point and radius in a Circle Defini+inn ${ }^{\cdots i n d o w . ~}$

- Three Point Arc: The three point arc command allows you to create an arc defined by reu cima $m^{f o m n n t i n l ~ p r i n t s . ~}$
- Three Poii Arr, ita ir _V th ' ni $\leq T$ e hr \mathfrak{y} oi !: c arun u h limits allows you to create an rc usir fa start, enr a miaporirt.
- Arc: The arc command allows you to create an arc defined by a center point, and a circumferential ar and ond int

Spline toolbar

Reading from left to right, the Spline toolbar contains the following commands.

- Spline: A spline is a curved profile defined by three or more points. The tangency and curvature radius at each point may be specified.

 with a splin.

Conic toolbar

Reading from left to righ tıe ic ic x rai onte iste all w g commands.

- Ellipse: The ellipse is defined by center point and a Conic ® major and minor axis points.
- Parabola by Focus: The parabola is defined by a focus, apex and a start and end point.
- Hyperbola bv Focus: The hyperbola is defined bv a focus, center point, apex and a start ،na ern noirt
 curves. These metnods give $y^{\prime} \downarrow$ a ot of flevil ity when creating adove three types of curves.

Line toolbar

The Line toolbar contains several different ways of creating lines. Reading from left to right, the Line toolbar contains the following commands.

- Line: A line is defined by two points.
- Infinite Line: Creates infinite lines that are horizontal, vertical or $\mathrm{d}^{-\cdots}$?d by two points.

- Bi-Tangen Line: re tr ; éir

- Bisecting Line: Creates an infurite line that usects the angle created by two other lines.
 anywhere and ends I rma o n' pe 'ri, lo"t an hn mel ent.

Point toolbar

 from left u ıighı, ıne -uınt tı إbáı coiriairıs ie ıolıuWlıy cumınáıás.

- Point by Click \leq (e2t? a ıoi n, (cki $)^{\text {th }}=\mathrm{e}$ mouse button.
- Point by using Coordinates: Creates a point at a
 specified coordinate point.
- Equidistant Points: Creates equidistant points along a predefined path curve.
- Intersection Point: Creates a point at the intersection of two different elements.
- Proje - - - Point: Projects a point $_$F one elf nent rnto another.

Constra ${ }^{-2}$. 0 It A r

Constraints can pither be dimensional or germetrical. Dimensional constraints
 radius or diame $r o \varepsilon: c$ or rrrle an e distance or angle between elements. Geometrical constraints are used to constrain the orientation of one element relative to another. For example, two elements may be constrained to be perpendicular to each other. Other common geometrical constraints include parallel, tangent, coincident, concentric, etc... R^{\prime} ィun $\mathrm{g}^{\text {from }}$ loft to right•

- Consuaints vefi zu in aloyed box. reates geumeucaı dıud dimensional constraints between two elements.
- Constraint: Cr te limensic al constraints.

- Fix Together: ihe in tuytıh ϵ_{1} coı....ıaıı grıun ı ıdividual entities together.
- Auto Constraint: Automatically creates dimensional constraints.
- Animate Constraint: Animates a dimensional constraint between to limits.
- Edit Multi-Constraint: This command allows you to edit all your sketch constraints in a single window.

Selectir \therefore ons

 activated with a sinyee mouse click, the wun will turn back to blue (deactivated) when the operation is n mplete. If the icon is a^{-1} ivated v "th double mouse click,

Part Modeled

The part mod ed ir the t :or $l l$: he vi on the right. This part vil k vereat d using simple profiles, circles, arcs, lines, and hexagons. The \leqslant om lies are constrained to conf i to er in dimensional (lengths) and ge....att..al constraints (tangent, perpendicular, etc...).

Section 1: Creating circles.

(Hint: If you get confused about how to apply the different commands that are
 for additional I In'

1) Launch CATIA V5, enter the Part Design workbench ir. if $7 s^{\prime} \cdot d$, name your part Post
2) Enter the Sketcher
 on the $\mathbf{z x}$ plane.

3) Set your grid spacing to be $100 \mathbf{~ m m}$ with 10 gran ${ }^{\cdots+i o n s, ~ a c t i v a t e ~ t h e ~ S n a p ~}$
 Options...)

4) Double click, t^{\prime}. r:-le :- ©n ond draw the circle i.l vr
5) Exit the Sketcher § and Pad 9 the sketch to $12 \boldsymbol{r}$. n each sid Mirrr el exte. ". . N" ${ }^{*}$, that the inner circle at the bottom becom : a hole.

Section 2: Creating dimensional constraints.

1) Exp a yorir spanification tree to tha katch leve
2) Edit Sketch.1. To edit a sketch you can double click on the sk ch ame in t' ə specification, tree. or you can is'i clirle or th a a elent
 into the sketcher on the plane used to create Sketch. 1.
3) Double click on the Constraints \square icon.
 dim usion u^{\prime} ar |c ak', ur eft $\mid \mathrm{o}$ se u or to place tne dımen on. R^{\prime}, jeat for the ${ }^{\text {n' }}$ J bottom circles.

 the center poilı of tıe ıunver cıcles, punt the dirıelısicı out and click.
4) Double click on the D20 dimension. In the Constraint u eiinitinn mindow, shango tho diameter fi m 2 C 0 ; in

5) In a similar fashion, change the other dimensions th the values shown in the finיıre.

6) Exit the Sketcher $[$ an deselect -" Notice that the part automatically updates to the new sketch dime . o'

Section 3: Creating lines.

