Introduction to Competitive Programming
 Instructor: William W.Y. Hsu

CONTENTS

> Complete search
> Iterative: (nested) loops, permutations, subsets
> Recursive backtracking (N queens), from easy to (very) hard
>State-space search
> Meet in the middle (bidirectional search)
> Some tips to speed up your solution
> Divide and conquer (D\&C) algorithms
> Greedy algorithms

Before we begin...

Analyzing practice

, Given an array A containing $n \leq 10 K$ small integers \leq 100 K

- $A=\{10,7,3,5,8,2,9\}, n=7$
> Find the largest and the smallest element of A.
- 10 and 2 for the given example.
> Find the k th smallest element in A.
- if $k=2$, the answer is 3 for the given example.
$>$ Find the largest gap g such that $x, y \in \mathrm{~A}$ and $g=|x-y|$.
- 8 for the given example.
> Find the longest increasing subsequence of A .
- $\{3,5,8,9\}$ for the given example.

Iterative complete search

Iterative complete search - Loops

, UVa 725 - Division

- Find two 5-digits number s.t. $\rightarrow \boldsymbol{a b c d e} / \boldsymbol{f} \boldsymbol{g h i j}=N$.
- abcdefghij must be all different, $2 \leq N \leq 79$.
> Iterative complete search solution (nested loops):
- Try all possible $\boldsymbol{f} \boldsymbol{g h i j}$ (one loop).
- Obtain abcde from $\boldsymbol{f} \boldsymbol{g h i j} \times \boldsymbol{N}$.
- Check if abcdefghij are all different (another loop).
> More challenging variants:
- 2-3-4-… $-K$ nested loops
- Some pruning are possible. > e.g. using "continue", "break", or if-statements

Iterative complete search - Nested loops

> Problems that are solvable with a single loop are usually considered easy!
> Problems which require doubly-nested iterations like UVa 725 - Division above are more challenging but they are not necessarily considered difficult.
, Competitive programmers must be comfortable writing code with more than two nested loops.
, UVa 441 - Lotto

- Generating all possible permutations.
- Can be solved with nested loops.

Iterative complete search - Loops + pruning

> UVa 11565 - Simple Equations

- The third equation $x^{2}+y^{2}+z^{2}=C$ is a good starting point.
- Assuming that C has the largest value of 10000 and y and z are one and two (x, y, z have to be distinct), then the possible range of values for $x \in[-100 \ldots 100]$.
- Use the same reasoning to get a similar range for y and z.
- Write a triply-nested iterative solution below that requires $201 \times 201 \times 201 \approx 8 M$ operations per test case.
- Can be solved with nested loops!

Analysis

, Short circuit AND was used to speed up the solution by enforcing a lightweight check on whether x, y, and z are all different before we check the three formulas.
> We can also use the second equation $x \times y \times z=B$ and assume that $x=y=z$ to obtain $x \times x \times x<B$ or $x<$ $\sqrt[3]{B}$.

- The new range of $x \in[-22 \ldots 22]$.
, We can also prune the search space by using if statements to execute only some of the (inner) loops, or use break and/or continue statements to stop/skip loops.
> Try UVa 11571 - Simple Equations - Extreme!!

Iterative complete search - Permutations

> UVa 11742 - Social Constraints

- There are $0<\boldsymbol{n} \leq 8$ movie goers.
- They will sit in the front row with \boldsymbol{n} consecutive open seats.
- There are $0 \leq \boldsymbol{m} \leq 20$ seating constraints among them, i.e. \boldsymbol{a} and \boldsymbol{b} must be at most (or at least) \boldsymbol{c} seats apart.
- How many possible seating arrangements are there?
> Iterative complete search solution (permutations):
- Set counter=0 and then try all possible \boldsymbol{n} ! permutations.
- Increase counter if a permutation satisfies all \boldsymbol{m} constraints.
- Output the final value of counter.

Code

\#include <algorithm> // next_permutation is inside this C++ STL // the main routine int $\mathrm{i}, \mathrm{n}=8, \mathrm{p}[8]=\{0,1,2,3,4,5,6,7\} ; / /$ the first permutation do \{
// try all possible $O(n!)$ permutations, the largest input $8!=40320$
// check the given social constraint based on ' p ' in $O(m)$
\} // the overall time complexity is thus $O(m$ * $n!)$
while (next_permutation(p, $p+n$)); // this is inside C++ STL <algorithm>

Iterative complete search - Subsets

> UVa 12455 - Bars
> We can try all $2 n$ possible subsets of integers, sum the selected integers for each subset in $O(n)$, and see if the sum of the selected integers equals to X
> The overall time complexity is thus $O(n \times 2 n)$.

