An Introduction to
Computer Systems

David Vernon

A Computer

. takes input
. processes it according to stored instructions
. produces results as output

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

- Input: Data
. Instructions: Software, Programs

. Output: Information (numbersglords,

sounds, Images) 5

Copyright © 2007 David Ver ((AY

Types of Computer

Special Purpose
(embedded systems)

General Purpose
(user-programmable)

Pre-programmed

Can be adapted to
many situations

Watches

Traffic Signals

Personal Computers

W orkstations

Engine Management

Televisions

Mainframes

Supercomputers

Telephones

Navigation Devices

Data vs Information

. A . A

— your grade in the exam

2, 4,23, 30, 31, 36 -+ 2,4,23,30,31, 36
— Next week’s Lotto
numbers

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

. Codes

— Data and information can be represented as
electrical signals (e.g. Morse code)

— A code is a set of symbols (such as dots and
dashes in Morse code) that represents another set
of symbols,

» such as the letters of the alphabet,
» Or integers or real numbers,

» or light in an image,

» for the tone of a violin

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

. A circult Is an inter-connected set of

electronic components that perform a
function

. Integrated Circuits (ICs)

— Combinations of thousands of circuits built on tiny
pieces of silicon called chips

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

- Binary signal (two state signal)
— Data with two states
— off & on
— low voltage & high voltage
— Ov & 5v

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

. Bit
— Single Binary Digit
— Can have value 0 or 1, and nothing else

— A bit is the smallest possible unit of information in
a computer

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

. Groups of bits can represent data or @
Information

— 1 bit - 2 alternatives
— 2 bits - 4 alternatives
— 3 bits - 8 alternatives

— 4 bits - 16 alternatives y %
n bits - 2 alternativies % 2
8
8bits - 2 = 256 alternatives

a group of 8 bits Is called a byte \ &
7 4

Copyright © 2007 David Vernon (www.vernon.eu)

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

. Information System

— A system that takes data, stores and processes i,
and provides information as an output

— An IS Is a computer in use
— The amount of data can be vast

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

. Communication System

— Communication: the transfer of meaningful
Information
— Comprises
» a sender (transmitter)

» a channel over which to send the data
» a receiver

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

. Network

— Two and usually more
communication devices
connected together

— Many connection topologies

/—\

Ny P
RN

Copyright © 2007 David Vernon (www.vernon.eu)

Key Concepts

. Hardware

— The physical (electronic and mechanical) parts of
a computer or information system

. Software

— The programs that control the operation of the
computer system

Copyright © 2007 David Vernon (www.vernon.eu)

Components of Computer
Systems

Components of Computer Systems

- Keyboard

- Display

- System Unit
. Storage

« Printer

Copyright © 2007 David Vernon (www.vernon.eu

Key Components

- More Formally:
— Input
— Output
— Storage

— Processor a.

Copyright © 2007 David Ver ((AY

Input Systems ‘

. Keyboard '
» Most common input
device

Copyright © 2007 David Vernon (www.vernon.eu)

Input Systems

- Mouse

» Cursor manipulation
device

» Trackball

Copyright © 2007 David Vernon (www.vernon.eu)

Input Systems

. Touch Screens

!

P

Copyright © 2007 Davi

Input Systems

Copyright © 2007 David Vernon (www.vernon .eu)

Input Systems

Magnetic Ink
Character Recognition
(MICR)

BOB JONES 2048

DATE

PAYTOTHEORDEROF ___|§[]

DOLLARS

FIRST NATIONAL BANK

1200 2100 B&I: ?PPO0m IEHO?PEN" 2l2]

Copyright © 2007 David Vernon (www.vernon.eu)

Input Systems

- Bar Code Readers

Input Systems

Optical Character Recognition
systems

Book readers for the blind
Automated input of text

Can do typewritten text and
handwritten block capital

Problems with cursive handwriting
recognition

Copyright © 2007 David Vernon (www.vernon.eu)

Input Systems

- Sensors
— Digital thermometers
— Accelerometers
— Strain gauges (weighing scales)

—gZClib

Copyright © 2007 David Vernon (www.vernon.eu)

Input Systems

- Camera Systems
— Surveillance and monitoring
— Visual inspection
— Robot guidance
— Video conferencing

Copyright © 2007 David Vernon (www.vernon.eu)

Input Systems

- Voice
— Voice recognition
— Hands-free car-phones
— Assistance for the disabled

»

Copyright © 2007 David Vernon (www.vernon.eu)

Key Components

. Input
- Output
. Storage

- Processor ||

Copyright © 2007 David Ver ((AY

Output Systems

Copyright © 2007 David Vernon (www.vernon .eu)

[ourewr |
Output Systems — e e
Ealem

. Soft Copy ((

» Voice synthesis
» Music

» CRT (Cathode Ray
Tube)

» LCD (Liquid Crystal
Display)

=
-
-
-
=
=
-
-
-
=
-
a N

~—

Copyright © 2007 David Vernon (www.vernon.eu)

Output Systems

. Modems
— Modulator-Demodulator

— Allows computers to
communicate over
telephone lines

Copyright © 2007 David Vernon (www.vernon.eu)

Output Systems

. Disks
— Magnetic

» Floppy
» Hard disk

— Optical
- Storage Devices

Copyright © 2007 David Vernon (www.vernon.eu)

Output Systems

Output Systems

Copyright © 2007 David Vernon (www.vernon.eu)

Output Systems

Output Systems
i
e -
|
I [[I
-l-

Key Components

. Input
- Output
. Storage

- Processor ||

Copyright © 2007 David Ver ((AY

Storage Systems

. Units of Storage
— 1 bit
— 8 bits = 1 byte
— 1kbyte = 2° = 1024 bytes
— 1Mbyte = 2°°= 1048576 bytes

Copyright © 2007 David Vernon (www.vernon.eu)

Storage Systems —

- Memory

— Stores the bits and bytes (instructions
and data)

— ROM - Read Only Memory - -

» Non-volatile
» Won't disappear when power is off

— RAM - Random Access Memory
» Read/Write Memory
» Volatile

» SIMMs (Single Inline Memory
Modules):
4 Mbytes in a stick of chewing gum

Copyright © 2007 David Vernon (www.vernon.eu)

Storage Systems

- Optical Disks
— 15,000 tracks per inch
— Digital code read by laser
— 650 Mbytes in a 4.75” plastic platter
— CD ROM; WORM,; Erasable Disks

Copyright © 2007 David Vernon (www.vernon.eu)

Storage Systems

- CDROM -

— CD Read Only Memory
— 12cm optical disk
— Capable of storing 72 minutes of VHS quality video using MPEG

compression

Copyright © 2007 David Vernon (www.vernon.eu)

Storage Systems

- Write-One Read_Mostly
CDs (WORMS) opteal
— Powerful laser burns in the digital code
— Not erasable
— Lowe power laser reads the digital pattern

. Eraseable CD
— Lasers read and write inofrmation
— Also use a magnetic material

— To write: a laser beam heats a tiny spot and a magnetic field is
applied to reverse the magnetic polarity

Copyright © 2007 David Vernon (www.vernon.eu)

Storage Systems

- Magnetic Disk
— A circular platter coated with
magnetic material
- Floppy Disk
— 3.57; 360kbyte to 2.88Mbytes (1.44 is
common)
- Hard Disk

- 1.37,1.8", 2.5", 3.5", 5.25";
120Mbytes to over 6 Gigabyte (6
Gbyte)

Copyright © 2007 David Vernon (www.vernon.eu)

Storage Systems

40 Gbyte hard disk
— 20,000,000 pages of text

650 Mbyte CD
— 325,000 pages of text

17 Ghyte DVD
— 8,500,000 pages of text

Copyright © 2007 David Vernon (www.vernon.eu)

Storage Systems

Height of Read Head above magnetic surface
— 2 millionths of an inch

Smoke Particle
— 250 millionths of an inch

Fingerprint

— 620 millionths of an inch

Dust particle

— 1500 millionths of an inch

Human hair

— 3000 millionths of an inch @

Copyright © 2007 David Vernon (www.vernon.eu)

The Processor:
Hardware & Software

Components of Computer Systems

- Keyboard

- Display

- System Unit
. Storage

« Printer

Copyright © 2007 David Vernon (www.vernon.eu

Key Components

. Input
- Output
. Storage

- Processor ||

Copyright © 2007 David Ver ((AY

Hardware

Microprocessor
Effects computation
Intel 80486, 80586
Motorola 68040

PowerPC, MIPS,
Alpha, Sparc

Clock speeds 50-600MHz (+)

- Memory
— Storage

. Interface ICs
— communication with other devices

Copyright © 2007 David Vernon (www.vernon.eu)

Hardware

- Much more to come
on the topic of
hardware shortly

Copyright © 2007 David Vernon (www.vernon.eu)

Software

Copyright © 2007 David Vernon (www.vernon.eu)

[ormsin] [emmsne]
Operating Systems |
T I T

. User Iinterfaces

— Software which is responsible for passing
Information to and from the person using the
program (the user)

— Communicates with and controls the computer

— Three types of user interface:
» Graphic user interfaces
» Menu driven interfaces
» Command driven interfaces

Copyright © 2007 David Vernon (www.vernon.eu)

[z
Operating Systems |
T I T

- Graphic User Interfaces (GUIs)
— Pictures, graphic symbols (icons), to represent
commands

