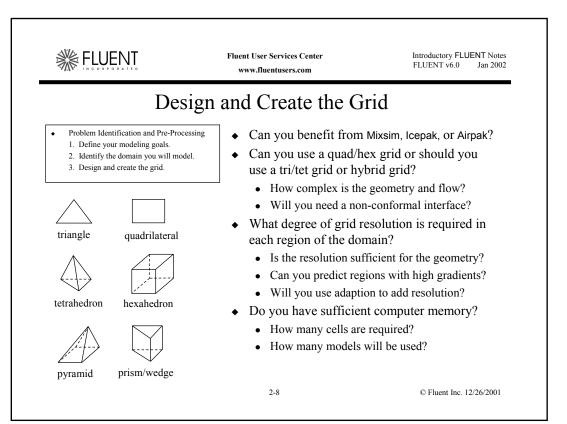
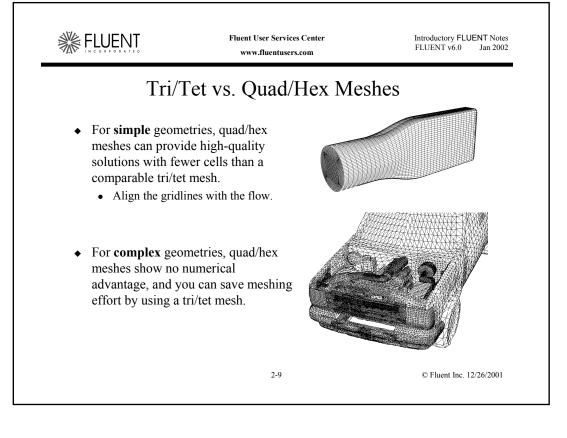
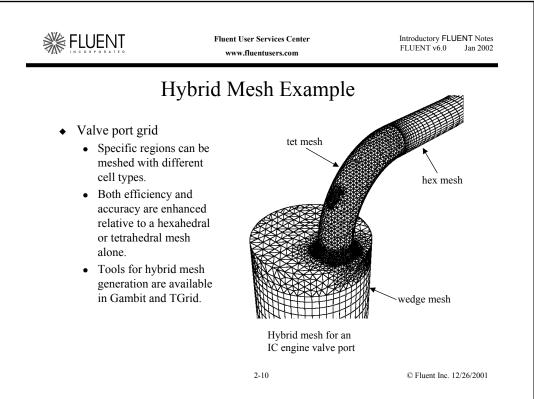
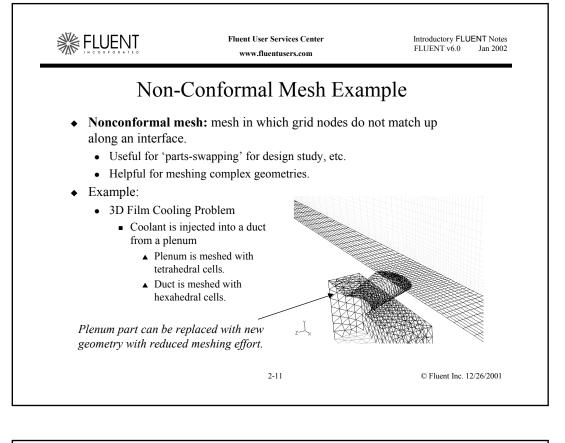
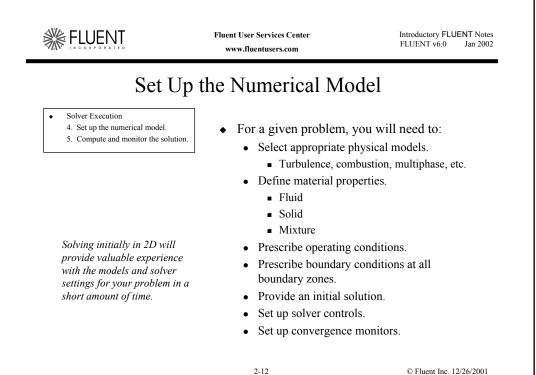

- Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena by solving mathematical equations that represent physical laws, using a numerical process.
 - Conservation of mass, momentum, energy, species, ...
- The result of CFD analyses is relevant engineering data:
 - conceptual studies of new designs
 - detailed product development
 - troubleshooting
 - redesign
- CFD analysis complements testing and experimentation.
 - Reduces the total effort required in the laboratory.

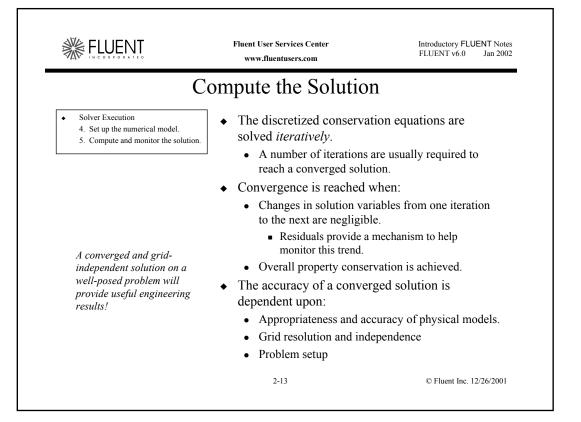


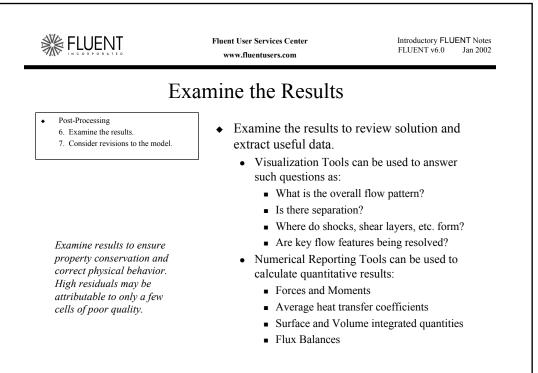




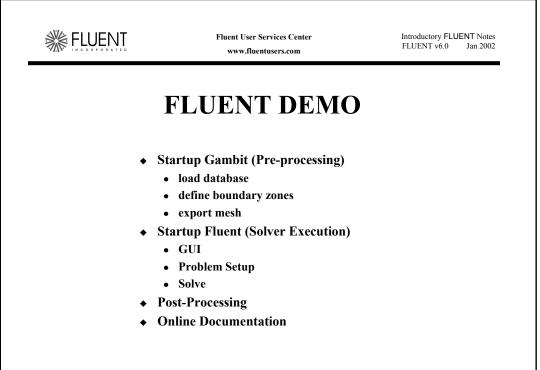








© Fluent Inc. 12/26/2001


Fluent User Services Center www.fluentusers.com Introductory FLUENT Notes FLUENT v6.0 Jan 2002

Consider Revisions to the Model

- Post-Processing
 - Examine the results.
 Consider revisions to the me
 - 7. Consider revisions to the model.
- Are physical models appropriate?
 - Is flow turbulent?
 - Is flow unsteady?
 - Are there compressibility effects?
 - Are there 3D effects?
- Are boundary conditions correct?
 - Is the computational domain large enough?
 - Are boundary conditions appropriate?
 - Are boundary values reasonable?
- Is grid adequate?
 - Can grid be adapted to improve results?
 - Does solution change significantly with adaption, or is the solution grid independent?
 - Does boundary resolution need to be improved?