1) Enter the Sketcher on the zx plane.
2) Deactivate ${ }^{+2}$ Snap to Point $\#$ icon.
3) Project the $\cdots{ }^{+\infty}$ ci $\cdots, ~ o i$ ie. art $n i \stackrel{+\cdots}{ }$ sketch plane. Double wick O', the Projec. 0
 lower half of the rigl i.d t Jוl ar are sel ct the outer edges of the two cylinders.
4) Pull out the line toolbar

5) Pull int 1 a zu in tai ns too Operation toolba. .
 icon. Select the outer portion of the projected circles. Notice that the trimmed projection turns into a construction element (dashed).
6) Exi the $j k$ 'c er \uparrow^{\uparrow} and Pad ป the sketch to ${ }^{\text {a }} \mathrm{mr}^{-}$ on each : ir (Mirrored ext it).

7) Enter the cowher on the $z \times$ plane
10)Activate the Construction/Standard Element $\%$ icon (it should be orange).
11)Select the Project 3D Elements icon and then project the left line of the part as shown in the figure.
12)Activate yoי ${ }^{\text {M }}$ Snap to Point槄 icon.
13)Draw a line that starts at poi... 1 (see fig.) and ends normal/perpendiculaı , , je $\therefore \lambda$ line using the Linc 1.0 n , Curve ${ }^{-b}$ icon.
14)Deactivate your Snap to Point搏 icon.
15)Draw a Li. fr , m n. It point 2.
16)Draw a line that is, ts \because ? previous 2 lines hoil y ti ?

Bisecting Line icon. Read the prompt line for directions.

17)Deselect all.
 now).
19)Draw a circle that is tangent to the projected line un.nal line and piserting lina uring 1 p Tri-7a..yelı Ci ic ison. Rtar lıe prompt line for directions.
20)Zoo in ρ th ccl

21)Using Profile $\sqrt{\text { mann }}$ in thmee anditionnl lines shown in $h f u^{r}$.

22)Use ${ }^{+ \text {L }}$ - Quick Trim comma. d to trim Jff the insi ᄅ por ur o u irr a s. ic лाi Y u vil

23)Draw a Hexagon \triangle that has the same center as the circle/arc and is the approximate size shown in the figure. The Hexagon icon is usually stacked under the Rectangle \square icon. (Your hexagon will contain many constraints that are not shown in the
 figur .,
24)Dest.... a_{1}.
25)Apply a di ensional Constraint \square In the distar e be ve n thr $t+c$ th hexagon á shuwil. is c ate thio constraint, select the top line and then the bottom line. D blr click o the dimension and chans : ', alus)، mı
 26)Exit the Sketcher $₫$ and
Pad 9 the sketch to a length
 (Mirrored rteni

Section 4: Creating gromé.، ،cal constraints.

1) Enter the Sketcher on the tlat face of the large cylinder.

2) Dea .ıvaie the Gonmetrical Conctraint inor (it shnild ha Jlue). This will

3) On the face of the large cylinder, draw
the Profile B shown. No geometrical constraints should be indicatar.
4) Des 'act c
5) Reactivate the

Geometrical

Constraints icun (in silouiu be urange).
6) Apply a vertical constraint to the right line of the profile by right clicking on it and selecting Line.? object - Vertical.
7) Apply a horizontal constraint to the top line using a similar procedure.
8) Des lect $\bar{\sigma}$.
9) Apply a perpencucular unstraint beıveen the right and bottom lina of the profile. Hold the CTRL key

Constraints Defined in Dialog Box 気 4 icon. In the Constraint Definition window, check the box next to Perpendicular and then select OK.
10)Apply a parallel constraint between the left and right lines of the profile in a similar way.

11)Apply Co su ainte \square to the rectangle: id ch ng t eir 盾 1 s 1 the values sıuvvn ... tne iyure.

12)Apply the additional limens رnal constraints shown in order to position the rectanc , lent the Constraints \square ivon, we.. we circumference of the circle and then the appropriate side of the rectangle. Notice that once all the constraints are applied, the rectangle turns green indicating that it is full. ronstrained. If it did not turn reen \quad r. k_{1}, ir it Visualizatic c di or sis is activated in the Optic.is wir. uow. (Tools - Options...)

13)Draw the triangle s Jwn N 路 th Profile GU command. When drawing the triangle make sure that the top point is aligned with the origin (ㅇ) and the bottom line is horizontal (H).

14)Cor train he vetic ll f gr of h triangıe to we $m m$ Serect the Constraints con, se' yct the one of the $1.11 \geq$ lir s of th triangle, rigr $\mathrm{cl}: \mathrm{k}$: id sc... Vertical Measure Direction.
15)Constrain \square the rest of the
 triangle as shown.
16)Exi he S atc e [-1 F d I] he sl tt t a lengin of $\boldsymbol{>} \mathbf{m m}$

Section 5: Creating arcs.

1) Enter the Ske si, el in he ront ace of n middle section.

2) Activate th' uc.sstrictinn/Standard Element icon.
3) Select the Project $\mathfrak{E}^{-} \mathbf{E}^{\prime}$ ments 屠 icon and hen project the front face $i^{\text {. }}$ m min :s ct n
4) Deselect all.
5) Deactivate the Construction/Standard Element icon.

6) Draw the profile shown. Use the Three Point Arc \square command to create the bottom arc, the Arc (. command to create the top arc. The Arc icons are stacked under the Circle icon. For assistance in creating the arcs, read the prompt line at the bottom of the graphics screen Use the Profile GU so in an $t c$, re $e+e$ on $n \in$;til y lines.

 ale rth o $30 n$.

7) Deselect all.
10)Mirror the entire solid. Select the Mirror icon in the Transformation Features toolbar. Select the mirror element/face. In the Mirror Definition
 winr ,w sel- . ${ }^{\prime \prime}$

