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Introduction

Another important field of chemical engineering is that of chemical reaction engineering:
considering the reactions that produce desired products and designing the necessary re-
actors accordingly. The design of reactors is impacted by many of the aspects you have
encountered in the previous lectures, such as the equilibrium and the reaction rate, both
dependent on temperature and pressure. While there is a great variety of types of re-
actors for different purposes, we will focus on three basic types: The batch reactor, the
continuous stirred-tank reactor, and the plug-flow reactor.

1 Chemical reactions

1.1 Rate of reaction and dependence on temperature

We will once again look at the formation of ammonia (NH3) from nitrogen and hydrogen
(see section Chemical equilibrium of the thermodynamics chapter). This reaction follows
the equation:

N2 + 3H2 
 2NH3 (1)

∆H0 = −92
kJ

mol

∆S0 = −192
J

mol ·K

To find the Gibbs free energy of formation at room temperature, recall that

∆G0 = ∆H0 − T∆S0 (2)

= −92
kJ

mol
+ (298 K)

(
0.192

kJ

mol ·K

)
= −35

kJ

mol

Alternatively, one can also find the temperature for which ∆G = 0, T = ∆H0

∆S0 = 479 K =
206◦C. At this temperature the equilibrium favors neither the reactants nor the products.
At lower temperatures ∆G is negative, so the products are favored and the reaction goes
forward. At higher temperatures the equilibrium shifts to favor the reactants, as is ex-
pected for an exothermic reaction.

We also introduced the stoichiometric coefficient νi that describes how many molecules of
species i react in each occurrence of the reaction. In general, a reaction between species
A and B forming C can be written as

νAA + νBB→ νCC (3)

The rate of generation of each component i is then the product of the stoichiometric
coefficient and the rate of the reaction, and relates to the rate of generation of every other
component as follows:
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1 CHEMICAL REACTIONS

ri = νir (4)
ri
νi

= r =
rA
νA

=
rB
νB

=
rC
νC

(5)

Remember that the stoichiometric coefficients for reactants are negative, while those of
products are positive.
For systems of multiple chemical reactions the rates can be added to obtain the generation
of component i for the whole network of reactions. As an example, take the oxidation of
syngas, a mixture of carbon monoxide and hydrogen gas, where three reactions are to be
considered, each having reaction rate rj (j = 1, 2, 3):

r1 : H2 +
1

2
O2 −−→ H2O

r2 : CO +
1

2
O2 −−→ CO2

r3 : CO + H2O −−→ CO2 + H2

Using the stoichiometric coefficients, the rate of generation or consumption of each com-
ponent is then given by:

RH2
= −r1 + r3

RCO = −r2 − r3

RH2O = r1 − r3

RCO2
= r2 + r3

RO2
= −1

2
r1 −

1

2
r2

Note that in these equations the subscript in rj indicates the reaction, whereas in Equations
4 and 5 it indicates the species. In general then, the rate of generation of component i in
a system of reactions j = 1...Nr is the sum of the rates of generation across all reactions:

Ri =

Nr∑
j=1

rij =

Nr∑
j=1

νijrj i = A,B, ... (6)

The rate of each reaction then depends on the concentration of its reactants and the
temperature, as described by the Arrhenius equation:

r = k(T )caAc
b
B = k0e

−EA
RT caAc

b
B (7)

where a and b are the reaction order with respect to reactant A and B, respectively. The
overall order of the reaction is n = a+ b.

1.2 Material balance

Consider a system of volume V with a stream entering and one exiting, as shown in Figure
1.
The accumulation of component i in this system is given by:

dni
dt︸︷︷︸
acc

= F ini − F outi︸ ︷︷ ︸
in−out

+ Gi︸︷︷︸
net generation

(8)
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1 CHEMICAL REACTIONS

c, Qcin, Qin

A

Dx

0 L

V

QW

Fi
in Fi

out

Figure 1: System of volume V with a stream entering and one exiting. F ini and F outi are
the mole flows of component i into and out of the system, respectively. Ẇ is the work
done by the systems on its surroundings, and Q̇ is the heat flow into the system.

Here, the term Gi is the net generation for all reactions over the entire volume considered.
Finding the net generation as well as the total amount of a component in the system
requires integration over the whole volume:

ni =

∫
cidV

Gi =

∫
RidV (9)

One assumption that is frequently made is that the system is homogeneous, at least over
certain regions, so ni = V ci and Gi = V Ri. This also means that the composition of the
exiting stream is equal to the composition in the entire volume. Further, the mole flow of
a component is often written as the product of the volumetric flow and the concentration
of the component in the stream, so Fi = Qci. If one further assumes that only one reaction
is taking place, the material balance becomes

dni
dt

=
d (ciV )

dt
= Qincini −Qci + riV (10)

1.3 Conversion

The conversion of component i is the fraction of the reactant that undergoes reaction. It
is denoted as Xi, where

Xi =
moles of component i that reacted

number of moles of component i that were fed to the reactor
(11)

For a continuous reactor at steady state this is

Xi =
Qincini −Qci

Qincini
(12)

The desired conversion is a key parameter in the design of reactors, as we will see.
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1 CHEMICAL REACTIONS

1.4 Energy balance

Considering the volume in Figure 1, the energy balance can be written as:

dE

dt
= Q̇− Ẇ +

Nc∑
i=1

F ini e
in
i −

Nc∑
i=1

F outi eouti (13)

The work in this equation consists of three terms: the so-called shaft work Ẇs, and the
volumetric work done by the entering stream on the system and by the system on the
exiting stream.