- For the largest test case when $n=20$, this is just $20 \times 220 \approx$ 21M.
- This is 'large' but still viable (for reason described below).
> An easy solution is to use the binary representation of integers from 0 to $2 n-1$ to describe all possible subsets.
- Bit manipulation operations are (very) fast, the required $21 M$ operations for the largest test case are still doable in under a second.

Iterative complete search - Subsets

> UVa 12346 - Water Gate Management

- A dam has $1 \leq \boldsymbol{n} \leq 20$ water gates to let out water when necessary, each water gate has flow rate and damage cost.
- Your task is to manage the opening of the water gates in order to get rid of at least the specified total flow rate condition that the total damage cost is minimized!
> Iterative complete search solution (subsets):
- Try all possible $2 \boldsymbol{n}$ subsets of water gates to be opened.
- For each subset, check if it has sufficient flow rate:
> If it is, check if the total damage cost of this subset is smaller than the overall minimum damage cost so far.
> - If it is, update the overall minimum damage cost so far.
- Output the minimum damage cost.

Recursive backtracking

N Queens, from easy to (very) hard

Recursive backtracking

, UVa 750-8 Queens Chess Problem

- Put 8 queens in 8 x8 Chessboard.
- No queen can attack other queens.
> Naïve ways (Time Limit Exceeded)
- Choose 8 out of 64 cells.
$-C_{8}^{64}=4,426,165,368$ possibilities!

> Insight 1: Put one queen in each column
$-8^{8}=16,777,216$ possibilities.

Recursive backtracking

> Better way, recursive backtracking

- Insight 2: all-different constraint for the rows too
> We put one queen in each column AND each row.
> Finding a valid permutation out of 8! possible permutations.
> Search space goes down from $8^{8} \cong 17 M$ to $8!=40320$!
- Insight 3: main diagonal and secondary diagonal check:
> Another way to prune the search space.
> Queen $A(i, j)$ attacks Queen $B(k, l)$ iff $a b s(i-k)=a b s(j-l)$.
> Scrutinize the sample code of recursive backtracking!

Is that the best n-Queens solution?

> Maybe not!
> See UVa 11195 - Another n-Queen Problem

- Several cells are forbidden
, Do this helps?
> n can now be as large as $n=14 ?$?
- How to run 14 ! algorithm in a few seconds?

Speeding up diagonal checks

> This check is slow:

```
bool place(int r, int c) {
    for(int prev = 0; prev < c; prev++) // check previously placed queens
        if(rw[prev] == r || (abs(rw[prev] - r) == abs(prev - c)))
            return false; // share same row or same diagonal -> infeasible
    return true;
}
```

> We can speed up this part by using $2 \times n-1$ boolean arrays (or bitset) to test if a certain left/right diagonal can be used.

Speeding up diagonal checks

> The queen function takes three parameters, row, 1d, rd representing the forbidden places of current row, left diagonal and right diagonal respectively.
, The row | 1d | rd combines all invalid positions.

- ~ is the boolean not operation which gives the valid position.
- p\&-pos equals to the right-most one. i.e. $-p o s=\sim p o s+1$

State-space search

UVa 11212 - Editing a book

> Given n equal-length paragraphs numbered from 1 to n.
> Arrange them in the order of $1,2, \ldots, n$
> With the help of a clipboard, you can press Ctrl-X (cut) and Ctrl-V (paste) several times.

- You cannot cut twice before pasting, but you can cut several contiguous paragraphs at the same time - they'll be pasted in order.
> The question: What is the minimum number of steps required?
> Example 1: In order to make $\{2,4,(1), 5,3,6\}$ sorted, you can
- Cut 1 and paste it before $2 \rightarrow\{1,2,4,5,(3), 6\}$
- then cut 3 and paste it before $4 \rightarrow\{1,2,3,4,5,6\}$.
> Example 2: In order to make $\{(3,4,5), 1,2\}$ sorted, you can
- $\operatorname{Cut}\{3,4,5\}$ and paste it after $\{1,2\} \rightarrow\{1,2,3,4,5\}$
- or cut $\{1,2\}$ and paste it before $\{3,4,5\} \rightarrow\{1,2,3,4,5\}$

