
Introduction to Competitive
Programming
Instructor: William W.Y. Hsu

CONTENTS

› Complete search

› Iterative: (nested) loops,
permutations, subsets

› Recursive backtracking (N queens),
from easy to (very) hard

› State‐space search

› Meet in the middle (bidirectional
search)

› Some tips to speed up your
solution

› Divide and conquer (D&C)
algorithms

› Greedy algorithms

11/18/2019 2PROGRAMMING IN C

Before we begin…

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 3

› Given an array 𝐴 containing 𝑛 ≤ 10𝐾 small integers ≤
100𝐾
– 𝐴 = {10, 7, 3, 5, 8, 2, 9}, 𝑛 = 7

› Find the largest and the smallest element of A.
– 10 and 2 for the given example.

› Find the kth smallest element in A.
– if k = 2, the answer is 3 for the given example.

› Find the largest gap g such that x, y ∈ A and g = |x − y|.
– 8 for the given example.

› Find the longest increasing subsequence of A.
– {3, 5, 8, 9} for the given example.

Analyzing practice

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 4

Iterative complete search

11/18/2019 5PROGRAMMING IN C

› UVa 725 – Division

– Find two 5‐digits number s.t. → 𝒂𝒃𝒄𝒅𝒆 / 𝒇𝒈𝒉𝒊𝒋 = 𝑁.

– 𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋 must be all different, 2 ≤ 𝑁 ≤ 79.

› Iterative complete search solution (nested loops):

– Try all possible 𝒇𝒈𝒉𝒊𝒋 (one loop).

– Obtain 𝒂𝒃𝒄𝒅𝒆 from 𝒇𝒈𝒉𝒊𝒋 × 𝑵.

– Check if 𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋 are all different (another loop).

› More challenging variants:

– 2‐ 3‐ 4‐⋯ ‐𝐾 nested loops

– Some pruning are possible.

› e.g. using “continue”, “break”, or if‐statements

Iterative complete search - Loops

11/18/2019 PROGRAMMING IN C 6

› Problems that are solvable with a single loop are usually
considered easy!

› Problems which require doubly-nested iterations like
UVa 725 - Division above are more challenging but they
are not necessarily considered difficult.

› Competitive programmers must be comfortable writing
code with more than two nested loops.

› UVa 441 – Lotto

– Generating all possible permutations.

– Can be solved with nested loops.

Iterative complete search – Nested loops

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 7

› UVa 11565 - Simple Equations

– The third equation 𝑥2 + 𝑦2 + 𝑧2 = 𝐶 is a good starting point.

– Assuming that 𝐶 has the largest value of 10000 and 𝑦 and 𝑧 are
one and two (𝑥, 𝑦, 𝑧 have to be distinct), then the possible range
of values for 𝑥 ∈ [−100 . . . 100].

– Use the same reasoning to get a similar range for 𝑦 and 𝑧.

– Write a triply-nested iterative solution below that requires
201 × 201 × 201 ≈ 8𝑀 operations per test case.

– Can be solved with nested loops!

Iterative complete search – Loops +
pruning

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 9

› Short circuit AND was used to speed up the solution by
enforcing a lightweight check on whether 𝑥, 𝑦, and 𝑧 are
all different before we check the three formulas.

› We can also use the second equation 𝑥 × 𝑦 × 𝑧 = 𝐵 and
assume that 𝑥 = 𝑦 = 𝑧 to obtain 𝑥 × 𝑥 × 𝑥 < 𝐵 or 𝑥 <
3
𝐵.

– The new range of 𝑥 ∈ [−22 . . . 22].

› We can also prune the search space by using if
statements to execute only some of the (inner) loops, or
use break and/or continue statements to stop/skip
loops.

› Try UVa 11571 - Simple Equations - Extreme!!

Analysis

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 11

› UVa 11742 – Social Constraints

– There are 0 < 𝒏 ≤ 8 movie goers.

– They will sit in the front row with 𝒏 consecutive open seats.