Ẇ = Ẇs + P outQout − P inQin (14)

The shaft work refers to the work done by the stirrer, for example, and is typically neg-
ligible in chemical systems, so Ẇs ≈ 0. The energy in the streams is summed for all Nc

components, and can also be written in terms of concentrations and volume flow:

Nc∑
i=1

Fiei = Q

Nc∑
i=1

ciei =
Q

V

Nc∑
i=1

niei =
Q

V
E (15)

E is the sum of the internal energy U , the kinetic energy K, and the potential energy EP .
The kinetic and the potential energy are negligible in many chemical reaction engineering
applications, so Equation 15 becomes

Q

V
E =

Q

V
(U +K + EP ) ∼=

Q

V
U (16)

we know that U is a function of the enthalpy, pressure, and volume, so

Q

V
U =

Q

V
(H − PV ) =

Q

V

Nc∑
i=1

nihi − PQ =

Nc∑
i=1

Fihi − PQ (17)

When this is applied for both streams, the term PQ cancels with the volumetric work
from Equation 14, and the energy balance in Equation 13 becomes

dU

dt
= Q̇−

(
Ẇs + P outQout − P inQin

)
+
∑
i

F ini h
in
i −

∑
i

F outi hi − P inQin + P outQout

dU

dt
= Q̇+

∑
i

F ini h
in
i −

∑
i

F outi hi (18)

If we are considering a homogeneous system where only one reaction takes place, Gi =
V νir, and we can rewrite Equation 8 by solving for the flow out of the system:

F outi = F ini + V νir −
dni
dt

(19)

Equation 18 then becomes

dU

dt
= Q̇+

∑
i

F ini
(
hini − hi

)
− V r

∑
i

νihi +
∑
i

hi
dni
dt

(20)

Note that the sum of the enthalpies of each component multiplied by their corresponding
stoichiometric coefficient is the heat of reaction, so V r

∑
i νihi = V r∆Hr. At the same

time, the difference in molar enthalpy between the entering stream and the reactor depends
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2 THREE TYPES OF REACTORS

on the temperatures and the specific heat of each component (assuming that there is no
phase change):

hini − hi = hini
(
T in
)
− hi (T ) =

∫ T in

T
cp,idT ∼= cp,i

(
T in − T

)
(21)

Further, the heat transfer into the reactor is Q̇ = −UA (T − Ta), where U is the heat
transfer coefficient, A is the heat transfer area, and Ta is the ambient temperature or the
temperature of the heat transfer fluid. The left-hand-side of Equation 18 then becomes

dU

dt
=
d (H − PV )

dt
=

d

dt

(∑
i

nihi − PV

)

=
∑
i

ni
dhi
dt

+
∑
i

hi
dni
dt
− d (PV )

dt

=
∑
i

nicp,i
dT

dt
+
∑
i

hi
dni
dt
− d (PV )

dt

= V
∑
i

cicp,i
dT

dt
+
∑
i

hi
dni
dt
− d (PV )

dt
(22)

Combining all this into equation 20, and canceling the term
∑

i hi
dni
dt that shows up on

both sides of the equation, we obtain

V
∑
i

cicp,i
dT

dt
− d (PV )

dt
= −UA (T − Ta) +Qin

(∑
i

cp,ic
in
i

)(
T in − T

)
+ V r (−∆Hr)

(23)

2 Three types of reactors

2.1 Batch

A batch reactor is a discontinuous reactor. It is essentially a stirred tank that is filled with
the reactants before the reaction starts and emptied after it has run to completion (or to
the extent that is needed). An example of this would be the baking of a cake. All the
ingredients are placed in the mold, and then the temperature is increased in the oven to
the necessary reaction temperature. When the reactions that make up the baking process
have run their course to the desired extent, they are stopped. One of the disadvantages
of this type of reactor is that for large production quantities the reaction has to be done
multiple times in series. This requires the emptying and refilling of the reactor, often
accompanied by cooling it off first and heating it up with the new batch. This large
number of steps takes time and attention, and thereby reduces the productivity of the
reactor. On the other hand, these reactors have the advantage that if multiple similar but
different reactions are needed, often the same equipment can be used, and the additional
effort is comparatively small. A schematic of a batch reactor can be seen in Figure 2.