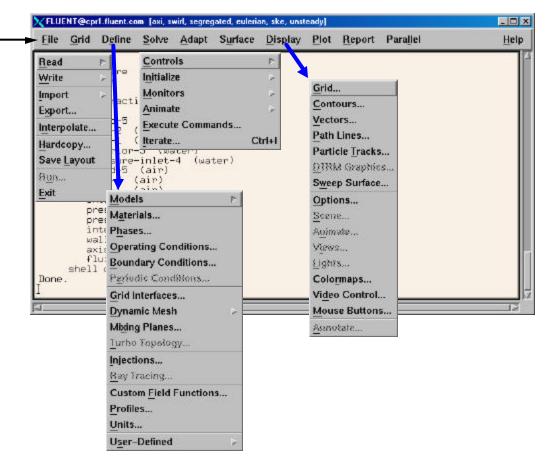
2-15

© Fluent Inc. 12/26/2001

© Fluent Inc. 12/26/2001

Fluent User Services Center

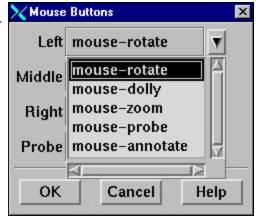
www.fluentusers.com


Introductory FLUENT Notes FLUENT v6.0 Jan 2002

Solver Basics

Solver Execution

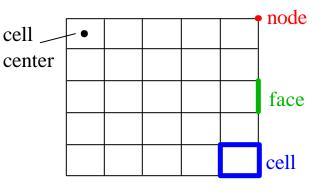
- Solver Execution:
 - Menu is laid out such that order of operation is generally left to right.
 - Import and scale mesh file.
 - Select physical models.
 - Define material properties.
 - Prescribe operating conditions.
 - Prescribe boundary conditions.
 - Provide an initial solution.
 - Set solver controls.
 - Set up convergence monitors.
 - Compute and monitor solution.
 - Post-Processing
 - Feedback into Solver
 - Engineering Analysis

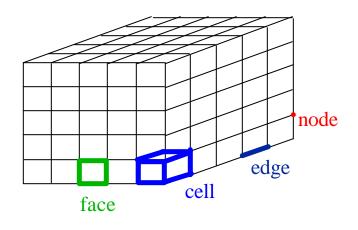


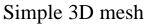
Mouse Functionality

• Mouse button functionality depends on solver and can be configured in the solver.

Display \rightarrow Mouse Buttons...

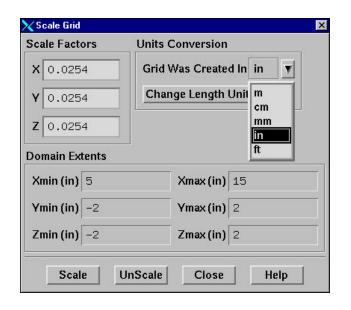

- Default Settings:
 - 2D Solver
 - Left button translates (dolly)
 - Middle button zooms
 - Right button selects/probes
 - 3D Solver
 - Left button rotates about 2-axes
 - Middle button zooms
 - Middle click on point in screen centers point in window
 - Right button selects/probes
- Retrieve detailed flow field information at point with Probe enabled.
 - Right click on grid display.




Reading Mesh: Mesh Components

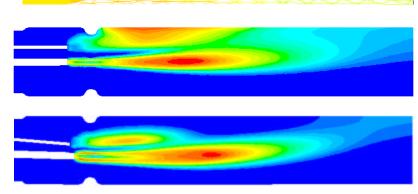
- Components are defined in preprocessor
 - **Cell** = control volume into which domain is broken up
 - computational domain is defined by mesh that represents the fluid and solid regions of interest.
 - **Face** = boundary of a cell
 - **Edge** = boundary of a face
 - **Node** = grid point
 - **Zone** = grouping of nodes, faces, and/or cells
 - Boundary data assigned to face zones.
 - Material data and source terms assigned to cell zones.

Simple 2D mesh



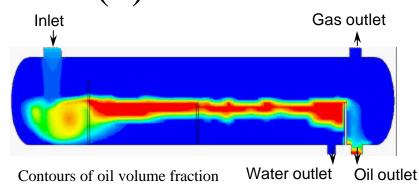
Scaling Mesh and Units

- All physical dimensions initially assumed to be in *meters*.
 - Scale grid accordingly.
- Other quantities can also be scaled independent of other units used.
 - Fluent defaults to SI units.

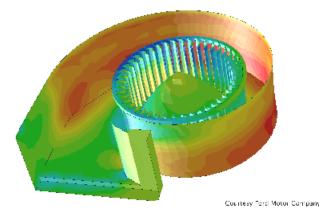

pascal atm	default
psi	si
torr Ib/ft2 Factor 6894.757 Offset 0	british cgs
	Ib/ft2 7 Factor 6894.757

Models in Fluent 6 (1)

- Fluid Flow and Heat Transfer
 - Momentum, Continuity, and Energy Equations
 - Radiation Models
- Turbulence
 - RANS based models including k-ε, k-ω, and RSM.
 - LES
- Species Transport
 - Arrhenius Rate Chemistry
 - Turbulent Fast Chemistry
 - Eddy Dissipation, Non-Premixed, Premixed, Partially premixed
 - Turbulent Finite Rate Chemistry
 - EDC, laminar flamelet
 - Surface Reactions


Pressure contours in near ground flight

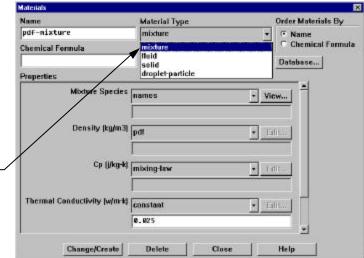
Temperature contours for kiln burner retrofitting.



Models in Fluent 6 (2)

- Multiple Phase Flows
 - Discrete Phase Model
 - VOF modeling of immiscible fluids
 - Mixture Model
 - Eulerian-Eulerian and Eulerian-Granular (heat transfer in Fluent 4.5 only)
 - Liquid/Solid and Cavitation Phase Change Models
- Flows involving Moving Parts
 - Moving zones
 - Rotating/Multiple Reference Frame
 - Mixing Plane
 - Sliding Mesh Model
 - Deforming Mesh (limited capability)
 - Special license needed, exception: Fluent 4.5
- User-Defined Scalar Transport

in three phase separator.



Pressure contours for squirrel cage blower.

Material Types and Property Definition

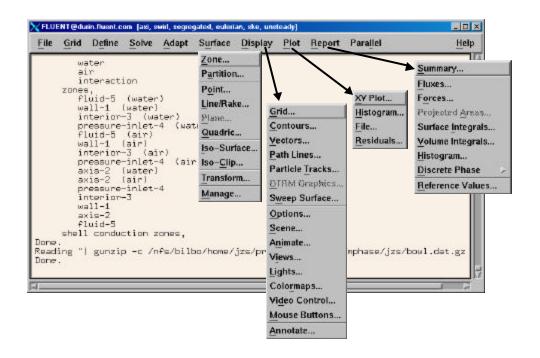
- Physical models may require inclusion of additional materials and dictates which properties need to be defined.
- Material *properties* defined in Materials Panel.
 - Single-Phase, Single Species Flows
 - Define fluid/solid properties
 - Real gas model (NIST's REFPROP)
 - Multiple Species (Single Phase) Flows
 - *Mixture Material* concept employed
 - Mixture properties (composition dependent) defined separately from constituent's properties.
 - Constituent properties must be defined.
 - *PDF Mixture Material* concept
 - PDF lookup table used for mixture properties.
 - Transport properties for mixture defined separately.
 - Constituent properties extracted from database.
 - Multiple Phase Flows (Single Species)
 - Define properties for all fluids and solids.