— Windows: a way of ‘looking in’ on several
applications at once

Copyright © 2007 David Vernon (www.vernon.eu)

o]
Operating Systems]

. Menu-driven interfaces
— Menu bar
— Pull-down menu for choices

Copyright © 2007 David Vernon (www.vernon.eu)

o
Operating Systems (rmsimn] [

. Command-driven interfaces
A (system) prompt

User types in single letter, word, line which is translated into
an instruction for the computer

For example: cp source destination

Need to be very familiar with the syntax (grammar) of the
command language

Copyright © 2007 David Vernon (www.vernon.eu)

Software

Copyright © 2007 David Vernon (www.vernon.eu)

Operating Systems

Operating System is the software that manages
the overall operation of the computer system

Main purpose is to support application programs
Hide details of devices from application programs

Copyright © 2007 David Vernon (www.vernon.eu)

T
Operating Systems % ﬁ
—

Shell (or user interface)

Network interface:
coordinate multiple tasks in a single computer

Task scheduler
coordination of multiple tasks in a single computer

Kernel
— Software which ties the hardware to the software, and

— manages the flow of information to and from disks, printers, keyboards,
... all I/O devices

Copyright © 2007 David Vernon (www.vernon.eu)

Operating Systems

File Handling

Collection of information (stored on disk)

Disks need to be formatted to allow them to store
Information

OS manages location of files on disk
OS performs I/O to disk
OS checks and corrects errors on disk I/O

Copyright © 2007 David Vernon (www.vernon.eu)

Operating Systems

- Device Drivers
— Programs which handle the various hardware devices,
e.g., mouse, keyboard, CD, video, etc.
— For example, an application wants to print a document
» |t call the operating system
» Which sends the information to the device driver together

with instructions
» and the printer driver handles all the control of the printer

Copyright © 2007 David Vernon (www.vernon.eu)

Operating Systems

. Single tasking OS
— Runs only one application at a time

- Multi-Tasking OS

— More than one application can be active at any
one time

Copyright © 2007 David Vernon (www.vernon.eu)

Operating Systems

- DOS (Disk Operating System)
— Single-tasking
— Command-driven
— Huge number of applications written for DOS
— Does not require powerful computer
— No network services
— No multimedia extensions
— Designed for the Intel 80x86 processor

Copyright © 2007 David Vernon (www.vernon.eu)

Operating Systems

- Windows
— GUI
— Can run DOS programs
— Has network services
— Has multimedia extensions

— Requires large amounts of memory, disk space,
powerful processor

— Designed for the Intel 80X86 processors

Copyright © 2007 David Vernon (www.vernon.eu)

Operating Systems

- Macintosh OS
— Multi-tasking
— GUI called finder
— Very easy to use
— Very graphically oriented
— Has network services
— Has multimedia extensions

— Designed for the Motorola and PowerPC
Processors

Copyright © 2007 David Vernon (www.vernon.eu)

L [oot]
Application Software— :

- Special Purpose
— Payroll
— Accounting
— Book-Keeping
— Entertainment
— Statistical Analysis

Copyright © 2007 David Vernon (www.vernon.eu)

S [oot]
Application Software— ———

- General Purpose

Word Processing (e.g. MS Word)

Desktop Publishing (e.g. Quark Xpress)
Spreadsheets (e.g. MS Excel)
Databases (e.g. MS Access)

Graphics (e.g. MS Powerpoint)

E-mail (e.g. MS Mail)

Internet Browsers (e.g. Firefox, Explorer)

Copyright © 2007 David Vernon (www.vernon.eu)

S [oot]
Application Software— ———

- Integrated Software

— Goal. effective sharing of information between all

applications

— For example: MS Office: Excel, Word, Powerpoint,
Access can all use each other’s data directly

Copyright © 2007 David Vernon (www.vernon.eu)

S [oot]
Application Software— ———

- Integrated Software

— Object Linking & Embedding (OLE)

— Information is stored in one location only
— Reference is made to it from another application
— This reference is known as a link

Don’t actually make a copy (cf. hypertext, multimedia,
WWW)

Copyright © 2007 David Vernon (www.vernon.eu)

Application Software

- Object Linking & Embedding (OLE)

=

Copyright © 2007 David Vernon (www.vernon.eu)

Operation of
Processor and Memory

The Processor

The processor is a functional unit that interprets
and carries out instructions

Also called a Central Processing Unit (CPU)
Every processor has a unique set of operations
LOAD

ADD

STORE

Copyright © 2007 David Vernon (www.vernon.eu)

The Processor

This set of operation Is called the instruction
set

Also referred to as machine instructions

The binary language in which they are written
IS called machine language

Copyright © 2007 David Vernon (www.vernon.eu)

The Processor

- An Iinstruction comprises
— operator (specifies function)
— operands - (data to be operated on)
- For example, the ADD operator requires two
operands
— Must know WHAT the two numbers are
— Must know WHERE the two numbers are

Copyright © 2007 David Vernon (www.vernon.eu)

The Processor

. |If the data (e.g. the number to be added) Is In
memory, then the operand is called an
address

« ADD numl num?2

- numl could be a number or it could be the
address of a number in memory (i.e. where
the number is stored)

Copyright © 2007 David Vernon (www.vernon.eu)

Machine Language
Instruction Set

Category Example

Arithmetic Add, subtract, multiply, divide

Logic And, or, not, exclusive or

Program Control branching, subroutines

Data Movement Move, load, store

Input/Output Read, Write

Copyright © 2007 David Vernon (www.vernon.eu)

The Processor

- The processor’s job Is to
— retrieve instructions from memory
— retrieve data (operands) from memory
— perform the operation
— (maybe store the result in memory)
— retrieve the next instruction

Copyright © 2007 David Vernon (www.vernon.eu)

The Processor

- This step-by-step operation is repeated over
and over at speeds measured in millionths of
a second

- The CLOCK governs the speed: each step

must wait until the clock ‘ticks’ to begin

- a 300 MHz processor will use a clock which
ticks 300 000 000 times a seconc

Copyright © 2007 David Vernon (www.vernon.eu)

The Components of a Processor

MEMORY

Control
Unit

Arithmetic
& Logic Unit
ALU

Registers

[)

[)

Copyright © 2007 David Vernon (www.vernon .eu)

The Control Unit

Supervises the operation of the processor

Makes connections between the various
components

Invokes the operation of each component

Can be interrupted!

Copyright © 2007 David Vernon (www.vernon.eu)

The Control Unit

- An interrupt
— IS a signal
— which tells the control unit to suspend execution of
Its present sequence of instructions (A)

and to transfer to another sequence (B)

resuming the original sequence (A) when finished
with (B)

Copyright © 2007 David Vernon (www.vernon.eu)

An Interrupt

Instruction Al Instruction B1
Instruction A2 Instruction B2
Instruction A3 , :
Instruction A4 Instruction Bn
Instruction A5

— EXECUTE instructions

BRANCH to new set of instructions

Copyright © 2007 David Vernon (www.vernon.eu)

The Control Unit

Receives instructions from memory
Decodes them (determines their type)

Breaks each instruction into a sequence of
iIndividual actions
(more on this later)

And, in so doing, controls the operation of the
computer.

Copyright © 2007 David Vernon (www.vernon.eu)

The Arithmetic & Logic Unit

- ALU

- Provided the computer with its computational
capabillities

. Data are brought to the ALU by the control
unit

- ALU performs the required operation

Copyright © 2007 David Vernon (www.vernon.eu)

The Arithmetic & Logic Unit

. Arithmetic operations

— addition, subtraction, multiplication, division
- Logic operations

— make a comparison (CMP a, b)

— and take action as a result (BEQ same)

Copyright © 2007 David Vernon (www.vernon.eu)

Registers

- Register: a storage location inside the
processor

. Control unit registers:

— current instruction
— location of next instruction to be executed

— operands of the instruction

- ALU reqisters:
— store data items
— store results

Copyright © 2007 David Vernon (www.vernon.eu)

Registers 1 100 1 0 1 1

- Word size (or word length)
— Size of the operand register

— Also used to describe the size of the pathways to
and from the processor and between the
components of the processor

. 16 to 64 bits word lengths are common

- 32 bit processor ... the operand registers of a
processor are 32 bits wide (long!)

Copyright © 2007 David Vernon (www.vernon.eu)

Specialized Processors

- DSP - Digital Signal Processors
— Image processing; sound, speech

- Math co-processors
— Real number arithmetic

- ASICs - Application-Specific Integrated
Circuits
— Microwave contoller
— Engine management controller

Copyright © 2007 David Vernon (www.vernon.eu)

The Operation of the Processor

A Simple Accumulator-Based CPU
(Von Neumann Computer)

Copyright © 2007 David Vernon (www.vernon.eu)

The Components of a Processor

MEMORY

Control
Unit

Arithmetic
& Logic Unit
ALU

Registers

[)

[)

Copyright © 2007 David Vernon (www.vernon .eu)

Main Components

- (Program) Control Unit - PCU
— Coordinates all other units in the computer

— Organizes movement of data from/to I/O, memory,
registers.