2.2 Continuous stirred tank reactor (CSTR)

A continuous stirred tank reactor is like a batch reactor in that it consists of a tank and a
stirrer, however with the addition of an inlet and an outlet that allow for a constant flow
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2 THREE TYPES OF REACTORS

c, V

c

t

products

reactants

Figure 2: Schematic of a batch reactor and typical evolution of the concentration of
reactants and products in a batch reactor

c, V

c

t

products

reactants

steady-state

c, Q

cin, Qin

Figure 3: Schematic of a contiuous stirred tank reactor (CSTR)

into and out of the reactor. Once the reactor is started up and reaches steady-state, it is
usually assumed to have a constant volume as well as constant and homogeneous temper-
ature, pressure, and composition. While continuous processes don’t have the variability
of batch processes, and during start-up will produce product that does not meet speci-
fications, they have a number of advantages that make them attractive to use. For one,
continuous reactors don’t have to be cooled off, emptied, cleaned, refilled, and then heated
to operating temperature. For another, if a reaction produces heat and the reactor needs
to be cooled, the cooling duty for a CSTR is constant, and can be tuned as needed. For a
batch reactor the cooling duty needed would vary with the reaction rate, and insufficient
cooling can lead to a runaway reaction. Additionally, the product from one reactor is often
used in subsequent steps for other reactions. If multiple steps are done in series in batch
reactors, and each step takes a different amount of time, the intermediate products need
to be stored in buffer tanks. These tanks can be eliminated or greatly reduced in size if
each reactor produces a steady stream that can be fed to the next reactor. If a process has
to be done in batches, several reactors are often used in parallel, shifted in time to give a
continuous stream from the group of reactors. See Figure 3 for a schematic representation
of a CSTR.

2.3 Plug flow reactor(PFR)

Another type of continuous reactors is the plug flow reactor, or PFR. It is a tubular reactor,
meaning that it consists of a long cylindrical pipe through which the reaction mixture is

7
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c, Qcin, Qin

A

Dx

0 L

Figure 4: Schematic of a plug-flow reactor (PFR)

flowing steadily. Typically the assumption is made that the temperature, pressure, and
composition do not vary radially within the pipe, creating a “plug” that flows through
the reactor. As the reactants flow through the PFR, they are consumed, creating a
concentration profile along the length of the pipe. While these reactors can have a heating
or cooling duty requirement that varies along the reactor, the reactor volume necessary to
reach a particular conversion is lower than for a CSTR, while keeping the advantages of a
continuous process.

8



3 MATERIAL BALANCES IN CHEMICAL REACTORS

3 Material balances in chemical reactors

3.1 Batch

A batch reactor has no flow into or out of the reactor:

Qin = Q = 0 (24)

This reduces the general mole balance from equation 10 to

d (ciV )

dt
= riV

V
dci
dt

+ ci
dV

dt
= riV (25)

Often, the reactor volume in a batch process is nearly constant. In this case, the equation
reduces even further, and the rate of change in concentration is simply the rate of reaction.
If this is not the case, one can still rewrite equation 25. Both cases can be seen here:

dV

dt
= 0

dci
dt

= ri (26)

dV

dt
6= 0

dci
dt

+ ci
d lnV

dt
= ri

Calculating the conversion Xi for a batch process is relatively straightforward. It is the
difference between the number of moles of reactant i initially in the reactor and those left
at the end of the reacion divided by the total number at the beginning. It can then be
related to the reactor volume and the reaction rate:

Xi =
n0
i − ni
n0
i

(27)

dNi = −N0
i dX (28)

dXi

dt
=
−riV
n0
i

(29)

dXi

dt
=
−ri
c0
i

(30)

where c0
i is the initial concentration of reactant i.

3.2 Continuous stirred tank reactor (CSTR)

A CSTR, as mentioned earlier, has a feed stream entering the reactor and a product
stream exiting. It is usually assumed to be well-mixed, giving it a constant temperature,
composition, and reaction rate throughout its entire volume. It is almost always oper-
ated at steady state, meaning that after start-up is complete, the pressure, temperature,
composition, and reaction rate no longer vary in time. Once steady-state is reached, the
number of moles of any given species no longer changes, and the flow out of the reactor
matches the feed flow.

dni
dt

= 0 and Qin = Q (31)

9



3 MATERIAL BALANCES IN CHEMICAL REACTORS

This allows us to simplify the mole balance from equation 10 as follows:

dni
dt

= Qincini −Qci + riV

0 = Qcini −Qci + riV

ci − cini = ri
V

Q
= riτ (32)

Here we introduced the variable of space-time, τ = V
Q . The conversion can be calculated

form the concentration of component i in the feed and product stream as such:

Xi =
cini − ci
cini

(33)

The flowrate, inlet concentration, desired conversion, and reaction rate relate to the reactor
volume in this way:

Qcini Xi = −riV (34)

Xi

τ
= − ri

cini
(35)

3.3 Plug flow reactor(PFR)

While a PFR is assumed to be perfectly mixed radially, there is assumed to be no mixing
along the length of the pipe. The reaction rate is therefor dependent on the position, and
the mole balance has to be written as follows:

dni
dt

= Qincini −Qci +

∫
V
ridV (36)

As the reactor is assumed to be well-mixed radially, the reaction rate is only dependent
on the position along the length of the reactor, x. If we look at a slice of the reactor of
cross-section A and thickness ∆x, we can write the mole balance for component i for that
section as:

dni
dt

= Qci (x)−Qci (x+ ∆x) + riA∆x (37)

dci
dt
A∆x = −Q (ci (x+ ∆x)− ci (x)) + riA∆x (38)