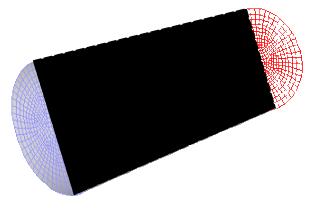
Fluid Density

- For ρ = constant, incompressible flow:
 - Select constant in Define \rightarrow Materials...
- For incompressible flow:
 - $\rho = p_{operating}/RT$
 - Use incompressible-ideal-gas
 - Set p_{operating} close to mean pressure in problem.
- For compressible flow use ideal-gas:
 - $\rho = p_{absolute}/RT$
 - For low Mach number flows, set p_{operating} close to mean pressure in problem to avoid round-off errors.
 - Use Floating Operating Pressure for unsteady flows with large, gradual changes in absolute pressure (seg. only).
- Density can also be defined as a function of Temperature
 - polynomial or piecewise-polynomial
 - boussinesq model discussed in heat transfer lecture.
- Density can also be defined using UDF- not to be function of pressure!

Pressure	Gravity
Floating Operating Pressure Operating Pressure (pascal)	Gravity Gravitational Acceleration
101325	X (m/s2) 0
Reference Pressure Location	Y (m/s2) -9.8
X(in) O	Boussinesg Parameters
Y (in)	Operating Temperature (k)
	288.16
	Variable-Density Parameters
	 Specified Operating Density Operating Density (kg/m3)
	1.225
	and a second

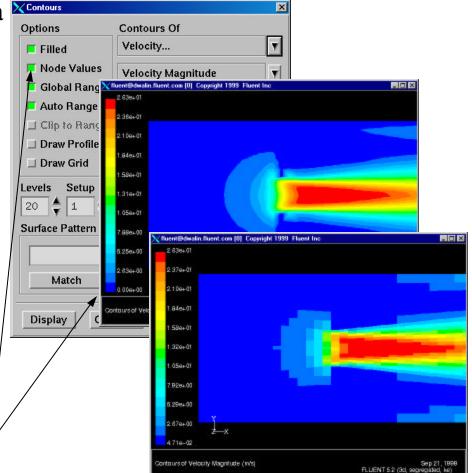
www.fluentusers.com


Solver Execution: Other Lectures...


Boundary Conditions		×			
Zone	Туре				
fluid–9 internal–3	fluid				
pressure-outlet-7	on Controls			×	
velocity-inlet-5 Equati	ions 📑 🗐 Und	ler–Relaxation Factors			
velocity-inlet-6 Flow wall-4 Turbu	lence	Pressure 0	Residual Mo	nitors	×
wall-8 Energ		Density 1	Options	Storage	Plotting
		Solution Initialization	📕 Print	Iterations 1000 🔶	Kiterate X
		Compute From	F Plot		It
				Normalization	Time Step Size (s) .05
	Dis			🔟 Normalize 📕 Scale	Number of Time Store 400
Phase		Initial Values		Check	C Number of this Steps 100
mixture		Gauge Pressu	Residual	Monitor Convergence	
Set	P		continu	ity 📕 📕	C Fixed
		X Vel	x-veloc	ity 📕 📕	C Adaptive
		Y Vel		itu 📕 📕	Options
		Turbulence Kinetic Ener	y-veloc	109	Data Sampling for Time Statistics
	ОК	1	energy	F F	1 Iteration
-		Init Reset	k		Max Iterations per Time Step 20
			-		
			ОК	Plot Renorm	C Reporting Interval 1
					UDF Profile Update Interval 1
					Iterate Apply Close Help
Physical me	odels discuss	ed on Day 2.			

Post-Processing

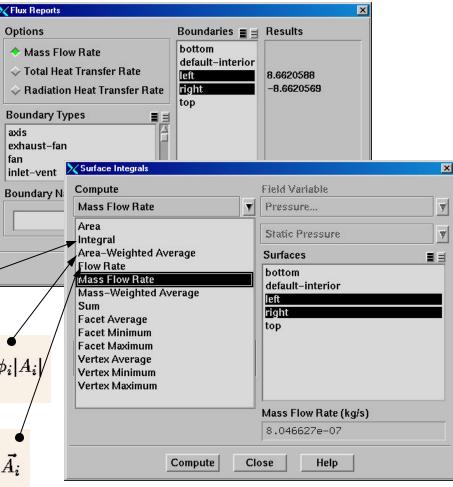
- Many post-processing tools are available.
- Post-Processing functions typically operate on surfaces.
 - Surfaces are automatically created from zones.
 - Additional surfaces can be created.



• Example: an Iso-Surface of constant grid coordinate can be created for viewing data within a plane.

Post-Processing: Node Values

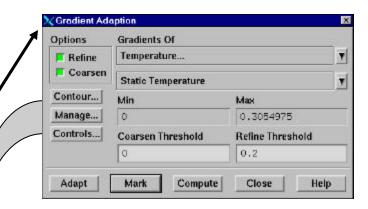
- Fluent calculates field variable data at cell centers.
- Node values of the grid are either:
 - calculated as the average of neighboring cell data, or,
 - defined explicitly (when available) with boundary condition data.
- Node values on surfaces are interpolated from grid node data.
- data files store:
 - data at cell centers
 - node value data for primitive variables at boundary nodes.
- Enable Node Values to interpolate field data to nodes.



www.fluentusers.com

Reports

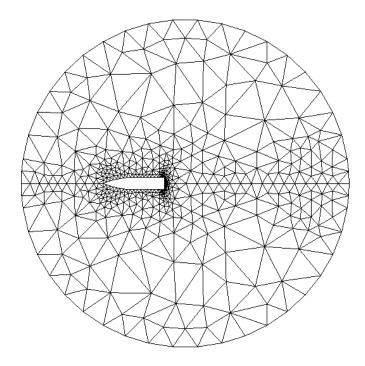
- Flux Reports
 - Net flux is calculated.
 - Total Heat Transfer Rate includes radiation.
- Surface Integrals
 - slightly less accurate on user-generated surfaces due to interpolation error.
- Volume Integrals

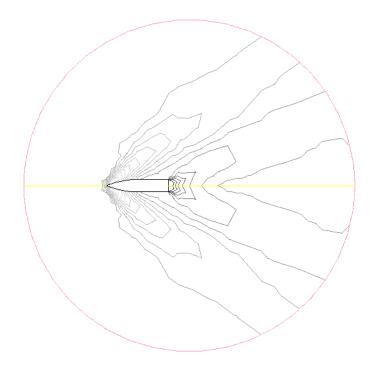

$$\int \phi dA = \sum_{i=1}^{n} \phi_i |A_i| \qquad \frac{1}{A} \int \phi dA = \frac{1}{A} \sum_{i=1}^{n} \phi_i |A_i|$$

Examples:
$$\int \phi \rho \vec{V} \cdot d\vec{A} = \sum_{i=1}^{n} \phi_i \rho_i \vec{V_i} \cdot \vec{A_i}$$

Solver Enhancements: Grid Adaption

- Grid adaption adds more cells where needed to resolve the flow field *without pre-processor*.
- Fluent adapts on cells listed in register.
 - Registers can be defined based on:
 - Gradients of flow or user-defined variables
 - Iso-values of flow or user-defined variables
 - All cells on a boundary
 - All cells in a region
 - Cell volumes or volume changes
 - *y*⁺ in cells adjacent to walls
 - To assist adaption process, you can:
 - Combine adaption registers
 - Draw contours of adaption function
 - Display cells marked for adaption
 - Limit adaption based on cell size and number of cells: <u>Controls...</u>


Register Actions	Registers	Register Inf
Change Type	gradient-r0	gradient-r0
Combine		Reg ID: 0 Refn #: 23
Delete		Crsn #: 0 Type: adapt
Mark Actions		Type: adapt
Exchange		
invest		
Limit		Options
Fill		Controls

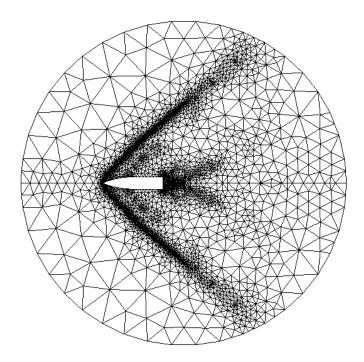

www.fluentusers.com

Adaption Example: 2D Planar Shell

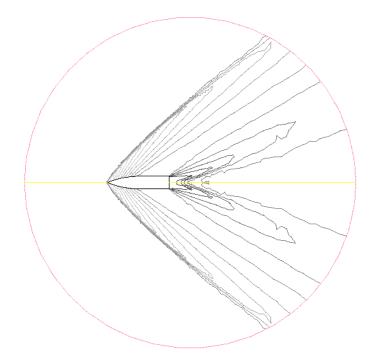
• Adapt grid in regions of high pressure gradient to better resolve pressure jump across the shock.

