Introduction to Cell Biology

"All human beings by nature stretch themselves out toward knowing"

Aristotle,

METAPHYSICS (translated by Sachs J), 2nd edition (Green Lion Press, Santa Fe 2002)

What's cell biology

Etymology: βίος – life; λόγος – word, concept, speaking, opinion, reason

\downarrow

speaking about cell life

- Part of biology studying biological processes under the cell context (how the cell is structured, and how it acts)
- Biological process a chain of biochemical reactions occurring in a well defined sequence
- Descriptive part (analytical cell biology) morphological organization of the cell (cell organelles and other morphological elements) – microscopic approach (LM, EM)
- Functional part (integrative cell biology) how cell morphological elements act (by themselves and by crosstalking in-between) to assure cell survival and their doing the best

Cell definition

The cell is the structural and functional elementary unit of all living organisms, conserving the features of the organism, having the ability of self-control, self-regulation, and self-reproduction,

being the result of a long time of evolution

A little bit of history

- The word *cell* comes from the Latin *cellula*, a small room, and was chosen by Robert Hooke, in 1665, when he compared the cork cells he saw to the small rooms monks lived in
- The cell theory, first developed in 1839 by Matthias Jakob Schleiden and Theodor Schwann, completed by Rudolf Virchow, in 1858

http://en.wikipedia.org/wiki/Robert_Hooke

- all organisms are composed of one or more cells
- all cells come from preexisting cells (omnis cellula e cellula)
- vital functions of an organism occur within cells

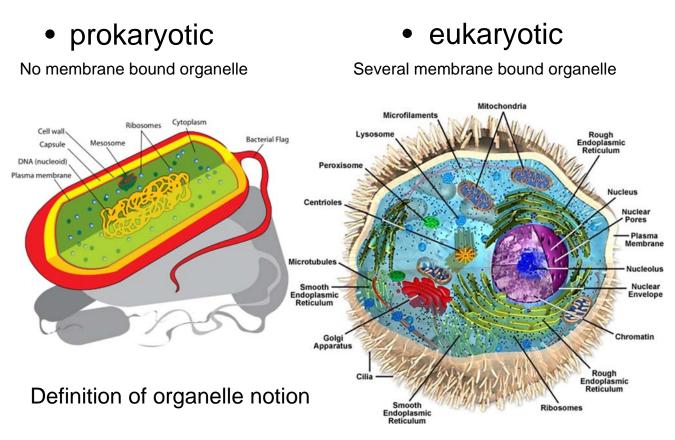
- all cells contain the hereditary information necessary for regulating cell functions and for transmitting information to the next generation of cells.

What's the reason to study the cell

- Cell definition an answer?
- Live phenomenon no live outside a cell
- Physiology vs. pathology
- Any medical act accommodated by the body's cells

The Corollary:

The cell must be known, understood and respected!


But, this is not easy at all

Cell diversity

(cell classifications)

- According to their morphological complexity
 - Prokaryotic cells
 - Eukaryotic cells

Cell diversity

Prokaryotic / Eukaryotic

Features	Prokaryotes	Eukaryotes
Typical organisms	bacteria, archaea	protists, fungi, plants, animals
Typical size	~ 0.1-10 µm	 ~ 10-150 μm (sperm cells, apart from the tail, are smaller, egg cell/ovum is 150 μm in diameter)
Type of nucleus	nucleoid region; no real nucleus	real nucleus with nuclear envelope
DNA	circular (usually)	linear molecules (chromosomes) with histone proteins
RNA-/protein- synthesis	coupled in cytoplasm	RNA-synthesis inside the nucleus, protein synthesis in cytoplasm and some organelles
Ribosomes	50S+30S	60S+40S
Cytoplasmatic structure	very few structures (ribosome), no membrane bound organelles	highly structured in organelles by endomembranes (nucleus, nuclear envelope, endoplasmic reticulum, Golgi apparatus, lysosomes, peroxisomes, mitochondria) and organelles without endomembranes (ribosome, cytoskeleton, proteasome, apoptosome)
Cell movement	flagella made of flagellin	flagella and cilia made of tubulin, cytoskeleton
Mitochondria	none	one to several dozen (though some lack mitochondria)
Chloroplasts	none	in algae and plants
Organization	usually single cells	single cells, colonies, higher multicellular organisms with specialized cells
Cell division	Binary fission (simple division)	mitosis, meiosis (steps in germ cell differentiation)