If we let the thickness of the slice go to zero, we obtain:

A
∂ci
∂t

= −Q∂ci
∂x

+ riA (39)

∂ci
∂t

= −υ∂ci
∂x

+ ri (40)

where υ = Q
A is the fluid velocity in the reactor. As this is a partial differential equation,

we need the initial and boundary conditions. These are

10



3 MATERIAL BALANCES IN CHEMICAL REACTORS

ci = c0
i for t = 0 and 0 < x < L (41)

ci = cini for t > 0 and x = 0 (42)

When considering the plug flow reactor in steady-state, the dependence on time disappears,
and we get

ri = υ
dci
dx

=
dci
dϑ

= Q
dci
dV

(43)

where ϑ = x
υ is a residence time dependent on the position along the reactor length.

11



4 DESIGN OF IDEAL REACTORS FOR FIRST-ORDER REACTIONS

4 Design of ideal reactors for first-order reactions

In this section we will see how to use the principles above to design CSTR and PFR
reactors under isothermal conditions and only considering a single, irreversible, first-order
reaction:

A −→ products (44)

Under the assumed conditions we can write the rate of reaction as

r = kcA or rA = −kcA (45)

Recall that because A is a reactant, its stoichiometric coefficient ν is negative (in this case
-1).

4.1 CSTR

Applying this equation in the rate for a CSTR, we can rewrite equation 32 as

cA − cinA = rAτ = −kcAτ
cinA = cA (1 + kτ)

cA =
cinA

1 + kτ
(46)

here, the product kτ is also known as the first Damköhler number, denoted as Da. It can
be used to give a rough estimate of the conversion that can be expected given a known
rate constant and residence time:

XA =
cinA − cA
cinA

=
cinA −

cinA
1+kτ

cinA

= 1− 1

1 + kτ

=
kτ

1 + kτ
(47)

This way it is fairly simple to estimate that for a first Damköhler number of 0.1, the
conversion is less than 0.1, while for a value of 10 it is over 0.9. Equation 46 can also be
rewritten to render the volume of the reactor as a function of the flowrate, reaction rate
constant, and conversion:

cinA − cA = kcAτ = kcA

(
V

Q

)
V =

Q
(
cinA − cA

)
kcA

V =
Q

k

(
cinA
cA
− 1

)
=

QXA

k (1−XA)
(48)

12
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c, Qcin, Qin

A

Dx

0 L

c

x

products

reactants

Figure 5: concentration profile along the length of a plug flow reactor

4.2 PFR

Similarly, the reaction rate can be substituted into equation 43 for a PFR to yield

Q
dcA
dV

= −kcA

and since cA = cinA for x = 0,

cA = cinA e
− k
Q
V

(49)
cA
cinA

= 1−XA = e−kτ

XA = 1− e−kτ (50)

the assumptions made in the design of the PFR cause each differential volume of the
reactor to behave like a batch reactor as it moves through the pipe. As a result, the
concentration profile along the length of a PFR looks much like the concentration profile
in a batch reactor over time, as seen in Figure 5. One can also solve for the volume of
reactor necessary to achieve a desired conversion, starting from equation 49:

cinA
cA

= e
k
Q
V

V =
Q

k
ln

(
cinA
cA

)
=
Q

k
ln

(
1

1−XA

)
(51)

4.3 Comparison of CSTR and PFR

In general, reactions tend to exhibit kinetics of positive order, meaning that as the reac-
tants are consumed the rate of reaction decreases. As a CSTR is already at the composition
of the product, the reactants are already consumed, and their concentration is low. Con-
sequently, the CSTR typically has a larger volume than a PFR that reaches the same
conversion. For the reaction considered above, Figure 6b compares the volumes of both
types of reactors.

13
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1 cin
A

cA

kV
Q

CSTR

PFR

(a)

1XA

kV

Q CSTR

PFR

(b)

Figure 6: Comparison of reactor volume for CSTR and PFR for various
cinA
cA

(a) and XA

(b)

5 Dynamic behavior of CSTR during start-up

So far we have looked at the steady-state operation of reactors. But when a CSTR is
started up it undergoes a transitional period until it reaches that steady-state. How does
the concentration in the reactor behave during this time period, and how long does it
take to get reasonably close to the steady-state? To answer this, we go back to the mole
balance from equation 32, but we no longer assume the number of moles of component i
to be constant. We still assume, however, that the reactor is well-mixed and isothermal,
and that the volume is constant (so Qin = Q). Considering the reaction from before:

A −→ products , rA = −kcA (52)

we obtain

dnA
dt

= V
dcA
dt

= QcinA −QcA + rAV

dcA
dt

=
1

τ
cinA −

1

τ
cA − kcA (53)

where τ is constant. Equation 53 is a linear inhomogeneous ordinary differential equation.

dcA
dt

+

(
k +

1

τ

)
cA =

1

τ
cinA (54)

The integral of the homogeneous part and the particular solution are, respectively,

chA = Ae−(k+ 1
τ )t (55)

cpA =
cinA

1 + kτ
(56)

By applying the initial condition cA (0) = c0
A we obtain

cA =

(
c0
A −

cinA
1 + kτ

)
e−( 1+kτ

τ )t +
cinA

1 + kτ
(57)

Note that if you take this solution and find the limit as t→∞ you arrive at equation 46,
the steady-state condition. See Figure 7 for an example of the evolution of concentration
in a CSTR during start-up.