— Directs ALU, specifically to indicate the operations
to be performed

— The control unit operates according to the stored
program, receiving and executing its instructions
one at a time

Copyright © 2007 David Vernon (www.vernon.eu)

The Components of a Processor

MEMORY

Control
Unit

Arithmetic
& Logic Unit
ALU

Registers

[)

[)

Copyright © 2007 David Vernon (www.vernon .eu)

Main Components

. Arithmetic & Logic Unit - ALU
— All computations are performed in this unit
— ALU comprises adders, counters, and registers
— Numerical operations (+ - / X)
— Logical operations (AND, OR, program branching)

Copyright © 2007 David Vernon (www.vernon.eu)

Main Components

- Register

— Capable of receiving data, holding it, and transferring it as
directed by the control unit

. Adder

— Receives data from two or more sources, performs the
arithmetic, and sends the results to a register

- Counter
— Counts the number of times an operation is performed

Copyright © 2007 David Vernon (www.vernon.eu)

The Components of a Processor

MEMORY

INSTRUCTIONS

DATA

Control
Unit

Arithmetic
& Logic Unit
ALU

Registers

[)

[)

Copyright © 2007 David Vernon (www.vernon.eu)

Some Key Points

nstructions are coded as a sequence of
pinary digits

Data are coded as a sequence of binary
digits

Registers are simply physical devices which
allows these codes to be stored

Memory Is just the same

Copyright © 2007 David Vernon (www.vernon.eu)

The Operation of a Processor

- How does a computer evaluate a simple
assignment statement?

- For example:

A=B+C

Copyright © 2007 David Vernon (www.vernon.eu)

The Operation of a Processor

- A=B+C

- A computer can’t evaluate this directly
(because it’s not written in a way which
matches the structure of the computer’s
physical architecture)

First, this must be translated into a sequence
of instructions which the does match the
computer architecture

Copyright © 2007 David Vernon (www.vernon.eu)

The Operation of a Processor

- A=B+C
- S0 ... we need a detailed processor
architecture (i.e. a machine)

- and a matching language (machine language
or assembly language)

— machine language when it's written as a binary
code

— assembly language when it's written symbolically.

Copyright © 2007 David Vernon (www.vernon.eu)

The Components of a Processor

MEMORY

INSTRUCTIONS

DATA

Control
Unit

Arithmetic
& Logic Unit
ALU

Registers

[)

[)

Copyright © 2007 David Vernon (www.vernon.eu)

The Components of a Processor

MEMORY

AC

Control

Circuits Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

The Components of a Processor

- DR - Data Register

- AR - Address Register

- AC - Accumulator

- PC - Progam Counter

. IR - Instruction Register

- ALU - Arithmetic Logic Unit
- PCU - Program Control Unit

Copyright © 2007 David Vernon (www.vernon.eu)

The Components of a Processor

MEMORY

L

DR

AC

Control
Circuits

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

The Components of a Processor

MEMORY

DR

I

AC

Control
Circuits

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

The Components of a Processor

MEMORY

DR

AC

Control

Circuits Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

The Components of a Processor

MEMORY

<— DR

AC

Control
Circuits

Arithmetic
Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

The Components of a Processor

MEMORY

!

L

AR

DR

|

I

PC

AC

Control
Circuits

< IR

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

Instruction Format

- An instruction is typically divided into 2 fields

. This is | opcode L address

ation and, In

general, one wou d expect
— opcode/operand
— opcode/address (which may vary in size)

Copyright © 2007 David Vernon (www.vernon.eu)

Instruction Format

. Load X

— puts contents of memory location X into the
accumulator

- Add T

— Add contents of memory at location T to the
contents of the accumulator

. StoreY

— Put contents of accumulator into memory at
location Y

Copyright © 2007 David Vernon (www.vernon.eu)

Evaluate an Assignment

- A=B+C

- Load B
. Add C
. Store A

Copyright © 2007 David Vernon (www.vernon.eu)

B C

11111111

01001100 00000001

!

!

AR

DR

|

PC

Control
Circuits

< IR

]

AC 01001100

Arithmetic
Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

B C

11111111

01001100 00000001

!

!

AR

DR

|

PC

Control
Circuits

< IR

]

AC 01001101

Arithmetic
Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

B C

01001101

01001100 00000001

!

i

AR

DR

|

PC

Control
Circuits

< IR

|

Arithmetic
Logic Circuits

AC 01001101

Copyright © 2007 David Vernon (www.vernon .eu)

- The Instructions are stored in memory also!

Copyright © 2007 David Vernon (www.vernon.eu)

A
11111111

B C
01001100 00000001

Load B
Add C
Store A

|

L]

AR

DR

|

PC

Control
Circuits

< IR

I

AC

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

It works more like this ...

Copyright © 2007 David Vernon (www.vernon.eu)

Evaluate an Assignment

- A=B+C

- Load B
. Add C
. Store A

Copyright © 2007 David Vernon (www.vernon.eu)

A

11111111

B C
01001100 00000001

Load B

Add C

Store A

|

AR

|

PC

Control
Circuits

~—

IR
Load B

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

Load B

Add C

A B C
11111111 = 01001100 00000001

| |

AR DR

[

PC AC 01001100

Cf)ntr.ol \ IR Arithmetic
Circuits : : :
Load B Logic Circuits

Store A

Copyright © 2007 David Vernon (www.vernon.eu)

A

11111111

Load B

Add C

@
Store A

01001100 00000001

|

AR

|

ALU

PC

Control
Circuits

~—

IR
Add C

01001100

Arithmetic
Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

Load B

Add C

A B C
11111111 = 01001100 00000001

| |

AR DR

g —

PC acll 01001101

Cf)ntr.ol \ IR Arithmetic
Circuits : : :
Add C Logic Circuits

Store A

Copyright © 2007 David Vernon (www.vernon .eu)

A

11111111

Load B

Add C

@
Store A

01001100 00000001

|

AR

|

ALU

PC

Control
Circuits

~—

IR
Store A

01001101

Arithmetic
Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

A B

Load B

Add C
C

Store A

01001101 01001100 00000001

|

l

AR

|

PC

Control
Circuits

< IR

Store A

DR

L ALU

AC 01001101

Arithmetic
Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

A
11111111

B C
01001100 00000001

Load B
Add C
Store A

|

L]

AR

DR

|

PC

Control
Circuits

< IR

I

AC

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

Operation of the Processor

- The primary function of a processor Is to

execute sequences of instructions stored In
main memory

. Instruction Cycle
— Fetch Cycle
— Execute Cycle

Copyright © 2007 David Vernon (www.vernon.eu)

Instruction Cycle

- Fetch Cycle
— Fetch instruction from memory

- Execute Cycle
— Decode instruction
— Fetch required operands
— Perform operation

Copyright © 2007 David Vernon (www.vernon.eu)

Instruction Cycle

- Instruction cycle comprises a sequence of
micro-operations each of which involves a
transfer of data to/from registers

Copyright © 2007 David Vernon (www.vernon.eu)

Instruction Cycle

- |n addition to executing instructions the CPU
supervises other system component usually via
special control lines

It controls I/O operations
(either directly or indirectly)

Since 1/O is a relatively infrequent event, 1/O
devices are usually ignored until they actively
request service from the CPU via an interrupt

Copyright © 2007 David Vernon (www.vernon.eu)

An Interrupt

Instruction Al Instruction B1
Instruction A2 Instruction B2
Instruction A3 , :
Instruction A4 Instruction Bn
Instruction A5

Interrupt is activated by

an electronic signal

— EXECUTE instructions

BRANCH to new set of instructions

Copyright © 2007 David Vernon (www.vernon.eu)

nstruction Awaiting

Fetch next instruction

Y
Execute next instruction

Interrupts requiring
servicing?

Transfer control to
interrupt handling program

Copyright © 2007 David Vernon (www.vernon.eu)

Instruction
Cycle

FETCH CYCLE

EXECUTE CYCLE

PROGRAM
TRANSFER

Main Program

Load B
Add C

Store A

Subroutine A Interrupt Handler
OPr1 OPr1

A 11111111
B 01001100
C 00000001

OP1 OP1
OP1

CPU

4]

DR

PCU

Control
Circuits

I

AC

Arithmetic
Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

Register Transfer Language

. Storage locations, in CPU and memory, are
referred to by an acronym

- AC
— Accumulator; main operand register of ALU

Copyright © 2007 David Vernon (www.vernon.eu)

Register Transfer Language

- DR

— Data Register; acts as a buffer between CPU and
main memory.

— It is used as an input operand register with
accumulator to facilitate operations of the form AC
<~ f(AC, DR)

Copyright © 2007 David Vernon (www.vernon.eu)

Register Transfer Language

. PC
— Program Counter

— Stores address of the next instruction to be
executed

- IR
— Instruction Register
— Holds the opcode of the current instruction

Copyright © 2007 David Vernon (www.vernon.eu)

Register Transfer Language

- AR
— Address Register
— Holds the memory address of an operand

Copyright © 2007 David Vernon (www.vernon.eu)

Register Transfer Language

- A<B

— transfer contents of storage location B to A
(copy operation)

. A<M(ADR)

— transfer contents of memory at location ADR to
location A

Copyright © 2007 David Vernon (www.vernon.eu)

FETCH CYCLE

NO

Activated?

YES l
AR « PC

\

DR <« M(AR)

IR <« DR(opcode)
increment PC
decode instruction

l

ADD
instruction?

l Copyright © 2007 David Vernon (www.vernon.eu)

EXECUTE CYCLE

NO
ADD
instruction?