Loose upper bound

> Answer: k - 1

- Where k is the number of paragraphs initially the wrong positions.
> Trivial but wrong algorithm:
- Cut a paragraph that is in the wrong position.
- Paste that paragraph in the correct position.
- After k - 1 such cut-paste, we will have a sorted paragraph.
> The last wrong position will be in the correct position at this stage
- But this may not be the shortest way.
> • Examples:
- $\{(3), 2,1\} \rightarrow\{(2), 1,3\} \rightarrow\{1,2,3\} \rightarrow 2$ steps
- $\{(5), 4,3,2,1\} \rightarrow\{(4), 3,2,1,5\} \rightarrow\{(3), 2,1,4,5\} \rightarrow$ $\{(2), 1,3,4,5\} \rightarrow\{1,2,3,4,5\} \rightarrow 4$ steps

The correct answer

> $\{3,2,1\}$

- Answer: 2 steps, e.g.
$>\{(3), 2,1\} \rightarrow\{(2), 1,3\} \rightarrow\{1,2,3\}$, or
$>\{3,2,(1)\} \rightarrow\{1,(3), 2,\} \rightarrow\{1,2,3\}$
> $\{5,4,3,2,1\}$
- Answer: Only 3 steps, e.g.

$$
>\{5,4,(3,2), 1\} \rightarrow\{\mathbf{3},(2,5), 4,1\} \rightarrow\{3,4,(1,2), 5\} \rightarrow\{1,2,3,4,5\}
$$

> How about $\{5,4,9,8,7,3,2,1,6\}$?

- Answer: 4, but very hard to compute manually.
> How about $\{9,8,7,6,5,4,3,2,1\}$?
- Answer: 5, but very hard to compute manually.

Some analysis

> There are at most n ! permutations of paragraphs

- With maximum $n=9$, this is $9!=362880$.
- The number of vertices is not that big actually.
> Given a permutation of length n (a vertex)
- There are C_{2}^{n} possible cutting points (index $i, j \in[1 . . n]$)
- There are n possible pasting points (index $k \in[1 . .(n-(j-i+$ 1))])
- Therefore, for each vertex, there are about $O\left(n^{3}\right)$ branches.
> The worst case behavior if we run a single BFS on this State-Space graph is: $O(V+E)=O\left(n!+n!\times n^{3}\right)=$ $O\left(n!\times n^{3}\right)$.
- With $n=9$, this is $9!\times 93=264539520 \cong 265 M$
- TLE (or maybe MLE...)!

Possible solution

> Iterative deepening A* (IDA*)
> Prune condition: $3 d+h>3$ maxd

- 3*depth + current height should be smaller than 3 * max depth

Divide and conquer

Divide and conquer

> A problem-solving paradigm in which a problem is made simpler by 'dividing' it into smaller parts and then conquering each part.

1. Divide the original problem into sub-problems-usually by half or nearly half.
2. Find (sub)-solutions for each of these sub-problems-which are now easier.
3. If needed, combine the sub-solutions to get a complete solution for the main problem.

Binary search - Ordinary usage

> The canonical usage of Binary Search is searching for an item in a static sorted array.

- We check the middle of the sorted array to determine if it contains what we are looking for.
- If it is or there are no more items to consider, stop.
- Otherwise, we can decide whether the answer is to the left or right of the middle element and continue searching.
> There are built-in library routines for this algorithm, e.g. the C++ STL algorithm: : lower_bound (and the Java Collections.binarySearch).

Binary search - Uncommon data structures

> Thailand ICPC National Contest 2009. 'My Ancestor’
> Given a weighted (family) tree of up to $N \leq 80 K$ vertices with a special trait: Vertex values are increasing from root to leaves. Find the ancestor vertex closest to the root from a starting vertex v that has weight at least P. There are up to $Q \leq 20 \mathrm{~K}$ such offline queries.
> If $P=4$, then the answer is the vertex labeled with ' B ' with value 5 as it is the ancestor of vertex v that is closest to root ' A ' and has a value of ≥ 4. If $P=7$, then the answer is ' C ', with value 7 . If $P \geq 9$, there is no answer.

Binary search - Uncommon data structures

Binary search - Uncommon data structures

> The naive solution is to perform a linear $O(N)$ scan per query
> As there are Q queries, this approach runs in $O(Q N)$ (the input tree can be a sorted linked list, or rope, of length N) and will get a TLE as $N \leq 80 K$ and $Q \leq 20 K$.