14
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t

cin
A

1+kτ

c0
A

c0
A

cA

Figure 7: concentration of reactant A in a CSTR during start-up

6 Reversible reactions

6.1 Material balance for reversible reaction

Until now we have only considered irreversible reactions, where reactants form products,
but not the other way around. In reality, many reactions can go both ways, even if one
side of the equation might be strongly favored over the other one. Let us consider now a
general reversible reaction:

A
k1−−⇀↽−−
k2

B (58)

where the forward reaction is governed by the rate constant k1 and the reverse reaction
by the rate constant k2. The overall reaction rate is then the difference between the rate
of consumption of A and the rate of its production.

r = k1cA − k2cB (59)

Given enough time this system will settle in an equilibrium that depends on the two rate
constants. At this point there is no net reaction, so the concentration of the reactant and
the products can be related to each other through the two rate constants:

r = 0 (60)

cB
cA

=
k1

k2
= K (61)

where K = k1
k2

is the equilibrium constant for this reaction under these conditions. You
may recall this constant from earlier in the semester when it was found through the Gibbs
free energy of formation ∆G0

r in the thermodynamics script. To find the concentration of
the reactant in a CSTR for a reversible reaction, start at Equation 32:

15



6 REVERSIBLE REACTIONS

cA − cinA = rAτ = (−k1cA + k2cB) τ (62)

and

cB − cinB = rBτ = ( k1cA − k2cB) τ

Further, since mass is conserved,

cA + cB = cinA + cinB

cB = cinA + cinB − cA (63)

Rewriting Equation 62, we get

cA (1 + k1τ)− k2τcB = cinA

cA (1 + k1τ) = cinA + k2τcB

= cinA + k2τ
(
cinA + cinB − cA

)
cA (1 + k1τ + k2τ) = cinA + k2τ

(
cinA + cinB

)
cA =

cinA + k2τ
(
cinA + cinB

)
1 + τ (k1 + k2)

(64)

and similarly for component B

cB =
cinB + k1τ

(
cinA + cinB

)
1 + τ (k1 + k2)

(65)

For a reversible reaction, there is a limit to the conversion, set by the equilibrium. If you
had an infinitely large CSTR, τ →∞, and

cA =
k2

(
cinA + cinB

)
k1 + k2

=
cinA + cinB
1 +K

(66)

cA, and as a result the conversion X, depends on both the inlet concentration of component
A and B. Assuming that you are only feeding your reactant (and cinB = 0), the limit to the
conversion is found to be

X =
cinA − cA
cinA

=
cinA −

cinA
1+K

cinA
= 1− 1

1 +K
=

K

1 +K
(67)

6.2 Equilibrium-limited reactions

The conversion at equilibrium depends on the equilibrium constant, which in turn depends
on the temperature:

K = e−
∆G0(T )
RT (68)

Figure 8 shows how the equilibrium conversion changes with temperature. Especially for
exothermic reactions this is a concern. To achieve high reaction rates a high temperature
is needed, but this can severely lower the conversion. Not only does the equilibrium pose
a limit to the conversion, even getting close to it takes a high toll on reaction rate. There
are different attempts to circumvent this, such as using higher pressures, as we will see in
the next section, or using tanks in series, as we will see later.
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1

T

Xeq

(a)

1

T

Xeq

(b)

Figure 8: Equilibrium conversion dependency on temperature for an edothermic (a) and
an exothermic (b) reaction.

7 Thermodynamics of chemical equilibrium

Consider a single reaction occurring in a batch reactor. The rate of change of the amount
of any component i in the reactor is given by

dni
dt

= νirV

dni = νirV dt = νidλ (69)

where dλ = rV dt is the extent of reaction. For multiple reactions then, the differential
change of the amount of i is given by the sum over all reactions j,

dni =
∑
j

νijdλj (70)

If we now consider a system at a given temperature T and pressure P , then

dG =
∑
i

µidni =

(∑
i

µiνi

)
dλ (71)

and at equilibrium

dG = 0⇔
∑
i

µiνi = 0 (72)

Now take an ideal gas mixture in this system, in which a reaction is taking place, e.g.
A + B −−⇀↽−− C + D. Then

µ∗i
(
T, P, y

)
= µ∗i (T, Pr) +RT ln

(
Pi
Pr

)νi
(73)

0 =
∑
i

νiµ
∗
i

(
T, P, y

)
=
∑
i

νiµ
∗
i (T, Pr) +RT

∑
i

ln

(
Pi
Pr

)νi
=
∑
i

νiµ
∗
i (T, Pr) +RT ln

∏
i

(Pyi)
νi

P νir

= ∆G0 (T, Pr) +RT ln

[(
P

Pr

)∑
i νi∏

i

yνii

]
(74)
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where ∆G0 (T, Pr) =
∑

i νiµ
∗
i (T, Pr). Rearranging the equation gives us(
P

Pr

)∑
i νi∏

i

yνii︸ ︷︷ ︸
Q(P,y)