YES l YES
AR <« DR(Address) PC < DR(Address)

\

DR <« M(AR)

AC<— AC+ DR

A

Copyright © 2007 David Vernon (www.vernon.eu)

Evaluate an Assignment

- A=B+C

— Load B
— Add C
— Store A

Copyright © 2007 David Vernon (www.vernon.eu)

A=B+C

Load B
— AR <« PC

— DR <« M(AR)

— IR« DR(opcode)

— Increment PC

— Decode instruction in IR
— AR <« DR(address)

— DR <« M(AR)

— AC « DR

Copyright © 2007 David Vernon (www.vernon.eu)

EXECUTE

A=B+C

- Add C
— AR « PC
— DR <« M(AR)
— IR« DR(opcode)
— Increment PC
— Decode instruction in IR
— AR <« DR(address)
— DR <« M(AR)
— AC <« AC + DR EXECUTE

Copyright © 2007 David Vernon (www.vernon.eu)

A=B+C

. Store A
— AR « PC
— DR <« M(AR)
— IR« DR(opcode)
— Increment PC
— Decode instruction in IR
— AR <« DR(address)
— DR « AC

— M(AR) < DR EXECUTE

Copyright © 2007 David Vernon (www.vernon.eu)

AR <« PC

A B

C

11111111 = 01001100 00000001

Load B

Add C

Store A

|

L]

AR

PC

Control
Circuits

< IR

DR

I

AC

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

DR « M(AR)

A
11111111

B C
01001100 00000001

Load B

Add C

Store A

|

|

AR

~<—— DR

|

PC

Control
Circuits

< IR

i

AC

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

11111111 = 01001100 00000001

IR < DR(opcode) 24P
Add C

A B @
Store A

L]

AR [DR

L |

PC AC

Control
Circuits

~—

IR Arithmetic

Load Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

Load B

Increment PC

Add C
A B C

11111111 = 01001100 00000001

L]

AR [DR

L |

PC AC

Store A

Control =— R

Circuits Arithmetic

Load Logic Circuits

Copyright © 2007 David Vernon (www.vernon.eu)

Decode Instruction

A B C

11111111 = 01001100 00000001

Load B
Add C
Store A

L]

AR [DR

L |

PC AC

Control
Circuits

~—

IR Arithmetic

Load Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

AR < DR(address)

A B

C

11111111 = 01001100 00000001

Load B

Add C

Store A

|

H

AR

T

PC

Control
Circuits

< IR

Load

DR Load B

i

AC

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

DR « M(AR)

A B

C

11111111 = 01001100 00000001

Load B
Add C
Store A

|

|

AR = DR

T

PC

Control
Circuits

< IR

Load

01001100

ALU

i

AC

Arithmetic

Logic Circuits

Copyright © 2007 David Vernon (www.vernon .eu)

AC « DR Load B
Add C

A B C
11111111 = 01001100 00000001

L]

AR ™™ DR 01001100

I —

PC AC 01001100

gi(i-rcllt:i(t)l \ R Arithmetic
Load Logic Circuits

Store A

Copyright © 2007 David Vernon (www.vernon .eu)

Extensions to the Basic Organization
and

Binary Number Representations

Copyright © 2007 David Vernon (www.vernon.eu)

Extensions

- Additional addressable registers for storing
operands and addresses

. |f these are multipurpose, we have what is
called a General Register Organization

- Sometimes special additional registers are
provided for the purpose of memory address
construction (e.g. index register)

Copyright © 2007 David Vernon (www.vernon.eu)

Extensions

- The capabillities of the ALU circuits can be
extended to include multiplication and
division

- The ALU can process floating point (real)
numbers as well as integers

. Additional registers can be provided for
storing instructions (instruction buffer)

Copyright © 2007 David Vernon (www.vernon.eu)

Extensions

- Special circuitry to facilitate temporary
transfer to subroutines or interrupt handling
programs and recovery of original status of
Interrupted program on returning from
iInterrup handler

e.g. the use of a ‘push-down stack’ implies
that we need only a special-purpose ‘stack
pointer’ register

Copyright © 2007 David Vernon (www.vernon.eu)

Extensions

- Parallel processing

Simultaneous processing of two or more
distinct instructions or data streams

Copyright © 2007 David Vernon (www.vernon.eu)

Information Representation

- Types of data
— Text

— Numbers
» Integers
» Reals (floating point numbers)

Copyright © 2007 David Vernon (www.vernon.eu)

Text

- ASCII code (American Standard Committee
on Information Interchange)

- A unique 8-bit binary code for each
character:
— A-Z, a-z, 1-9, ., AI"E$S%N&*() +

— Special unprintable characters such as the
ENTER key (CR for carriage return)

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

- Binary number representation of integers

. |f we save one bit to signify positive (+) or
negative (-), then an n-bit binary word can
represent integers in the range

21 . +2™

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

- For example, a 16-bit binary number can
represent integers in the range

L Bl gy g
-32,767 .. +32,768

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

. A 16-bit binary number

000000011001 1111

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

. A 16-bit binary number

15141312 11109 8 7 32 1 0

6 5 4
000000011001 1111

e =1X2°+1Xx2'+1x2°+
1x2°+1x2°+1x2'+1x2°

- = 2560+128+16+8+4+2+1
- =415

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

. |f we let the most significant bit (MSB) signify
positive or negative numbers
(1 for negative; O for positive)

. Then
+9=000000000000 1001
-9=100000000000 1001

- +9+(-99=100000000001 0010
- Which is NOT zero a problem!

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

- S0 we need a different representation for
negative numbers

. Called 2s-complement
- Take the 1s-complement of the positive

number:

O000 00000000 10012
becomes

11111111 11110110

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

- Note that the addition of the
1s-complement and the original number Is
not zero

000000000000 1001 +
111111111111 0110

111111111111 1111

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

- To get the 2s-complement, add 1

111111111111 0110 +
1

111111111111 0111

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

. Now do the addition:

000000000000 1001 +
111111111111 0111

0000 000000000000

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

- Another example:
+1+ (1)

000000000000 0001 +
11111111 11111111

000000000000 00O00O0

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

. Short-hand for all these 1s and 0s
. HEX notation

- Each group of 4 bits represents a number In
the range O - 15

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

0000=
0001=
0010=
0011=
0100=
0101=
0110=
0111=

0]
1
2
3
A4
5
6
4

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers
. Thus:

000000000000 1001 0009
111111111111 0111 FFF7

000000000000 00O00O0 0000

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers
. And:

000000000000 0001 0001
111111111111 1111 FFFF

000000000000 00O00O0 0000

Copyright © 2007 David Vernon (www.vernon.eu)

Numbers

- Hex Is used as a notation for any sequence
of bits (e.g. ASCII characters require just two
hex digits)

Copyright © 2007 David Vernon (www.vernon.eu)

Digital Design

Copyright © 2007 David Vernon (www.vernon.eu)

Design Hierarchy

- Many digital systems can be divided into
three design levels that form a well-defined
hierarchy

Copyright © 2007 David Vernon (www.vernon.eu)

Design Hierarchy

. The Architecture Level

High-level concerned with overall system
management

The Logic Level
Intermediate level concerned with the
technical detalls of the system

The Physical Level
Low level concerned with the details needed
to manufacture or assemble the system

Copyright © 2007 David Vernon (www.vernon.eu)

Design Hierarchy

- We have already studied the architecture
level

- Now we will address the logic level

. At the logic level, there are two classes of
digital system
— Combinational - digital systems without memory
— Sequential - digital systems with memory

Copyright © 2007 David Vernon (www.vernon.eu)

Analogue and Digital Signals

- An analogue signal can have any value
within certain operating limits

- For example, in a (common emitter) amplifier,
the output (O/P) can have any value between
Ov and 10v.

- A digital signal can only have a fixed number
of values within certain tolerances

Copyright © 2007 David Vernon (www.vernon.eu)

Analogue and Digital Signals

- An analogue signal
- The amplitude is

defined at all moments

_ In time
Amplitude
Time

Copyright © 2007 David Vernon (www.vernon.eu)

Analogue and Digital Signals

A digital signal

It is a sampled version
of the analogue signal

Only defined at certain
discrete times

DISCRETE TIME
SIGNAL

Amplitude

Time

Copyright © 2007 David Vernon (www.vernon.eu)

Analogue and Digital Signals

- Adigital signal is a
sampled version of the
analogue signal

Amplitude

Time

Copyright © 2007 David Vernon (www.vernon.eu)

Analogue and Digital Signals

- The amplitude may also
be restricted to take on
discrete values only

In which case it Is said

Amplitude to be quantized

Time

Copyright © 2007 David Vernon (www.vernon.eu)

Analogue and Digital Signals

- Quantization introduces
errors which depend on
the step size or the

resolution
Amplitude

Time

Copyright © 2007 David Vernon (www.vernon.eu)

Analogue and Digital Signals

Signals (voltages or
currents) which are
samples and quantized
are said to be DIGITAL

Amplitude . They can be
represented by a
sequence of numbers

Time

Copyright © 2007 David Vernon (www.vernon.eu)

Analogue and Digital Signals

. Calculation with numbers is usually done In
base 10 arithmetic

. Easier to effect machine computation in base
2 Or binary notation

- We can also use base 2 or binary notation to
represent logic values: TRUE and FALSE

- Manipulation of these (digital) logic values is
subject to the laws of logic as set out In the
formal rules of Boolean algebra

Copyright © 2007 David Vernon (www.vernon.eu)