2D planar shell - initial grid

2D planar shell - contours of pressure initial grid



Fluent User Services Center


www.fluentusers.com

Introductory FLUENT Notes FLUENT v6.0 Jan 2002

Adaption Example: Final Grid and Solution

2D planar shell - final grid

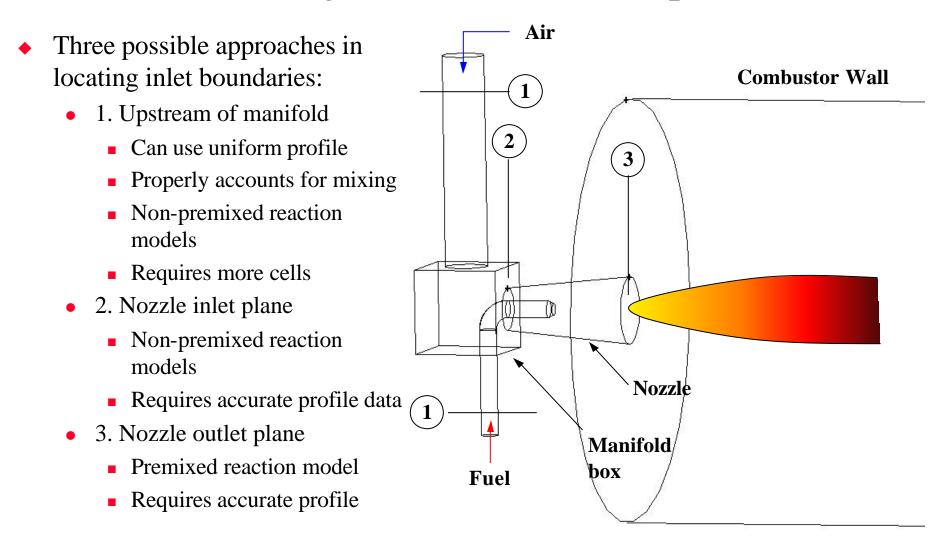
2D planar shell - contours of pressure final grid

Fluent User Services Center

www.fluentusers.com

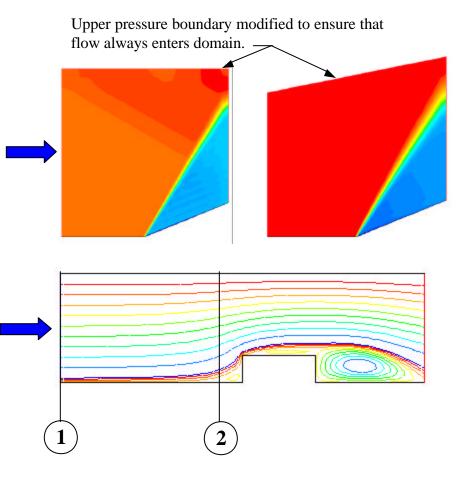
Introductory FLUENT Notes FLUENT v6.0 Jan 2002

Boundary Conditions



Defining Boundary Conditions

- To define a problem that results in a *unique* solution, you must specify information on the dependent (flow) variables at the domain boundaries.
 - Specifying fluxes of mass, momentum, energy, etc. into domain.
- Defining boundary conditions involves:
 - identifying the location of the boundaries (e.g., inlets, walls, symmetry)
 - supplying information at the boundaries
- The data required at a boundary depends upon the boundary condition *type* and the physical models employed.
- You must be aware of the information that is required of the boundary condition and locate the boundaries where the information on the flow variables *are known or can be reasonably approximated*.
 - Poorly defined boundary conditions can have a significant impact on your solution.


Locating Boundaries: Example

General Guidelines

- General guidelines:
 - If possible, select boundary location and shape such that flow either goes in or out.
 - Not necessary, but will typically observe better convergence.
 - Should not observe large gradients in direction normal to boundary.
 - Indicates incorrect set-up.
 - Minimize grid skewness near boundary.
 - Introduces error early in calculation.

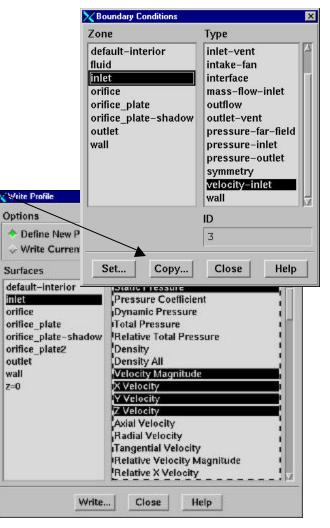
Available Boundary Condition Types

- Boundary Condition Types of *External Faces*
 - General: Pressure inlet, Pressure outlet-
 - Incompressible: Velocity inlet, Outflow
 - **Compressible flows**: Mass flow inlet, Pressure far-field
 - **Special**: Inlet vent, outlet vent, intake fan, exhaust fan
 - Other: Wall, Symmetry, Periodic, Axis –
- Boundary Condition Types of Cell 'Boundaries'
 - Fluid and Solid
- Boundary Condition Types of *Double-Sided* Face 'Boundaries'
 - Fan, Interior, Porous Jump, Radiator, Walls -

Changing Boundary Condition Types

- Zones and zone types are initially defined in pre-processor.
- To change zone type for a particular zone:

Define \rightarrow Boundary Conditions...


- Choose the zone in Zone list.
 - Can also select boundary zone using right mouse button in Display Grid window.
- Select new zone type in Type list.

Zone	Туре
default-interior fluid inlet orifice orifice_plate orifice_plate-shadow outlet wall	inlet-vent intake-fan interface mass-flow-inlet outflow outlet-vent pressure-far-field pressure-inlet pressure-outlet symmetry velocity-inlet wall
	ID
	3
Set Copy	Close Help

Setting Boundary Condition Data

- Explicitly assign data in BC panels.
 - To set boundary conditions for particular zone:
 - Choose the zone in Zone list.
 - Click Set... button
 - Boundary condition data can be copied from one zone to another.
- Boundary condition data can be stored and retrieved from file.
 - file \rightarrow write-bc and file \rightarrow read-bc
- Boundary conditions can also be defined by UDFs and Profiles.
- Profiles can be generated by:
 - Writing a profile from another CFD simulation
 - Creating an appropriately formatted text file with boundary condition data.

Velocity Inlet

- Specify Velocity by:
 - Magnitude, Normal to Boundary
 - Components
 - Magnitude and Direction
- Velocity profile is uniform by default
- Intended for incompressible flows.
 - Static pressure adjusts to accommodate prescribed velocity distribution.
 - Total (stagnation) properties of flow also varies.
 - Using in compressible flows can lead to non-physical results.
- Can be used as an outlet by specifying negative velocity.
 - You must ensure that mass conservation is satisfied if multiple inlets are used.