– There are 0 ≤ 𝒎 ≤ 20 seating constraints among them, i.e. 𝒂
and 𝒃 must be at most (or at least) 𝒄 seats apart.

– How many possible seating arrangements are there?

› Iterative complete search solution (permutations):

– Set counter=0 and then try all possible 𝒏! permutations.

– Increase counter if a permutation satisfies all 𝒎 constraints.

– Output the final value of counter.

Iterative complete search - Permutations

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 13

#include <algorithm> // next_permutation is inside this C++ STL

// the main routine

int i, n = 8, p[8] = {0, 1, 2, 3, 4, 5, 6, 7}; // the first permutation

do {

// try all possible O(n!) permutations, the largest input 8! = 40320

...

// check the given social constraint based on ‘p’ in O(m)

} // the overall time complexity is thus O(m * n!)

while (next_permutation(p, p + n)); // this is inside C++ STL <algorithm>

Code

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 14

› UVa 12455 – Bars

› We can try all 2𝑛 possible subsets of integers, sum the
selected integers for each subset in 𝑂(𝑛), and see if the
sum of the selected integers equals to 𝑋

› The overall time complexity is thus 𝑂(𝑛 × 2𝑛).
– For the largest test case when 𝑛 = 20, this is just 20 × 220 ≈

21𝑀.

– This is ‘large’ but still viable (for reason described below).

› An easy solution is to use the binary representation of
integers from 0 to 2𝑛 − 1 to describe all possible
subsets.
– Bit manipulation operations are (very) fast, the required 21M

operations for the largest test case are still doable in under a
second.

Iterative complete search - Subsets

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 15

› UVa 12346 – Water Gate Management

– A dam has 1 ≤ 𝒏 ≤ 20 water gates to let out water when
necessary, each water gate has flow rate and damage cost.

– Your task is to manage the opening of the water gates in order
to get rid of at least the specified total flow rate condition that
the total damage cost is minimized!

› Iterative complete search solution (subsets):

– Try all possible 𝟐𝒏 subsets of water gates to be opened.

– For each subset, check if it has sufficient flow rate:

› If it is, check if the total damage cost of this subset is smaller than
the overall minimum damage cost so far.

› – If it is, update the overall minimum damage cost so far.

– Output the minimum damage cost.

Iterative complete search - Subsets

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 17

Recursive backtracking
𝑁 Queens, from easy to (very) hard

11/18/2019 18PROGRAMMING IN C

› UVa 750 – 8 Queens Chess Problem

– Put 8 queens in 8x8 Chessboard.

– No queen can attack other queens.

› Naïve ways (Time Limit Exceeded)

– Choose 8 out of 64 cells.

– 𝐶8
64 = 4,426,165,368 possibilities!

› Insight 1: Put one queen in each column

– 88 = 16,777,216 possibilities.

Recursive backtracking

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 19

› Better way, recursive backtracking

– Insight 2: all‐different constraint for the rows too

› We put one queen in each column AND each row.

› Finding a valid permutation out of 𝟖! possible permutations.

› Search space goes down from 88 ≅ 17𝑀 to 8! = 40320!

– Insight 3: main diagonal and secondary diagonal check:

› Another way to prune the search space.

› Queen 𝐴(𝑖, 𝑗) attacks Queen 𝐵(𝑘, 𝑙) iff 𝑎𝑏𝑠(𝑖 − 𝑘) = 𝑎𝑏𝑠(𝑗 − 𝑙).

› Scrutinize the sample code of recursive backtracking!

Recursive backtracking

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 20

› Maybe not!

› See UVa 11195 – Another n‐Queen Problem

– Several cells are forbidden

› Do this helps?

› 𝑛 can now be as large as 𝑛 = 14??

– How to run 14! algorithm in a few seconds?

Is that the best 𝑛‐Queens solution?