= exp

(
−∆G0 (T )

RT

)
︸ ︷︷ ︸

Keq(T )

(75)

The right-hand-side of this equation is the equilibrium constant for the reaction, as we
have seen before. While these quantities are equal in equilibrium, they are not when the
system is not in equilibrium:

Q(P, y) = Keq(T ) ⇒ dG = 0 no reaction

Q(P, y) > Keq(T ) ⇒ dG > 0 A + B←−− C + D

Q(P, y) < Keq(T ) ⇒ dG < 0 A + B −−→ C + D

Consider now once again the reaction of nitrogen and hydrogen forming ammonia (Equa-
tion 1). Applying Equation 75 gives us the following relationship:

Keq (T ) = P 2
r

P 2y2
NH3

P 4yN2
y3

H2

=
P 2
r

P 2

y2
NH3

yN2
y3

H2

(76)

This shows that while the equilibrium constant Keq is a function of temperature, the
pressure of the system also affects the composition at the equilibrium. In the above
reaction, NH3 is desired, so it is of interest to increase the mole fraction of it at equilibrium.
As we saw earlier in Section 1.1 a low temperature would favor ammonia. This would,
however, severely lower the reaction rate. To get a higher conversion despite the high
temperature, then, the pressure can be increased.

P ↑ ⇒ yNH3
↑ ⇒ good!

P ↓ ⇒ yNH3
↓ ⇒ bad!
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8 ENERGY BALANCE OF A CSTR

8 Energy balance of a CSTR

8.1 The general energy balance

Consider again a CSTR in steady state, meaning all derivatives in time are zero. This
reduces the energy balance from Equation 23 to

0 = −UA (T − Ta) +Qin

(∑
i

cini cp,i

)(
T in − T

)
+ V r (−∆Hr) (77)

This can be rewritten as (note that we consider Qin = Qout = Q)

UA (T − Ta) +Qin

(∑
i

cini cp,i

)(
T − T in

)
= V r (−∆Hr)

UA

Q
(T − Ta) +

(∑
i

cini cp,i

)(
T − T in

)
= τr (−∆Hr)

∑
i

cini cp,i

[
UA

Q
(∑

i c
in
i cp,i

) (T − Ta) + T − T in
]

= τr (−∆Hr) (78)

We now define two new variables:

β =
UA

Q
(∑

i c
in
i cp,i

) (79)

Tc =
T in + Taβ

1 + β
(80)

This allows us to rewrite the above as

∑
i

cini cp,i
[
T (1 + β)− T in − Taβ

]
= τr (−∆Hr)∑

i

cini cp,i [(1 + β) (T − Tc)]︸ ︷︷ ︸
heat removed R(T )

= τr (−∆Hr)︸ ︷︷ ︸
heat generated G̃(T,cA)

(81)

Note that the two new variables are not arbitrary: β relates the influence on the reactor
temperature of the heat exchanger to that of the entering feed, and Tc is an intermediate
temperature between the feed temperature and the temperature of the heat transfer fluid,
i.e. it is a weighted average of the two.
The two sides of Equation 81 are the heat removed from the reactor and the heat generated
by the reaction, respectively. They represent the energy balance for a CSTR at steady-
state, as a function of three groups of parameters: The feed conditions (cini , T in), the
reactor cooling characteristics (Tc and β), and the residence time (τ = V

Qin
). The heat

removed R (T ) (left-hand side) depends only on two parameters, namely β and Tc; the
effect that each of these parameters has on the removed heat is shown in Figure 9. The
heat generated is not only a function of the reactor temperature, but also of the reaction
rate, which depends on the reactant concentration at steady state.
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T

R(T )

Tc

(a)

T

R(T )

Ta T in

β

(b)

Figure 9: The heat removal rate from a CSTR changes with Tc, the intermediate temper-
ature of the heat transfer fluid and the feed, as seen in (a) and on the value of β as seen
(b)

Reversible Reactions As we saw in Section 6, chemical reactions are often re-
versible, meaning they can go in both directions:

A
k1−−⇀↽−−
k2

B r = k1cA − k2cB (82)

Alternatively, they can be considered as two entirely separate reactions as such:

A
k1−→ B rforward = k1cA (83)

B
k2−→ A rback = k2cB (84)

If the heat of reaction for these two reactions are ∆H and ∆Hback, respectively, then
∆Hback = −∆H. This leads to the following expression for the net rate of heat
generation

[
J

m3s

]
:

rforward∆H + rback∆Hback = (rforward − rback) ∆H (85)

= (k1cA − k2cB) ∆H (86)

Here it is obvious that the reaction rate for the combined reactions is the same as
the one for the reversible reaction (Equation 82). This means that with regard to
the energy balance of a reactor (see Equation 81), all the considerations concerning a
single, irreversible reaction can be applied to a reversible reaction, provided that the
appropriate rate expression from Equation 82 is used. Further, recall from Equation
63 that cB can be expressed as a function of the initial concentrations and cA, so the
net heat generated depends on cA only:

(k1cA − k2cB) ∆H =
(
k1cA − k2

(
cinA + cinB − cA

))
∆H =

G̃(T, cA)

τ
(87)
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8 ENERGY BALANCE OF A CSTR

8.2 Steady-state in a CSTR with an exothermic reaction

Consider now an exothermic, irreversible reaction with a single reactant taking place in a
cooled CSTR.