Boolean Algebra

- Definition: a logic variable x can have only
one of two possible values or states

X = TRUE
X = FALSE

- In binary notation, we can say
Xx=TRUE =1
X = FALSE =0
- This Is called positive logic or high-true logic

Copyright © 2007 David Vernon (www.vernon.eu)

Boolean Algebra

- We could also say

x=TRUE =0

X = FALSE =1
- This Is called negative logic or low-true logic
- Usually we use the positive logic convention

Copyright © 2007 David Vernon (www.vernon.eu)

Boolean Algebra

. Electrically,

— 1 iIs represented by a more positive voltage than
zero and

— O Is represented by zero volts

. X=TRUE =1 =5 volts
X = FALSE =0 = 0 volts

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

- Logic gates are switching circuits that
perform certain simple operations on binary

signals

- These operations are chosen to facilitate the
Implementation of useful functions

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

- The AND logic operation
- Consider the following circuit

AN AN
A B

% Bulb

¢ The Uiy — UIN — 1 INUL WIICII A AIN

TRUE (i.e. closed)

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The AND Truth Table

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The AND Gate

A and B are variables and note the use of the . to denote AND

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

- The AND Gate - An example

- Determine the output waveform when the
iInput waveforms A and B are applied to the
two inputs of an AND gate

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

- The AND Gate - An example

- Determine the output waveform when the
iInput waveforms A and B are applied to the
two inputs of an AND gate

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

- The OR logic operation

- The
TRUE (i.e. closed)

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The OR Truth Table

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The OR Gate

A and B are variables and note the use of the + to denote OR

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The NOT Truth Table

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The NOT Gate

A—>—f= A

Note the use of the bar over the A to denote NOT

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. Sometimes a ‘bubble’ is used to Indicate
Inversion

B

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

- In fact it is simpler to manufacture the
combination NOT AND and NOT OR than it
IS to deal with AND and OR

« NOT AND becomes NAND
« NOT OR becomes NOR

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

- The NAND Truth Table

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The NAND Gate

B

Copyright © 2007 David Vernon (www.vernon

.eu)

Logic Gates

. The NOR Truth Table

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The NOR Gate

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

- The EXCLUSIVE OR Truth Table
f=AXORB
=A®B
= AB= Al

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The XOR Gate

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

. The EXCLUSIVE NOR Truth Table
f = NOT (A XOR B)
A®B
— AB—+ AB

Copyright © 2007 David Vernon (www.vernon.eu)

Logic Gates

- The EXCLUSIVE NOR Gate

f=ADB

This is called the equivalence gate

Copyright © 2007 David Vernon (www.vernon.eu)

Rules and Laws of Boolean Algebra

- Operations on Boolean variables are defined
by rules and laws, the most important of
which are presented here

. Commutative Law
A.B=B.A
A+B=B+A

. This states that the order of the variables iIs
unimportant

Copyright © 2007 David Vernon (www.vernon.eu)

Rules and Laws of Boolean Algebra

- Associative Law
A.B.C)=A.(B.C)
A+(B+C) = A+(B+C)

. This states that the grouping of the variables
IS unimportant

Copyright © 2007 David Vernon (www.vernon.eu)

Rules and Laws of Boolean Algebra

. Distributive Law
A.B+C) =A.B+A.C

. This states that we can remove the
parenthesis by ‘multiplying through’

- The above laws are the same as in ordinary
algebra, where ‘+’ and ‘.” are interpreted as
addition and multiplication

Copyright © 2007 David Vernon (www.vernon.eu)

Rules and Laws of Boolean Algebra

- Basic rules involving one variable:
A+0=AA.0=0
A+1=1A.1=A

A+A=A A. A=A
A+A=1A+A=0 _

. It should be noted that A = A

Copyright © 2007 David Vernon (www.vernon.eu)

Rules and Laws of Boolean Algebra

- An informal proof of each of these rules is
easily accomplished by taking advantage of

the fact that the variable can have only two
possible values

- For example, rule 2:
A+l1=1

. fA=0then0+1=1
. fA=1thenl+1=1

Copyright © 2007 David Vernon (www.vernon.eu)

Rules and Laws of Boolean Algebra

. Some useful theorems

A+AB=A
A+AB=A+B
AB+AB=A
AA+B)=A
A(A+B)=AB
(A+B)(A+B) = A

These may be proved in a similar manner

Copyright © 2007 David Vernon (www.vernon.eu)

Rules and Laws of Boolean Algebra

. For example: A+ A.B = A+B

Copyright © 2007 David Vernon (www.vernon.eu)

Rules and Laws of Boolean Algebra

- Finally, we come to DeMorgan’s Laws which
are particularly useful when dealing with
NAND and NOR logic

- They are stated as follows

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (1)

. A+B=A.B
. Read as:

— NOT (AOR B) = NOT A AND NOTB
— ANORB = NOT A AND NOT B

- Relates NOT, OR, and AND
- Can be extended to any number of variables

A+B+C.. =

Copyright © 2007 David Vernon (www.vernon.eu

DeMorgan’s Laws (1)

A+B=A.B

A

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (1)

A+B=A.B

A

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (1)

A+B=A.B

A

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (1)

A+B=A.B

A

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (1)

A+B=A.B

A

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (2)

. A.B=A+B
. Read as:

— NOT (A AND B) =NOT A OR NOTB
— ANAND B =NOT A OR NOTB

- Relates NOT, OR, and AND
- Can be extended to any number of variables

A .

Copyright © 2007 David Vernon (www.vernon.eu

DeMorgan’s Laws (2)

A.B=A+B

A.B

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (2)

A.B=A+B

A.B

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (2)

A.B=A+B

A.B

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (2)

A.B=A+B

A.B

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws (2)

A.B=A+B

A.B

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws

. A+tB=A.B
. Let A be ‘l won the Lotto’
- Let B be ‘I'm happy’

- The the first DeMorgan Law tell us that:
NOT (I won the Lotto OR I'm happy)
IS the same as
NOT(l won the lotto) AND NOT(I'm happy)
[or:
| didn’t win the lotto and I'm not happy]

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws

. Let A be ‘Il won the Lotto’
- Let B be ‘I'm happy’

- The the second DeMorgan Law tell us that:
NOT (I won the Lotto AND I'm happy)
IS the same as
NOT(l won the lotto) OR NOT(I’'m happy)
[or:
| didn’t win the lotto OR I'm not happy]

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws

- Taking the NAND gate as an example, we
can derive effective AND-OR gating although
physically we are using only one type of gate

- Forexamplef=AB+ C.D

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws

(A.B).(C.D) =

} (AB) + (CD) =

AB + CD

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws

(A.B).(C.D) =

(AB) + (CD) =

AB + CD

Copyright © 2007 David Vernon (www.vernon

.eu)

DeMorgan’s Laws

- This Is referred to as NAND/NAND gating

. Any logic equation may be implemented
using NAND gates only

- Thus NAND gates may be regarded as
univeral gates

- The same is true for NOR gates

Copyright © 2007 David Vernon (www.vernon.eu)

DeMorgan’s Laws

- Other advantages of using NAND or NOR
gating are:

- Simplest and cheapest to fabricate
. Fastest operating speed
- Lowest power dissipation

Copyright © 2007 David Vernon (www.vernon.eu)

Simplification of Expressions using
Boolean Algebra

- |t Is Important to minimise Boolean functions
as this often brings about a reduction in the
number of gates or inputs that are needed

- For example: consider

AB + A(B+C) + B(B+C)

Copyright © 2007 David Vernon (www.vernon.eu)

Simplification of Expressions using
Boolean Algebra

- AB + A(B+C) + B(B+C)

- AB + AB + AC + BB + BC {distribution}
- AB+ AC + BB + BC X+ X=X}
- AB+ AC +B +BC {(X. X =X}
.- AB+B.1+BC + AC {X.1=X1}
- B(A+1+C) + AC {distribution}
- B.1 + AC f1+X=11}
. B+ AC {X.1=X}

Copyright © 2007 David Vernon (www.vernon.eu)

Simplification of Expressions using
Boolean Algebra

- Consider:

(AB(C + BD) + AB)C
- (ABC + ABBD + AB)C {distribution}
. ABCC + ABBCD + ABC {distribution}
. ABC+ABBCD + ABC {X.X=X 1}
. ABC + AOCD + ABC {(X.X=0 }
- ABC + ABC {0.X =0 }
- BC(A+A) {distribution}
. BC X+X=1 }

Copyright © 2007 David Vernon (www.vernon.eu)

Simplification of Expressions using
Boolean Algebra

- In general:
‘Multiply out and collect common terms’

- Exactly as you would do when simplifying
ordinary algebraic expressions

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

- Most ‘real’ problems are defined using a
sentential structure.

. It is therefore necessary to translate such
sentences into Boolean equations if we are to
derive a digital circuit to give a Boolean
result.

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

- For example
It will snow IF it Is cloudy AND it is cold.