Zone Name	
inlet	
Velocity Specification Method	Magnitude, Normal to Boundary
Reference Frame	Absolute
Velocity Magnitude (m/s) 5	constant
urbulence Specification Method	Intensity and Hydraulic Diameter
Turbulence Intensity (%) 2	
Hydraulic Diameter (in) 4	

Pressure Inlet (1)

- Specify:
 - Total *Gauge* Pressure
 - Defines energy to drive flow.
 - Doubles as back pressure (static gauge) for cases where back flow occurs.
 - Direction of back flow determined from interior solution.
 - Static *Gauge* Pressure
 - Static pressure where flow is locally supersonic; ignored if subsonic
 - Will be used if flow field is initialized from this boundary.
 - Total Temperature
 - Used as static temperature for incompressible flow.
 - Inlet Flow Direction

Prezzure Inlet]
Zone Name			
inlet			
Gauge Total Pressure (pascal)	101325	constant	
Supersonic/Initial Gauge Pressure (pascal)	9000	constant	7
Total Temperature (k)	300	constant	•
Direction Specification Method	Normal to Bour	ndary	Ţ
Turbulence Specification Method	Intensity and H	ydraulic Diameter	Y
Turbulence Intensity (%)	2		
Hydraulic Diameter (in)	4		

Compressible flows:

$$p_{total,abs} = p_{static,abs} (1 + \frac{k-1}{2}M^2)^{k/(k-1)}$$

 $T_{total} = T_{static} (1 + \frac{k-1}{2}M^2)$
Incompressible flows: $p_{total} = p_{static} + \frac{1}{2}rv^2$

Pressure Inlet (2)

- Note: *Gauge* pressure inputs are required.
 - $p_{absolute} = p_{gauge} + p_{operating}$
 - Operating pressure input is set under: Define \rightarrow Operating Conditions
- Suitable for compressible and incompressible flows.
 - Pressure inlet boundary is treated as loss-free transition from stagnation to inlet conditions.
 - Fluent calculates static pressure and velocity at inlet
 - Mass flux through boundary varies depending on interior solution and specified flow direction.
- Can be used as a "free" boundary in an external or unconfined flow.

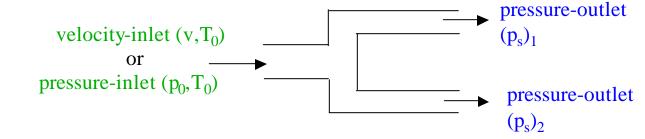
Pressure Outlet

- Specify static *gauge* pressure
 - Interpreted as static pressure of environment into which flow exhausts.
 - Radial equilibrium pressure distribution option available.
 - Doubles as inlet pressure (*total gauge*) for cases where backflow occurs.

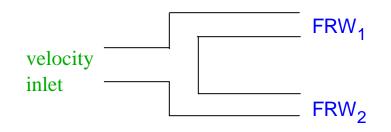
Zone Name			
outlet			
Gauge Pressure (pascal)	0	constant	•
📃 Radial Equilibrium I	Pressure Distributi	on	
Backflow Total Temperature (k)	300	constant	۲
Turbulence Specification Method	Intensity and Leng	th Scale	
Backflow Turbulence Intensity (%)	2		
Backflow Turbulence Length Scale (in)	4		

- Backflow
 - Can occur at pressure outlet during iterations or as part of final solution.
 - Backflow direction is assumed to be *normal* to the boundary.
 - Backflow boundary data must be set for all transport variables.
 - Convergence difficulties minimized by realistic values for backflow quantities.
- Suitable for compressible and incompressible flows
 - Pressure is ignored if flow is locally supersonic.
- Can be used as a "free" boundary in an external or unconfined flow.

Outflow


- No pressure *or* velocity information is required.
 - Data at exit plane is extrapolated from interior.
 - Mass balance correction is applied at boundary.
- Flow exiting Outflow boundary exhibits zero normal diffusive flux for all flow variables.
 - Appropriate where exit flow is close to fully developed condition.
- Intended for incompressible flows.
 - Cannot be used with a Pressure Inlet; must use velocity inlet.
 - Combination does not uniquely set pressure gradient over whole domain.
 - Cannot be used for unsteady flows with variable density.
- Poor rate of convergence when back flow occurs during iteration.
 - Cannot be used if back flow is expected in final solution.

1		Outflow	
Zone	Name		
out	flow-4		
	Flow Rat	e Weighting	L
	ок	Cancel	Help



Modeling Multiple Exits

- Flows with multiple exits can be modeled using Pressure Outlet or Outflow boundaries.
 - Pressure Outlets

- Outflow:
 - Mass flow rate fraction determined from Flow Rate Weighting by:
 - $m_i = FRW_i / \Sigma FRW_i$ where 0 < FRW < 1.
 - FRW set to 1 by default implying equal flow rates
 - static pressure varies among exits to accommodate flow distribution.

Wall Boundaries

- Used to bound fluid and solid regions.
- In viscous flows, no-slip condition enforced at walls:
 - Tangential fluid velocity equal to wall velocity.
 - Normal velocity component = 0
 - Shear stress can also be specified.
- Thermal boundary conditions:
 - several types available
 - Wall material and thickness can be defined for 1-D or shell conduction heat transfer calculations.
- Wall roughness can be defined for turbulent flows.
 - Wall shear stress and heat transfer based on local flow field.
- Translational or rotational velocity can be assigned to wall.

one Name				
ω 31 1				
Adjacent Cell Zone				
fluid				
Thermal DPM Momento	am Species Rediation UDS			
Thermal Conditions				
Heat Flux	Heat Flux (wim2)	0	constant	Į.
Temperature	Internal Emissivity	0.7	constant	ī
Convection				
Radiation	Wall Thickness (m)	.005		
Mixed	Heat Generation Rate (wim3)	0		
Material Name			E Shell Co	nductio
aluminum 🛛 🔻	Edit			

www.fluentusers.com

Cell Zones: Fluid

- Fluid zone = group of cells for which all active equations are solved.
- Fluid material input required.
 - Single species, phase.
- Optional inputs allow setting of source terms:
 - mass, momentum, energy, etc.
- Define fluid zone as laminar flow region if modeling transitional flow.
- Can define zone as porous media.
- Define axis of rotation for rotationally periodic flows.
- Can define motion for fluid zone.

C Fluid				
Zone Name				
fluid				
Material Name	air	V Edit		
Source Term:	5			
_ Fixed Values				
Local Cenrol	nate System For	Exed Velocities		
🗆 Laminar Zone	1			
Porous Zone				
	X(m) 0		X O	TR
	Y(m)		Y O	
	Z(m) 0		Zl	
Motion Type S	tationary		v	
Participate N	tationary loving Reference loving Mesh	e Frame		a) (
	OK	Cancel	Help	

Cell Zones: Solid

- "Solid" zone = group of cells for which only heat conduction problem solved.
 - No flow equations solved
 - Material being treated as solid may actually be fluid, but it is assumed that no convection takes place.
- Only required input is material type
 - So appropriate material properties used.
- Optional inputs allow you to set volumetric heat generation rate (heat source).
- Need to specify rotation axis if rotationally periodic boundaries adjacent to solid zone.
- Can define motion for solid zone

Solid	
Zone Name	
fluid	
Material Name aluminu	ım 🔻 Edit
Source Terms	
☐ Fixed Values	
—	Rotation-Axis Direction
Rotation-Axis Origin	Hotation-Axis Direction
X(m) 0	X 0
Y (m) 0	Y 0
Z (m) 0	Z 1
Motion Type Stationar	y T
🔟 Participates In Radia	ation
ОК	Cancel Help