Cell diversity

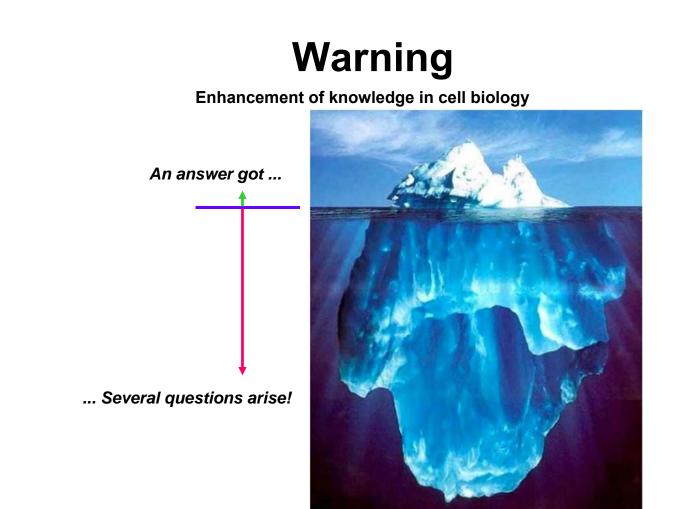

(classifications for eukaryotic cells)

- According to the kingdom they belong
 - Plant (vegetal) cells
 - Animal cells
- According their differentiation
 - epithelial cells
 - muscle cells
 - nerve cells
 - mesenchymal cells

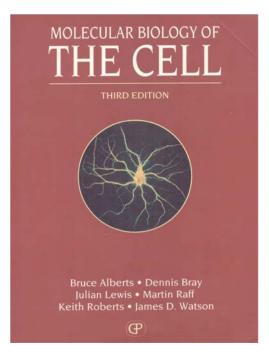
Organism's cellularity

- Some organisms, such as bacteria, are unicellular (consist of a single cell)
- Other organisms, such as humans, are multicellular
- Humans have an estimated 100 trillion (10¹⁴ cells)
- Average cell size: 10 µm
- Average cell mass: 1 nanogram
- Cell volume: 80µm³ 8000µm³
- The largest known cell is an ostrich egg
- The largest cell in human beings is the egg cell (150µm in diameter)

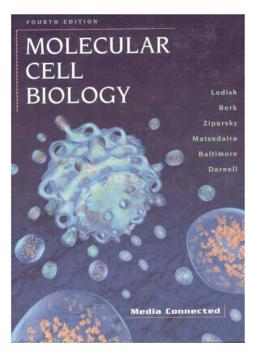
Cell dimension


Copyright © Dennis Kunkel

The structure of the course


- Introduction to cell biology (1 lecture)
- Molecular organization of the cell membrane (2 lectures)
- Cell membrane functioning as an integrative system (2 lectures)
 - Membrane transport (1 lecture)
 - Cell signaling (1 lecture)
- Ribosome and protein biosynthesis (1 lecture)
- Endoplasmic reticulum (1 lecture)
- The Golgi apparatus and cell secretion (1 lecture)
- The cytoskeleton (1 lecture)
- Cell junctions (1 lecture)
- Lysosome, peroxisome (1 lecture)
- Mitochondria (1 lecture)
- The nucleus (1 lecture)
- The cell cycle and cell division (1 lecture)

Lectures' organization


- Definition of terms, concepts, notions (organelle, other morphological elements)
- Morphology of the organelle/element
 - Structural features (light microscopy look)*
 - Ultrastructural features (electron microscopy look)
- Functions of the organelle/elements and mechanisms of action toward the molecular level of understanding
- * STED (ST imulated Emission Depletion) Microscopy
 Stefan W. Hell The Nobel Prize in Chemistry 2014: "for the development of super-resolved fluorescence microscopy"

Reference textbooks

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mboc4

http://www.whfreeman.com/lodish4e/

Good luck in the cell study

• What's the target?