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 22

› This check is slow:
bool place(int r, int c) {

for(int prev = 0; prev < c; prev++) // check previously placed queens

if(rw[prev] == r || (abs(rw[prev] - r) == abs(prev - c)))

return false; // share same row or same diagonal -> infeasible

return true;

}

› We can speed up this part by using 2 × 𝑛 − 1 boolean
arrays (or bitset) to test if a certain left/right diagonal can
be used.

Speeding up diagonal checks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 23

› The queen function takes three parameters, row, ld,
rd representing the forbidden places of current row,
left diagonal and right diagonal respectively.

› The row | ld | rd combines all invalid positions.

– ~ is the boolean not operation which gives the valid
position.

– p&-pos equals to the right-most one. i.e. -pos=~pos+1

Speeding up diagonal checks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 24

State-space search

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 25

› Given 𝑛 equal‐length paragraphs numbered from 1 to 𝑛.

› Arrange them in the order of 1, 2, … , 𝑛

› With the help of a clipboard, you can press Ctrl‐X (cut) and
Ctrl‐V (paste) several times.
– You cannot cut twice before pasting, but you can cut several

contiguous paragraphs at the same time ‐ they'll be pasted in order.

› The question: What is the minimum number of steps required?

› Example 1: In order to make {2, 4, (1), 5, 3, 6} sorted, you
can
– Cut 1 and paste it before 2→{1, 2, 4, 5, (3), 6}

– then cut 3 and paste it before 4 →{1, 2, 3, 4, 5, 6}.

› Example 2: In order to make {(3, 4, 5), 1, 2} sorted, you can
– Cut {3, 4, 5} and paste it after {1, 2} →{1, 2, 3, 4, 5}

– or cut {1, 2} and paste it before {3, 4, 5} →{1, 2, 3, 4, 5}

UVa 11212 – Editing a book

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 26

› Answer: 𝑘‐ 1
– Where 𝑘 is the number of paragraphs initially the wrong

positions.

› Trivial but wrong algorithm:

– Cut a paragraph that is in the wrong position.

– Paste that paragraph in the correct position.

– After 𝑘‐ 1 such cut‐paste, we will have a sorted paragraph.

› The last wrong position will be in the correct position at this stage

– But this may not be the shortest way.

› • Examples:

– {(3), 2, 1}→{(2), 1, 3}→{1, 2, 3}→2 steps

– {(5), 4, 3, 2, 1}→{(4), 3, 2, 1, 5}→{(3), 2, 1, 4, 5}→
{(2), 1, 3, 4, 5}→{1, 2, 3, 4, 5}→4 steps

Loose upper bound

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 27

› {3, 2, 1}

– Answer: 2 steps, e.g.

› {(3), 2, 1}→{(2), 1, 3}→{1, 2, 3}, or

› {3, 2, (1)}→{1, (3), 2,}→{1, 2, 3}

› {5, 4, 3, 2, 1}

– Answer: Only 3 steps, e.g.

› {5, 4, (3, 2), 1}→{3, (2, 5), 4, 1}→{3, 4, (1, 2), 5}→{1, 2, 3, 4, 5}

› How about {5, 4, 9, 8, 7, 3, 2, 1, 6}?

– Answer: 4, but very hard to compute manually.

› How about {9, 8, 7, 6, 5, 4, 3, 2, 1}?

– Answer: 5, but very hard to compute manually.

The correct answer

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 28

› There are at most 𝑛! permutations of paragraphs
– With maximum 𝑛 = 9, this is 9! = 362880.

– The number of vertices is not that big actually.

› Given a permutation of length n (a vertex)
– There are 𝐶2

𝑛 possible cutting points (index 𝑖, 𝑗 ∈ [1. . 𝑛])

– There are n possible pasting points (index 𝑘 ∈ [1. . (𝑛‐ (𝑗 − 𝑖 +
1))])

– Therefore, for each vertex, there are about 𝑂(𝑛3) branches.