Internal Face Boundaries

- Defined on cell faces
 - Do not have finite thickness
 - Provide means of introducing step change in flow properties.
- Used to implement physical models representing:
 - Fans
 - Radiators
 - Porous jump
 - Preferable over porous media- exhibits better convergence behavior.
 - Interior wall

Summary

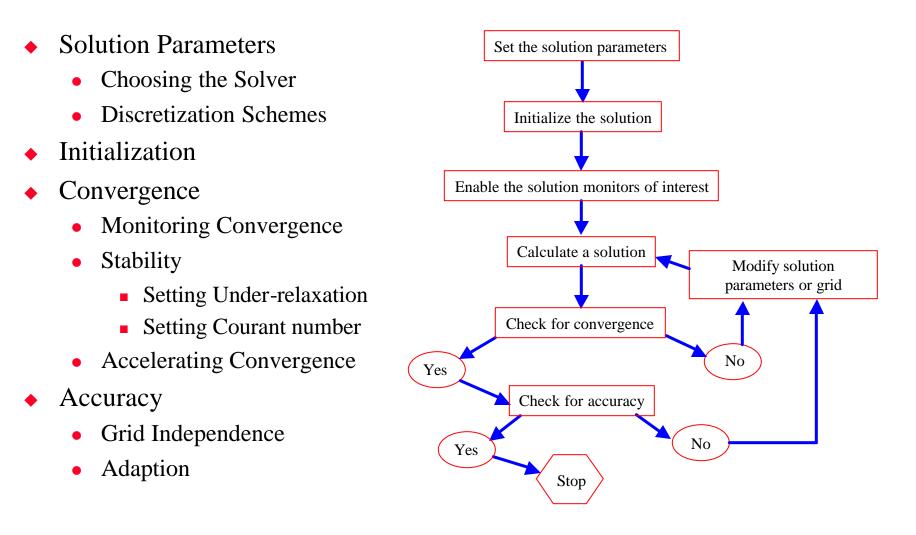
- Zones are used to assign boundary conditions.
- Wide range of boundary conditions permit flow to enter and exit solution domain.
- Wall boundary conditions used to bound fluid and solid regions.
- Repeating boundaries used to reduce computational effort.
- Internal cell zones used to specify fluid, solid, and porous regions.
- Internal face boundaries provide way to introduce step change in flow properties.

Fluent User Services Center

www.fluentusers.com

Introductory FLUENT Notes FLUENT v6.0 Jan 2002

Solver Settings



Outline

- Using the Solver
 - Setting Solver Parameters
 - Convergence
 - Definition
 - Monitoring
 - Stability
 - Accelerating Convergence
 - Accuracy
 - Grid Independence
 - Adaption
- Appendix: Background
 - Finite Volume Method
 - Explicit vs. Implicit
 - Segregated vs. Coupled
 - Transient Solutions

Solution Procedure Overview

Choosing a Solver

- Choices are Coupled-Implicit, Coupled-Explicit, or Segregated (Implicit)
- The Coupled solvers are recommended if a strong inter-dependence exists between density, energy, momentum, and/or species.
 - e.g., high speed compressible flow or finite-rate reaction modeled flows.
 - In general, the Coupled-Implicit solver is recommended over the coupled-explicit solver.
 - Time required: Implicit solver runs roughly twice as fast.
 - Memory required: Implicit solver requires roughly twice as much memory as coupled-explicit *or* segregated-implicit solvers!
 - The Coupled-Explicit solver should only be used for unsteady flows when the characteristic time scale of problem is on same order as that of the acoustics.
 - e.g., tracking transient shock wave
- The Segregated (implicit) solver is preferred in all other cases.
 - Lower memory requirements than coupled-implicit solver.
 - Segregated approach provides flexibility in solution procedure.

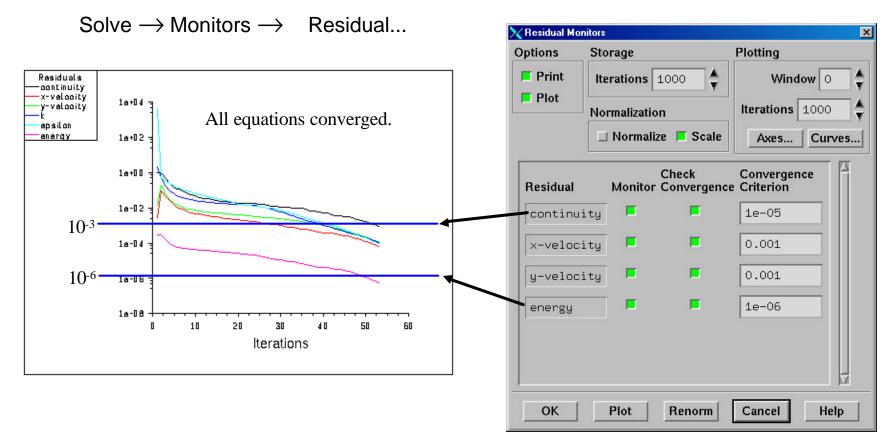
Initialization

- Iterative procedure requires that all solution variables be initialized before calculating a solution.
 - Solve \rightarrow Initialize \rightarrow Initialize...
 - Realistic 'guesses' improves solution stability and accelerates convergence.
 - In some cases, **correct** initial guess is required:
 - Example: high temperature region to initiate chemical reaction.
- "Patch" values for individual variables in certain regions.

Solve \rightarrow Initialize \rightarrow Patch...

- Free jet flows (patch high velocity for jet)
- Combustion problems (patch high temperature for ignition)

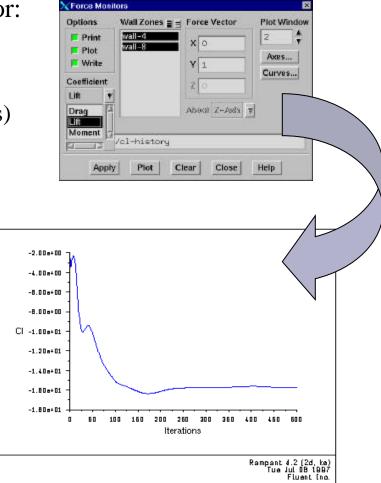
Reference Frame	Value (m/s)	Zones To Patch 📲 🖻
 ◆ Relative to Cell Zone ◇ Absolute 	10	fluid
Pressure	Field Function	
X Velocity		Registers To Patch = :
Y Velocity		Tregisters for atom
Temperature		
Turbulent Kinetic Energy		
Turbulent Dissipation Rat		
גר בי		
		1


Convergence

- At convergence:
 - All discrete conservation equations (momentum, energy, etc.) are obeyed in all cells *to a specified tolerance*.
 - Solution no longer changes with more iterations.
 - Overall mass, momentum, energy, and scalar balances are obtained.
- Monitoring convergence with residuals:
 - Generally, a decrease in residuals by 3 orders of magnitude indicates at least qualitative convergence.
 - Major flow features established.
 - Scaled energy residual must decrease to 10⁻⁶ for segregated solver.
 - Scaled species residual may need to decrease to 10⁻⁵ to achieve species balance.
- Monitoring quantitative convergence:
 - Monitor other variables for changes.
 - Ensure that property conservation is satisfied.

Convergence Monitors: Residuals

• Residual plots show when the residual values have reached the specified tolerance.