- The ‘IF’ and the ‘AND’ divide the sentence
Into different phrases

Let:

- f="itwill snow’ =1, if true; O If false
- A="itis cloudy’ =1, if true; O If false
- B="itiscold =1, if true’ O If false

. Sof=AB

Copyright © 2007 David Vernon (www.vernon.eu)

Corresponding Digital Circuit

A (cloud detector) —} ot |
B (cold detector) — (activate snow warning)

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

A slightly more complicated example:

- An alarm circuit is to be designed which will
operate as follows

- The alarm will ring IF the alarm switch is on
AND the door is open, or IF it is after 6pm
AND the window is open

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

. Let’s give the clauses some labels, just as
before

- The alarm will ring (f)
— |F the alarm switch is on (A)
— AND the door is open (B),
— or IF it is after 6pm (C)
— AND the window is open (D)

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

- f="the alarm will ring’ = 1, if true; O If false

- A ="'the alarm switch is on’ = 1, if true; O if false

- B = ‘the door switch is open’ = 1, if true; O If false

. C="'itisafter 6 pm’ =1, if true; O If false

- D = ‘the window switch is open’ = 1, if true; O if false
- Sof=A.B+C.D

- If f=1, then the alarm will ring!

Copyright © 2007 David Vernon (www.vernon.eu)

Corresponding Digital Circuit

A (alarm switch) —

B (door open detector) —

C (after 6 detector!)—

D f (activate alarm)

Ba
By

) (window open detector)—

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

- For more complicated problems, we define
the problem coherently by constructing a
truth table

- We'll introduce the idea for this simple
example and then go on to use it in a more
complicated example

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

. |f we have a problem (or a Boolean
expression) with four variables, then our truth
table will look like this:

Copyright © 2007 David Vernon (www.vernon.eu)

Od1 0O 10O A0 d 0O A0 A0 dO — &

COA A0 0O AAdO0OO0OAAO0 O A ¢

O O OO v edvd OO OO v o

O O OO OO0 O0O v e v v v o

-
qu
@
@)
@)
an
@)
=
N
-
7
&
@
fe)
@)
| -
al
(-
@)
-
O
N
7
Q
| —
O
e
LL]

o
o
Q
L=
<

Expression of Problems using Boolean
Algebra

- Each combination of the logical variables A,
B, C, and D make a 4-bit binary number In
the range 0-15

. let’'s number each row with the equivalent
decimal number

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

o
=

PFRPRPRPRPPPPOOOOOOOO>

R
0
1
2
3
4
5
6
/
8
9

P PP PRPO0OO0OO0OORRPRRPREFRLROOOO|m
PP OOFRPRRFRPROORRPFPROOREFEOO|ID
POPRPORPROROROROROR O|U

COpyrgrnmY ZUU 7 Uavia VETTION (WWW.VETTION.€U)

Expression of Problems using Boolean
Algebra

- We could also add the equivalent Boolean
expression

- For example:

0010 is equivalent to A.B.C.D—

. (in the following we will leave out the . for
AND and just write ABCD)

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

o
=

PFRPRPRPRPPPPOOOOOOOO>

R
0
1
2
3
4
5
6
/
8
9

> > > >l Pl
| 00l 00l 00l 00 00 00 OO OOl 0ol oI Gl
OO0 O OO0
v/lvlv/iviv/iviv/ivRvivle]

>
os)
@)
O

>
os)
@)
O

ABCD
ABCD
ABCD

COpyrgrnmY ZUU 7 Uavia VETTION (WWW.VETTION.€U)

P RPRPPOO0OOORRPREPREFPROOOO|m
PP OOFRPRRFRPROORRPFPROOREFEOO|ID
POPRPORPROROROROROR O|U

Expression of Problems using Boolean
Algebra

- We call each of these product terms a
MINTERM

- Note that each minterm contains each input
variable in turn

- We can express any Boolean expression in
minterm form

. If fis expressed this way, we say It IS In
— ‘sum of products’ form
— 1st Canonical Form

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

Minterm
mO
m1
m?2
m3
m4
mb5
m6
mY
m8
m9
m10
mll
m12
ABCD| ml3
ABCD| ml4
ABCD| ml5

COpyrgrnmY ZUU 7 Uavia VETTION (WWW.VETTION.€U)

o
=

PFRPRPRPRPPPPOOOOOOOO>

R
0
1
2
3
4
5
6
/
8
9

> > > >l Pl
| 00l 00l 00l 00 00 00 OO OOl 0ol oI Gl
OO0 O OO0
v/lvlv/iviv/iviv/ivRvivle]

>
os)
@)
O

>
os)
@)
O

P RPRPPOO0OOORRPREPREFPROOOO|m
PP OOFRPRRFRPROORRPFPROOREFEOO|ID
POPRPORPROROROROROR O|U

Expression of Problems using Boolean
Algebra

- For example, in the case of the alarm circuilit,
we have:

- A = ‘the alarm switch is on’

- B = ‘the door switch Is open’

. C='itis after 6 pm’

- D = ‘the window switch Is open’

. f=1=ifA(=1).B(=1) + C(=1).D(=1)
- If f=1, then the alarm will ring!

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

. Then
f=m3+m7+mll+ml2+ml3+ ml4+ ml5

- Why?
- Because m3, m/7, m1l, and m15 are the minterm
expressions when both C and D are 1

. And ml12, m13, and m14 are the minterm
expressions when both A and B are 1

- And the alarm should ring if any of these
expressions occur, l.e., If f = AB + CD

Copyright © 2007 David Vernon (www.vernon.eu)

Expression of Problems using Boolean
Algebra

Minterm
mO
m1
m?2
m3
m4
mb5
m6
mY
m8
m9
m10
mll
m12
ABCD| ml3
ABCD| ml4
ABCD| ml5

COpyrgrnmY ZUU 7 Uavia VETTION (WWW.VETTION.€U)

o
=

PFRPRPRPRPPPPOOOOOOOO>

R
0
1
2
3
4
5
6
/
8
9

> > > >l Pl
| 00l 00l 00l 00 00 00 OO OOl 0ol oI Gl
OO0 O OO0
v/lvlv/iviv/iviv/ivRvivle]

>
os)
@)
O

>
os)
@)
O

P RPRPPOO0OOORRPREPREFPROOOO|m
PP OOFRPRRFRPROORRPFPROOREFEOO|ID
POPRPORPROROROROROR O|U

The Director’s Dilemma and
the Digital Doctor

Example courtesy of

Dr. D. J. Furlong

Department of Electronic and Electrical Engineering
Trinity College, Dublin

Ireland

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

. The Cast:

— Director of Public Health Systems
— Dr. Logik

. The Scenario:

— Overcrowded Public Health Clinic with many
obviously ailing clients looking for a diagnosis ... Is
It the dreaded Boolean virus? Or just Digital Flu?
Or maybe just epidemic paranoia

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Director:

Well, we're going to have to do something ...
| mean there’s thousands of them out there either sick

or just plain worried that they might be going to come
down with some of the symptoms ...

You're the expert ...

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

Ja, Ja, Ja, ... | know, but I'm needed at all the other
clinics too, you know.

Look, why don’t you get those clever engineering or
computer science types of yours to build you an
automated diagnostic system

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:
so that all these good people can just enter their
particular symptoms, if they have any,

and be told electronically which medication, if any, to
take ...

Ja? Very simple, really.

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Director:

Well, | suppose it would be something .. but what if
this computer scientist gets it wrong?

| mean, If these people actually have this Boolean

Virus then, - OK, we just prescribe Neominterm and
they’ll get over it.

But if we give them Neominterm and they just have
Digital Flu, or nothing at all, then they’ll die.

It’s lethal stuff, you know

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Director:

And if they have in fact got the Boolean Virus and we
don’t give them Neominterm then they’ll croak it too ...

And the symptoms are very similar ...

| mean the chances of getting it wrong are so great
and the consequences so drastic | really feel we have
to have an expert like yourself here on site to check ...

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

Look, it's quite impossible that | should stay here and
examine all these people.

Calm down ... the problem is not that difficult to deal
with.

You're just panicking. Relax ... I'll start things off for
your computer scientist, but then | really must dash ...

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

You see, It's like this.

There are four symptoms: chills, rash, bloodshot eyes,
and a fever.

Now, anybody who hasn’t got any of these symptoms
doesn’t have either Boolean Virus or Digital Flu.

OK? Ja.

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

Anybody who has NO chill but HAS some of the other
symptoms is just suffering from Digital Flu,

so give them some DeMorgan salts and send them
home.

Ja? Good.

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

Now, if they DO have a chill,

then you've got to look at the combination of
symptoms ...

Ja? OK!

If there Is a chill and a rash only, then it's Digital Flu
again.

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

However, if it's a chill by itself

or a chill any any other combination of rash, bloodshot
eyes, and fever,

then they’ve got the Boolean Virus for sure.

Only Neominterm can save them then ...

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Director:
That may be all very straightforward to you but how is

my computer scientist going to design a foolproof
system to distinguish Digital Flu from Boolean Virus?

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

Look ... I'm late as it is, but all that is required is a truth
table with inputs and outputs like this

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Chills

Bloodshot Eyes

Boolean Virus

Digital Flu

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

The outputs will be the Boolean Virus and Digital Flu
iIndicators ... say a few little LEDs, Ja?

Just hook them up to the system, along with the input
symptom switches - one each for Chills, Rash,
Bloodshot Eyes, and Fever, Ja?

Then all the patients have to do is move the switch to
True if they have a particular symptom, for False if not

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

Then the system will do the rest and either the
Boolean Virus LED or the Digital Flu LED will go on -

unless of course they don’t have any of these
symptoms in which case they’re just scared and don’t
have either the Boolean Virus or the Digital Flu

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:

So,

If Boolean Virus THEN please take some
Neominterm,

ELSE IF Digital Flu THEN please take some
DeMorgan Salts,

EISE just go home.