A −→ B , r = kcA (88)

The energy and mass balances for a CSTR at steady state are then given by:


R (T ) = G̃ (T, cA) = τ (−∆H) r (T, cA)

cinA − cA = τr(T, cA) = τcAk (T )

(89)

Note that the second equation is Equation 32, and that by solving it with respect to cA,
one obtains Equation 46. Therefore the system (89) can be rewritten as:

cA =
cinA

1+τk(T )

R (T ) = G̃ (T, cA) = (−∆H) cinA

(
τk(T )

1+τk(T )

)
= G (T )

(90)

Therefore the concentration of A can be expressed as a function of T through k(T ), and
the heat generated is given as solely a function of temperature, with parameters τ and
∆H. The effect of these parameters on the heat generation curve is shown in Figure 10.

T

G(T )

τ

(a)

T

G(T )

∆H

(b)

Figure 10: The generation of heat from the reaction depends strongly on the temperature
of the reactor, the residence time (as seen in (a), and on the heat of reaction (seen in (b)).

8.2.1 Stabiliy of steady-states

For the reactor to be at steady-state, R(T ) = G(T ). Figure 11 shows three heat removal
lines together with a heat generation line, and highlights the steady-states. At any other
temperature, the behavior of the reactor depends on the relationship between the two
lines:

R(T ) > G(T ) reactor cools off

R(T ) = G(T ) steady-state

R(T ) < G(T ) reactor heats up
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T

G(T )

R(T )

I
II

III

IV V

Figure 11: The roman numerals I-V denote steady-states. The circles are stable, while
the square is an unstable steady-state.

In Figure 11, for example, if the reactor is operated between points III and IV using the
middle value of Tc, the heat generation is higher than the removal, leading the reactor
to heat up. Once the temperature passes point IV, however, more heat is removed than
is generated, causing the reactor to cool off. This is why point IV is considered a stable
steady state: A small deviation in temperature in either direction will cause the system
to self-correct and return to the steady-state. Point III, meanwhile, is an unstable steady
state. If the reactor is operated at that temperature, it will neither heat up nor cool off,
and is at steady state. If, however, there is a small disturbance that warms the reactor a
little bit, the heat generated will outweigh the removed heat, and the reactor will heat up
further and further. A small disturbance to a lower temperature will have the opposite
effect: The now prevalent heat removal will cool the reactor off more and more.
What it comes down to is that if the derivative of the heat removal line at the steady state
is higher than the heat generation line, the steady state is stable; if it is lower, the steady
state is unstable.

8.2.2 Multiplicity of steady states, ignition and extinction temperatures

As you can see in Figure 11, the middle heat removal line allows for three distinct steady
states. This is called a multiplicity of steady states. As III is an unstable steady state,
the reactor would not remain there for a long period of time. Whether the reactor runs
at point II or at IV depends on its starting point. At any temperature below III it will
settle on point II, at any higher temperature it will end up at IV. If Tc changes a little,
the reactor temperature will change accordingly, but remain in the same region. Only
if Tc changes past the ignition temperature will the reactor be forced to go to the high
temperature. Conversely, if the temperature drops below the extinction temperature, the
reactor drops to cool temperatures, as seen in Figure 12
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1 2 3 4 5 T

G(T )

R(T )

(a)

1 2 3 4 5 Tc

Tss

Text Tign

(b)

Figure 12: (a) shows a curve of heat generation along with five possible heat removal
lines. 1 and 5 have only one steady-state. 3 has two stable steady states. Which one the
reactor is at depends on the initial temperature. 2 and 4 are the extinction and ignition
temperatures, respectively. (b) shows the steady state reactor temperature for a range
of Tc, including the five temperatures seen in (a), clearly showing the region with two
possible operating conditions

8.3 Adiabatic CSTR

8.3.1 Equilibrium limit in an adiabatic CSTR

Reactions are also frequently carried out in a vessel that is neither heated nor cooled,
with the heating/cooling taking place either upstream or downstream of the reactor. As a
result, these reactors are adiabatic and modeled as such. We will now look at an adiabatic
CSTR in which an exothermic, reversible reaction is taking place.