Convergence Monitors: Forces/Surfaces

- In addition to residuals, you can also monitor:
 - Lift, drag, or moment
 - Solve \rightarrow Monitors \rightarrow Force...
 - Variables or functions (e.g., surface integrals) at a boundary or any defined surface:

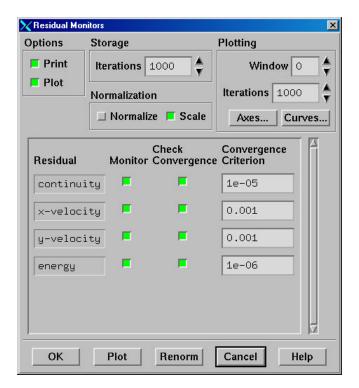
 $\mathsf{Solve} \to \mathsf{Monitors} \to \mathsf{Surface}...$

Name	Report Of
monitor-1	Temperature
Report Type	Static Temperature
Average	Surfaces
X Axis Iteration V Plot Window 1 V File Name	internal-3 pressure-outlet-7 velocity-inlet-5 velocity-inlet-6 wall-4 wall-8
monitor-1.ou	t

Cι

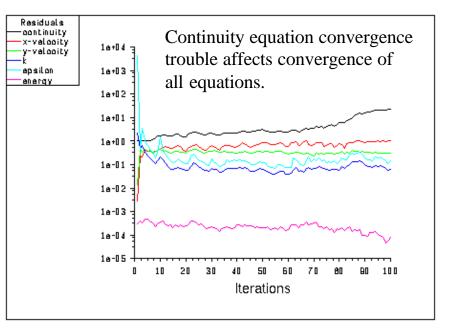
Checking for Property Conservation

- In addition to monitoring residual and variable histories, you should also check for overall heat and mass balances.
 - At a minimum, the net imbalance should be less than 1% of smallest flux through domain boundary.


Report \rightarrow Fluxes...

Options	Boundaries 🔳 🗐	Results
 Mass Flow Rate Total Heat Transfer Rate Radiation Heat Transfer Rate Boundary Types axis exhaust-fan fan inlet-vent Boundary Name Pattern 	bottom default-interior left right top	8.6620588 -8.6620569
Match	lose Help	kg/s 1.9e-06

Decreasing the Convergence Tolerance


- If your monitors indicate that the solution is converged, but the solution is still changing or has a large mass/heat imbalance:
 - Reduce Convergence Criterion or disable Check Convergence.
 - Then calculate until solution converges to the new tolerance.

Convergence Difficulties

- Numerical instabilities can arise with an ill-posed problem, poor quality mesh, and/or inappropriate solver settings.
 - Exhibited as increasing (diverging) or "stuck" residuals.
 - Diverging residuals imply increasing imbalance in conservation equations.
 - Unconverged results can be misleading!
- Troubleshooting:
 - Ensure problem is well posed.
 - Compute an initial solution with a first-order discretization scheme.
 - Decrease under-relaxation for equations having convergence trouble (segregated).
 - Reduce Courant number (coupled).
 - Re-mesh or refine grid with high aspect ratio or highly skewed cells.

www.fluentusers.com

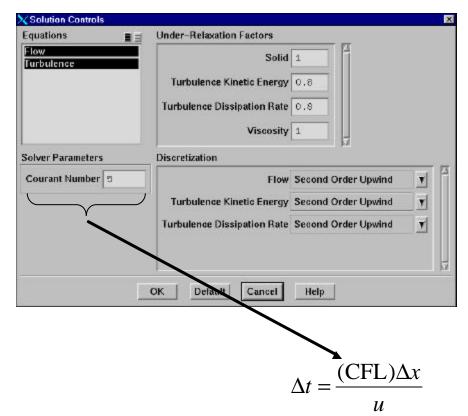
Modifying Under-relaxation Factors

- Under-relaxation factor, *a*, is included to stabilize the iterative process for the segregated solver.
- Use default under-relaxation factors to start a calculation.

 $\mathsf{Solve} \to \mathsf{Controls} \to \mathsf{Solution}...$

- Decreasing under-relaxation for momentum often aids convergence.
 - Default settings are aggressive but suitable for wide range of problems.
 - 'Appropriate' settings best learned from experience.

•	For coupled solvers, under-relaxation factors for equations <i>outside</i> coupled
	set are modified as in segregated solver.


Equations	∎ ∃ Under-Relaxation Factors	_		
Flow Turbulence	Density 1			
Energy	Body Forces 1		2	
	Momentum 0.7			
	Turbulence Kinetic Energy 0.8	J		
	Discretization			
	Pressure Standard		y	100
	Pressure-Velocity Coupling SIMPLE		V	
	Density Second Order	Jpwind	V	100
	Momentum Second Order	Jpwind	V	

 $f_{a} = f_{a \to a} + a \Delta f_{a}$

Modifying the Courant Number

- Courant number defines a 'time step' size for steady-state problems.
 - A transient term is included in the coupled solver even for steady state problems.
- For coupled-explicit solver:
 - Stability constraints impose a maximum limit on Courant number.
 - Cannot be greater than 2.
 - Default value is 1.
 - Reduce Courant number when having difficulty converging.
- For coupled-implicit solver:
 - Courant number is not limited by stability constraints.
 - Default is set to 5.

Accelerating Convergence

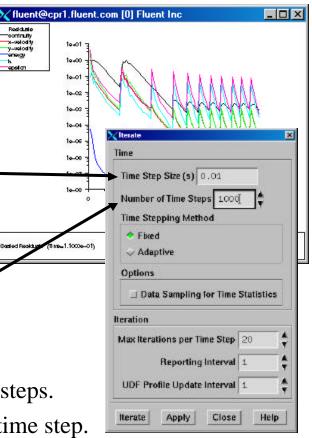
- Convergence can be accelerated by:
 - Supplying good initial conditions
 - Starting from a previous solution.
 - Increasing under-relaxation factors or Courant number
 - Excessively high values can lead to instabilities.
 - Recommend saving case and data files before continuing iterations.
 - Controlling multigrid solver settings.
 - Default settings define robust Multigrid solver and typically do not need to be changed.

Accuracy

- A converged solution is not necessarily an accurate one.
 - Solve using 2nd order discretization.
 - Ensure that solution is grid-independent.
 - Use adaption to modify grid.
- If flow features do not seem reasonable:
 - Reconsider physical models and boundary conditions.
 - Examine grid and re-mesh.

Mesh Quality and Solution Accuracy

- Numerical errors are associated with calculation of cell gradients and cell face interpolations.
- These errors can be contained:
 - Use higher order discretization schemes.
 - Attempt to align grid with flow.
 - Refine the mesh.
 - Sufficient mesh density is necessary to resolve salient features of flow.
 - Interpolation errors decrease with decreasing cell size.
 - Minimize variations in cell size.
 - Truncation error is minimized in a uniform mesh.
 - Fluent provides capability to adapt mesh based on cell size variation.
 - Minimize cell skewness and aspect ratio.
 - In general, avoid aspect ratios higher than 5:1 (higher ratios allowed in b.l.).
 - Optimal quad/hex cells have bounded angles of 90 degrees
 - Optimal tri/tet cells are equilateral.


Determining Grid Independence

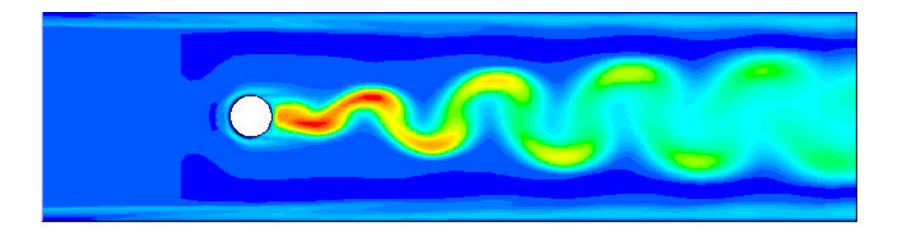
- When solution no longer changes with further grid refinement, you have a "grid-independent" solution.
- Procedure:
 - Obtain new grid:
 - Adapt
 - Save original mesh before adapting.
 - If you know where large gradients are expected, concentrate the original grid in that region, e.g., boundary layer.
 - Adapt grid.
 - Data from original grid is automatically interpolated to finer grid.
 - file \rightarrow write-bc and file \rightarrow read-bc facilitates set up of new problem
 - file \rightarrow reread-grid and File \rightarrow Interpolate...
 - Continue calculation to convergence.
 - Compare results obtained w/different grids.
 - Repeat procedure if necessary.