Ja? That's the way you computer people like to put
things, isn’t it? Ja? Simple!

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Director:
Ja ...l mean Yes ...

Dr. Logik:
Right then. I'm off. Good luck ... Oh ja, you might
need this ...

Director:
A mirror? | don’t follow you, Doctor.

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Dr. Logik:
The bloodshot eyes ... They’ll have to be able to
examine their eyes, now won't they? Adieu ...

Exeunt Dr. Logik ... Director rings Department of
Computer Science

Director:
Can you send over a Computer Scientist right away,
please?

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Enter Computer Scientist with puzzled look.

Director:
Ah, yes ... now look ... we need a system and it's got
to work as follows ...

Director explains problem and gives Computer Scientist
Dr. Logik’s truth table sketch and mirror ...

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Computer Scientist:
Yes, but as far as | remember the only logic gates we
have in stock are NAND gates ...

Director:
Well, if | remember my college course in digital logic,

that shouldn’t necessarily be a problem, now should
it?

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Computer Scientist:

No? | mean No! er ... Yes, right ... Well, it depends ...
Let’s see what'’s in stores. | don'’t think there’s very
many of them at that ...

Computer Scientist checks his laptop database ...

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Computer Scientist:
6 two-input, 2 three-input, and 1 four-input NAND
gates .. That’s all'! Power supply ... yep, Switches ..
yep. LEDs ... yep. Box ... yep. Well, I'll just have to
see If | can make it work with that lot.

Director:
Please do! We're depending on you ...

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

Will the Computer Scientist be successful?

Will the Director have to send for the National Guard
to control the by now tense and growing crowd looking
for diagnosis?

Stay tuned!

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Key Facts

- There are four symptoms:
— chills
— rash
— bloodshot eyes
— fever

. There are two aillments:
— Boolean Virus
— Digital Flu

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Key Facts

- Anybody who hasn’t got any of these symptoms
doesn’t have either Boolean Virus or Digital Flu.

- Anybody who has NO chill but HAS some of the other
symptoms Is just suffering from Digital Flu,

- If there Is a chill and a rash only, then it's Digital Flu
again.

. It’s a chill by itself or a chill any any other combination
of rash, bloodshot eyes, and fever,

then they’ve got the Boolean Virus

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

- Avalilable Equipment
— 6 two-input NAND gates
— 2 three-input NAND gates
— 1 four-input NAND gate

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma and
the Digital Doctor

- We will address the problem in three way, just
to compare efficiency and effectiveness:

. Straightforward (naive) implementation of the
condition in gates

. Efficient implementation of the conditions In
gates by simplifying the expressions

- Function minimization procedure using
minterms and Karnaugh maps

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Key Facts

- There are four symptoms:
— (A) chills
— (B) rash
— (C) bloodshot eyes
— (D) fever
- There are two aillments:

— (f1) Boolean Virus
— (f2) Digital Flu

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Key Facts

- Anybody who hasn’t got any of these symptoms
doesn’t have either Boolean Virus or Digital Flu.

. NOT (A OR B OR C OR D)
. A+B+C+D-

- Anybody who has NO chill but HAS some of the other
symptoms Is just suffering from Digital Flu

. f2=A.(B+C +D)

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Key Facts

. If there is a chill and a rash only, then it's Digital Flu
again.
- 2=A.B.C.D

. It's a chill by itself or a chill and any other combination

of rash, bloodshot eyes, and fever,
(But not the Digital Flu combination of chill and rash

only - NB)
then they’ve got the Boolean Virus
- f1=A.B.C.D+tA. (B+C+D).(B.C.D)

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Key Facts

. f1=f1=A.B.C.D+A. (B+C+D).(B.C.D)
f2=A.(B+C+D)
f2=A.B.C.D

- f1=A.B.C.D+A. (B+C+D).(B.&-B
f2=A.B+C+D)+A.B.C.D

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Key Facts

. Our first implementation of this will be a direct
‘gating’of these two Boolean expressions

- Note that in all of the following implementations, we
will assume that both the value of an input variable
(e.g. A or ‘chill’) and its logical inverse (e.g. A or ‘NOT
chill’) are avalilable

Copyright © 2007 David Vernon (www.vernon.eu)

fl=A.B.C.D+A.(B+C+D).(B.C.D)

Corresponding Digital Circuit

(chill) A

R
L

(NOT chill) A

(rashy B —

(NOT rash) B 5 >—

(bloodshot eyes) C
(NOT bloodshot eyes) C

(fever) D
(NOT fever) D

Copyright © 2007 David Vernon (www.vernon.eu

2=A.B+C+D)+A.B.Cc.D Corresponding
Digital Circuit

(chil) A —
(NOT chill) A

(rash) B —
(NOT rash) B

(bloodshot eyes) C
(NOT bloodshot eyes) C

(fever) D
(NOT fever) D

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Simplified Implementation

- These two logic circuits are complicated!
. Can we do any better?
. Let’s try to simplify the expressions.

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Simplified Implementation

- f1=A.
- f1=A.
- f1=A.

.C.

D+A. (B+C+D).(B.C.D)

.C.

D+ (AB+A.C+AD).(B+C+D)

.C.

D+ABB+ACB+ADB+

AB.C+A.C.C+AD.C+
A.B.D+ACD+AD.D

'D+A.0+AC.B+ADB +

A.B.C+ A.C+ A.D.C +
ABD+AC.D+A.D

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Simplified Implementation

- f1=A.B.C.D+0+A(CB+DB+B.C+C+

D.C+B.D+C.D+D)

- f1=A.B.C.D+A(CB+D.B+B.C+C+

D.C+B.D+D)

. f1l=A.B.C.D+A.(C.(B+B)+C +

D.B+C+B+1))
.D+A(C1+C+ D.1)
.D+A.(C+ D)
.D+AC+ AD

Copyright © 2007 David Vernon (www.vernon.eu)

fl=A.B.C.D+A.(B+C+D).(B.C.D)

Corresponding Digital Circuit

(chill) A

R
L

(NOT chill) A

(rashy B —

(NOT rash) B 5 >—

(bloodshot eyes) C
(NOT bloodshot eyes) C

(fever) D
(NOT fever) D

Copyright © 2007 David Vernon (www.vernon.eu

fl=A.B.C.D+AC+ AD Corresponding
Digital Circuit

(chill) A
(NOT chill) A

(rash) B
(NOT rash) B

(bloodshot eyes) C
(NOT bloodshot eyes) C

(fever) D
(NOT fever) D

Copyright © 2007 David Vernon (www.vernon.eu)

The Director’s Dilemma
Simplified Implementation

- That simplification was hard work! Is there an easier
way?
. Yes!

- We use truth-tables, minterms, and a simplification
method known as Karnaugh maps

Copyright © 2007 David Vernon (www.vernon.eu)

Anybody who hasn’t got any of these symptoms doesn’t
have either Boolean Virus or Digital Flu

Chills

Rash

Bloodshot Eyes

Fever

Boolean Virus

Digital Flu

0

0

0

0

0

0

Anybody who has NO chill but HAS some of the other
symptoms is just suffering from Digital Flu

Chills

Rash

Bloodshot Eyes

Fever

Boolean Virus

Digital Flu

0

0

0

0

O O OO OO oo

0

The Director’s Dilemma
Key Facts

. |If there is a chill and a rash only, then it's Digital Flu
again.
. It's a chill by itself or a chill and any other combination

of rash, bloodshot eyes, and fever,
(But not the Digital Flu combination of chill and rash

only - NB)
then they’ve got the Boolean Virus

Copyright © 2007 David Vernon (www.vernon.eu)

If there is a chill and a rash only, then it's Digital Flu again
chill and other combinations - BV

Chills

Rash

Bloodshot Eyes

Fever

Boolean Virus

Digital Flu

o

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

o

P PP P O0OO0OO0OORRERPRERPRREROOO

o

PP OORRFRPOORRFRPROORLELO

o

P OFRPROFROFRPROFRPROFRPROROLER

P PFRPOPRFRPREFPRFPPFPLROOOOOOODO

o

OO O0OFRPROO0OOORRRERPRERPRREER

Simplification using Minterms and
Karnaugh Maps

Minterm
mO
m1
m?2
m3
m4
mb5
m6
mY
m8
m9
m10
mll
m12
m13
ml4
m15

COpyrgrnmY ZUU 7 Uavia VETTION (WWW.VETTION.€U)

o
=
—r
| —
m—
N

PFRPRPRPRPPPPOOOOOOOO>

R
0
1
2
3
4
5
6
/
8
9

P POPRFRPFPPFPPFPOOOOOOOO
OCOFrRPOO0OO0OORRPRRERPERPRERPERERE

P PP PRPO0OO0OO0OORRPRRPREFRLROOOO|m
PP OOFRPRRFRPROORRPFPROOREFEOO|ID
POPRPORPROROROROROR O|U

=
o

Simplification using Minterms and
Karnaugh Maps

- A Karnaugh Map is simply another form of truth table
. Entry of each minterm

- Arranged in a 2-D array

- Each variable ‘blocks in’ half of the array

- Different half for each variable

- With a 4-variable expression, we know there are 16
possible combinations or minterms

Copyright © 2007 David Vernon (www.vernon.eu)

Simplification using Minterms and
Karnaugh Maps

A=0

Simplification using Minterms and
Karnaugh Maps

Simplification using Minterms and
Karnaugh Maps

Simplification using Minterms and
Karnaugh Maps

Simplification using Minterms and
Karnaugh Maps

AB
00 01

Simplification using Minterms and
Karnaugh Maps

AB
00 01

mO | m4

ml | mb

m3 | m/

m2 [m6

3-Variable Karnaugh Map

Simplification using Minterms and
Karnaugh Maps

- To simplify a Boolean expression

- EXpress it as a (conventional) truth table
- ldentify the minterms that are ‘TRUE’

. ldentify the minterms that are ‘FALSE’

- Mark them as such in the Karnaugh Map
- And then

Copyright © 2007 David Vernon (www.vernon.eu)

Simplification using Minterms and
Karnaugh Maps

- ldentify groups of adjacent ‘1’s in the Karnaugh Map

— Note that two squares are adjacent if they share a boundary
(this includes the top and bottom edges and the left and right
edges: top IS adjacent to bottom and left IS adjecent to
right).