› The worst case behavior if we run a single BFS on this
State‐Space graph is: 𝑂(𝑉 + 𝐸) = 𝑂(𝑛! + 𝑛! × 𝑛3) =
𝑂(𝑛! × 𝑛3).
– With 𝑛 = 9, this is 9! × 93 = 264539520 ≅ 265 𝑀

– TLE (or maybe MLE…)!

Some analysis

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 29

› Iterative deepening A* (IDA*)

› Prune condition: 3𝑑 + ℎ > 3maxd
– 3*depth + current height should be smaller than 3 * max depth

Possible solution

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 30

Divide and conquer

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 31

› A problem-solving paradigm in which a problem is
made simpler by ‘dividing’ it into smaller parts and then
conquering each part.

1. Divide the original problem into sub-problems—usually by
half or nearly half.

2. Find (sub)-solutions for each of these sub-problems—which
are now easier.

3. If needed, combine the sub-solutions to get a complete
solution for the main problem.

Divide and conquer

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 32

› The canonical usage of Binary Search is searching for
an item in a static sorted array.

– We check the middle of the sorted array to determine if it
contains what we are looking for.

– If it is or there are no more items to consider, stop.

– Otherwise, we can decide whether the answer is to the left or
right of the middle element and continue searching.

› There are built-in library routines for this algorithm, e.g.
the C++ STL algorithm::lower_bound (and the
Java Collections.binarySearch).

Binary search – Ordinary usage

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 33

› Thailand ICPC National Contest 2009. ‘My Ancestor’

› Given a weighted (family) tree of up to 𝑁 ≤ 80𝐾
vertices with a special trait: Vertex values are increasing
from root to leaves. Find the ancestor vertex closest to
the root from a starting vertex v that has weight at least
𝑃. There are up to 𝑄 ≤ 20𝐾 such offline queries.

› If 𝑃 = 4, then the answer is the vertex labeled with ‘B’
with value 5 as it is the ancestor of vertex v that is
closest to root ‘A’ and has a value of ≥ 4. If 𝑃 = 7, then
the answer is ‘C’, with value 7. If 𝑃 ≥ 9, there is no
answer.

Binary search - Uncommon data structures

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 34

Binary search - Uncommon data structures

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 35

› The naive solution is to perform a linear 𝑂(𝑁) scan per
query

› As there are Q queries, this approach runs in 𝑂(𝑄𝑁)
(the input tree can be a sorted linked list, or rope, of
length 𝑁) and will get a TLE as 𝑁 ≤ 80𝐾 and 𝑄 ≤ 20𝐾.

Binary search - Uncommon data structures

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 36

› A better solution is to store all the 20K queries!

› Traverse the tree just once starting from the root using
the 𝑂(𝑁) preorder tree traversal algorithm.

› The array is always sorted because the vertices along the
root-to-current-vertex path have increasing weights.

Binary search - Uncommon data structures

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 37

› During the preorder traversal, when we land on a
queried vertex, we can perform a 𝑂(𝑙𝑜𝑔𝑁) binary
search (to be precise: lower_bound) on the partial
root-to-current-vertex weight array to obtain the
ancestor closest to the root with a value of at least P,
recording these solutions.

› Finally, we can perform a simple 𝑂(𝑄) iteration to
output the results.

› The overall time complexity of this approach is
𝑂(𝑄𝑙𝑜𝑔𝑁).

Binary search - Uncommon data structures

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 38

› Used to find the root of a function that may be difficult
to compute directly.

› Bisection method only requires
𝑂(log2(𝑏 − 𝑎)/𝜖) iterations to get an answer that is
good enough.

Binary search - Bisection method

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 39

› UVa 11935 - Through the desert

– If we know the jeep’s fuel tank capacity, then this problem is
just a simulation problem.

– The problem is that we do not know the jeep’s fuel tank
capacity—this is the value that we are looking for.

– From the problem description, we can compute that the range of
possible answers is between [0.000. . 10000.000], with 3 digits
of precision. However, there are 10𝑀 such possibilities. (TLE!)

– Binary search!