Binary search - Uncommon data structures

> A better solution is to store all the 20 K queries!
> Traverse the tree just once starting from the root using the $O(N)$ preorder tree traversal algorithm.
> The array is always sorted because the vertices along the root-to-current-vertex path have increasing weights.

Binary search - Uncommon data structures

> During the preorder traversal, when we land on a queried vertex, we can perform a $O(\log N)$ binary search (to be precise: lower_bound) on the partial root-to-current-vertex weight array to obtain the ancestor closest to the root with a value of at least P, recording these solutions.
> Finally, we can perform a simple $O(Q)$ iteration to output the results.
> The overall time complexity of this approach is $O(Q \log N)$.

Binary search - Bisection method

> Used to find the root of a function that may be difficult to compute directly.
> Bisection method only requires $O\left(\log _{2}(b-a) / \epsilon\right)$ iterations to get an answer that is good enough.

Binary search the answer

> UVa 11935 - Through the desert

- If we know the jeep's fuel tank capacity, then this problem is just a simulation problem.
- The problem is that we do not know the jeep's fuel tank capacity - this is the value that we are looking for.
- From the problem description, we can compute that the range of possible answers is between [0.000.. 10000.000], with 3 digits of precision. However, there are 10 M such possibilities. (TLE!)
- Binary search!
> Setting your jeep's fuel tank capacity to any value between [0.000.. $X-0.001$] will not bring your jeep safely to the goal event.
> On the other hand, setting your jeep fuel tank volume to any value between [$X . .10000 .000$] will bring your jeep safely to the goal event, usually with some fuel left.

Greedy

Greedy

> An algorithm is said to be greedy if it makes the locally optimal choice at each step with the hope of eventually reaching the globally optimal solution.
> Two properties in order for a greedy algorithm to work:

- It has optimal sub-structures.
- It has the greedy property (difficult to prove in time-critical contest environment!).

Coin change - The greedy version

> Given a target amount V cents and a list of denominations of n coins, i.e. we have coinvalue[i] (in cents) for coin types $i \in[0 . . n-1]$, what is the minimum number of coins that we must use to represent amount V ?

- If $n=4$, coinvalue $=\{25,10,5,1\}$ cents., and we want to represent $V=42$ cents, we can use this Greedy algorithm:
> Select the largest coin denomination which is not greater than the remaining amount.
> 42-25 = $17 \rightarrow 17-10=7 \rightarrow 7-5=2 \rightarrow 2-1=1 \rightarrow 1-1=0$, a total of 5 coins.

Coin change - The greedy version

, The problem above has the two ingredients required for a successful greedy algorithm:

- It has optimal sub-structures.
- It has the greedy property.

Coin change - The greedy version

> This greedy algorithm does not work for all sets of coin denominations.
> Consider $\{4,3,1\}$ cents.

- To make 6 cents with that set, a greedy algorithm would choose 3 coins $\{4,1,1\}$ instead of the optimal solution that uses 2 coins $\{3,3\}$.

Try these problems

> UVa 410 - Station Balance (Load Balancing)
> UVa 10382 - Watering Grass (Interval Covering)
> UVa 11292 - Dragon of Loowater (Sort the Input First)

Meet in the middle

Bidirectional search

More search algorithms...

> Depth Limited Search (DLS) + Iterative DLS
> A* / Iterative Deepening A* (IDA*) / Memory Bounded A*
> Branch and Bound ($\mathrm{B} \& \mathrm{~B}$)

Remarks

> The biggest gamble in writing a Complete Search solution is whether it will or will not be able to pass the time limit.
> Tweaking `critical code' may not be as efficient.

- A saying is that every program spends most of its time in only about 10% of its code - the critical code.

Remarks

> Tip 1: Filtering versus generating

- Programs that examine lots of (if not all) candidate solutions and choose the ones that are correct (or remove the incorrect ones) are called 'filters'.
- Programs that gradually build the solutions and immediately prune invalid partial solutions are called 'generators'.
- Generally, filters are easier to code but run slower, given that it is usually far more difficult to prune more of the search space iteratively.
- Do the math (complexity analysis) to see if a filter is good enough or if you need to create a generator.