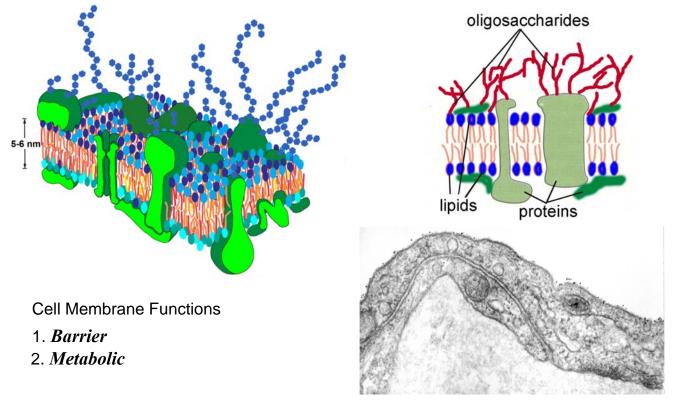
To think in the same terms such as a cell "is thinking" (to think in the cell manner)

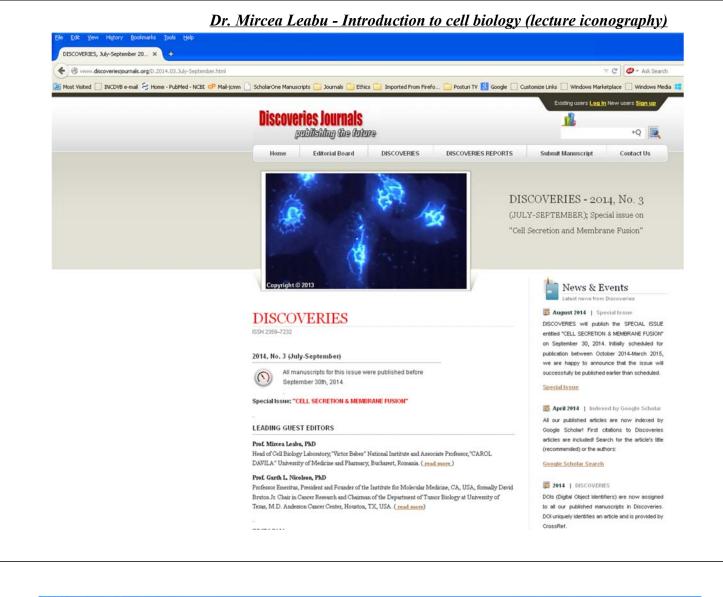
Molecular Organization of Cell Membrane

A walk from molecules to a functional biostructure

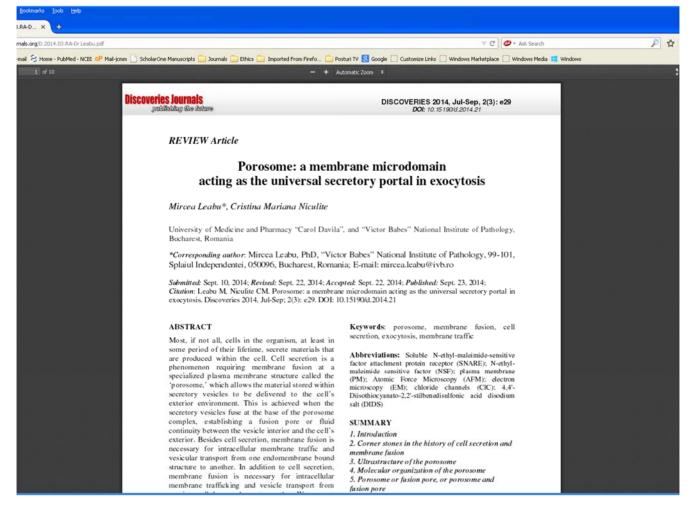
Cell Membrane

• Definition An ultrastructure separating connecting the cell to the environment


Coarse chemical composition


• Water:	20-30%
 Dry material: 	70-80%
– Minerals:	~1%
 Organic compounds: 	~99%
 Lipids: 	40-50%
 Proteins: 	50-60%
 Sugar components: 	1-10%

Why so low amount of water?


Mosaic Fluid Model for Molecular Assembly of Biomembranes

Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science. 175: 720-731.

Physical, chemical and biological features of cell membranes

- Heterogeneity
- Asymmetry
- Two-dimensional fluidity
- Which components are responsible for these features?
- What's the biological significance of these features?