› Setting your jeep’s fuel tank capacity to any value between
[0.000. . 𝑋 − 0.001] will not bring your jeep safely to the goal
event.

› On the other hand, setting your jeep fuel tank volume to any value
between [𝑋. . 10000.000] will bring your jeep safely to the goal
event, usually with some fuel left.

Binary search the answer

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 40

Greedy

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 42

› An algorithm is said to be greedy if it makes the locally
optimal choice at each step with the hope of eventually
reaching the globally optimal solution.

› Two properties in order for a greedy algorithm to work:

– It has optimal sub-structures.

– It has the greedy property (difficult to prove in time-critical
contest environment!).

Greedy

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 43

› Given a target amount 𝑉 cents and a list of
denominations of 𝑛 coins, i.e. we have coinValue[i]
(in cents) for coin types 𝑖 ∈ [0. . 𝑛 − 1], what is the
minimum number of coins that we must use to represent
amount 𝑉?

– If 𝑛 = 4, coinValue={25, 10, 5, 1} cents6, and we want to
represent 𝑉 = 42 cents, we can use this Greedy algorithm:

› Select the largest coin denomination which is not greater than the
remaining amount.

› 42-25 = 17 → 17-10 = 7 → 7-5 = 2 → 2-1 = 1 → 1-1 = 0, a total
of 5 coins.

Coin change - The greedy version

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 44

› The problem above has the two ingredients required for
a successful greedy algorithm:

– It has optimal sub-structures.

– It has the greedy property.

Coin change - The greedy version

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 45

› This greedy algorithm does not work for all sets of coin
denominations.

› Consider {4, 3, 1} cents.

– To make 6 cents with that set, a greedy algorithm would choose
3 coins {4, 1, 1} instead of the optimal solution that uses 2 coins
{3, 3}.

Coin change - The greedy version

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 46

› UVa 410 - Station Balance (Load Balancing)

› UVa 10382 - Watering Grass (Interval Covering)

› UVa 11292 - Dragon of Loowater (Sort the Input First)

Try these problems

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 47

Meet in the middle
Bidirectional search

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 48

› Depth Limited Search (DLS) + Iterative DLS

› A* / Iterative Deepening A* (IDA*) / Memory Bounded
A*

› Branch and Bound (B&B)

More search algorithms…

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 49

› The biggest gamble in writing a Complete Search
solution is whether it will or will not be able to pass the
time limit.

› Tweaking `critical code’ may not be as efficient.

– A saying is that every program spends most of its time in only
about 10% of its code — the critical code.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 50

› Tip 1: Filtering versus generating

– Programs that examine lots of (if not all) candidate solutions
and choose the ones that are correct (or remove the incorrect
ones) are called ‘filters’.

– Programs that gradually build the solutions and immediately
prune invalid partial solutions are called ‘generators’.

– Generally, filters are easier to code but run slower, given that it
is usually far more difficult to prune more of the search space
iteratively.

– Do the math (complexity analysis) to see if a filter is good
enough or if you need to create a generator.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 51

› Tip 2: Prune infeasible/inferior search space early

– When generating solutions using recursive backtracking (see the
tip no 1 above), we may encounter a partial solution that will
never lead to a full solution.

– We can prune the search there and explore other parts of the
search space.

– In other problems, we may be able to compute the ‘potential
worth’ of a partial (and still valid) solution.

› A* algorithm.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 52

› Tip 3: Utilize symmetries

– Some problems have symmetries and we should try to exploit
symmetries to reduce execution time!

– In the 8-queens problem, there are 92 solutions but there are
only 12 unique (or fundamental/canonical) solutions as there are
rotational and line symmetries in the problem.

– It is true that sometimes considering symmetries can actually
complicate the code.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 53

› Tip 4: Pre-computation a.k.a. Pre-calculation

– Generate tables or other data structures that accelerate the
lookup of a result prior to the execution of the program itself.