Remarks

> Tip 2: Prune infeasible/inferior search space early

- When generating solutions using recursive backtracking (see the tip no 1 above), we may encounter a partial solution that will never lead to a full solution.
- We can prune the search there and explore other parts of the search space.
- In other problems, we may be able to compute the 'potential worth' of a partial (and still valid) solution.
> A^{*} algorithm.

Remarks

> Tip 3: Utilize symmetries

- Some problems have symmetries and we should try to exploit symmetries to reduce execution time!
- In the 8 -queens problem, there are 92 solutions but there are only 12 unique (or fundamental/canonical) solutions as there are rotational and line symmetries in the problem.
- It is true that sometimes considering symmetries can actually complicate the code.

Remarks

> Tip 4: Pre-computation a.k.a. Pre-calculation

- Generate tables or other data structures that accelerate the lookup of a result prior to the execution of the program itself.
- However, this technique can rarely be used for recent programming contest problems.

Remarks

> Tip 5: Try solving the problem backwards

- Some contest problems look far easier when they are solved 'backwards' (from a less obvious angle) than when they are solved using a frontal attack.
> UVa 10360 - Rat attack
- Imagine a 2D array (up to 1024×1024) containing rats. There are $n \leq 20000$ rats spread across the cells.
- Determine which cell (x, y) should be gas-bombed so that the number of rats killed in a square box $(x-d, y-d)$ to $(x+$ $d, y+d)$ is maximized. The value d is the power of the gasbomb ($d \leq 50$),

First try

, Bomb each of the 1024^{2} cells and select the most effective location.
> For each bombed cell (x, y), we can perform an $O\left(d^{2}\right)$ scan to count the number of rats killed within the square bombing radius.
> For the worst case, when the array has size 1024^{2} and $d=50$, this takes $1024^{2} \times 502=2621 M$ operations.

Inverse problem

> Another option is to attack this problem backwards:

- Create an array int ki11ed[1024][1024].
- For each rat population at coordinate (x, y), add it to killed[i][j], where $|i-x| \leq d$ and $|j-y| \leq d$.
- This is because if a bomb was placed at (i, j), the rats at coordinate (x, y) will be killed.
- This pre-processing takes $O\left(n \times d^{2}\right)$ operations.
- To determine the most optimal bombing position, find the coordinate of the highest entry in array killed, which can be done in 1024^{2} operations.
- This approach only requires $20000 \times 50^{2}+1024^{2} \cong$ 51 M operations for the worst test case ($n=20000, d=50$)
- ≈ 51 times faster than the frontal attack!

Remarks

> Tip 6: Optimizing your source code
> Understanding computer hardware and how it is organized, especially the I/O, memory, and cache behavior, can help you design better code.
> Some examples (not exhaustive) are shown below:

- A biased opinion: Use C++ instead of Java.
> An algorithm implemented using C++ usually runs faster than the one implemented in Java in many online judges, including UVa.
> Some programming contests give Java users extra time to account for the difference in performance.
- For C/C++ users, use the faster C-style scanf/printf rather than Cin/cout. For
- Java users, use the faster BufferedReader/Bufferedwriter classes.

Remarks

- Use the expected $O(n \log n)$ but cache-friendly quicksort in C++ STL algorithm: : sort (part of 'introsort') rather than the true $O(n \log n)$ but non cache-friendly heapsort.
- Access a 2D array in a row major fashion (row by row) rather than in a column major fashion
- Bit manipulation on the built-in integer data types (up to the 64bit integer) is more efficient than index manipulation in an array of Booleans.

Remarks

- Use lower level data structures/types at all times if you do not need the extra functionality in the higher level (or larger) ones.
- For Java, use the faster ArrayList (and StringBuilder) rather than Vector (and StringBuffer).
> Java Vectors and StringBuffers are thread safe but this feature is not needed in competitive programming.
- Declare most data structures (especially the bulky ones, e.g. large arrays) once by placing them in global scope.

Remarks

- When you have the option to write your code either iteratively or recursively, choose the iterative version.
> The iterative C++ STL next_permutation and iterative subset generation.
- Array access in (nested) loops can be slow.
- In $\mathrm{C} / \mathrm{C}++$, appropriate usage of macros or inline functions can reduce runtime.
- For C++ users: Using C-style character arrays will yield faster execution than when using the $\mathrm{C}++$ STL string.
- For Java users: Be careful with String manipulation as Java String objects are immutable.

Remarks

> Tip 7: Use better data structures \& algorithms

- Using better data structures and algorithms will always outperform any optimizations.