A
k1−−⇀↽−−
k2

B (−∆Hr) > 0 r = k1cA − k2

(
cinA + cinB − cA

)
(91)

We have seen in section 6.2 that this exothermic reaction will be limited by its equilibrium.
In section 8.1 then we saw that the temperature in the reactor depends on the heat
generated and the heat removed. The energy and mass balances are repeated here:



heat removed R(T )︷ ︸︸ ︷∑
i

cini cp,i (1 + β) (T − Tc) =

heat generated G̃(T,cA)︷ ︸︸ ︷
τr(T, cA) (−∆Hr)

cinA − cA = τr(T, cA) = XAc
in
A

(92)

where we exploit the definition of conversion XA, i.e. XA =
cinA −cA
cinA

. In an adiabatic CSTR,

β = 0 and Tc = T in. As a result, substituting the second equation into the first yields:(∑
i

cini cp,i

)(
T − T in

)
= cinAXA (−∆Hr) (93)

In this last equation, the left-hand side is the heat removed through the cooling effect of the
incoming feed, and the right-hand side is the heat produced by the reaction. Equation 93
describes a linear relationship between the conversion and the temperature in the reactor.
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1

T

X

T in

Xeq =
K(T )

1+K(T )

τ

Figure 13: Conversion and temperature in the reactor have a linear relationship. The only
influence that the residence τ has is that it determines where along the line the reactor is
operated.

While it does not provide the steady-state conditions of the reactor directly, it describes a
path along which the operating point of the reactor can be found for any given residence
time τ . One can solve the system 92 numerically to find the temperature and conversion
of the reaction for any given residence time.
Consider now a reactor where the feed is pure A (so cinB = 0). Substituting the reaction
rate given in Equation 91 into the mass balance in system 92 yields Equation 64 for cA

cA =
cinA + k2τ

(
cinA
)

1 + τ (k1 + k2)
(94)

This equation can be substituted for cA in the second equation in (92), which when
substituted into the first equation, yields the relationship between the temperature in the
reactor and the residence time as(∑

i

cini cp,i

)(
T − T in

)
= cinA (−∆Hr)

k1(T )τ

1 + τ (k1(T ) + k2(T ))
(95)

Here again one can use the definition of the conversion XA =
cinA −cA
cinA

= τk1
1+τ(k1+k2) , where

k1 = k1(T ) and k2 = k2(T ). The conversion in the reactor can be taken to two limits,
infinite τ and infinite temperature, with the following results:

XA


→ K(T )

1+K(T ) when τ →∞

→ τk1,∞
1+τ(k1,∞+k2,∞) when T →∞

(96)

where k1,∞ and k2,∞ are the limits of the two rate constant for infinite temperature. As
was shown before, the conversion does not go to 1 for an infinite τ , but approches the
equilibrium limit, as is shown in Figure 13.
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j-1

in
Ac

j

1j
Ac

in
jT

j
AcTjTj-1

1

in
jT

Figure 14: Several CSTRs in series. The product from each reactor is cooled to move away
from the equilibrium limit, and then fed to the next reactor. As reactors often contain a
catalyst without which the reaction does not progress, it is typically assumed that the feed
entering reactor j is of the same composition as the product from j − 1 (i.e. cin,jA = cj−1

A )

8.3.2 Multiple reactors in series

As you could see in Figure 13, the equilibrium limit for conversion might still be relatively
low. By cooling the reactor a lower temperature can be maintained for higher conversions,
however it is often more efficient to use a dedicated heat exchanger to cool the streams.
If the product from the reactor is cooled, it can be fed to another reactor, where it can
continue to react. See Figure 14 for a schematic.
In this system, cinA and cinB refer to the concentrations of A and B in the feed entering the
first reactor. The concentrations entering all subsequent reactors are equal to the outlet
concentrations from the previous reactor, so

cin,jA = cj−1
A and cin,jB = cj−1

B (97)

For obvious reasons, the conversion in reactor j is not calculated on the basis of the feed
entering it, but on the initial feed. As a result, as cA decreases throughout the reactor
cascade, the conversion increases with each reactor:

XA =
cinA − c

j
A

cinA
(98)

X1
A < X2

A <... < Xj−1
A < Xj

A < ... (99)

For each reactor in the cascade, Equation 93 becomes(∑
i

cini cp,i

)(
Tj − T inj

)
= τjrj (−∆Hr)

=
(
cj−1
A − cjA

)
(−∆Hr)

= cinA

(
Xj
A −X

j−1
A

)
(−∆Hr)(∑

i c
in
i cp,i

)
(−∆H) cinA

(
Tj − T inj

)
= Xj

A −X
j−1
A (100)

So for each reactor, the conversion and temperature are linearly related, and both a
function of τ . A series of CSTRs with interstage cooling can achieve higher conversion
than a single reactor, while remaining at reasonably high temperatures. A schematic of
the conversion for a five reactor cascade is illustrated in Figure 15, where five reactors in
series with intermediate cooling produce a sawtooth wave pattern to high conversion. Note
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1
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X
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1+K(T )

T1,X
1
A

T2,X
2
A

...

intermediate
cooling

Figure 15: Several CSTRs in series. The product from each reactor is cooled to move
away from the equilibrium limit, and then fed to the next reactor.

that Equation 100 does not give the reactor conditions at steady state, but describes a line
along which the operating conditions depend on τ . In the design of the reactor cascade
one has to consider the inherent trade-off: A higher conversion in each reactor requires a
larger τ , however as the equilibrium limit is approached the increase in conversion becomes
smaller for an increase in τ (and therefore reactor size). Interstage cooling can be used
to move away from the equilibrium limit, allowing the reaction to proceed further in the
next reactor. This allows a step-wise approach to higher conversion at the expense of the
amount of necessary equipment (reactors, heat exchangers, etc.).
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