— For example, minterm 11 is adjacent to minterm 3

- Try to get groups that are as large as possible(in
blocks of 1, 2, 4, 8§, ...)

Copyright © 2007 David Vernon (www.vernon.eu)

Simplification using Minterms and
Karnaugh Maps

- |dentify the least number of variables that are required
to unambiguously label that group

- The simplified expression is then the logical OR of all
the terms that are needed to identify each (largest as
possible) group of ‘1’s

- Note: groups may overlap and this sometimes helps
when identifying large groups

Copyright © 2007 David Vernon (www.vernon.eu)

Simplification using Minterms and
Karnaugh Maps

Minterm
mO
m1
m?2
m3
m4
mb5
m6
mY
m8
m9
m10
mll
m12
m13
ml4
m15

COpyrgrnmY ZUU 7 Uavia VETTION (WWW.VETTION.€U)

o
=
—r
| —
m—
N

PFRPRPRPRPPPPOOOOOOOO>

R
0
1
2
3
4
5
6
/
8
9

P POPRFRPFPPFPPFPOOOOOOOO
OCOFrRPOO0OO0OORRPRRERPERPRERPERERE

P PP PRPO0OO0OO0OORRPRRPREFRLROOOO|m
PP OOFRPRRFRPROORRPFPROOREFEOO|ID
POPRPORPROROROROROR O|U

=
o

Simplification using Minterms and
Karnaugh Maps

AB
00 01

mO | m4

ml | mb

m3 | m/

m2 [m6

f1=A.B.C.D+A.(B+C+D).(B.c.D) Karnaugh

Maps

f1=A.B.C.D+A.(B+C+D).(B.c.D) Karnaugh

Maps

Karnaugh Maps

- Note: This simplification is better than we
managed with our ‘hand’ simplification
earlier!!

Copyright © 2007 David Vernon (www.vernon.eu)

fl=A.B.C.D+AC+ AD Corresponding
Digital Circuit

(chill) A
(NOT chill) A

(rash) B
(NOT rash) B

(bloodshot eyes) C
(NOT bloodshot eyes) C

(fever) D
(NOT fever) D

Copyright © 2007 David Vernon (www.vernon.eu)

f1=A.B.C.D+AC+ AD

Corresponding NAND Digital Circuit

(chill) A)

(NOT chill) A

(rash) B —
(NOT rash) B 7

(bloodshot eyes) C
(NOT bloodshot eyes) C }

(fever) D
(NOT fever) D

Copyright © 2007 David Vernon (www.vernon.eu)

f1=A.B.C.D+AC+ AD

Corresponding NAND Digital Circuit

(chill) A)

(NOT chill) A

(rash) B —
(NOT rash) B 7

(bloodshot eyes) C
(NOT bloodshot eyes) C }

(fever) D A+¥+L=XY.L
(NOT fever) D

Copyright © 2007 David Vernon (www.vernon.eu)

Exercise

- Use a truth table, minterms, and a Karnaugh map to
simplify the following expression

f2=A.B+C+D)+A.B.C.D

Copyright © 2007 David Vernon (www.vernon.eu)

f2=A.B+C+D)+A.B.C

D

Karnaugh Maps

o
=

PFRPRPRPRPPPPOOOOOOOO>

R
0
1
2
3
4
5
6
/
8
9

Minterm

—h
H
—h
N

mO
m1
m?2
m3
m4
mb5
m6
mY
m8
m9
m10
mll
m12
m13
ml4
m15

P POPRFRPFPPFPPFPOOOOOOOO
OCOFrRPO0OO0OO0OORRRERPRRERPRERLPEERO

P RPRPPOO0OOORRPREPREFPROOOO|m
PP OOFRPRRFRPROORRPFPROOREFEOO|ID
POPRPORPROROROROROR O|U

=
o

COpyrgrnmY ZUU 7 Uavia VETTION (WWW.VETTION.€U)

f2=A.B+C+D)+A.B.C
Karnaugh Maps

AB
00

01

mO

m4

m1l

m5

m3

m/

m2

f2=A.B+C+D)+A.B.C
Karnaugh Maps

AB
00 01

0

f2=A.B+C+D)+A.B.C.D
Karnaugh Maps

(chill) A
(NOT chill) A

fl=A.B+A.C+AD

(rash) B

(NOT rash) B D* f1

(bloodshot eyes) C
(NOT bloodshot eyes) C

(fever) D
(NOT fever) D f2=B.CD+AC+AD

) — 2

Simplification of Expressions

Sometimes, a minterm never occurs in a system, I.e.,
the condition given by that minterm never arises

n this instance, we can use either 1 or O In the
Karnaugh map when simplifying expressions

n fact, we use the convention that such conditions are
‘don’t care’conditions and are signified by X rather
than 0/1

We use the value O or 1 depending on which leads to
the simplest expression

Copyright © 2007 David Vernon (www.vernon.eu)

BINARY ARITHMETIC

Binary Addition

Copyright © 2007 David Vernon (www.vernon.eu)

Half Adder

. A digital adder will add just two binary
numbers

- When two binary digits (bits) A and B are
added, two results are required:

— the sum S
— the ‘carry’ C, to the next place

. The circuit to do this is called a Half Adder
(HA)

Copyright © 2007 David Vernon (www.vernon.eu)

Half Adder

Copyright © 2007 David Vernon (www.vernon.eu)

Half Adder

Truth Table for addition of two binary digits

Copyright © 2007 David Vernon (www.vernon.eu)

Half-Adder

. From the truth table we see that:

Copyright © 2007 David Vernon (www.vernon.eu)

Half Adder

Copyright © 2007 David Vernon

Half Adder

A

Copyright © 2007 David Vernon (www.vernon.eu

Half Adder

- Note that the S output Iis separated from the
iInputs by 3 levels of gates
— referred to as logical depth of 3

- While the CO output is separated by just 1 level

— logical depth of 1

- Because of propagation delays, this means that
the carry out will be produced before the sum

— This may cause problems in some circumstances

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

- In order to add together multiple-digit numbers,
we need a slightly more complicated circuit

— Need to add the two digits and the carry out from the
‘previous’ or less significant digit

— Only in the addition of the right-most digits can we
ignore this carry

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

Carry out digits
10110 ——

10110

101001

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

- The circuit to add three binary digits (two
operands and a carry bit) is called a Full
Adder (FA)

. |t can be implemented using two half adders

Copyright © 2007 David Vernon (www.vernon.eu

Full Adder

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

- Addition is carried out in two stages

— add bits A and B to produce
» partial sum S’
» and (the first) intermediate output carry C_’
— add partial sum S’ and input carry C; from
previous stage to produce
» final sum
» and (the second) intermediate output carry C,”

— We then need to combine the intermediate carry
bits (they don’t have to be added)

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

)

~ B P PO O OO | P>

_ = O OFRL, b OO0 | W

b O kP O O - O

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

O
L
O

o

~ B P PO O OO | P>

_ = O OFRL, b OO0 | W

O O F P PFPPFP OO
_ = O OO O OO

b O kP O O - O

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

A|lB|Ci|S’|c] C,’|C|S|IADPBADBDC,

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

A|lB|Ci|S’|c] C,’|C|S|IADPBADBDC,

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

A|lB|Ci|S’|c] C,’|C|S|IADPBADBDC,

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

A|lB|Ci|S’|c] C,’|C|S|IADPBADBDC,

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

. A few observations

. The truth table demonstrates why
C,=C,/+C)"

. It'sclearalsothat S=A@® B @ C.

. Also, we could obtain a simplified expression
for C, from a Karnaugh Map

C,=AB+B.C,+AC

Copyright © 2007 David Vernon (www.vernon.eu)

3-Variable Karnaugh Map

3-Variable Karnaugh Map

B=1
C,=AB+B.C,+AC

COpyrTgmY Zuur \AS] (WWW.VETTIOT))

Full Adder

- SO0, Instead of implementing a full adder as
two half adders, we could implement it
directly from the gating:

S=A®PBDC
C,=AB+B.C.+AC

Copyright © 2007 David Vernon (www.vernon.eu)

Full Adder

- lrrespective of the implementation of a full
adder, we can combine them to add multiple
digit binary numbers

Copyright © 2007 David Vernon (www.vernon.eu)

4-Bit Binary Adder

Copyright © 2007 David Vernon (www.vernon.eu)