– However, this technique can rarely be used for recent
programming contest problems.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 54

› Tip 5: Try solving the problem backwards

– Some contest problems look far easier when they are solved
‘backwards’ (from a less obvious angle) than when they are
solved using a frontal attack.

› UVa 10360 - Rat attack

– Imagine a 2D array (up to 1024 × 1024) containing rats. There
are 𝑛 ≤ 20000 rats spread across the cells.

– Determine which cell (𝑥, 𝑦) should be gas-bombed so that the
number of rats killed in a square box (𝑥 − 𝑑, 𝑦 − 𝑑) to (𝑥 +
𝑑, 𝑦 + 𝑑) is maximized. The value d is the power of the gas-
bomb (𝑑 ≤ 50),

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 55

› Bomb each of the 10242 cells and select the most
effective location.

› For each bombed cell (𝑥, 𝑦), we can perform an 𝑂(𝑑2)
scan to count the number of rats killed within the square
bombing radius.

› For the worst case, when the array has size 10242 and
𝑑 = 50, this takes 10242 × 502 = 2621𝑀 operations.

First try

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 56

› Another option is to attack this problem backwards:

– Create an array int killed[1024][1024].

– For each rat population at coordinate (𝑥, 𝑦), add it to
killed[i][j], where |𝑖 − 𝑥| ≤ 𝑑 and |𝑗 − 𝑦| ≤ 𝑑.

– This is because if a bomb was placed at (𝑖, 𝑗), the rats at
coordinate (𝑥, 𝑦) will be killed.

– This pre-processing takes 𝑂(𝑛 × 𝑑2) operations.

– To determine the most optimal bombing position, find the
coordinate of the highest entry in array killed, which can be
done in 10242 operations.

– This approach only requires 20000 × 502 + 10242 ≅
51𝑀 operations for the worst test case (𝑛 = 20000, 𝑑 = 50)

– ≈ 51 times faster than the frontal attack!

Inverse problem

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 57

› Tip 6: Optimizing your source code

› Understanding computer hardware and how it is
organized, especially the I/O, memory, and cache
behavior, can help you design better code.

› Some examples (not exhaustive) are shown below:
– A biased opinion: Use C++ instead of Java.

› An algorithm implemented using C++ usually runs faster than the
one implemented in Java in many online judges, including UVa.

› Some programming contests give Java users extra time to account
for the difference in performance.

– For C/C++ users, use the faster C-style scanf/printf rather
than cin/cout. For

– Java users, use the faster
BufferedReader/BufferedWriter classes.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 58

– Use the expected 𝑂(𝑛log𝑛) but cache-friendly quicksort in C++
STL algorithm::sort (part of ‘introsort’) rather than the
true O(n log n) but non cache-friendly heapsort.

– Access a 2D array in a row major fashion (row by row) rather
than in a column major fashion

– Bit manipulation on the built-in integer data types (up to the 64-
bit integer) is more efficient than index manipulation in an
array of Booleans.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 59

– Use lower level data structures/types at all times if you do not
need the extra functionality in the higher level (or larger) ones.

– For Java, use the faster ArrayList (and StringBuilder)
rather than Vector (and StringBuffer).

› Java Vectors and StringBuffers are thread safe but this feature is
not needed in competitive programming.

– Declare most data structures (especially the bulky ones, e.g.
large arrays) once by placing them in global scope.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 60

– When you have the option to write your code either iteratively
or recursively, choose the iterative version.

› The iterative C++ STL next_permutation and iterative
subset generation.

– Array access in (nested) loops can be slow.

– In C/C++, appropriate usage of macros or inline functions can
reduce runtime.

– For C++ users: Using C-style character arrays will yield faster
execution than when using the C++ STL string.

– For Java users: Be careful with String manipulation as Java
String objects are immutable.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 61

› Tip 7: Use better data structures & algorithms

– Using better data structures and algorithms will always
outperform any optimizations.

Remarks

11/18/2019 INTRODUCTION TO COMPETITIVE PROGRAMMING 62