Unsteady Flow Problems

- Transient solutions are possible with both segregated and coupled solvers.
 - Solver iterates to convergence at each time level, then advances automatically.
 - Solution Initialization defines initial condition and must be realistic.
- For segregated solver:
 - Time step size, Δt , is input in Iterate panel.-
 - At must be small enough to resolve time dependent features and to ensure convergence within 20 iterations.
 - May need to start solution with small Δt .
 - Number of time steps, N, is also required. -
 - $N^*\Delta t$ = total simulated time.
 - To iterate without advancing time step, use '0' time steps.
 - PISO may aid in accelerating convergence for each time step.

Summary

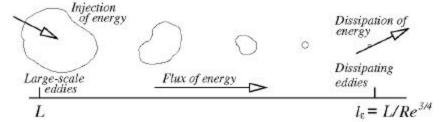
- Solution procedure for the segregated and coupled solvers is the same:
 - Calculate until you get a converged solution.
 - Obtain second-order solution (recommended).
 - Refine grid and recalculate until grid-independent solution is obtained.
- All solvers provide tools for judging and improving convergence and ensuring stability.
- All solvers provide tools for checking and improving accuracy.
- Solution accuracy will depend on the appropriateness of the physical models that you choose and the boundary conditions that you specify.

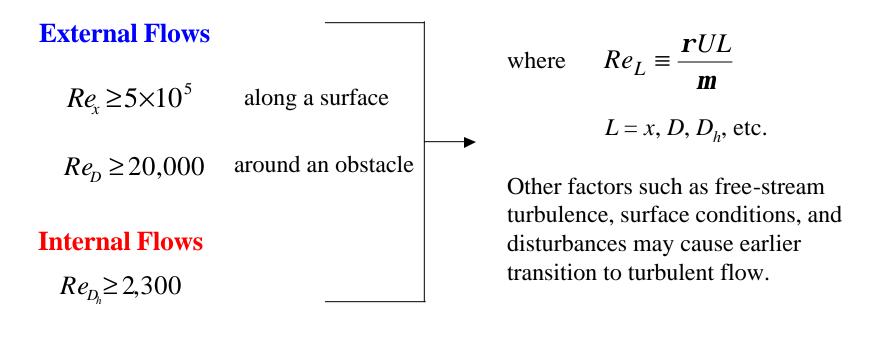


Fluent User Services Center

www.fluentusers.com

Introductory FLUENT Notes FLUENT v6.0 Jan 2002


Modeling Turbulent Flows


What is Turbulence?

- Unsteady, irregular (aperiodic) motion in which transported quantities (mass, momentum, scalar species) fluctuate in time and space
 - Identifiable swirling patterns characterizes turbulent eddies.
 - Enhanced mixing (matter, momentum, energy, etc.) results
- Fluid properties exhibit random variations
 - Statistical averaging results in accountable, turbulence related transport mechanisms.
 - This characteristic allows for *Turbulence Modeling*.
- Wide range in size of turbulent eddies (scales spectrum).
 - Size/velocity of large eddies on order of mean flow.
 - derive energy from mean flow

Is the Flow Turbulent?

Natural Convection

 $Ra \ge 10^8 - 10^{10}$

where

 $Ra \equiv \frac{g \mathbf{b} \Delta T L^3 \mathbf{r}}{2}$ ma

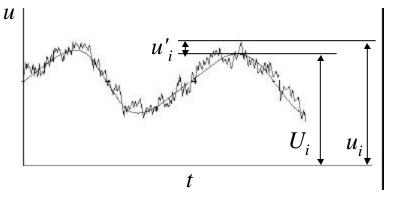
Choices to be Made Flow Computational Physics Resources **Turbulence Model** Computational & Grid **Near-Wall Treatment** Turnaround Accuracy Time Required Constraints

Modeling Turbulence

- Direct numerical simulation (DNS) is the solution of the timedependent Navier-Stokes equations *without* recourse to modeling.
 - Mesh must be fine enough to resolve smallest eddies, yet sufficiently large to encompass complete model.
 - Solution is inherently unsteady to capture convecting eddies.
 - DNS is only practical for simple low-Re flows.
- The need to resolve the full spectrum of scales is not necessary for most engineering applications.
 - Mean flow properties are generally sufficient.
 - Most turbulence models resolve the mean flow.
- Many different turbulence models are available and used.
 - There is no single, universally reliable engineering turbulence model for wide class of flows.
 - Certain models contain more physics that may be better capable of predicting more complex flows including separation, swirl, etc.

Modeling Approaches

- 'Mean' flow can be determined by solving a set of modified equations.
- Two modeling approaches:
 - (1) Governing equations are *ensemble or time averaged* (RANS-based models).
 - Transport equations for mean flow quantities are solved.
 - All scales of turbulence are modeled.
 - If mean flow is unsteady, Δt is set by global unsteadiness.
 - (2) Governing equations are *spatially averaged* (LES).
 - Transport equations for 'resolvable scales.'
 - Resolves larger eddies; models smaller ones.
 - Inherently unsteady, Δt set by small eddies.
 - Resulting models requires more CPU time/memory and is not practical for the majority of engineering applications.
- Both approaches requires modeling of the scales that are averaged out.



www.fluentusers.com

RANS Modeling - Ensemble Averaging

- Imagine how velocity, temperature, pressure, etc. might vary in a turbulent flow field downstream of a valve that has been slightly perturbed: n identifies the 'sample' ID n = n
- Ensemble averaging may be used to extract the mean flow properties from the instantaneous properties.

$$U_{i}(\vec{x},t) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} u_{i}^{(n)}(\vec{x},t)$$
$$u_{i}(\vec{x},t) = U_{i}(\vec{x},t) + u_{i}'(\vec{x},t)$$

Turbulence Models in Fluent

Direct Numerical Simulation

Large Eddy Simulation (LES)

- Motivation:
 - Large eddies:
 - Mainly responsible for transport of momentum, energy, and other scalars, directly affecting the mean fields.
 - Anisotropic, subjected to history effects, and flow-dependent, i.e., strongly dependent on flow configuration, boundary conditions, and flow parameters.
 - *Small eddies* tend to be more isotropic, less flow-dependent, and hence more amenable to modeling.
- Approach:
 - LES resolves large eddies and models only small eddies.
 - Equations are similar in form to RANS equations
 - Dependent variables are now spatially averaged instead of time averaged.
- Large computational effort
 - Number of grid points, $N_{LES} \propto Re_{u_t}^2$
 - Unsteady calculation

Summary: Turbulence Modeling Guidelines

- Successful turbulence modeling requires engineering judgement of:
 - Flow physics
 - Computer resources available
 - Project requirements
 - Accuracy
 - Turnaround time
 - Turbulence models & near-wall treatments that are available
- Modeling Procedure
 - Calculate characteristic *Re* and determine if Turbulence needs modeling.
 - Estimate wall-adjacent cell centroid y^+ first before generating mesh.
 - Begin with SKE (standard *k*-*e*) and change to RNG, RKE, SKO, or SST if needed.
 - Use RSM for highly swirling flows.
 - Use wall functions unless low-*Re* flow and/or complex near-wall physics are present.